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TRANSSERIES AS GERMS OF SURREAL FUNCTIONS

ALESSANDRO BERARDUCCI AND VINCENZO MANTOVA

Abstract. We show that Écalle’s transseries and their variants (LE and EL-
series) can be interpreted as functions from positive infinite surreal numbers
to surreal numbers. The same holds for a much larger class of formal series,
here called omega-series. Omega-series are the smallest subfield of the surreal
numbers containing the reals, the ordinal omega, and closed under the exp
and log functions and all possible infinite sums. They form a proper class,
can be composed and differentiated, and are surreal analytic. The surreal
numbers themselves can be interpreted as a large field of transseries containing
the omega-series, but, unlike omega-series, they lack a composition operator
compatible with the derivation introduced by the authors in an earlier paper.
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1. Introduction

Fields of transseries are an important tool in asymptotic analysis and played a
crucial role in Écalle’s approach to the problem of Dulac [Dul23, É92]. They ap-
pear in various versions, see for instance [DG87, DMM97, Hoe97, Kuh00, DMM01,
Sch01, KS05, Hoe06, Hoe09] and the bibliography therein. In [BM] we proved that
Conway’s field No of surreal numbers [Con76] admits the structure of a field of
transseries (in the sense of [Sch01]) and a compatible derivation (in fact more than
one). We also proved the existence of “integrals”, in the sense of anti-derivatives,
for the “simplest” surreal derivation on No. This makes No into a Liouville closed
H-field in the sense of [AD02]. We recall that an H-field is an ordered differential
field with some compatibility properties between the derivation ∂ and the order; in
particular if f is greater than any constant, then ∂f > 0. A basic example is the
field of rational functions R(x), ordered by x > R, with constant field R = ker ∂
and ∂x = 1. The notion of H-field arises as an attempt to axiomatize some of the
properties of Hardy fields, where a Hardy field is a field of germs at +∞ of eventu-
ally C1-functions f : R → R closed under derivation. Such fields have been studied
since the 70’s, see for instance [Bou76, Ros83b, Ros83a, Ros87]. Any o-minimal
structure on the reals gives rise to an H-field, namely the field of germs at +∞ of
its definable unary functions. In [ADH] van den Dries, Aschenbrenner and van der
Hoeven proved that, with the “simplest” derivation ∂ introduced in [BM], the sur-
reals are a universal H-field; more precisely, every H-field with “small derivations”
and constant field R embeds in No as a differential field. Moreover, they proved
that (No, ∂) satisfies the complete first order theory of the logarithmic-exponential
series of [DMM97, DMM01] and therefore, by the model completeness of the theory
[ADH], it admits solutions to all the differential equations that can be solved in a
bigger model.

Another approach to derivation and integration on the surreal numbers was taken
by Costin, Ehrlich and Friedman [CEF15] in a more analytic vein, possibly suitable
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for asymptotic analysis, namely they consider derivatives and definite integrals of
functions, rather than derivatives of “numbers” (elements of No).

This paper is a first attempt to reconcile the algebraic and the analytic approach
to surreal derivation and integration through a notion of composition. The special
session on surreal numbers at the joint AMS-MAA meeting in Seattle (6-9 Jan.
2016) was a timely occasion to discuss these developments and some of the results
of this paper were presented during that meeting.

To discuss our contribution in more detail, we need some definitions. We recall
that in No, as in any Hahn field, there is a formal notion of summability, and
one can associate to each summable family (xi)i∈I its “sum”

∑

i∈I xi ∈ No. We
can thus define the field of omega-series R⟪ω⟫ as the smallest subfield of No

containing R(ω) and closed under exp, log and sums of summable families. Here
ω is the first infinite ordinal and plays the role of a formal variable with deriva-
tive 1. It turns out that R⟪ω⟫ is a very big exponential field (in fact a proper
class) properly containing an isomorphic copy of the logarithmic-exponential se-
ries of [DMM97, DMM01] (LE-series) and their variants, such as the exponential-
logarithmic series of [Kuh00, KT12] (EL-series). More precisely, we can isolate two
subfields R((ω))LE ⊂ R((ω))EL of R⟪ω⟫ which are isomorphic to the LE and EL-
series respectively. The field R((ω))LE is a countable union

⋃

n∈N
Xn ⊆ No, where

X0 := R(ω) and Xn+1 is the set of all sums of summable sequences of elements
in Xn ∪ exp(Xn) ∪ log(Xn). In other words, a surreal number is a LE-series if it
can be obtained from R(ω) by finitely many applications of

∑

, exp, log (Theorem
4.11). This remarkably simple characterization of the LE-series, which should be
compared with the original definition, is made possible by working inside the surre-
als, with its notion of summability and exponential structure. The EL-series admit
a similar characterization (Proposition 4.12).

We show that each omega-series f ∈ R⟪ω⟫, hence in particular each LE or
EL-series, can be interpreted as a function from positive infinite surreal numbers to
surreal numbers (Corollary 5.23). The idea is simply to substitute ω with a positive
infinite surreal and evaluate the resulting expression, but the proof of summability
(Lemma 5.21) is rather long and technical and it is carried out in Section 9. Similar
problems were tackled in [Sch01] and in some of the cited works by van der Hoeven,
although not in the context of surreal numbers. We shall borrow from those papers
the idea of isolating the contributions coming from different “trees”, but with enough
differences to warrant an independent treatment. This will give rise to a natural
composition operator ◦ : R⟪ω⟫ × No

>R → No (Theorem 6.3) which restricts to
a composition ◦ : R⟪ω⟫ × R⟪ω⟫>R → R⟪ω⟫ extending the usual composition of
ordinary power series. Formally, we define a composition on R⟪ω⟫ to be a function
◦ : R⟪ω⟫×No

>R → No satisfying the following conditions for all f, g ∈ R⟪ω⟫ and
x ∈ No

>R:

(1) if f =
∑

i<α rie
γi , then f ◦ x =

(
∑

i<α rie
γi
)

◦ x =
∑

i<α rie
γi◦x;

(2) f ◦ g ∈ R⟪ω⟫ and (f ◦ g) ◦ x = f ◦ (g ◦ x);
(3) f ◦ ω = f , ω ◦ x = x.

We then prove the following.

Theorem 6.3. There is a (unique) composition ◦ : R⟪ω⟫×No
>R → No.

In the last part of the paper we study the interaction between the derivation
∂ : No → No introduced in [BM] and the composition on R⟪ω⟫. Let us recall that
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in [BM] we proved the existence of several “surreal derivations” ∂ : No → No and
we studied in detail the “simplest” such derivation [BM, Def. 6.21]. It is easy to
see that all surreal derivations coincide on the subfield R⟪ω⟫, so the latter admits
a unique surreal derivation ∂ : R⟪ω⟫→ R⟪ω⟫. The derivation ∂ on R⟪ω⟫ makes it
into a H-field, although not a Liouville closed one because ∂ : R⟪ω⟫→ R⟪ω⟫ is not
surjective. There are, however, many subfields of R⟪ω⟫ which are Liouville closed,
among which R((ω))LE .

We will show that the formal derivative ∂f of an omega-series f ∈ R⟪ω⟫ can be
interpreted as the derivative of the function f̂ : No

>R → No defined by f̂(x) = f◦x,
namely we have

∂f ◦ x = lim
ε→0

f ◦ (x+ ε)− f ◦ x

ε
,

where x and ε range in No (Corollary 7.6). Since ∂f ◦ ω = ∂f , this shows in
particular that the derivative can be defined in terms of the composition: ∂f =

limε→0
f◦(ω+ε)−f◦ω

ε . Other compatibility conditions then follow, such as the chain
rule ∂(f ◦ g) = (∂f ◦ g) · ∂g (Corollary 7.7).

These results tells us that any omega-series f ∈ R⟪ω⟫, hence in particular every
logarithmic-exponential series, can be interpreted as a differentiable function f̂ :
No

>R → No from positive infinite surreal numbers to surreal numbers. We shall
prove that all such functions are surreal analytic in the following sense.

Theorem 7.14. Every f ∈ R⟪ω⟫ is surreal analytic, namely for every x ∈ No
>R

and every sufficiently small ε ∈ No we have

f ◦ (x+ ε) =
∑

n∈N

1

n!
(∂nf ◦ x) · εn.

It is tempting to raise the conjecture that the exponential field No, enriched
with all the functions f̂ : No

>R → No for f ∈ R⟪ω⟫ (possibly restricted to some
interval (a,+∞)) has a good model theory. For instance, the restricted version
could yield an o-minimal structure on No. Indeed, note that the family of all
functions f̂ : No

>R → No (for f ∈ R⟪ω⟫) yields a sort of non-standard Hardy field
on No, namely a field of functions closed under differentiation (it is also closed
under exp, log and composition).

We do not know up to what extent the above results can be extended beyond
R⟪ω⟫, namely whether we can introduce a composition operator on the whole of
No, thus giving a functional interpretation to all surreal numbers. Concerning this
problem, we have a negative result. Say that a derivation ∂ and a composition ◦
are compatible if the function x 7→ f ◦ x is constant when ∂f = 0 and strictly
increasing when ∂f > 0, and if the chain rule ∂(f ◦ g) = (∂f ◦ g) · ∂g holds for all
f, g ∈ No (see Definition 8.1).

Theorem 8.4. The simplest derivation ∂ : No → No of [BM] cannot be compatible
with a composition on No.

We conclude with some questions. The first is to study possible notions of
compositions and compatible derivations on the whole of No (see Question 8.3).
This is also connected with the long-standing question of the existence of trans-
exponential o-minimal structures; a good composition on No may provide a non-
archimedean example. Another related question is to understand whether No has
non-trivial field automorphisms preserving infinite sums and the function exp.
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2. Preliminaries

In this section, we recall a few well known constructions and facts regarding
ordered fields and surreal numbers, and above all, we shall establish some of the
notations that will be used throughout the rest of the paper. Since surreal numbers
form a proper class, we implicitly work in a set theoretic framework which allows
to talk about classes as first class objects, such as NBG. Therefore, in the following
definitions all objects are allowed to be proper classes, unless specified otherwise.
Given a class C, we shall say that C is small if it is a set and not a proper class.

2.1. Hahn fields.

Definition 2.1. Let K be an ordered field, R ⊆ K a subfield, and f, g ∈ K. We
let:

(1) f �R g, or f ∈ OR(g), if there is c ∈ R such that |f | ≤ c|g|, and we say
that f is R-dominated by g;

(2) f ≺R g, or f ∈ oR(g), if c|f | < |g| for every c ∈ R, and we say that f is
R-strictly dominated by g;

(3) f is R-finite (or R-bounded) if f �R 1;
(4) f is R-infinitesimal if f ≺R 1;
(5) f ≍R g if f �R g and g �R f , namely f/g is R-finite and not R-

infinitesimal, and we say that f is R-comparable to g;
(6) f ∼R g if f − g ≺R g, and we say that f is R-asymptotic to g.

When R ⊆ R we suppress the “R”. For instance we write f � g if there is c ∈ Q

such |f | ≤ c|g| and we say that f is dominated by g, or we write f ∈ O(1) if
f is finite, namely f is dominated by 1. We say that f and g are in the same
Archimedean class if f ≍ g, namely f � g and g � f .

Finally, we say that Γ ⊆ K>0 is a group of monomials for K if it is a
multiplicative subgroup and for every x ∈ K there is a unique m ∈ Γ such that
x ≍ m. It can be proved that any real closed field admits a group of monomials.

Example 2.2. The field of Laurent series R((xZ)) consists of all formal series of
the form

∑

n≥n0
anx

n, where an ∈ R and n0 ∈ Z, ordered according to the sign of
the leading coefficient an0 . The multiplicative subgroup xZ := {xn : n ∈ Z} is a
group of monomials for R((xZ)).

Remark 2.3. Given two monomials m, n, we have m < n if and only if m ≺ n.

Definition 2.4. Let (Γ, ·, <) be an ordered abelian group written in multiplicative
notation. Let R be an ordered field. The Hahn field R((Γ)) consists of all formal
sums x =

∑

m∈Γ xmm with coefficients xm ∈ R, whose support Supp(x) := {m ∈
Γ : xm 6= 0} is reverse well-ordered, namely every non-empty subset of the
support has a maximal element. If xm 6= 0 we say that xmm is a term of x. We
denote by R((Γ))small ⊆ R((Γ)) the subclass of all formal sums x =

∑

m∈Γ xmm

whose support is small (it coincides with R((Γ)) when Γ is small).
The addition in R((Γ)) is defined component-wise and the multiplication is given

by the usual convolution formula: (
∑

m
xmm) (

∑

n
ynn) = (

∑

o
zoo) where zo =

∑

mn=o
xmyn ∈ R. The fact that the supports are reverse well-ordered ensures that

the latter sum is finite.
The leading monomial LM(x) of x is the maximal monomial in Supp(x). The

leading term LT(x) is the leading monomial multiplied by its coefficient, and the
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leading coefficient is the coefficient of the leading monomial. R((Γ)) is ordered
as follows: x is positive if and only if its leading coefficient is positive. We denote
by Term(x) := {xmm : m ∈ Supp(x)} the class of the terms of x.

Fact 2.5. Both R((Γ)) and R((Γ))small are ordered fields.

Remark 2.6. Note that Γ is a multiplicative subgroup of R((Γ)), where we identify
m ∈ Γ with 1m ∈ R((Γ)). It follows from the definitions that Γ ⊆ R((Γ)) contains
one and only one representative for each equivalence class modulo ≍R. In particular,
taking R = R, we have that Γ is a group of monomials for R((Γ)). The same is
true for R((Γ))small.

2.2. Surreal numbers. We denote by No the ordered field of surreal numbers
[Con76, Gon86]. A minimal introduction to No, containing all the prerequisites
for this paper, is contained in [BM]. However, there is no need to assume a prior
knowledge of the surreal numbers (the definition itself will not be needed), if one is
willing to take for granted the following fact.

Fact 2.7. We have:

(1) No is an ordered real closed field equipped with an exponential function
exp : No → No, x 7→ ex := exp(x), making it into an elementary extension
of (R, <,+, ·, exp) [DE01a]; in particular, exp : No → No is an increasing
isomorphism from the additive to the positive multiplicative group.

(2) No contains an isomorphic copy of the ordered class On of all ordinal
numbers (hence No is a proper class). The addition and multiplication
restricted to On coincide with the Hessenberg sum and product.

(3) There is a representation of surreal numbers as binary sequences of any
ordinal length. The relation of being an initial segment, called simplicity,
is well founded and makes No into a binary tree. This gives us a canonical
choice for a group M ⊆ No

>0 of monomials: the monomials are the
simplest positive representatives of the Archimedean classes (they form a
proper class).

(4) The ordinal ω belongs to M (it will later play the role of a formal variable
with derivative 1). If 1 ≺ m ∈ M, then em ∈ M. In particular eω and e−ω

are monomials, but e1/ω is not.
(5) There is a canonical isomorphism (written as an identification)

No = R((M))small ⊂ R((M)).

(6) A surreal number
∑

m∈M
xmm is purely infinite if all the monomials m

in its support are infinite, namely m ≻ 1. Letting J ⊆ No be the class of
all purely infinite surreal numbers, there is a direct sum decomposition of
R-vector spaces

No = J⊕ R⊕ o(1).

(7) We have M = exp(J) = {eγ : γ ∈ J}, so we can write

No = R((eJ))small.

In other words, every surreal number x ∈ No can be uniquely written in
the form

x =
∑

i<α

rie
γi
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where α ∈ On, ri ∈ R∗, and (γi)i<α is a decreasing sequence in J indexed
by an ordinal α ∈ On. We call this the Ressayre normal form of x.

(8) The exponential function on o(1) can be calculated using the Taylor series
of exp, namely

exp(ε) =

∞
∑

n=0

εn

n!

for all ε ∈ o(1) (see Subsection 2.3 for the meaning of the above infinite
sum). Likewise, the inverse log satisfies

log(1 + ε) =

∞
∑

n=1

(−1)n+1 ε
n

n
.

Remark 2.8. For infinite x, the equality exp(x) =
∑∞

n=0
xn

n! does not hold. In fact,
the right-hand side does not even represent a surreal number (see Subsection 2.3).
Likewise for log(1 + x).

Definition 2.9. By the decomposition No = J⊕R⊕o(1), for every surreal number
x ∈ No we can write uniquely

x = x↑ + x= + x↓

where x↑ ∈ J, x= ∈ R and x↓ ≺ 1. We also write x↑= for x↑ + x=.

Definition 2.10. Thanks to Fact 2.7(5) we can apply to No the definitions already
introduced for Hahn fields (support, leading term, etc.). In particular, if x =
∑

i<α rie
γi is in normal form, its leading monomial is eγ0 and its leading term is

r0e
γ0 ; in this case we define

log↑(x) := γ0.

Note that log↑(x) = log(x)↑, as in fact log(x) = log(r0e
γ0(1+ε)) = γ0+log(r0)+

∑∞
n=1(−1)n+1 εn

n where ε ≺ 1. Moreover, x ≺ y if and only if log↑(x) < log↑(y) (so
− log↑ is a Krull valuation).

Definition 2.11. If x =
∑

i<α rie
γi and β ≤ α, the number

∑

i<β rie
γi is called a

truncation of x. A subclass A ⊆ No is truncation closed if for every x in A, all
truncations of x are also in A.

Note that x↑ is a truncation of x and it coincides with the sum of all the terms
rie

γi of x with γi > 0 (if there are no such terms, then x↑ = 0).

Notation 2.12. Given A,B ⊆ No we shall use some self-explanatory notations like
the following:

• A>0 is the set of positive elements of A;
• A≻1 is the set of elements a ∈ A satisfying a ≻ 1;
• A < B means a < b for all a ∈ A and b ∈ B;
• exp(A) := {exp(x) : x ∈ A} and log(A) := {log(x) : x ∈ A>0}, where
log : No

>0 → No is the inverse of exp.

Example 2.13. Since M = exp(J), we have M
≻1 = exp(J>0) and M

≺1 =
exp(J<0).
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2.3. Summability. Any Hahn field, and in particular No by Fact 2.7(5), admits
a natural notion of infinite sum, as follows.

Definition 2.14. Let I be a set (not a proper class) and (xi : i ∈ I) be an indexed
family of elements of No.

We say that (xi : i ∈ I) is summable if
⋃

i∈I Supp(xi) is reverse well-ordered
and for each m ∈

⋃

i∈I Supp(xi), there are only finitely many i ∈ I such that m ∈
Supp(xi). In this case, the sum

∑

i∈I xi is the unique surreal number y =
∑

m
ymm

such that Supp(y) ⊆
⋃

i∈I Supp(xi) and, for every m ∈ M, ym =
∑

i∈I(xi)m (note
that there are finitely many i ∈ I with xi 6= 0 by the hypothesis of summability).
Similar definitions apply replacing No with any field of the form R((Γ))small.

We shall also say that
∑

i∈I xi exists to mean that (xi)i∈I is summable.

Remark 2.15. A family (xi : i ∈ I) is summable if and only if there are no injective
sequences (in)n∈N in I and monomials mn ∈ Supp(xin) (not necessarily distinct)
such that mn � mn+1 for each n ∈ N (where N is the set of non-negative integers).
Equivalently, for every injective sequence (in)n∈N in I and for any choice of mono-
mials mn ∈ Supp(xin), there is a subsequence (if(n))n∈N such that mif(n)

≻ mif(n+1)

for every n ∈ N.

2.4. Hahn fields embedded in No. Given a subfield R of No and a multiplica-
tive subgroup Γ of the monomials M = eJ, we will sometimes be interested in
the class of all surreal numbers that can be written as a sum

∑

rmm for rm ∈ R
and m ∈ Γ. Under suitable assumptions on R and Γ, this subclass of No can be
identified with the Hahn field R((Γ)).

Proposition 2.16. Let Γ be a small multiplicative subgroup of M = eJ and R be
a truncation closed subfield of No. If R < Γ>1, there is a unique field embedding
R((Γ)) → No sending rm (as an element of R((Γ))) to rm (as an element of No)
and preserving infinite sums.

Proof. Suppose that R < Γ>1. It suffices to check that the embedding exists.
Without loss of generality, we may assume that R ⊆ R, as the compositum R ·R is
clearly truncation closed and it also satisfies R ·R < Γ>1.

Let
∑

rmm be an element of R((Γ)). We wish to prove that (rmm ∈ No :
rm 6= 0) is summable. Take an injective sequence (rmn

mn)n∈N and a choice of
nn ∈ Supp(rmn

mn). We can write nn = mnon, where on ∈ Supp(rmn
). Note that

on ∈ R, since R contains R and is closed under truncation.
After extracting a subsequence, we may assume that (mn)n∈N is strictly decreas-

ing. We can now easily check that (nn)n∈N is also strictly decreasing: indeed,
nn

nn+1
=

mn

mn+1
·

on

on+1
> 1,

as on+1

on
∈ R < Γ>1. �

Notation 2.17. By Proposition 2.16, given a small multiplicative group Γ of M = eJ

(the class of monomials of No) and a truncation closed subfield R ⊆ No such that
R < Γ>1, we can identify the field R((Γ)) with the class of surreal numbers that
are of the form

∑

rmm with rm ∈ R and m ∈ Γ.

Lemma 2.18. Let Γ1 and Γ2 be subgroups of a given ordered abelian multiplicative
group. Suppose Γ1 < Γ>1

2 . Then Γ1Γ2 is naturally isomorphic, as an ordered group,
to the direct product Γ1 × Γ2 with the reverse lexicographic order.
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Proof. Clearly, Γ1∩Γ2 = {1}, so the map sending ab ∈ Γ1Γ2 to (a, b) ∈ Γ1×Γ2 is a
well-defined isomorphism of abelian groups. We can easily verify that it preserves
the ordering. Indeed, let a, a′ ∈ Γ1 and b, b′ ∈ Γ2 be such that b < b′. It suffices
to show that ab < a′b′. This can be rewritten as a/a′ < b′/b. Since b′/b > 1, the
desired result follows by the hypothesis Γ1 < Γ>1

2 . �

Using the above notation, Proposition 2.16, and Lemma 2.18, we can then deduce
the following well-known result (see for instance [DMM01, 1.4]). However, note
that the result contains an equality rather than just an isomorphism, thanks to the
identifications of Notation 2.17.

Corollary 2.19. Let Γ1, Γ2 be small subgroups of M. If Γ1 < Γ>1
2 , then we have

R((Γ1))((Γ2)) = R((Γ1Γ2)) ∼= R((Γ1 × Γ2)).

Proof. We first note that R((Γ1)) < Γ>1
2 , from which it follows at once that

R((Γ1))((Γ2)) ⊆ R((Γ1Γ2)) by Proposition 2.16. On the other hand, let x =
∑

m∈Γ1Γ2
rmm be an element of R((Γ1Γ2)). Since Γ1Γ2

∼= Γ1 × Γ2, each m ∈ Γ1Γ2

decomposes uniquely as a product m = no with n ∈ Γ1 and o ∈ Γ2. But then it is
easy to verify that

x =
∑

m

rmm =
∑

o∈Γ2

(

∑

n∈Γ1

rnon

)

o ∈ R((Γ1))((Γ2)).

�

Remark 2.20. If one drops the assumption that Γ is small, then the conclusion of
2.16 holds with R((Γ))small in place of R((Γ)). In particular, we may canonically
identify R((Γ))small with a subfield of No, as in Notation 2.17. As a special case,
one recovers the already mentioned identification No = R((M))small of Fact 2.7(5).
The conclusion of Corollary 2.19 also holds, provided one uses R((Γi))small instead
of R((Γi)) for i = 1, 2.

3. Surreal analytic functions

A real function is analytic at a point in its domain if there is a neighborhood of
the point in which it coincides with the limit of a power series. Such notion does not
generalize directly to surreal numbers, as No does not have a good notion of limit
for series. However, we can replace the limit with the natural notion of infinite
sum from Definition 2.14. This leads to a theory of “surreal analytic function”
developed in [All87]. In this section we isolate and extend some of those results in
a form suitable for our goals.

Infinite sum bears some resemblance with the usual notion of absolute conver-
gence. On the one hand, like absolute convergence, it enjoys some good algebraic
properties, such as being independent on the “order” in which we sum the elements
of the family. On the other hand, it is not related to the order topology; for in-
stance, even if a family (xi)i∈I is summable, and (yi)i∈I is such that |yi| ≤ |xi|, it
does not necessarily follow that (yi)i∈I is summable.

Lemma 3.1. Let (ai : i ∈ I) be a summable family of surreal numbers. Then
for any partition I =

⊔

j∈J Ij of the set I, each sum
∑

i∈Ij
ai exists, the family
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(
∑

i∈Ij
ai : j ∈ J) is summable, and

∑

j∈J

∑

i∈Ij

ai =
∑

i∈I

ai.

Proof. Clearly, since (ai : i ∈ I) is summable, so is each (ai : i ∈ Ij) for j ∈ J .
Moreover, it also follows easily that (

∑

i∈Ij
ai : j ∈ J) is summable, as each mono-

mial m in Supp(
∑

i∈Ij
ai) must appear in Supp(ai) for some i ∈ Ij . To check that its

sum is indeed equal to
∑

i∈I ai, for a given monomial m, let ai,mbe the coefficient of
m in ai. Then the coefficient of m in

∑

j∈J

∑

i∈Ij
ai is

∑

j∈J

∑

i∈Ij
ai,m =

∑

i∈I ai,m,
which in turn is the coefficient of m in

∑

i∈I ai, proving the conclusion. �

Corollary 3.2. Let (ai,j : (i, j) ∈ I×J) be a summable family of surreal numbers.
Then both

∑

i∈I

∑

j∈J ai,j and
∑

j∈J

∑

i∈I ai,j exist and

∑

i∈I

∑

j∈J

ai,j =
∑

j∈J

∑

i∈I

ai,j =
∑

(i,j)∈I×J

ai,j .

Remark 3.3. The assumption of summability of (ai,j : (i, j) ∈ I × J) is necessary,
or the equality may not hold. For instance, take ai,i = ω, ai,i+1 = −ω, and ai,j = 0
otherwise for i, j ∈ N, which is clearly not summable. Then

∑

i∈N

∑

j∈N
ai,j = 0

while
∑

j∈N

∑

i∈N
ai,j = ω. Moreover, one of the two sums may not even exists; for

instance,
∑

i∈N

∑1
j=0(−1)jω clearly exists and is equal to 0, while

∑1
j=0

∑

i∈N
(−1)jω

does not exist. It can also happen that the two sums
∑

i

∑

j and
∑

j

∑

i ex-
ists and are equal, but the sum

∑

(i,j)∈I×J does not exists: take ai,i = 2ω and
ai+1,i = ai,i+1 = −ω, with all other terms ai,j being zero.

3.1. Products and powers of summable families. The following is well known.

Remark 3.4. If (xi)i∈I and (yj)i∈J are summable, then so is (xiyj : (i, j) ∈ I × J).
Its sum

∑

(i,j)∈I×J xiyj coincides with the product (
∑

i∈I xi)(
∑

j∈J yj).

Using Remark 3.4, one can easily express the n-th power of a sum as follows.

Proposition 3.5. Let (xi)i∈I be a summable family of surreal numbers and let
n ∈ N. Then the family

(
∏

m<n xτ(m) : τ : n → I
)

is summable and

(

∑

i∈I

xi

)n

=
∑

τ :n→I

∏

m<n

xτ(m).

Proof. By induction on n ∈ N based on Remark 3.4. �

Corollary 3.6. If (aiε
i)i∈N is summable, then for every n ∈ N,

(

∑

i∈N

aiε
i

)n

=
∑

k∈N

(

∑

i1+...+in=k

ai1ai2 . . . ain

)

εk.

Proof. By Proposition 3.5,
(
∑

i∈N
aiε

i
)n

=
∑

τ :n→N

∏

m<n aτ(m)ε
τ(m), and the re-

sult follows by setting τ(m) = im and isolating the coefficient of εk in the second
member. �
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3.2. Sums of power series. We shall now define how to evaluate a surreal power
series on a surreal number, and the corresponding notion of surreal analytic func-
tion. This is similar to how real analytic functions are extended to No, with the
difference that we now allow power series to have surreal coefficients.

Definition 3.7. Given a surreal power series P (X) =
∑∞

i=0 aiX
i ∈ No[[X ]], we

define
P (ε) :=

∑

i∈N

aiε
i

for any ε ∈ No such that the sum on the right hand side exists.
Given a function f : U → No from an open subset U of No, we say that f is

surreal analytic at x if there are a neighborhood V ⊆ U of x and a power series
P (X) ∈ No[[X ]] such that f(y) = P (y − x) for all y ∈ V .

Unlike the case of real analytic functions, in which some power series are not
convergent and thus do not yield analytic functions, we shall now verify that every
power series with surreal coefficients induces a surreal analytic function.

By Neumann’s lemma [Neu49], if (ai)i∈N is a sequence of real coefficients and
ε ≺ 1, then (aiε

i)i∈N is summable. Therefore, for every power series P (X) ∈ R[[X ]],
P (ε) is well defined for any ε ≺ 1. We can easily extend this result to series with
surreal coefficients. We start with the following variant of Neumann’s lemma. Its
proof is an adaptation of a similar argument in [Gon86, p. 52].

Lemma 3.8. Let R be a subfield of No and ε ≺R 1. Let (ni)i∈N, (mi,j)i∈N,j≤ki
be

sequences of monomials in respectively R and Supp(ε), where (ki)i∈N is a sequence
of natural numbers with limi→∞ ki = ∞. Then the sum

∑

i∈N
nimi,0 . . .mi,ki

exists.

Proof. Suppose by contradiction that there are two family as in the hypothesis
such that

∑

i∈N
nimi,0 . . .mi,ki

does not exist. By taking a subsequence, we may
assume that (nimi,0 . . .mi,ki

)i∈N is weakly increasing. We may picture mi,j as the
(i, j)-entry of an infinite table, where i is the row index and j is the column index.
Rearranging the terms, we can assume that each row is weakly increasing, namely
mi,0 ≤ mi,1 ≤ . . . ≤ mi,ki

for all i ∈ N.
Taking a subsequence we may further assume that (ki)i∈N is strictly increasing,

so in particular ki ≥ i. Choosing a further subsequence we can assume that the first
column (mi,0)i≥0 is weakly decreasing, since all these monomials are in the support
of ε. Similarly we can assume that (mi,1)i≥1 is weakly decreasing. Continuing in
this fashion, by a diagonalization argument we can assume that, for any fixed k,
the k-th column (mi,k)i∈N becomes weakly decreasing after its k-th entry, namely
mk,k ≥ mk+1,k ≥ mk+2,k ≥ . . .. Note that these terms exist since ki ≥ k for all
i ≥ k.

Now fix i ∈ N and let j > i (so kj > ki). By construction, nimi,0 . . .mi,ki
≤

njmj,0 . . .mj,ki
mj,ki+1 . . .mj,kj

. Since mj,ki+1 . . .mj,kj
≺R 1, we must have ni >

njmj,ki+1 . . .mj,kj
. It follows that mi,0 . . .mi,ki

< mj,0 . . .mj,ki
, so in particular

there is some k ≤ ki with mi,k < mj,k. Now recall that the k-th column is weakly
decreasing after its k-th entry, hence necessarily i < k. We have thus proved that
for each i ∈ N and j > i there is some k with i < k ≤ ki such that mi,k < mj,k.

Taking j = ki, and recalling that all the rows are weakly increasing, we obtain
mi,i ≤ mi,k < mki,k ≤ mki,ki

for all i ∈ N. Iterating we obtain an infinite increasing
chain of elements of the form ml,l, contradicting the fact that {mi,j : i ∈ N, j ≤ ki}
is in Supp(ε). �
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Corollary 3.9. Let R be a truncation closed subfield of No and ε ≺R 1. Let (ai)i∈N

be a sequence of coefficients in R. Then (aiε
i)i∈N is summable.

Proof. Without loss of generality, we may assume that R ⊆ R. Indeed, we may
replace R with the compositum R · R, which is also closed under truncation, as
ε ≺R 1 trivially implies ε ≺R·R 1. In particular, we may assume that Supp(ai) ⊆ R
for all ai ∈ R. Note that for all i ∈ N, any monomial in the support of aiεi has the
form nimi,0 . . .mi,i−1 where ni ∈ Supp(ai) ⊆ R and mi,j ∈ Supp(ε) for j ≤ i − 1.
The conclusion then follows easily from Lemma 3.8. �

Corollary 3.10. For every power series P (X) ∈ No[[X ]], the partial function
ε 7→ P (ε) is surreal analytic at 0.

Proof. Given a power series P (X) =
∑∞

i=0 aiX
i, it suffices to apply Corollary 3.9

with the ring R generated by the monomials in the supports Supp(ai). The function
ε 7→ P (ε) is then defined at least on oR(1), which is a nonempty convex subclass
containing 0 as R is necessarily small. �

Proposition 3.11. Suppose that f is a surreal analytic function at some x ∈ No.
Then f is infinitely differentiable at x and

f(x+ ε) =
∞
∑

i=0

f (i)(x)

i!
εi.

Proof. Let f be surreal analytic at x, with power series P (X) =
∑∞

i=0 aiX
i. Then

for every sufficiently small δ we have

f ′(x+ δ) = lim
ε→0

f(x+ δ + ε)− f(x+ δ)

ε
= lim

ε→0

∞
∑

i=0

ai
(δ + ε)i − δi

ε

= lim
ε→0

∞
∑

i=0

ai ·
δi + iδi−1ε+

(

i
2

)

δi−2ε2 + · · ·+ iδεi−1 + εi − δi

ε

=
∞
∑

i=1

iaiδ
i−1 + lim

ε→0
ε ·

∞
∑

i=2

((

i

2

)

δi−2 + · · ·+ εi
)

=
∞
∑

i=1

iaiδ
i−1.

Therefore, f is differentiable at x and its derivative f ′ is surreal analytic at x.
Moreover, the above equation also shows that f ′(x) = a1. By induction, it follows

that f is infinitely differentiable, and that ai =
f(i)(x)

i! , as desired. �

Moreover, we also observe that Neumann’s lemma, already in its original formu-
lation, implies the following statement for power series with real coefficients, which
will prove useful later on.

Corollary 3.12. Let (εi)i∈I be a summable family such that εi ≺ 1 for all i ∈ N.
Let Pi(X) =

∑∞
n=1 ai,nX

n ∈ R[[X ]] be real power series for i ∈ I. Then the family
(Pi(εi) : i ∈ I) is summable.

Proof. Suppose by contradiction that there is a weakly increasing sequence of mono-
mials (mn)n∈N such that mn ∈ Supp(Pin(εin)). Then for all n ∈ N there is a positive
integer kn such that mn ∈ Supp(ain,kn

εkn

in
). After extracting a subsequence, we may

either assume that limn→∞ kn = ∞, and we reach a contradiction by Lemma 3.8,
or we may assume that the sequence (kn)n∈N is constant, so that mn ∈ Supp(εkin)
for some fixed k ∈ N and all n ∈ N.
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In the latter case, write mn = nn,1 · · · · · nn,k with nn,j ∈ Supp(εin). Since
(εi)i∈I is summable, we may extract a subsequence and assume that (nn,j)n∈N is
strictly decreasing for each j = 1, . . . , k. But then (mn)n∈N is strictly decreasing, a
contradiction. �

Remark 3.13. Since No is totally disconnected, the present notion of surreal ana-
lyticity does not have a good theory of analytic continuation. For instance, one can
define a surreal analytic function on all finite numbers by choosing a power series
Pr(X) ∈ R[[X ]] for each r ∈ R and defining f(r + ε) = Pr(ε) for each r ∈ R and
ε ≺ 1. Moreover, one can choose the series Pr such that the restriction of f to R

is itself a real analytic function, but with yet other Taylor expansions. It would be
interesting to develop an analogous of rigid analytic geometry for surreal numbers
that prevents such pathological behavior.

3.3. Composition of power series. By Corollary 3.10, there is a morphism from
No[[X ]] to germs at zero of surreal functions defined by evaluating a formal power
series P (x) =

∑

i∈N
aiX

i ∈ No[[X ]] at X = ε for any sufficiently small ε ∈ No.
As for traditional power series, we can show that this morphism behaves well with
respect to composition of power series.

Definition 3.14. Let R be a subfield of No. Given two formal power series
P (X) :=

∑∞
n=0 anX

n and Q(X) :=
∑∞

m=1 bmXm in R[[X ]], where Q(X) has
no constant term, their composition (P ◦ Q)(X) is defined as the power series
∑

k∈N
ckX

k ∈ R[[X ]] where c0 = a0 and, for k > 0,

ck =

k
∑

n=1

an
∑

m1+...+mn=k

bm1 · · · bmn
.

Lemma 3.15. Let R be a truncation closed subfield of No and ε ≺R 1. Let
(ai,j : (i, j) ∈ I × J) be a family of surreal numbers in R such that, for any fixed
j ∈ J ,

∑

i∈I ai,j exists. Then
∑

(i,j)∈I×J ai,jε
j exists.

Proof. As in the proof of Corollary 3.9, we may assume that Supp(ai,j) ⊆ R for all
(i, j) ∈ I×J . For a contradiction, suppose that there is an injective sequence of pairs
(in, jn)n∈N and a weakly increasing sequence of monomials mn ∈ Supp(ain,jnε

jn).
After extracting a subsequence, we may assume that either limn∈N jn = +∞, in
which case we reach a contradiction by Corollary 3.9, or the sequence (jn)n∈N is
constant, so that there is some j ∈ J such that mn ∈ ain,jε

j for every n ∈ N. In
this case, it follows that (ai,jεj)i∈I is not summable, which is absurd since

∑

i∈I ai,j
exists, hence so does εj(

∑

i∈I ai,j) =
∑

i∈I ai,jε
j . �

Proposition 3.16. Let R be a truncation closed subfield of No and ε ≺R 1. Let
P (X) :=

∑∞
n=0 anX

n and Q(X) :=
∑∞

m=1 bmXm be two power series in R[[X ]]
(where Q(X) has no constant term). Then (P ◦Q)(ε) = P (Q(ε)).

Proof. The three sums P (ε), Q(ε) and (P ◦ Q)(ε) exist by Corollary 3.9. Since
Q(ε) ≺R 1, P (Q(ε)) exists as well. Let dn,k =

∑

m1+...+mn=k

bm1 · · · bmn
for k ∈ N∗.

By Corollary 3.6,

P (Q(ε)) =

∞
∑

n=0

an

(

∞
∑

m=1

bmεm

)n

= a0 +

∞
∑

n=1

an

∞
∑

k=1

dn,kε
k.
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Note that dn,k = 0 for k < n, so the family (andn,k : n ∈ N) is summable for any
k ∈ N∗. By Lemma 3.15, the family (andn,kε

k : (n, k) ∈ N × N∗) is summable.
Therefore, by Corollary 3.2 we have

a0 +

∞
∑

n=1

an

∞
∑

k=1

dn,kε
k = a0 +

∞
∑

k=1

∞
∑

n=1

andn,kε
k = (P ◦Q)(ε).

�

4. Transseries

With the help of the surreal numbers we shall attempt a general definition of
“field of transseries”.

Definition 4.1. We say that T is a transserial subfield of No if T is a truncation
closed subfield of No (Definition 2.11) containing R and such that log(T>0) ⊆ T .

More generally, let F be an ordered logarithmic field (not necessarily included
in No) containing R and endowed with a partial operator

∑

from small indexed
families of elements of F to F . We say that F is a field of transseries if it is
isomorphic to a transserial subfield T of No through a field isomorphism f : F → T
preserving R, log and

∑

(the latter condition means that (xi : i ∈ I) is the domain
of
∑

if and only if (f(xi))i∈I is summable in No and
∑

i∈I f(xi) = f(
∑

i∈I xi)).
We shall call f an isomorphism of transseries.

In [Sch01] an axiomatic definition of transseries field is given. The critical axiom,
there called “T4”, is rather technical. One of the main results in [BM] is that No

satisfies T4, hence it is a field of transseries in the sense of [Sch01]. More generally,
since T4 is inherited by taking subfields, it follows that a field of transseries in the
sense of Definition 4.1 is also a field of transseries in the sense of [Sch01] (we also
expect the converse to be true, but it is beyond the scope of this paper).

4.1. Log-atomic numbers. We write logn(x) for the n-fold iterate of log(x),
namely log0(x) = x, logn+1(x) = log(logn(x)). Likewise, we write exp0(x) = x,
expn+1(x) = exp(expn(x)).

Definition 4.2. A positive infinite surreal number x ∈ No is log-atomic if for
every n ∈ N, logn(x) is an infinite monomial. We call L the class of all log-atomic
numbers. Note that log(L) = exp(L) = L.

A subclass of the log-atomic numbers, the so called κ-numbers, was isolated by
[KM15]. The ordinal ω is a κ-number, hence in particular it is log-atomic. In [BM]
we gave a parametrization {λx : x ∈ No} of L and we proved that there is exactly
one log-atomic numbers in each “level” of No.

Definition 4.3. Given x, y > R we write x ≍L y, and we say that x, y are in the
same level if for some n ∈ N we have logn(x) ≍ logn(y).

Remark 4.4. For all x, y > R, x ≍ y implies log(x) ∼ log(y), so in the above
definition we can equivalently require logn(x) ∼ logn(y).

Fact 4.5 ([BM]). We have:

(1) for each x ∈ No with x > R, there are n ∈ N and λ ∈ L such that
logn(x) ≍ λ [BM, Prop. 5.8]; in particular, every level contains a log-atomic
number;
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(2) for each λ, µ ∈ L, if λ ≍L µ, then λ = µ; in particular, every level contains
a unique log-atomic number;

(3) for every x > R and every positive n ∈ N, we have x ≍L xn, but x 6≍L ex;
(4) in particular, for λ, µ ∈ L, if λ < µ, then λn < µ for every n ∈ N;
(5) there are log-atomic numbers strictly between ω and eω; there are also

log-atomic numbers smaller than logn(ω) for every n ∈ N or bigger than
expn(ω) for every n ∈ N, such as the ordinal ε0.

4.2. Omega-series, LE-series, EL-series . In this section we shall introduce
three subfields R((ω))LE ⊂ R((ω))EL ⊂ R⟪ω⟫ of No. We shall see that first two
are naturally isomorphic to the exponential fields of respectively the LE-series of
[DMM97, DMM01] and the EL-series generated by logarithmic words of [Kuh00,
KT12], while the third one is a very big field properly containing both (the ordinal
ω plays the role of a formal variable > R).

Definition 4.6. Given a subclass X of No, we write
∑

X for the family of all
surreal numbers x ∈ No which can be written in the form x =

∑

i∈I yi for some
summable family (yi)i∈I of elements of X indexed by a set I. Note that

∑

is a
closure operator, as X ⊆

∑

X =
∑∑

X .

Definition 4.7. We define R⟪ω⟫, the field of omega-series, as the smallest sub-
field of No containing R ∪ {ω} and closed under

∑

, exp and log.

We shall prove later that R⟪ω⟫ is a proper class.

Definition 4.8. Let R((ω))LE ⊂ R⟪ω⟫ be the union
⋃

n∈N
Xn, where X0 = R∪{ω}

and Xn+1 =
∑

(Xn ∪ exp(Xn) ∪ log(Xn)). In other words, a surreal number x
belongs to R((ω))LE if and only if x can be obtained in finitely many steps starting
from R ∪ {ω} and using the set-operations

∑

, exp, log.

Definition 4.9. Let R((ω))EL be defined as R((ω))LE but starting with X ′
0 =

R ∪ {ω, log(ω), log2(ω), . . .} instead of X0 = R ∪ {ω}. In other words, a surreal
number belongs to R((ω))EL if and only if it can be obtained in finitely many
steps from X ′

0 using
∑

, exp, log (in this case it turns out that log is not actually
necessary).

Remark 4.10. Unlike R⟪ω⟫, the subfields R((ω))LE and R((ω))EL are not closed
under

∑

; for instance
∑

n∈N
logn(ω) belongs to R⟪ω⟫ but not to R((ω))LE . In-

deed, one needs k steps to generate logk(ω) starting from R ∪ {ω}, so the whole
sum

∑

n∈N
logn(ω) cannot be generated in finitely many steps. The same example

witnesses that the inclusion R((ω))LE ⊂ R((ω))EL is proper, as the latter field
does contain

∑

n∈N
logn(ω). Finally note that

∑

n∈N
1/ expn(ω) belongs to R⟪ω⟫

but not to R((ω))EL.
Both R((ω))LE and R((ω))EL are elementary extensions of the real exponential

field (R,+, ·, exp), but they are no longer elementary equivalent if we add the differ-
ential operator ∂ of [BM] to the language (see Subsection 7.1): indeed in R((ω))LE

(and in No itself) the derivation ∂ is surjective, while in R((ω))EL it is not. For
instance one can show that exp(−

∑

n∈N
logn(ω)) is an element of R((ω))EL with-

out anti-derivative in R((ω))EL, and in fact not even in R⟪ω⟫. Indeed, for the
simplest surreal derivation ∂ ([BM, Def. 6.7]), which has anti-derivatives, we have
∂κ−1 = exp(−

∑

n∈N
logn(ω)), where κ−1 ∈ No is the simplest log-atomic number

smaller than logn(ω) for each n ∈ N. Such a number cannot belong to R⟪ω⟫, and
since ker ∂ = R, there cannot be any x ∈ R⟪ω⟫ with ∂x = exp(−

∑

n∈N
logn(ω)).
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There are many interesting subfields between R((ω))LE and R⟪ω⟫ whose domain
is a set, for instance the series in R⟪ω⟫ with hereditarily countable support.

The definition of R((ω))LE as a union
⋃

n∈N
Xn suggests the possibility of pro-

longing the sequence Xn along the transfinite ordinals, setting X0 = R ∪ {ω},
Xα+1 =

∑

(Xα ∪ exp(Xα) ∪ log(Xα)) and Xλ =
⋃

i<λ Xi for each limit ordinal α.
One can verify that the union

⋃

α∈On
Xα along all the ordinals would then coincide

with R⟪ω⟫.

4.3. Isomorphism with classical LE-series. It is well known that there is a
unique embedding of the field of LE-series into No sending x to ω 1, R to R, and
preserving exp and infinite sums (see [ADH]). This subsection will be devoted to
the long, but straightforward proof that R((ω))LE is naturally isomorphic to the
field of LE-series, so in particular it is the image of such embedding. This provides
a simple characterization of the LE-series, which should be compared with the
original definition.

Theorem 4.11. R((ω))LE is a field of transseries and it is isomorphic to the field
of logarithmic-exponential series R((x))LE of [DMM97, DMM01]; the isomorphism
sending ω to x is unique.

Similarly we have:

Proposition 4.12. The field R((ω))EL is naturally isomorphic to the field of EL-
series generated by logarithmic words [KT12, Def. 6.2, Example 4.6] (see also Re-
mark 4.33).

We leave the verification of Proposition 4.12 to the reader, but we shall give
a detailed proof of Theorem 4.11. To this aim we shall first give an equivalent
description of R((ω))LE (recall from Notation 2.17 that we are identifying Hahn
fields R((Γ)) with subfields of No).

Definition 4.13. Let λ ∈ L (a log-atomic number). We define:
(1) M0,λ := λR, K0,λ := R((M0,λ)), J0,λ := R((M≻1

0,λ));
(2) Mn+1,λ := eJn,λ , Kn+1,λ = Kn,λ((Mn+1,λ)), Jn+1,λ := Kn,λ((M

≻1
n+1,λ));

(3) R((λ))E :=
⋃

n∈N
Kn,λ.

The next Lemma shows that the above definition is well posed, namely at each
step Mn+1,λ is a subgroup of M and Kn,λ < M

>1
n+1,λ, so that under the conventions

of Notation 2.17, each Kn+1,λ is again in No; in particular, in clause (2) we are
allowed to use the exponential function of No to define eJn+1,λ . Note moreover that
Jn,λ ⊆ J, as we shall verify in a moment.

Lemma 4.14. For each n ∈ N, Mn,λ is a well defined divisible subgroup of M and
moreover M

≻1
n+1,λ > Kn,λ.

Proof. We proceed by induction on n. Trivially, M0,λ is a well defined divisible
subgroup of M. Now fix n and assume that Mn,λ is well defined and that M

≻1
n,λ >

Kn−1,λ (an empty condition if n = 0). Then Jn,λ is a well defined subset of No by
Proposition 2.16, and in particular it is a divisible additive subgroup of Kn,λ.

1In [DMM01], the field of logarithmic-exponential series is denoted either by R((x−1))LE or by
R((t))LE , where x > R and t = x−1 is infinitesimal. We prefer here to use the notation R((x))LE

for the LE-series, with x > R, as in [ADH17], to better match the notation R((ω))LE .
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We claim that Jn,λ is consists only of purely infinite numbers. Indeed, let m be a
monomial in the support of Jn,λ. Then m = no for some n ∈ M

≻1
n,λ and o ∈ Kn−1,λ

(with o = 1 if n = 0). By inductive hypothesis, o
−1 ∈ Kn−1,λ < n, so m > 1,

proving the claim. It follows that Mn+1,λ is a divisible multiplicative subgroup of
M.

Finally, let eγ ∈ M
≻1
n+1,λ. We wish to prove that eγ > Mn,λ. Let m be the

leading monomial of γ. As before, we can write m = no for some n ∈ M
≻1
n,λ and

o ∈ Kn−1,λ (with o = 1 if n = 0). By inductive hypothesis, we also know that
n

1
2 > Kn−1,λ. Since γ > n

1
2 , it follows that m = eγ > eKn−1,λ , so in particular,

m > eJn−1,λ = Mn,λ, as desired. �

Remark 4.15. By Corollary 2.19 we have Kn,λ = R((M0,λM1,λ . . .Mn,λ)).

Lemma 4.16. For all n ∈ N we have:

(1) exp(Kn,λ) ⊆ Kn+1,λ;
(2) Kn,λ ⊆ Kn+1,log(λ);

(3) log(K>0
n,λ) ⊆ Kn+1,log(λ).

In particular, R((λ))E is closed under exp and log(R((λ))E) ⊆ R((log(λ)))E .

Proof. We work by induction on n.
For (1), let x ∈ Kn,λ. We can write uniquely x = γ+ r+ε where γ ∈ Jn,λ, and if

n > 0, r ∈ Kn−1,λ and ε ≺Kn−1,λ
1, otherwise simply r ∈ R and ε ≺ 1. In any case,

ex = eγ · er ·
∑∞

i=0
εi

i! . But then it suffices to note that eγ ∈ Mn+1,λ ⊆ Kn+1,λ by
definition, while er is either already in R or in Kn,λ by inductive hypothesis, and
the remaining sum is in Kn,λ because Kn,λ is a Hahn field. Therefore, ex ∈ Kn+1,λ,
as desired.

Concerning (2), note that M0,λ = λR = eR log(λ) ⊆ eJ0,log(λ) = M1,log(λ). It
follows that J0,λ ⊆ J1,log(λ) and K0,λ ⊆ K1,log(λ). By a straightforward induction,
it follows that Mn,λ ⊆ Mn+1,log(λ), Jn,λ ⊆ Jn+1,log(λ) and Kn,λ ⊆ Kn+1,log(λ),
proving the desired conclusion.

Finally, for (3), let x ∈ K>0
n,λ. We can write uniquely x = m · r · (1 + ε) where

m ∈ Mn,λ, and if n > 0, r ∈ K>0
n−1,λ and ε ≺Kn−1,λ

1, otherwise simply r ∈ R

and ε ≺ 1. We have log(x) = log(m) + log(r) +
∑∞

i=1(−1)i+1 εi

i . Since Kn,λ is
a Hahn field, the rightmost sum is in Kn,λ, which is contained in Kn+1,log(λ) by
(2), while log(r) is either already in R or in Kn,log(λ) by inductive hypothesis. For
log(m), we simply note that if n = 0, then log(m) = s · log(λ) ∈ K0,log(λ) for some
s ∈ R, otherwise log(m) ∈ Kn−1,λ, which is contained in Kn,log(λ) by (2). Therefore,
log(x) ∈ Kn+1,log(λ), as desired. �

Proposition 4.17. For each λ ∈ L, R((λ))E is (uniquely) isomorphic to the expo-
nential field R((x))E defined in [DMM97, DMM01] through an isomorphism sending
λ to x and preserving exp,

∑

and R.

Proof. It suffices to note that Definition 4.13 is formally identical to the definition
of R((x))E , except that in our case the various Hahn fields are identified with
subfields of No (Notation 2.17) and the role of the formal variable is taken by λ.
The uniqueness follows trivially. �
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Proposition 4.18. For each λ ∈ L,
⋃

k∈N
R((logk(λ)))

E is (uniquely) isomorphic

to the exponential field R((x))LE defined in [DMM97, DMM01] through an isomor-
phism sending λ to x and preserving exp,

∑

and R.

Proof. In [DMM01], R((x))LE is defined as a direct limit of a suitable system of
self-embeddings Φk : R((x))E → R((x))E . The embedding Φk sends x to expk(x).
In turn, when composed with the isomorphism R((x))E ∼= R((logk(λ)))

E of Propo-
sition 4.17, it gives the embedding of R((x))E into R((logk(λ)))

E sending x to λ.
Therefore, the image of such direct limit is the directed union

⋃

k∈N
R((logk(λ)))

E ,
as desired. The uniqueness follows trivially. �

Proposition 4.19.
⋃

k∈N
R((logk(ω)))

E is equal to R((ω))LE. In particular, there

is a unique isomorphism of transseries from
⋃

k∈N
R((logk(ω)))

E to R((x))LE send-
ing ω to x.

Proof. Note that each Kn,λ is closed under infinite sums, while by Lemma 4.16,
exp(Kn,λ) ⊆ Kn+1,λ and log(K>0

n,λ) ⊆ Kn+1,log(λ). Since X0 ⊆ K0,ω, it fol-
lows at once that Xn ⊆ Kn,logn(ω) for all n ∈ N, so in particular R((ω))LE ⊆
⋃

k∈N
R((logk(ω)))

E .
Conversely, it is clear that each element of Kn,logn(ω) can be obtained from

X0 = R∪{ω} by finitely many applications of exp, log and infinite sums. It follows
at once that

⋃

k∈N
R((logk(ω)))

E ⊆ R((ω))LE . �

Theorem 4.11 then follows at once by Propositions 4.19 and 4.18.

Remark 4.20. If we modify Definition 4.13 putting M0,λ := λZ instead of λR, the
union

⋃

k∈N
R((logk(ω)))

E will be the same, since λR = exp(R log λ). So in the
definition of the LE-series in [DMM01] one may start with xZ instead of xR.

4.4. Adding more log-atomic numbers.

Definition 4.21. Consider the class L ⊆ No of log-atomic numbers and let R⟪L⟫
be the smallest subfield of No containing R ∪ L and closed under exp, log and

∑

(in the sense of Definition 4.6).

In [BM, Thm. 8.6] we showed that R⟪L⟫ is the largest subfield of transseries
satisfying axiom ELT4 of [KM15, Def. 5.1]. We also showed that No itself does not
satisfy ELT4, hence R⟪L⟫ 6= No [BM, Thm. 8.7]. The derivative ∂ : No → No

introduced in [BM, Def. 6.21] can be restricted to R⟪L⟫ and remains surjective on
this subfield. We thus have the inclusions

R((ω))LE ⊂ R((ω))EL ⊂ R⟪ω⟫ ⊂ R⟪L⟫ ⊂ No

with R((ω))LE , R⟪L⟫ and No having a surjective derivation, while the derivation
on R((ω))EL and R⟪ω⟫ is not surjective. It would be interesting to study the
complete first order theories of these structures, both as differential fields, and as
differential fields with an exponentiation. The only known result so far is that No

and R((ω))LE are elementary equivalent as differential fields [ADH], and probably
the same proof can be used to deduce that R⟪L⟫ has the same first order theory
as well.



TRANSSERIES AS GERMS OF SURREAL FUNCTIONS 19

4.5. Inductive generation of transseries fields and associated ranks. For
the purposes of Section 5, it is useful to inductively construct R⟪ω⟫ and other
subfields of R⟪L⟫ with a limited use of the log function, and to introduce a rank
function reflecting the stages of the inductive construction. We need the following
definition.

Definition 4.22. Let ∆ ⊆ L be a subclass with log(∆) ⊆ ∆ and let R⟪∆⟫ be the
smallest subfield of No containing R ∪∆ and closed under

∑

, exp and log.

As we shall see Corollary 4.30, R⟪∆⟫ coincides with the smallest subclass of No

containing R ∪ ∆ and closed under
∑

and exp (or even just exp↾J); the closure
under log can be automatically deduced. Taking ∆ = L, we obtain the field R⟪L⟫
seen in Subsection 4.4. On the other hand, when ∆ = {logn(ω) : n ∈ N}, we
obtain R⟪ω⟫ (Definition 4.7).

Notation 4.23. Given a subclass A ⊆ M, we denote by R((A))small (or just R((A))
if A is a set) the class of all surreal numbers with support contained in A. Notice
that if A is a group, R((A))small is a field, but we occasionally use the notation
without assuming that A is a group.

Definition 4.24. Let log(∆) ⊆ ∆ ⊆ L. We define by induction on the ordinal α ∈
On a subclass ∆α ⊆ No as follows: ∆0 = ∅, ∆1 = ∆∪{0}; ∆α+1 = R((e∆α∩J))small

for α ≥ 1; ∆λ =
⋃

α<λ ∆α for λ a limit ordinal. Given x ∈
⋃

α∈On
∆α, we define

the (exponential) rank ER∆(x) as the least ordinal β such that x ∈ ∆β+1.

Remark 4.25. Note that ∆1 is not an additive group. For α ≥ 2, ∆α is an R-linear
subspace of No (and it is closed under

∑

); for α ≥ 3, ∆α is a field, and a Hahn
field when α is a successor ordinal. Moreover, all the classes ∆α are truncation
closed.

Proposition 4.26. For all α < β we have ∆α ⊆ ∆β.

Proof. It suffices to prove that ∆α ⊆ ∆α+1 for all α ∈ On. This is clear for α = 0.
Since log(∆) ⊆ ∆, we have ∆ ⊆ e∆ ⊆ R((e∆))small, thus ∆1 ⊆ ∆2, proving the
case α = 1. We then proceed by induction. If α = β + 1, then ∆β ⊆ ∆β+1 holds
by inductive hypothesis, so ∆α = R((e∆β∩J))small ⊆ R((e∆β+1∩J))small = ∆α+1. If
α is a limit ordinal, take some x ∈ ∆α. By definition of ∆α, there is some β < α
such that x ∈ ∆β , so by inductive hypothesis, x ∈ ∆β+1 = R((e∆β∩J))small ⊆
R((e∆α∩J))small = ∆α+1. Since x is arbitrary, we obtain ∆α ⊆ ∆α+1, as desired. �

The following corollary provides an equivalent definition of the rank. Its proof
is easy and left to the reader.

Corollary 4.27. For x ∈
⋃

α∈On
∆α we have

(1) if x ∈ ∆ ∪ {0}, then ER∆(x) = 0;
(2) otherwise, ER∆(x) = sup{ER∆(γ) + 1 : eγ ∈ Supp(x)}.

Moreover, x ∈ ∆β if and only if ER∆(x) < β.

Proposition 4.28. We have:

(1) for all α ≥ 1,
∑

∆α+1 ⊆ ∆α+1 (in particular,
∑

∆α ⊆ ∆α+2 for all α);
(2) for all α ≥ 3, log(∆>0

α ) ⊆ ∆α;
(3) for all α ∈ On, e∆α ⊆ ∆α+1 (in particular, e∆α ⊆ ∆α for all limit α).
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In particular, ∆α is a transserial subfield of No for all α ≥ 3, and
⋃

α∈On
∆α is

closed under exp, log and infinite sums.

Proof. (1) Trivial, since by definition ∆α+1 = R((e∆α∩J))small for α ≥ 1.
(2) Without loss of generality, we may assume that α is of the form β + 1 with

β ≥ 2, so that ∆α is a Hahn field (see Remark 4.25). Take any x ∈ ∆>0
α . We can

write uniquely x = reγ(1 + ε), where r ∈ R>0, γ ∈ ∆β ∩ J and ε ∈ ∆α ∩ o(1).
Then log(x) = γ + log(r) +

∑∞
n=1(−1)n εn

n ∈ ∆β +∆α = ∆α by Proposition 4.26.
It follows that log(∆>0

α ) ⊆ ∆α, as desired.
(3) Note that the conclusion is trivially true for α = 0, 1, so we may assume

that α ≥ 2. Take any x ∈ ∆α. Since ∆α is closed under truncation (see again
Remark 4.25), we can write uniquely x = γ + r + ε, with γ ∈ ∆α ∩ J, r ∈ R and
ε ∈ ∆α ∩ o(1). Since ∆α+1 is a Hahn field, we have ex = eγ · er ·

∑∞
n=0

εn

n! ∈

R((e∆α∩J))small = ∆α+1, as desired. �

Corollary 4.29. R⟪∆⟫ =
⋃

α∈On
∆α.

Proof. By Proposition 4.28,
⋃

α∈On
∆α contains R and ∆ (as both are contained

in ∆2) and it is closed under exp, log and infinite sums. It follows that R⟪∆⟫ ⊆
⋃

α∈On
∆α. On the other hand, one can easily verify by induction that ∆α ⊆ R⟪∆⟫

for all α ∈ On, and the conclusion follows. �

Corollary 4.30.
⋃

α∈On
= R⟪∆⟫ is the smallest class containing ∆ ∪ {0} and

such that whenever the exponents γi ∈ J of x =
∑

i<α rie
γi are in the class, then

also x is in the class. The ordinal ER∆(x) measures the number of steps needed to
obtain x with this inductive construction.

Corollary 4.31. R⟪∆⟫ is truncation closed, so it is a field of transseries in the
sense of Definition 4.1.

Proof. Immediate from the equality R⟪∆⟫ =
⋃

α∈On
∆α. �

Corollary 4.32. R⟪∆⟫ is a proper class. In particular, R⟪ω⟫ is a proper class.

Proof. Let Γ = M ∩ R⟪∆⟫ be the class of monomials of R⟪∆⟫. Since R⟪∆⟫ is
closed under

∑

and truncations, we have R⟪∆⟫ = R((Γ))small. If for a contradic-
tion R⟪∆⟫ were a set, then R⟪∆⟫ = R((Γ)). Since on the other hand R⟪∆⟫ is
an exponential subfield of No, R((Γ)) would then carry a compatible exponential
function, contradicting [KKS97]. �

The following remark is implicit in our previous observations, but it is worth to
record it:

Remark 4.33. Let ∆ = {logn(ω) : n ∈ N}. Then R((ω))EL =
⋃

n∈N
∆n = ∆ω.

5. Substitutions

Before defining the full notion of composition, we first define substitutions (also
called right-compositions in [Sch01]).

Definition 5.1. Let T be a field of transseries. We say that f : T → No is
strongly additive if for every summable sequence (xi : i ∈ I) in T , the sequence
(f(xi) : i ∈ I) in No is summable and f(

∑

i∈I xi) =
∑

i∈I f(xi).
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Definition 5.2. Let T a field of transseries. A substitution c : T → No is
a strongly additive map which is the identity on R and preserves log, namely
c(log(x)) = log(c(x)) for all x ∈ T .

It is fairly easy to check that the substitutions are well behaved functions.

Proposition 5.3. Let c : T → No be a substitution. Then c is an ordered field
isomorphism fixing R. In particular, for all x, y ∈ T we have x < y → c(x) < c(y)
and therefore x ≺ y → c(x) ≺ c(y).

Proof. Fix some x, y ∈ T . Clearly, c is additive. Moreover, if x > 0, then log(x) ∈
T , so c(log(x)) = log(c(x)), so c(x) > 0, and in particular, c preserves the ordering.
If x, y > 0, then c(xy) = c(elog(xy)) = ec(log(x)+log(y)) = ec(log(x)) · ec(log(y)) =
c(x)c(y), and it follows easily that c is multiplicative. Therefore, c is an ordered field
isomorphism which by definition fixes R. In particular, if x < y, then c(x) < c(y).
Moreover, if x ≺ y, then r|x| < |y| for all r ∈ R, so r|c(x)| < |c(y)| for all r ∈ R, so
c(x) ≺ c(y). �

In this section, we show how to construct inductively substitutions on fields of
the form R⟪∆⟫ starting from their values on some subclass ∆ ⊆ L. The proof that
the construction is well defined is fairly complicated and technical; for the sake
of readability, the proof of one of the intermediate statement, the “summability
lemma” 5.21, will be postponed to Section 9.

5.1. Pre-substitutions. To build a substitution on R⟪∆⟫, we start with a certain
assignment of values to each element of ∆ satisfying some suitable compatibility
conditions. We call such assignment a pre-substitution.

Definition 5.4. A map c0 : ∆ → No is a pre-substitution if

(1) the domain ∆ is a subclass of L closed under log;
(2) c0(λ) > 0 and c0(log(λ)) = log(c0(λ)) for all λ ∈ ∆;
(3) for any decreasing sequence (λi ∈ ∆)i∈N, the family (c0(λi))i∈N

is summa-
ble;

(4) for any increasing sequence (λi ∈ ∆)i∈N, the family
(

c0(λi)
−1
)

i∈N
is sum-

mable;
(5) for all λ, µ ∈ ∆, if λ < µ, then c0(λ) ≺ c0(µ).

Remark 5.5. By (1) and (2) it follows by induction on n ∈ N that c0(λ) > expn(0)
for every λ ∈ ∆, and therefore for all λ ∈ ∆ we have 1 ≺ c0(λ). Moreover, if
λ < µ, then c0(λ) < c0(µ) and c0(λ)

n ≺ c0(µ) for all n ∈ N (since log(c0(λ)) =
c0(log(λ)) ≺ c0(log(µ)) = log(c0(µ))).

Clearly, if ∆ ⊆ L is a class closed under log and c : R⟪∆⟫→ No is a substitution,
then c↾∆ is a pre-substitution. We shall prove that the converse holds, namely
that every pre-substitution with domain ∆ extends to a (unique) substitution with
domain R⟪∆⟫ (Theorem 5.22), and as a corollary we shall deduce the existence
of substitutions on R⟪ω⟫ (Corollary 5.23). We first give an explicit example of
pre-substitution on ∆ = {logi(ω) : i ∈ N}.

Proposition 5.6. Let x ∈ No
>N. Then the sequence (logi(x))i∈N is summable.

Proof. By [BM, Prop. 5.8], there is an integer k ∈ N and some log-atomic number
µ ∈ L such that logk(x) = µ+ ε for some ε ≺ 1. Thus, it suffices to show that the
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sequence (logi(µ+ ε))i∈N is summable. Let P (y) be the Taylor series of log(1 + y),
namely P (y) :=

∑∞
n=1

(−1)n

n yn. Then

log(µ+ ε) = log(µ) + log

(

1 +
ε

µ

)

= log(µ) + P

(

ε

µ

)

= µ1 + ε1

where µ1 := log(µ) ∈ L and ε1 = P
(

ε
µ

)

≺ 1. We define inductively µ0 :=

µ, µi+1 := log(µi), ε0 := ε and εi+1 := P
(

εi
µi

)

. By construction, εi ≺ 1 and

logi(µ + ε) = µi + εi for all i ∈ N. Since (µi)i∈N is a decreasing sequence of
monomials,

∑

i µi exists. To finish the proof it suffices to show that
∑

i εi exists.

Let m be a monomial in the support of εi+1 = P
(

εi
µi

)

. Then there is an integer

m ≥ 1 such that m ∈ Supp
((

εi
µi

)m)

⊆ 1
µm
i
Supp(εi)

m. By an easy induction it

follows that

m =
1

µn0
0 · · · · · µni

i

· o

where n0 ≥ . . . ≥ ni ≥ 1 and o is a product of finitely many elements of Supp(ε).
Note that o varies in the set

⋃∞
m=1 Supp(ε)

m, which is reverse well-ordered by

Lemma 3.8. Therefore, it suffices to prove that the family
(

1
µ
n0
0 ·····µ

ni
i

: i ∈ N

)

is

summable.
Letting δ =

∑

i∈N

1
µ0µ1···µi

, we have that 1
µ
n0
0 ·····µ

ni
i

is in the support of δn0 .

Since δ ≺ 1, by Corollary 3.9, (δn : n ∈ N) is summable, so
(

1
µ
n0
0 ·····µ

ni
i

: i ∈ N

)

is

summable, hence (εi)i∈N is summable, as desired. �

Corollary 5.7. Let x ∈ No
>R, let ∆ = {logi(ω) : i ∈ N} and let cx0 : ∆ → No be

the map that sends logi(ω) to logi(x). Then cx0 is a pre-substitution.

5.2. Trees. We now aim at extending each pre-substitution c0 : ∆ → No to a
substitution c : R⟪∆⟫ → No. For this, we introduce the notion of tree, whose
aim is to keep track of the monomials that may appear in the support of c(x) by
expressing c(x) in terms of the values of c0. To justify the definition of tree, consider
the following heuristic argument.

Suppose we wish to calculate c(x) for some x ∈ R⟪∆⟫. If ER∆(x) = 0, then we
simply use the equations c(λ) = c0(λ) =

∑

t∈Term(c0(λ))
t and c(0) = 0. Now assume

ER∆(x) > 0 and write x =
∑

i<α rie
γi in normal form. First, we observe that we

must have c(x) =
∑

i<α c(rie
γi), so our problem reduces to calculating c(rie

γi) for
each i < α. Fix one γ = γi and consider the following equation:

c(reγ) = rec(γ) = rec(γ)
↑=

· exp(c(γ)↓) = rec(γ)
↑=

·
∞
∑

n=0

(

c(γ)↓
)n

n!
.

Note that ER∆(γ) < ER∆(x), so we may assume to already have obtained c(γ),
and that c(γ)↓ is presented as a sum c(γ)↓ =

∑

j∈J tj for some family (tj)j∈J of
terms (i.e. elements of R∗

M), where J = Ji is some index set. Using Proposi-
tion 3.5, we get

c(reγ) = rec(γ)
↑=

·
∞
∑

n=0

∑

τ :n→J

∏

m<n

tτ(m) =

∞
∑

n=0

∑

τ :n→J

rec(γ)
↑=

·
∏

m<n

tτ(m).
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Note that the right-hand side can be seen as a sum of terms. We use the above
equation to present c(reγ) as a sum of terms indexed by the set {(n, τ) : n ∈ N, τ :
n → J}. By taking the sum over all terms rie

γi, we obtain a presentation of c(x)
as a sum of terms indexed by the set {(rieγi , n, τ) : i < α, n ∈ N, τ : n → Ji}.

We then proceed inductively and assume that the index sets Ji are themselves
constructed in the same way (unless ER∆(γi) = 0, in which case we use the equa-
tions c(λ) = c0(λ) =

∑

t∈Term(c0(λ))
t and c(0) = 0). One can then picture the

index (rie
γi , n, τ) as a tree with root rieγi and children τ(0), . . . , τ(n− 1), as in the

following definition.

Definition 5.8. Fix a pre-substitution c0 : ∆ → No. We define inductively
the class of trees as follows. A tree is an ordered triple T = 〈R(T ), n, τ〉 where
R(T ) ∈ R⟪∆⟫∩R∗

M is a term, called the root of T , and n, τ are defined as follows:

(1) if R(T ) = λ ∈ ∆, then n = 0 and τ is a term of c0(λ), so in this case
T = 〈λ, 0, t〉 with t ∈ Term(c0(λ));

(2) if R(T ) = reγ /∈ ∆, then n ∈ N and τ is a function with domain n =
{0, 1, . . . , n− 1} such that τ(0), . . . , τ(n− 1) are trees, called the children
of T (n can be zero, in which case T has no children); we also require that,
for each i < n, the root R(τ(i)) of τ(i) is a term of γ = log↑(R(T )) (where
log↑ is as in Definition 2.10).

The descendants of T are T itself, its children, and the descendants of its
children. The proper descendants are the descendants different from T itself.
The leaves of T are the descendants U of T without children (for instance the
descendants with root in ∆).

Note that by induction on ER∆, the above definition of tree is well founded.

Definition 5.9. Let T = 〈R(T ), n, τ〉 be a tree. We define size(T ) ∈ N as the
number of descendants of T , namely:

(1) size(T ) := 1 if T has no children, namely n = 0;
(2) size(T ) := 1 +

∑

i<n size(τ(i)) otherwise.

5.3. Extending pre-substitutions to substitutions. Fix a pre-substitution c0 :
∆ → No. We shall now define a substitution c : R⟪∆⟫→ No extending the given

σ(0) = (λ, 0, t0) . . . σ(m− 1) = (λ, 0, tm−1)

τ(0) = (seλ,m, σ)

T = (reγ , n, τ)

τ(1) = . . . . . .

. . . . . .

Figure 5.1. An example of tree with root R(T ) = reγ , where seλ

is a term of γ, λ ∈ ∆, t0, . . . , tm−1 are terms of c0(λ), and the
contribution c(T ) of T is

c(T ) = rec(γ)
↑= 1

n!c(τ(0))c(τ(1)) . . .

= rec(γ)
↑= 1

n!se
c0(λ)

↑= 1
m!c(σ(0)) . . . c(σ(m− 1))c(τ(1)) . . .

= rec(γ)
↑= 1

n!se
c0(λ)

↑= 1
m! t0 . . . tm−1c(τ(1)) . . .
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pre-substitution c0. To this aim, we shall define simultaneously by induction on
α ∈ On the following objects:

• the set of admissible trees A(x) of each x ∈ ∆α (which are trees in
the sense of Definition 5.8 with root R(T ) ∈ Term(x) and some further
requirements);

• the contribution c(T ) ∈ R∗
M of each T ∈ A(x);

• the extension c : ∆α → No (which is obtained by summing the contribu-
tions of the admissible trees in A(x), that is c(x) =

∑

T∈A(x) c(T )).

The main difficulty will be in proving that each family (c(T ) : T ∈ A(x)) is summa-
ble, which is needed to show that c(x) =

∑

T∈A(x) c(T ) is well defined (Lemma 5.21).

Definition 5.10. Let α ∈ On be given. Let I(α) be the hypothesis

For all x ∈ ∆α, (c(T ) : T ∈ A(x)) is summable

where A(x) and c(T ) for T ∈ A(x) are inductively defined as in Definition 5.11
(assuming I(β) for β < α).

Definition 5.11. First, we let A(0) := ∅, and for λ ∈ ∆, we define:

(1) A(λ) := {〈λ, 0, t〉 : t ∈ Term(c0(λ))} (namely every tree with root in ∆ is
admissible);

(2) c(〈λ, 0, t〉) := t (the value of a tree with root in ∆ is its third component);
(3) c(λ) :=

∑

T∈A(λ) c(T ).

This defines A(x), c(T ) and c(x) for all x ∈ ∆1 and T ∈ A(x).
Now let α > 1 and assume I(β) for all β < α. For general x ∈ ∆α we define:

(4) A(x) :=
⋃

t∈Term(x) A(t);
(5) A◦(x) := {T ∈ A(x) : c(T ) ≺ 1}.

When x = t = reγ is a term in ∆α \∆1, let β < α be such that reγ ∈ ∆β+1 \∆β .
We observe that γ ∈ ∆β , and we define:

(6) A(reγ) := {〈reγ , n, τ〉 : n ∈ N, τ : n → A◦(γ)};
(7) for T = 〈reγ , n, τ〉 ∈ A(reγ),

c(T ) := rec(γ)
↑=

·
1

n!

∏

i<n

c(τ(i)).

Finally, for any x ∈ ∆α, if I(α) holds, we define:

(8) c(x) :=
∑

T∈A(x) c(T ).

Remark 5.12. It is important to note that points (1)-(7) only require I(β) for
β < α, while (8) does require I(α). The inductive hypothesis I(α) itself is defined
by induction on α! We also remark that I(0), I(1) are trivially true.

Definition 5.13. Assuming that I(α) holds for every α ∈ On, we define c :
R⟪∆⟫→ No as the union of the functions c : ∆α → No for α ∈ On.

Remark 5.14. The present notion of tree should be compared with the similar
notion of labeled trees in [Sch01]. In this comparison, the admissible trees play the
same role as the well-labeled trees.

We shall now prove that c : R⟪∆⟫ → No is well defined and that it is the
unique substitution on R⟪∆⟫ extending c0. The most technical and difficult part
will be proving that if I(α) holds, then (c(T ) : T ∈ A(x)) is summable for all
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x ∈ ∆α+1 \∆α (Lemma 5.21). As anticipated, the proof of this fact is postponed
to Section 9.

First, we check that c is indeed an extension of c0, and that it fixes R.

Proposition 5.15. For all λ ∈ ∆, (c(T ) : T ∈ A(λ)) is summable and

c(λ) =
∑

T∈A(λ)

c(T ) = c0(λ).

In particular, I(0) and I(1) hold, and c extends c0.

Proof. For any λ ∈ ∆ and T ∈ A(λ), we have T = 〈λ, 0, t〉 for some t ∈ Term(λ)
and c(T ) = t. Moreover, (c(T ) : T ∈ A(λ)) coincides with (t : t ∈ Term(c0(λ))),
hence it is summable and by definition

c(λ) =
∑

T∈A(λ)

c̄(T ) =
∑

t∈Term(c0(λ))

t = c0(λ).

�

Proposition 5.16. If r ∈ R, then (c(T ) : T ∈ A(r)) is summable and c(r) = r.

Proof. Note first that I(1) holds by 5.15, and that R ⊆ ∆2, so A(r) is well defined
for each r ∈ R. Now observe that A(0) = ∅, so c(0) =

∑

T∈A(0) c(T ) is an empty
sum (equal to zero) and we get c(0) = 0. For r 6= 0 the only admissible tree
T ∈ A(r) is given by T = 〈re0, 0, ∅〉. By definition, c(T ) = rec(0) = re0 = r, hence
c(r) = r. �

We now prove that assuming I(α), the extension c : ∆α → No preserves log
and infinite sums. For α ≥ 3, since ∆α is a field of transseries, this says that
c : ∆α → No is a substitution. Note that in the following statement the hypothesis
is I(α), but the conclusion is about terms in ∆α+1.

Proposition 5.17. Assume I(α). Let reγ ∈ ∆α+1 be a term. Then (c(T ) : T ∈
A(reγ)) is summable, so c(reγ) =

∑

T∈A(reγ) c(T ) is well defined and

c(reγ) = rec(γ).

Proof. The result is clear if reγ ∈ ∆1 = ∆∪{0}, for in that case c coincides with c0
by Proposition 5.15, so we can assume reγ /∈ ∆1. Then ER∆(γ) < ER∆(re

γ), and
by the inductive hypothesis, c(γ) =

∑

T ′∈A(γ)

c(T ′). By definition of A◦(γ) we have

c(γ)↓ =
∑

T ′∈A◦(γ)

c(T ′).
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Unraveling the definitions we have:

rec(γ) = rec(γ)
↑=

ec(γ)
↓

=
∑

n∈N

rec(γ)
↑= 1

n!

(

c(γ)↓
)n

=
∑

n∈N

rec(γ)
↑= 1

n!





∑

T ′∈A◦(γ)

c̄(T ′)





n

=
∑

n∈N

rec(γ)
↑= 1

n!

∑

τ :n→A◦(γ)

∏

i<n

c(τ(i))

=
∑

T∈A(reγ)

c̄(T ) = c(reγ),

where in the fourth line we used Proposition 3.5 (which also shows the summability
of the relevant sequences) and in the fifth line we used the definition of c(T ) for
T ∈ A(reγ). �

Proposition 5.18. Assume I(α). Let
∑

i<β rie
γi ∈ ∆α. Then

c





∑

i<β

rie
γi



 =
∑

i<β

rie
c(γi).

Proof. It follows at once from Proposition 5.17 and the equality A(
∑

i<β rie
γi) =

⋃

i<β A(rie
γi). �

Corollary 5.19. Assume I(α), with α ≥ 3. Then c : ∆α → No is a substitution.

Proof. Since α ≥ 3, ∆α is a transserial subfield of No by Proposition 4.28. By
Proposition 5.16, c fixes R, and by Proposition 5.18, it is strongly additive. More-
over, c preserves log. Indeed, let x = reγ(1 + ε) ∈ ∆α, where r ∈ R, γ ∈ J and
ε ≺ 1. We have

c(log(x)) = c

(

γ + log(r) +
∞
∑

i=1

(−1)n
εn

n

)

= c(γ) + log(r) +
∞
∑

i=1

(−1)n
c(ε)n

n
.

By Proposition 5.17, c(γ) = log(c(eγ)), so the right hand side is log(c(x)), as
desired. �

Corollary 5.20. Assume I(α) for all α ∈ On. Then c : R⟪∆⟫ → No is a
substitution extending c0.

Finally, we need to prove inductively that I(α) holds for all α ∈ On. The main
difficulty is in proving the successor stage, namely that I(α) implies I(α+1). This
is contained in the following lemma, the proof of which is postponed to Section 9.

Lemma 5.21 (Summability). Assume I(α). Then (c(T ) : T ∈ A(x)) is summable
for all x ∈ ∆α+1 \∆α. In particular, I(α) implies I(α + 1).

Proof. Postponed to Section 9. �

Theorem 5.22. Any pre-substitution c0 : ∆ → No extends uniquely to a substitu-
tion c : R⟪∆⟫→ No.
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Proof. Fix a pre-substitution c0 : ∆ → No. By Proposition 5.15, I(0) and I(1)
hold. It is also clear by the definition of I(α) that whenever α is a limit ordinal,
I(α) is implied by, and in fact equivalent to,

∧

β<α I(β). Moreover, by Lemma 5.21,
I(α) implies I(α + 1). Therefore, I(α) holds for all α ∈ On. By Corollary 5.20,
c is a substitution extending c0. The uniqueness follows by an easy induction on
ER∆. �

Corollary 5.23. Given x ∈ No
>0, there is a unique substitution cx : R⟪ω⟫→ No

sending ω to x.

Proof. Let ∆ = {logi(ω) : i ∈ N} and let cx0 : ∆ → No be the map that sends
logi(ω) to logi(x). Then cx0 is a pre-substitution by Corollary 5.7. By Theorem
5.22, there is a unique substitution cx : R⟪∆⟫ = R⟪ω⟫→ No extending cx0 . �

6. Composition

We prove that omega-series can be composed in a meaningful way. Intuitively,
for f, g ∈ R⟪ω⟫, with g > R, f ◦ g is the result of substituting g for ω in f . For
instance, we will have

(

∑

i∈N

logi(ω)

)

◦

(

∑

i∈N

logi(ω)

)

=
∑

i∈N

logi





∑

j∈N

logj(ω)



 .

Note that the right-hand side exists in No by the results in Section 5 and it is in
fact an element of R⟪ω⟫.

Definition 6.1. Let T ⊆ No be a transserial subfield containing ω. A composi-
tion on T is a function ◦ : T ×No

>R → No which satisfies the following axioms:

(1) for all x ∈ No
>R, the map f 7→ f ◦ x is a substitution, namely:

(a) for any summable (fi)i∈I in T , the family (fi ◦ x)i∈I is summable and
(

∑

i∈I

fi

)

◦ x =
∑

i∈I

(fi ◦ x);

(b) r ◦ x = r for all r ∈ R;
(c) log(f) ◦ x = log(f ◦ x) for all f ∈ T ;

(2) T is closed under composition: for all f ∈ T , g ∈ T>R we have f ◦ g ∈ T ;
(3) associativity: (f ◦ g) ◦ x = f ◦ (g ◦ x) for all f ∈ T , g ∈ T>R, x ∈ No

>R;
(4) ω is the identity: for all x ∈ No

>R and f ∈ T we have ω ◦x = x, f ◦ω = f .

The axioms are modeled on the usual composition of real valued functions, where
we interpret ω as the identity function. The restriction on the second argument to
be positive infinite is necessary for a composition to exist; for instance we cannot
hope to define

∑

n∈N
ω−n ◦ (1/2) in any reasonable way, as the axioms imply that

the result should be
∑

n∈N
2n. Recall that by Proposition 5.3, for all x ∈ No

>N,
the map f ◦ x is increasing and it preserves the dominance relation �.

When T ⊆ R⟪ω⟫, the list of axioms can be shortened. More precisely, we have:

Proposition 6.2. If T is a transserial field included in R⟪ω⟫, there is at most one

function ◦ : T ×No
>R → No satisfying the following conditions:

(1) for all x ∈ No
>R, the map f 7→ f ◦ x is a substitution;

(2) for all x ∈ No
>R, ω ◦ x = x.
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If any such function ◦ exists, it satisfies f ◦ω = f for any f ∈ T . If moreover T is
closed under ◦, then ◦ is associative, so it is a composition.

Proof. Suppose that ◦ is a function satisfying the above properties. Let ∆ =
{logi(ω) : i ∈ N} ⊆ T , and fix some x ∈ No

>R. We claim that the values of the
substitution f 7→ f ◦ x for f ∈ ∆ are uniquely determined by the requirement
ω ◦ x = x. We shall prove this by induction on ER∆(f); at the same time, we will
also verify associativity when T is closed under ◦.

Note first that logi(ω) ◦ x = logi(x) by definition of substitution. Moreover,

logi(ω) ◦ (g ◦ x) = logi(g ◦ x) = logi(g) ◦ x = (logi(ω) ◦ g) ◦ x

for any g ∈ T>N, and also logi(ω) ◦ ω = logi(ω). It now follows by induction on
ER∆(f) that the value of f ◦ x is also uniquely determined, f ◦ ω = f , and if
T is closed under ◦, then f ◦ (g ◦ x) = (f ◦ g) ◦ x for any g ∈ T>R. Indeed, if
f =

∑

i<α rie
γi , where ER∆(f) > 0, then we must have

f ◦ x =
∑

i<α

rie
γi◦x

where ER∆(γi) < ER∆(f). The value of f ◦ x is then uniquely determined by the
values γi ◦ x, which are themselves uniquely determined by inductive hypothesis,
and clearly f ◦ ω = f as again by induction γi ◦ ω = γi. Moreover, if T is closed
under ◦, then

f ◦ (g ◦ x) =
∑

i<α

rie
γi◦(g◦x) =

∑

i<α

rie
(γi◦g)◦x =

(

∑

i<α

rie
γi◦g

)

◦ x = (f ◦ g) ◦ x.

Therefore, ◦ is unique, f ◦ ω = f for any f ∈ T , and if T is closed under ◦, then it
is associative, so it is a composition. �

Theorem 6.3. There is a unique composition ◦ : R⟪ω⟫×No
>R → No.

Proof. Let ∆ = {logi(ω) : i ∈ N}. Fix x ∈ No
>R and f ∈ R⟪ω⟫. By Corol-

lary 5.23, there exists a unique substitution cx on R⟪∆⟫ = R⟪ω⟫ such that cx(logi(ω)) =
logi(x) for all i ∈ N. We then define f ◦ x := cx(f). Clearly, this function is the
unique one satisfying the hypothesis of Proposition 6.2. One can easily verify by
induction on ER∆ that R⟪ω⟫ is closed under ◦, so it is a composition. �

7. Taylor expansions

In this section, let ◦ be the unique composition on R⟪ω⟫. We shall now prove
that for every f ∈ R⟪ω⟫, the function x 7→ f ◦ x is surreal analytic in the sense of
Definition 3.7. Moreover, the coefficients will coincide with the iterated derivatives
of f divided by n!, when using the unique surreal derivation on R⟪ω⟫.

7.1. Transserial derivations. Recall the notion of derivation from [Sch01, BM].

Definition 7.1. Given a field T , we recall that a map ∂ : T → T is a derivation if
it is additive (∂(x+y) = ∂x+∂y) and satisfies the Leibniz rule (∂(xy) = x·∂y+∂x·y).
If T is a field of transseries we say that ∂ : T → T is a transserial derivation if
it is a derivation satisfying the following additional properties:

(1) ∂ is strongly additive;
(2) ∂ex = ex · ∂x;
(3) ∂ω = 1;
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(4) ∂r = 0 if r ∈ R.

As in [BM], we call surreal derivation a transserial derivation with ker ∂ = R.

In [BM], the authors proved that there exist surreal derivations on No, and in
fact several of them. However, just like we proved that there is a unique composition
on R⟪ω⟫, we can easily verify that there exists a unique transserial derivation on
R⟪ω⟫.

Proposition 7.2. The field of omega-series admits a unique transserial derivation
∂ : R⟪ω⟫→ R⟪ω⟫, which is in fact a surreal derivation.

Proof. Suppose first that there exists a transserial derivation ∂ : R⟪ω⟫ → R⟪ω⟫.
Since ∂ω = 1, an easy induction on ER∆ shows that in fact the values of ∂ are
uniquely determined, and that ker(∂) = R. Therefore, if there is one such deriva-
tion, it is unique, and it is a surreal derivation.

For the existence, let ∂ be any surreal derivation, which exists by the results of
[BM]. By the same argument as above, since ∂ω = 1 ∈ R⟪ω⟫, an easy induction
on ER∆ shows that ∂(R⟪ω⟫) ⊆ R⟪ω⟫. Therefore, the restriction of ∂ to R⟪ω⟫ is
the unique transserial derivation on R⟪ω⟫. �

Remark 7.3. Unlike the subfield R((ω))LE , but like R((ω))EL, the field of omega-
series R⟪ω⟫ is not closed under anti-derivatives. For instance, it contains no integral
for the monomial exp(−

∑

n∈N
logn(ω)).

7.2. A Taylor theorem. From now on, let ∂ : R⟪ω⟫ → R⟪ω⟫ be the unique
transserial derivation on R⟪ω⟫. Recall that for any x ≺ 1 we have exp(x) =
∑

n∈N

xn

n! . When x ≻ 1, the equality does not hold, as the right hand side clearly
does not exist. However, we can still approximate exp(x) with Taylor polynomials.
In particular we have the following:

Proposition 7.4. Given x ∈ No, there are A ∈ No and ε0 ∈ No
>0 (depending

on x) such that, for every ε ∈ No smaller in modulus than ε0, we have

exp(x+ ε) = exp(x) + exp′(x)ε +O(Aε2)

where exp′(x) := exp(x) and O(Aε2) is a surreal number � Aε2. Similarly, we can
write

log(x+ ε) = log(x) + log′(x)ε+O(Aε2)

where log′(x) := 1
x .

Proof. Immediate from the fact that No is an elementary extension of Rexp. �

The next theorem extends the above remark to a much larger class of functions.

Theorem 7.5. Given f ∈ R⟪ω⟫ and x ∈ No
>R, there are A ∈ No and ε0 ∈ No

>0

(both depending on f and x) such that, for every ε ∈ No smaller in modulus than
ε0, we have

f ◦ (x+ ε) = f ◦ x+ (∂f ◦ x) · ε+O(Aε2),

where O(Aε2) is a surreal number � Aε2.

Proof. We reason by induction on the ordinal ER∆(f), where ∆ = {logi(ω) : i ∈
N}.

Case 1. The theorem is clear if f ∈ R or f = ω, as in this case f ◦ (x + ε) =
f ◦ x+ (∂(f) ◦ x)ε for every ε and we can take A = 0.
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Case 2. Now consider the case when f = log(g) where g > 0, and assume that
conclusion holds for g. Then there are B ∈ No and ε1 ∈ No

>0 (depending on g, x)
such that

g ◦ (x+ ε) = g ◦ x+ (∂(g) ◦ x)ε+O(Bε2)

whenever |ε| ≤ |ε1|. Taking the log of both sides, and recalling that log(g◦(x+ε)) =
log(g) ◦ (x + ε) = f ◦ (x+ ε), we obtain

f ◦ (x+ ε) = log(g ◦ x+ (∂(g) ◦ x)ε+O(Bε2)).

Using the second order Taylor expansion of log at g ◦ x, we can find A ∈ No,
depending on g and x, such that, for all sufficiently small ε,

log(g ◦ x+ (∂(g) ◦ x)ε+O(Bε2)) = log(g ◦ x) +
1

g ◦ x
(∂(g) ◦ x)ε+O(Aε2)

= log(g) ◦ x+

(

∂(g)

g
◦ x

)

ε+O(Aε2)

= f ◦ x+ (∂(f) ◦ x) ε+O(Aε2).

Combining the equations we obtain f ◦ (x+ ε) = f ◦ x+ (∂(f) ◦ x) ε+O(Aε2), as
desired.

Case 3. When f = logn(ω) for some n ∈ N, the desired result follows from the
previous cases by induction on n. We have thus established the conclusion when
ER∆(f) = 0, namely f ∈ ∆1 = ∆ ∪ {0}.

Case 4. Consider now the case when f = exp(g) and assume that the conclusion
holds for g. We can then proceed as in case 2 using the second order Taylor
expansion of exp at g ◦ x.

Case 5. Consider the case when f =
∑

i∈I fi and assume by induction that the
result holds for each fi. By definition f ◦ (x+ ε) =

∑

i∈I(fi ◦ (x+ ε)). By induction
there are εi,x ∈ No

>0 and Ai,x ∈ No such that

fi ◦ (x+ ε) = fi ◦ x+ (∂(fi) ◦ x)ε+O(Ai,xε
2)

for all ε < εi,x. Now let ε0 ∈ No
>0 be smaller than εi,x for every i ∈ I and let

A � Ai,x for every i ∈ I. Then for every ε smaller in modulus than ε0 we have
f ◦ (x+ ε) = f ◦ x+ (∂(f) ◦ x) · ε+O(Aε2), as desired.

Finally, observe that the above cases suffices to establish inductively the theorem
for every f ∈ R⟪ω⟫. �

Corollary 7.6. For every f ∈ R⟪ω⟫ and every x ∈ No
>R we have

∂f ◦ x = lim
ε→0

f ◦ (x+ ε)− f ◦ x

ε

In particular, taking x = ω, we obtain ∂f = limε→0
f◦(ω+ε)−f◦ω

ε , so the derivative
is definable in terms of the composition.

Corollary 7.7. The unique composition on R⟪ω⟫ satisfies ∂(f ◦ g) = (∂f ◦ g) · ∂g.

Proof. Thanks to Corollary 7.6, it suffices to show that that for all sufficiently small
ε we have

(f ◦ g) ◦ (x+ ε) = (f ◦ g) ◦ x+ ((∂f ◦ g) · ∂g) ε+O(Aε2)



TRANSSERIES AS GERMS OF SURREAL FUNCTIONS 31

where A ∈ No depends on f ,g, x but not on ε. Applying Theorem 7.5 first to g
and then to f , there are C,D ∈ No, not depending on ε, such that

(f ◦ g) ◦ (x+ ε) = f ◦ (g ◦ (x+ ε))

= f ◦ (g ◦ x+ (∂g ◦ x)ε+O(C · ε2))

= f ◦ (g ◦ x) + (∂f ◦ (g ◦ x)) · (∂g ◦ x)ε+O(D · ε2),

and we conclude by noting that (∂f ◦ (g ◦ x)) · (∂g ◦ x) = ((∂f ◦ g) · ∂g) ◦ x. �

7.3. Surreal analyticity. We now extend in the obvious way the notion of surreal
analyticity of Definition 3.7 to the numbers in R⟪ω⟫.

Definition 7.8. Let f ∈ R⟪ω⟫. We say that f is surreal analytic at x ∈ No
>R

if the function y 7→ f ◦ y is surreal analytic in a neighborhood of x is the sense of
Definition 3.7. We say that f is surreal analytic if y 7→ f ◦ y is surreal analytic
at every x ∈ No

>R.

For instance, exp(ω) and log(ω) are surreal analytic.

Proposition 7.9. Let x ∈ No
>R. Then for every ε ≺ 1 we have exp(x + ε) =

∑∞
i=0

ex

i! ε
i. In particular, exp(ω) is surreal analytic.

Proof. Indeed, exp(x + ε) = exp(x) · exp(ε) = exp(x) ·
∑∞

i=0
εi

i! . �

Proposition 7.10. Let x ∈ No
>R. Then for every ε ≺ x we have log(x + ε) =

log(x) +
∑∞

i=1
(−1)i+1

ixi εi. In particular, log(ω) is surreal analytic.

Proof. It suffices to write x+ ε = x
(

1 + ε
x

)

, so that δ := ε
x ≺ 1, and recall that

log(x + ε) = log
(

x
(

1 +
ε

x

))

= log(x) + log(1 + δ) = log(x) +

∞
∑

i=1

(−1)i+1

i
δi.

�

Moreover, surreal analyticity is preserved under compositions.

Lemma 7.11. If g ∈ R⟪ω⟫ is surreal analytic at x ∈ No
>R and f ∈ R⟪ω⟫ is

surreal analytic at y := g ◦ x, then f ◦ g is surreal analytic at x.

Proof. Fix f, g, x, y as in the hypothesis. By assumption there are two sequences
(ai)i∈N and (bj)j∈N in No such that, for every sufficiently small ε, δ we have

g ◦ (x+ ε) = g ◦ x+
∞
∑

j=1

bjε
j

and
f ◦ (y + δ) =

∑

i∈N

aiδ
i.

Note that (f ◦g)◦(x+ε) = f ◦(y+
∑∞

j=1 bjε
j) =

∑

i∈N
ai(
∑∞

j=1 bjε
j)i for every suf-

ficiently small ε. To finish the proof it suffices to observe that, by Proposition 3.16,
there is a sequence (cm)m∈N in No such that, for every sufficiently small ε, we have

∑

k∈N

ak(

∞
∑

n=1

bnε
n)k =

∑

m∈N

cmεm.

�
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Corollary 7.12. For all i ∈ N, logi(ω) is surreal analytic.

We can also verify that if f ∈ R⟪ω⟫ is surreal analytic, the coefficients of its
Taylor expansions can be calculated using the derivation ∂ just like with classical
analytic functions.

Proposition 7.13. If f ∈ R⟪ω⟫ is surreal analytic at x ∈ No
>R, then for every

sufficiently small ε ∈ No we have

f ◦ (x + ε) =
∑

n∈N

1

n!
(∂nf ◦ x) · εn

where ∂0f = f and ∂n+1f = ∂(∂nf).

Proof. Let f ∈ R⟪ω⟫ be analytic at x ∈ No
>R. Let f̂ be associated function

x + ε 7→ f ◦ (x + ε), which by assumption is also surreal analytic (in the sense of
Definition 3.7). By Proposition 3.11, we know that

f ◦ (x+ ε) = f̂(x+ ε) =

∞
∑

i=0

f̂ (i)(x)

i!
εi.

By Corollary 7.6, it follows by induction on i that in fact f̂ (i)(x) = ∂if ◦ x, proving
the desired conclusion. �

We can then conclude that every omega-series is surreal analytic.

Theorem 7.14. Every f ∈ R⟪ω⟫ is surreal analytic, and for every x ∈ No
>R and

every sufficiently small ε ∈ No we have

f ◦ (x+ ε) =
∑

i∈N

1

i!
(∂if ◦ x) · εi.

Proof. Let f ∈ R⟪ω⟫. We reason by induction on ER∆(f), where ∆ = {logi(ω) :
i ∈ N}.

The case f = 0 is trivial, while the case f = logn(ω) follows from Corollary 7.12
and Proposition 7.13. This shows the conclusion for ER∆(f) = 0, namely for
f ∈ ∆1 = ∆ ∪ {0}.

Now suppose ER∆(f) > 0. Write f =
∑

j<α rje
γj , and recall that by definition

ER∆(γj) < ER∆(f) for all j < α. Therefore, by inductive hypothesis, we can
assume that γj is surreal analytic for every j < α. Since exp(ω) is surreal analytic
by Proposition 7.9, it follows that exp(ω) ◦ γj = exp(γj) is surreal analytic by
Lemma 7.11, hence so is fj := rje

γj . This means that for each x, there is some
εj > 0 such that for all ε smaller than εj in absolute value, we have fj ◦ (x + ε) =
∑

i∈N

1
i! (∂

ifj ◦ x) · ε
i.

Since ∂ is strongly additive, and (fj : j < α) is summable, the family (∂fj :

j < α) is also summable and
∑

j ∂fj = ∂
(

∑

j fj

)

. In turn, (∂fj ◦ x : j < α) must

be summable, and
∑

j(∂fj ◦ x) = (
∑

j ∂fj) ◦ x = ∂
(

∑

j fj

)

◦ x = ∂f ◦ x. Similarly,

by induction on i ∈ N, (∂ifj ◦ x : j < α) is summable and
∑

j(∂
ifj ◦ x) = ∂if ◦ x.

By Lemma 3.15, for every sufficiently small ε,
(

(∂ifj ◦ x) · ε
i : (i, j) ∈ N× α

)

is
summable and therefore, by Corollary 3.2, we have

∑

j

∑

i

1

i!
(∂ifj ◦ x) · ε

i =
∑

i

∑

j

1

i!
(∂ifj ◦ x) · ε

i =
∑

i

1

i!

(

∂if ◦ x
)

· εi.
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Recalling that fj ◦ (x+ ε) =
∑

i∈N

1
i! (∂

ifj ◦ x) · εi, it follows that

f ◦ (x+ ε) =
∑

j

(fj ◦ (x+ ε)) =
∑

j

∑

i

1

i!
(∂ifj ◦ x) · ε

i =
∑

n

1

i!
(∂if ◦ x) · εn

thus proving that f is surreal analytic. �

Remark 7.15. When f ∈ R((ω))LE and x ∈ R((ω))LE , one can verify that there
exists an n ∈ N such that the equation of Theorem 7.14 holds for any ε � e− expn(ω).
Indeed, note that the subfields Km,logi(ω) (see Definition 4.13) are closed under the
derivation ∂, and that there is some k ∈ N such that g ◦ x ∈ Km+k,logi+k(ω) for any
g ∈ Km,logi(ω). Then all the coefficients ∂if ◦ x/i! live in some fixed Kn,logn(ω), and
it suffices to apply Corollary 3.9 to get the desired conclusion. In particular, one
can give a meaningful definition of analyticity for LE-series by staying inside the
field of LE-series, without resorting to No.

In full generality, Corollary 3.9 guarantees that the equation of Theorem 7.14
holds for any ε that is infinitesimal with respect to any non-zero omega-series
g ∈ R⟪ω⟫. In some cases, this is the best we can do. Take for instance f =
∑∞

n=0 e
− expn(ω). Then one can easily verify that (∂if ◦ ω)i∈N = (∂if)i∈N is not

summable, and in fact that (∂if · ε)i∈N is not summable for any ε such that ε �
e− expn(ω) for some n ∈ N, and in particular for any ε ∈ R⟪ω⟫∗. Therefore, the
expansion of f ◦ (ω + ε) given by Theorem 7.14 only exists for the numbers ε with
absolute value smaller than any omega-series.

Corollary 7.16. Given f ∈ R⟪ω⟫ and x ∈ No
>R, we have

f ◦ (x+ ε) = f ◦ x+ (∂f ◦ x) · ε+O((∂2f ◦ x) · ε2)

whenever ε ∈ No satisfies (∂i+2f ◦ x) · εi � ∂2f ◦ x for all i ∈ N.

8. A negative result

The interaction between the unique composition ◦ on R⟪ω⟫ and the unique
transserial derivation on R⟪ω⟫ suggests looking for compositions that are compat-
ible with a transserial derivation.

Definition 8.1. Given a transserial subfield T ⊆ No, a transserial derivation
∂ : T → T , and a composition ◦ : T × No

>R → No, we say that ∂ and ◦ are
compatible if the following holds:

(1) if ∂f = 0, then f ◦ x = f for every x;
(2) ∂f > 0 =⇒ f ◦ x < f ◦ y whenever x < y;
(3) ∂(f ◦ g) = (∂f ◦ g) · ∂g.

Theorem 8.2. The unique surreal derivation ∂ on R⟪ω⟫ is compatible with the
unique composition on R⟪ω⟫.

Proof. Condition (1) follow at once from ker(∂) = R.
For condition (2), let f ∈ R⟪ω⟫. We reason by induction on ER∆(f), where

∆ = {logi(ω) : i ∈ N}. If ER∆(f) = 0, then the conclusion is easy: for instance if
f = logi(ω), then f ◦ g = logi(g) and the chain rule in (3) can be verified as in the
classical case, recalling also Corollary 7.6. Now suppose that ER∆(f) > 0. Write
f =

∑

i<α rie
γi , where ER∆(γi) < ER∆(f) for all i < α. Suppose that f ◦x ≥ f ◦y

for some x < y. Since the maps g 7→ g ◦ x, g 7→ g ◦ y are substitutions, they
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preserve the relation � (Proposition 5.3), so we must have (r0e
γ0) ◦x ≥ (r0e

γ0) ◦ y,
so r0e

γ0◦x ≥ r0e
γ0◦y.

Without loss of generality, we may assume that γ0 6= 0 (by replacing f with
f − r0) and that r0 > 0 (by replacing f with −f). Under these assumptions, we
must have γ0 ◦ x ≥ γ0 ◦ y, so by inductive hypothesis ∂γ0 ≤ 0. Note moreover that
since γ0 ∈ J 6=0, we must have ∂γ0 6= 0. In turn, since ∂f ∼ r0e

γ0∂γ0, it follows that
∂f ≥ 0, as desired.

Point (3) is Corollary 7.7. �

Question 8.3. We do not know whether there is a composition and a compatible
transserial derivation (possibly with ker(∂) bigger than R) on the whole of No.

Note that the present notion of compatibility is rather weak, and for instance
it does not require the conclusion of Theorem 7.14 to hold, or even just Theorem
7.5. However, even such a weak notion does not allow the “simplest” derivation
∂ : No → No of [BM] to be compatible with a composition.

Theorem 8.4. The “simplest” surreal derivation ∂ : No → No in [BM] cannot be

compatible with a composition ◦ : No×No
>R → No.

Proof. Let y ∈ No, and observe that the rules of transserial derivations yield
∂(logn(y)) = 1∏

i<n logi(y)
. Taking y = ω we obtain ∂(λ−n) = 1∏

i<n λ−i
, where

λ−n = logn(ω). Now let ∂ : No → No be the “simplest derivation” in [BM]. In
that paper we showed that ∂ is surjective, so in particular there is an anti-derivative
of 1∏

n∈N
λ−n

. In fact we proved that there is a log-atomic number λ−ω ∈ L such

that ∂(λ−ω) = 1∏
n∈N

λ−n
. With a suggestive notation λ−ω is denoted logω(ω) in

[ADH], suggesting that it should be considered as an infinite compositional iterate
of log(ω). In [BM] we showed that, if λ is a log-atomic number bigger than expn(ω)
for every n ∈ N, then

∂(λ) =
∏

n∈N

logn(λ).

Note that there is a proper class of log-atomic numbers λ satisfying λ > expn(ω)
for all n ∈ N, so the above differential equation has a proper class of solutions. Now
fix such a solution λ and suppose for a contradiction that ∂ is compatible with a
composition on the whole of No. By the rules for ∂ and ◦ we obtain

∂(λ−ω ◦ λ) = (∂(λ−ω) ◦ λ) · ∂(λ)

=

(

1
∏

n logn(ω)
◦ λ

)

· ∂(λ)

=

(

1
∏

n logn(λ)

)

· ∂(λ) = 1.

Since ∂(λ−ω) > 0, by the compatibility conditions the function x 7→ λ−ω ◦ x is
strictly increasing, so there is a proper class of elements of the form λ−ω ◦ x with
derivative 1. This however contradicts the fact that ker(∂) = R is a set. �

Remark 8.5. The above result can be interpreted in different ways. The first is
that there could be no reasonable composition on the whole of No. The second
is that, despite the positive results in [ADH, BM], the simplest derivation in [BM]
may have some shortcomings. It is conceivable that, in order to be able to give
positive solution to Question 8.3, we should allow a proper class as the kernel of ∂.
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9. Proof of the summability lemma (Lemma 5.21)

We will now give a proof of Lemma 5.21. We work under the notations of Section
5. Suppose that c0 : ∆ → No is a given pre-substitution. Then we wish to prove
the following:

Lemma 5.21. Assume I(α). Then (c(T ) : T ∈ A(x)) is summable for all x ∈
∆α+1 \∆α. In particular, I(α) implies I(α+ 1).

For the rest of this section, let c0 : ∆ → No be a pre-substitution, and assume
that the inductive hypothesis I(α) holds. Then c : ∆α → No is well defined, and
the objects A(x), c(T ) and A◦(x) are clearly well defined for all x ∈ ∆α+1 and all
T ∈ A(x). Moreover, recall that by Proposition 5.17, c(t) is also well defined for all
terms t ∈ ∆α+1 ∩ R∗

M.

9.1. A property of pre-substitutions. We start by observing a rather technical,
but crucial fact on pre-substitutions.

Lemma 9.1. Let x ∈ No and m be the leading monomial of x. Then

Supp(x) ⊆
∞
⋃

n=0

m
n+1 · Supp(x−1)n.

Proof. Let t = rm be the leading term of x. Write x−1 = t−1(1 + ε), where ε ≺ 1.
Then

x =
t

(1 + ε)
= t ·

∞
∑

n=0

(−1)nεn,

hence every element in the support of x has the form m · n1 · . . . · nn with n ≥ 0 and
ni ∈ Supp(ε). On the other hand, since ε = tx−1 − 1 = rmx−1 − 1 and ε ≺ 1, we
have Supp(ε) ⊆ m · Supp(x−1), and the conclusion follows. �

Lemma 9.2. Let c0 : ∆ → No be a pre-substitution. Let (λi)i∈N, (mi)i∈N be two
sequences such that λi ∈ ∆ and mi ∈ Supp(c0(λi)) for all i ∈ N. Then there is an
increasing sequence of indexes (ij)j∈N such that one of the following holds:

(1) the subsequence (λij )j∈N is decreasing and for all j ∈ N

mij+1

mij

≺
c0(λij+1 )

c0(λij )
≺ 1;

(2) the subsequence (λij )j∈N is increasing and for all j ∈ N

mij+1

mij

≺ c0(λij+1 )
2;

(3) the subsequence (λij )j∈N is constant and for all j ∈ N

mij+1

mij

� 1.

Note that in all three cases we have
mij+1

mij

≺ c0(λij+1 )
2.

Proof. Let λi =: eµi . Note that µi ∈ ∆. We have

c0(λi) = ec0(µi) = ec0(µi)
↑=

ec0(µi)
↓

.
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Thus ni := mie
−c0(µi)

↑

∈ Supp
(

exp(c0(µi)
↓=)
)

= Supp(exp(c0(µi)
↓), and therefore

there is some ni ∈ N such that ni ∈ Supp((c0(µi)
↓)ni). After extracting a subse-

quence we may assume that (λi)i∈N is monotone, so either increasing, decreasing,
or constant.

(1) Suppose that (λi)i∈N is decreasing. Then (µi)i∈N is also decreasing, hence the
family (c0(µi) : i ∈ N) is summable. In particular, (c0(µi)

↓ : i ∈ N) is summable,
and by Corollary 3.12, (exp(c0(µi)

↓) : i ∈ N) is summable. We may therefore
extract a subsequence and assume that (ni)i∈N is decreasing, so that

mi+1e
−c0(µi+1)

↑

≺ mie
−c0(µi)

↑

.

Since c0(λi) = ec0(µi), it follows that

mi+1

mi
≺

ec0(µi+1)
↑

ec0(µi)↑
≍

c0(λi+1)

c0(λi)
≺ 1.

(2) Consider now the case when (λi)i∈N is increasing. Let oi := LM(c0(µi)). By
Lemma 9.1, applied with x = c0(µi), we deduce that

Supp(c0(µi)) ⊆
∞
⋃

m=0

o
m+1
i · Supp(c0(µi)

−1)m.

Since ni =
mi

ec0(µi)
↑ ∈ Supp((c0(µi)

↓)ni), it follows that there is an mi ∈ N such that

mi

ec0(µi)↑
∈ o

ni(mi+1)
i · Supp(c0(µi)

−1)nimi

and therefore mi · e
−c0(µi)

↑

· o
−ni(mi+1)
i ∈ Supp(c0(µi)

−1)nimi .
Now observe that c0(µi)

−1 ≺ 1 and that the family (c0(µi)
−1 : i ∈ N) is

summable because (µ−1
i )i∈N is decreasing. By Corollary 3.12, applied with εi =

c0(µi)
−1, the family

(

mi · e−c0(µi)
↑

· o
−ni(mi+1)
i : i ∈ N

)

is summable. We may

therefore extract a subsequence and assume that
mi

ec0(µi)↑ · o
ni(mi+1)
i

≻
mi+1

ec0(µi+1)↑ · o
ni+1(mi+1+1)
i+1

.

Since c0(µi) is positive infinite, ec0(µi)
↑

≻ c0(µi)
n ≍ o

n
i for any n ∈ N, so

mi+1

e2c0(µi+1)↑
≺

mi+1

ec0(µi+1)↑ · o
ni+1(mi+1+1)
i+1

≺
mi

ec0(µi)↑
.

Therefore,
mi+1

mi
≺

e2c0(µi+1)
↑

ec0(µi)↑
≍

c0(λi+1)
2

c0(λi)
� c0(λi+1)

2.

(3) Finally, suppose that there is a λ ∈ ∆ such that λi = λ for all i ∈ N. In this
case all the monomials mi are in the support of c0(λ) ∈ No, hence obviously we
may extract a subsequence and assume that mi+1 � mi for all i ∈ N. �

9.2. Further properties of the extensions. Recall that I(α) implies that c :
∆α → No is a substitution when α ≥ 3 (Corollary 5.20). In particular, c preserves
the ordering and the dominance relation ≺ by Proposition 5.3. We observe that
I(α) implies similar monotonicity properties for α < 3, and also for terms in ∆α+1.

Proposition 9.3. For all x, y ∈ ∆α, and for all x, y ∈ ∆α+1 ∩ R∗
M, we have

x < y → c(x) < c(y) and x ≺ y → c(x) ≺ c(y).
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Proof. If α is 0 or 1, then for all x, y ∈ ∆α we have x < y → c(x) < c(y) and
x ≺ y → c(x) ≺ c(y) by definition of pre-substitution. The same conclusion
holds for α ≥ 3 by Corollary 5.19 and Proposition 5.3. For α = 2, note that by
Proposition 5.18, if we expand some x ∈ ∆2 \ R as x = r0e

λ0 +
∑

1≤i<β rie
λi + s

(where ri, s ∈ R, λi ∈ ∆, and λi > λj for all i ≤ j < β), we have

c(x) = r0e
c0(λ0) +

∑

1≤i<β

rie
c0(λi) + s,

while c(r) = r for all r ∈ R by Proposition 5.16. By definition of pre-substitution,
it follows at once that c(x) ∼ r0e

c0(λ0), and in turn, that c(x) > 0 if and only if
x > 0 (and obviously c(r) > 0 if and only if r > 0). Since ∆2 is an additive group,
we have x < y → c(x) < c(y) for all x, y ∈ ∆2. By the same argument, it also
follows that x ≺ y → c(x) ≺ c(y) for all x, y ∈ ∆2.

Now take some x, y ∈ ∆α+1 ∩ R∗
M. Write x = reγ , y = seδ, with r, s ∈ R∗

and γ, δ ∈ J. By Proposition 5.17, c(reγ) and c(seδ) are well defined and equal
to respectively rec(γ), sec(δ). We observe that if γ < δ, then c(γ) < c(δ), and if
moreover 0 < γ, then 0 < c(γ) and γ ≺ δ, so c(γ) ≺ c(δ). This easily implies that
x < y → c(x) < c(y) and x ≺ y → c(x) ≺ c(y). �

We also need the following properties of admissible trees.

Lemma 9.4. Let x ∈ ∆α+1 and T = 〈reγ , n, τ〉 ∈ A(x). We have:

(1) rec(γ)
↑=

≍ rec(γ) = c(reγ) = c(R(T ));
(2) if reγ = R(T ) /∈ ∆, then c(T ) ≍ c(R(T )) ·

∏

i<n c(τ(i));
(3) if U = τ(i) is a child of T , then c(U) is infinitesimal;
(4) if U is a proper descendant of T , then c(U) is infinitesimal;
(5) c(T ) � c(R(T ));
(6) if size(T ) > 1, then all the leaves of T have root in ∆.

Proof. (1) follows from Proposition 5.17.
(2), (3), (4) follow at once from the definitions and (1).
(5) If λ = R(T ) ∈ ∆, then c(T ) ∈ Term(c0(λ)), so c(T ) � c0(λ) = c(R(T ))

as desired. If R(T ) /∈ ∆, then c(T ) ≍ c(R(T )) ·
∏

i<n c(τ(i)) by (2), and since
c(τ(i)) ≺ 1 for each i < n by (3), we reach the same conclusion.

(6) Assume size(T ) > 1, and let L be a leaf of T . Then L is a leaf of some child of
T . Reasoning by induction, we may directly assume, without loss of generality, that
L is a child of T . Write L = 〈seδ, 0, σ〉. Note that seδ is a term of γ = log↑(R(T )) ∈
J, so R(L) = seδ ≻ 1. By Proposition 9.3, it follows that c(R(L)) ≻ 1. Now suppose
by contradiction that seδ /∈ ∆. Then (2) implies that c(L) ≍ c(R(T )) ≻ 1, but by
(4) we must have c(L) ≺ 1. Therefore, seδ ∈ ∆, as desired. �

9.3. Bad sequences. In order to prove that the family (c(T ) : T ∈ A(x)) is
summable for any x ∈ ∆α+1, by Remark 2.15, one could try to verify that there
is no injective sequence (Ti)i∈N of trees in A(x) such that c(Ti) � c(Ti+1) for all
i ∈ N. However, we will actually prove the stronger statement that there are no
bad sequences, which are defined as follows:

Definition 9.5. Let x ∈ ∆α+1 and let (Ti)i∈N be a sequence of trees in A(x). We
say that the sequence is bad if it is injective, R(Ti) � R(Ti+1) for each i ∈ N, and

(

c(Ti)

c(Ti+1)

)n

�
c(R(Ti))

c(R(Ti+1))
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for all i, n ∈ N.

For instance, Lemma 9.2(1) and (3) immediately imply that there are no bad
sequences in A(x) for any x ∈ ∆2. The non-existence of bad sequences in a given
A(x) quickly implies the desired summability.

Proposition 9.6. Let x ∈ ∆α+1. If there are no bad sequences in A(x), then
(c(T ) : T ∈ A(x)) is summable.

Proof. Suppose that (c(T ) : T ∈ A(x)) is not summable. Then there is an injective
sequence of trees (Ti)i∈N in A(x) such that

c(Ti) � c(Ti+1)

for all i ∈ N. After extracting a subsequence, we may assume that R(Ti) � R(Ti+1)
for every i ∈ N, as all these roots are terms of x. Therefore, c(R(Ti)) � c(R(Ti+1))
for all i ∈ N by Proposition 9.3. It follows that for all i, n ∈ N we have

(

c(Ti)

c(Ti+1)

)n

� 1 �
c(R(Ti))

c(R(Ti+1))
,

so the sequence (Ti)i∈N is bad. �

Remark 9.7. If (Ti)i∈N is a bad sequence, then all its subsequences are bad. This
follows from the fact that for all i, k, n ∈ N we have

(

c(Ti)

c(Ti+k+1)

)n

=





k
∏

j=0

c(Ti+j)

c(Ti+j+1)





n

�
k
∏

j=0

c(R(Ti+j))

c(R(Ti+j+1))
=

c(R(Ti))

c(R(Ti+k+1))
.

We start with a few special cases in which it is easy to prove that sequences of
trees are not bad.

Proposition 9.8. Let x ∈ ∆α+1. Let (Ti)i∈N be a sequence of distinct trees in
A(x). If R(Ti) ∈ ∆ for all i ∈ N, then (Ti)i∈N is not bad.

Proof. Write Ti = 〈λi, 0, ti〉, where ti = c(Ti) is a term of c0(λi). Since λi ∈ Term(x)
for each i ∈ N, after extracting a subsequence, we may assume that (λi : i ∈ N)
is either constant or decreasing. In the former case, all the contributions c(Ti)
are distinct elements of Term(c0(λ)) for some fixed λ ∈ ∆, so after extracting a
subsequence we may assume c(Ti) ≻ c(Ti+1) for all i ∈ N, so the sequence is not
bad. In the latter case, by Lemma 9.2, we may extract a further subsequence and
assume that

c(Ti)

c(Ti+1)
=

ti
ti+1

≻
c0(λi)

c0(λi+1)
=

c(R(Ti))

c(R(Ti+1))
.

Therefore, (Ti)i∈N is not bad. �

Proposition 9.9. Let t be a term in ∆α+1. Then there are no bad sequences in
A(t).

Proof. Let (Ti)i∈N be a sequence of distinct trees in A(t). We want to prove that
(Ti)i∈N is not bad. Since t is a term, by Proposition 5.17 (c(T ) : T ∈ A(t)) is
summable. Thus, extracting a subsequence, we can assume that c(Ti) ≻ c(Ti+1)

for every i ∈ N. Observing that R(Ti) = t for every i ∈ N, it follows that c(Ti)
c(Ti+1)

≻

1 = c(R(Ti))
c(R(Ti+1))

, and therefore (Ti)i∈N is not bad. �
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9.4. Two types of sequences of trees. We now distinguish two special types of
sequences of trees, and verify that every injective sequences of trees in some given
A(x) has at least one subsequence of one of the two types.

Definition 9.10. Let x ∈ ∆α+1 and let Ti = 〈rie
γi , ni, τi〉 ∈ A(x) be distinct trees

for i ∈ N such that (γi)i∈N is weakly decreasing.
We say that the sequence (Ti)i∈N has type:

(A) if R(τi(j)) ≻ γ0 − γi for all i ∈ N, j < ni;
(B) if n0 ≥ 1 and for all i ∈ N>0 there is k < ni such that R(τi(k)) � γi−1 − γi.

Note that a sequence (Ti)i∈N may be of neither type. A sequence with ni = 0
for all i ∈ N, or with (γi)i∈N constant, is vacuously of type (A). Moreover, for a
sequence of type (B), (γi)i∈N is necessarily strictly decreasing and ni ≥ 1 for all
i ∈ N.

Lemma 9.11. If (Ti)i∈N is a sequence of type (A) or (B), then all its subsequences
have type (A) or (B) respectively.

Proof. Suppose (Ti)i∈N is of type (A) and let (Tij )j∈N be a subsequence. Since
(γi)i∈N is weakly decreasing, for all k < nij we have

R(τij (k)) ≻ γ0 − γij � γi0 − γij ,

so the subsequence is of type (A).
Now let (Ti)i∈N be a sequence of type (B). Write Ti = 〈rieγi , ni, τi〉. Using again

the fact that (γi)i∈N is weakly decreasing, if k is such that R(τi(k)) � γi−1 − γi,
then R(τi(k)) � γj − γi for all j < i, so any any subsequence of (Ti)i∈N is of type
(B). �

Proposition 9.12. Let x ∈ ∆α+1 and let Ti = 〈rieγi , ni, τi〉 ∈ A(x) be distinct
trees for i ∈ N. Then (Ti)i∈N has a subsequence of type (A) or (B).

Proof. After extracting a subsequence, we may assume that (γi)i∈N is weakly de-
creasing. If ni = 0 for every i ∈ N, then (Ti)i∈N is of type (A) and we are done.
We can therefore suppose without loss of generality that n0 ≥ 1.

We proceed by trying to construct a subsequence (Tij )j∈N of type (B), and check
that when the construction fail we find a subsequence of type (A). We define Tij

by induction on j ∈ N. For j = 0, we let Tij = Ti0 := T0.
Assuming that Tij has been defined, we have two cases. If R(τi(k)) ≻ γij − γi

for all i > ij, k < ni, then the sequence Tij , Tij+1, Tij+2, . . ., has type (A), and we
are done. Otherwise, we let ij+1 be the minimum i for which there exists k such
that R(τi(k)) � γij − γi.

Clearly, either the procedure fails after a finite number of steps, and we find
a subsequence of type (A), or it defines a subsequence (Tij )j∈N of type (B), as
desired. �

9.5. No bad sequences of type (A). As a start, it is fairly easy to see that bad
sequences of type (A) do not exist.

Proposition 9.13. Let x ∈ ∆α+1. Then A(x) contains no bad sequences of type
(A).

Proof. For a contradiction let (Ti)i∈N be a bad sequence in A(x) of type (A). By
Proposition 9.9 the sequence of terms (R(Ti) : i ∈ N) cannot be constant, so by
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taking a subsequence we can assume that the terms R(Ti) are distinct, and since
they are all terms of x, we may also assume (taking another subsequence) that
R(T0) ≻ R(T1) ≻ R(T2) ≻ . . .. By Proposition 9.3 it then follows that c(R(Tn)) ≻
c(R(Tn+1)) for every n ∈ N.

Let i ∈ N and write Ti = 〈rie
γi , ni, τi〉. By assumption, for any child U = τi(j)

of Ti we have R(U) ≻ γ0 − γi (this holds vacuously if Ti has no children). We
claim that for any such U we must have R(U) ∈ Term(γ0). Indeed by construction
R(U) ∈ Term(γi); therefore, if R(U) /∈ Term(γ0), then R(U) would be a term of
the difference γ0 − γi, contradicting the assumption R(U) ≻ γ0 − γi.

We have thus proved that all the roots of the children of the trees Ti are terms
of γ0 = log↑(R(T0)); hence, we can replace the root of each Ti with eγ0 obtaining a
new sequence T ′

i := 〈eγ0 , ni, τi〉 in A(eγ0). Since Ti and T ′
i have the same children,

by Lemma 9.4(2) we have:

c(Ti)

c(T ′
i )

≍
c(R(Ti))

c(R(T ′
i ))

≍
c(eγi)

c(eγ0)
.

By Proposition 5.17, the family (c(T ′) : T ′ ∈ A(eγ0)) is summable. Therefore, after

extracting a subsequence we may assume that c(T ′
i )

c(T ′
i+1)

� 1 (note that the inequality

is not necessarily strict, because the trees T ′
i might not be distinct). It follows that

c(Ti)

c(Ti+1)
≍

c(R(Ti))

c(R(Ti+1))
·

c(T ′
i )

c(T ′
i+1)

�
c(R(Ti))

c(R(Ti+1))
≻ 1.

Therefore, (Ti)i∈N is not bad. �

9.6. Pruning trees. In the sequel we consider trees in A(x) for some x ∈ ∆α+1.
We establish a procedure to “prune” a tree T , that is, to remove some descendants,
in such a way that its contribution c(T ) changes only by a small amount.

Definition 9.14. Let T = 〈reγ , n, τ〉 be an admissible tree (i.e. T ∈ A(reγ)), U be
a child of T (necessarily admissible), and U ′ be an admissible tree with the same
root as U . Let j be the minimum integer such that τ(j) = U .

(1) We define T [U ′/U ] as T with U replaced by U ′. More precisely,

T [U ′/U ] := 〈reγ , n, τ∗〉

where τ∗(i) := τ(i) for i 6= j and τ∗(j) := U ′. Note that if c(U ′) ≺ 1, then
T [U ′/U ] is again an admissible tree.

(2) We define T \ U as the admissible tree obtained from T by removing the
child U . More precisely,

T \ U := 〈reγ , n− 1, τ∗〉

where τ∗(i) := τ(i) for i < j and τ∗(i) := τ(i + 1) for i ≥ j.

Definition 9.15. Let T = 〈reγ , n, τ〉 ∈ A(x) with size(T ) > 1. If L is a leaf of T ,
we define the minimal child of T with leaf L to be the child U = τ(j) of T such
that:

(1) L is a leaf of U (possibly L = U);
(2) among such children, R(U) is minimal with respect to �;
(3) among such children, j is minimal.
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Definition 9.16. Let T = 〈reγ , n, τ〉 ∈ A(x) with size(T ) > 1 and let L be a leaf
of T . We define TL by induction on size(T ) as follows. Let U be the minimal child
of T with leaf L. We define:

(1) if size(U) = 1 (namely L = U), let TL := T \ L;
(2) if size(U) > 1 and c(UL) ≺ 1, let TL := T [UL/U ];
(3) if size(U) > 1 and c(UL) � 1, let TL := T \ U .

Remark 9.17. Note that in all three cases, TL is still an admissible tree; in partic-
ular, in (2) this is guaranteed by the condition c(UL) ≺ 1, as for all children S of
an admissible tree the contribution c(S) must be infinitesimal.

Lemma 9.18. Let L be a leaf in T ∈ A(x), with size(T ) > 1, and let U be the
minimal child of T with leaf L. We have:

(1) size(TL) < size(T ) and R(TL) = R(T );
(2) TL ∈ A(x);
(3) if TL = T \ U , then c(T ) ≍ c(TL) · c(U);

(4) if TL := T [UL/U ], then c(T ) = c(TL) · c(U)
c(UL) ;

(5) c(TL) ≻ c(T );

Proof. We work by induction on size(T ). Point (1) is straightforward and point (2)
is Remark 9.17.

For (3), let T =: 〈reγ , n, τ〉 and let j < n be minimal such that U = τ(j). By
definition we have

c(T ) = rec(γ)
↑=

· c(U) ·
1

n!

∏

i<n
i6=j

c(τ(i))

while

c(T \ U) = rec(γ)
↑=

·
1

(n− 1)!
·
∏

i<n
i6=j

c(τ(i))

Thus clearly c(T \ U) ≍ c(T )
c(U) and (3) follows.

A similar argument shows that if TL = T [UL/U ], then c(TL) = c(T ) · c(UL)
c(U) and

we obtain (4).
For (5), just note that if TL = T \U , then c(T ) ≍ c(TL)c(U), and since c(U) ≺ 1

we obtain c(T ) ≺ c(TL); if instead TL = T [UL/U ], by induction we have c(U) ≺
c(UL) and we reach the same conclusion using (4). �

Lemma 9.19. Let T be an admissible tree and U be a proper descendant of T .
Then R(U) ≻ 1, and if U ′ is a proper descendant of U we have 1 ≺ R(U ′)n ≺ R(U)
for every n ∈ N.

Proof. Suppose first that U is a child of T . Write R(T ) = reγ , so that R(U) is a term
of γ = log↑(R(T )). Since γ ∈ J, R(U) is of the form seδ with 0 < δ ∈ J, so R(U) ≻ 1,
proving the first conclusion. Moreover, it follows that δn ≺ eδ ≍ R(U) for all n ∈ N.
If now U ′ is a child of U , then R(U ′) is a term of δ, so R(U ′)n � δn ≺ R(U), while
by the previous argument R(U ′) ≻ 1. The general conclusion with U a descendant
of T and U ′ a descendant of U now follows by transitivity of �. �

Proposition 9.20. Let L be a leaf in a tree T of size > 1 and let U be the minimal
child of T with leaf L. Then

c(T ) ≍ c(TL) · c(L) · t where 1 � t � c(R(U))2.
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Proof. We work by induction on size(T ).
Case 1. If size(U) = 1 (namely U = L), then TL = T \L and c(T ) ≍ c(TL) ·c(L),

so it suffices to take t = 1.
Case 2. Assume size(U) > 1 and c(UL) � 1. Then TL = T \ U , and therefore

c(T ) ≍ c(TL) · c(U). We may assume by induction that c(U) ≍ c(UL) · c(L) · u,
where 1 � u � c(R(U ′))2 and U ′ is the minimal child of U with leaf L. Substituting
we obtain

c(T ) ≍ c(TL) · c(L) · c(UL) · u.

By Lemma 9.4 we have c(UL) � c(R(UL)) = c(R(U)), and by Lemma 9.19 u �
c(R(U ′))2 ≺ c(R(U)), hence we can take t := c(UL) · u.

Case 3. Finally, assume size(U) > 1 and c(UL) ≺ 1. Then TL = T [UL/U ],
and by Lemma 9.18 we have c(T ) = c(TL) · c(U)

c(UL) . By inductive hypothesis we

have c(U) ≍ c(UL) · c(L) · u, where reasoning as above we have 1 � u ≺ c(R(U)).
Substituting we get

c(T ) ≍ c(TL) · c(L) · u,

hence we can take t = u. �

9.7. No bad sequences. We can finally prove that there are no bad sequences at
all in any A(x).

Proposition 9.21. Let x ∈ ∆α+1. If (Ti)i∈N is a bad sequence in A(x), then there
are a bad sequence (Sj)j∈N in A(x) and some k ∈ N such that size(S0) < size(Tk),
R(S0) = R(Tk) and c(S0) ≻ c(Tk).

Proof. By Proposition 9.12 and Proposition 9.13, there is a subsequence (Pj)j∈N of
(Ti)i∈N of type (B). Recall that by definition of type (B), size(Pj) > 0 for all j ∈ N.

Write Pj = 〈rjeγj , nj , τj〉. Let L0 be a leaf of P0. For j ≥ 1, let Uj be a child
of Pj with R(Uj) � γj−1 − γj , which exists by definition of type (B), and let Lj

be a leaf of Uj. We may then assume that Uj is the minimal child with leaf Lj (if
not, just replace Uj with the minimal child U with leaf Lj, and observe that the
condition R(U) � γj−1 − γj is still satisfied because R(U) � R(Uj)).

We can write Lj = 〈λj , 0, sj〉, where λj ∈ ∆ and sj = c(Lj) ∈ Term(c0(λj)). By
Lemma 9.19 we have λj � R(Uj); therefore, since c preserves � by Proposition 9.3,

c(λj) � c(R(Uj)) � c(γj−1 − γj)

for all j ≥ 1.
By Lemma 9.2, we may extract a further subsequence of (Pj)j∈N and assume

that for all j ∈ N we have
(

sj+1

sj

)

≺ c(λj+1)
2, so

(

sj+1

sj

)

� c(γj − γj+1)
2.

Now let Sj := P
Lj

j , which is well defined since size(Pj) > 0 for all j ∈ N. We shall
prove that (Sj)j∈N has the desired properties.

By Proposition 9.20, for all j ∈ N we have

c(Pj) = c(PLj
j ) · c(Lj) · tj = c(P

Lj

j ) · sj · tj

where 1 � tj � c(R(Uj))
2 for all j ∈ N. In particular, tj+1

tj
� tj+1 � c(R(Uj+1))

2,
so

tj+1

tj
� c(γj − γj+1)

2.
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It follows that

c(P
Lj

j )

c(P
Lj+1

j+1 )
=

c(Pj)

c(Pj+1)
·
sj+1

sj
·
tj+1

tj
� c(γj − γj+1)

4 ·
c(Pj)

c(Pj+1)
.

Since (Pj)j∈N is bad, for all j, n ∈ N we have
(

c(Pj)

c(Pj+1)

)n

�
c(R(Pj))

c(R(Pj+1))
.

Likewise, for all j, n ∈ N we also have

(c(γj − γj+1))
n � ec(γj−γj+1) ≍

c(R(Pj))

c(R(Pj+1))

using Lemma 9.4, Proposition 9.3 and the fact that γj − γj+1 ≻ 1. It follows that
for all j, n ∈ N we have

(

c(P
Lj

j )

c(P
Lj+1

j+1 )

)n

�
c(R(Pj))

c(R(Pj+1))
.

Recalling that R(P
Lj

j ) = R(Pj) for all j ∈ N, it follows that (Sj)j∈N = (P
Lj

j )j∈N is
another bad sequence in A(x).

To conclude, let k ∈ N be such that Tk = P0. By construction, size(S0) =

size(PL0
0 ) < size(P0) = size(Tk), and by Lemma 9.18, c(S0) = c(PL0

0 ) ≻ c(P0) =
c(Tk), as desired. �

Proposition 9.22. Let x ∈ ∆α+1. Then A(x) contains no bad sequences.

Proof. Suppose by contradiction that there is a bad sequence of trees in A(x).
Among all such bad sequences, let (Ti)i∈N be the one such that size(T0) is minimal,
and fixed T0, size(T1) is minimal, and so on. By Proposition 9.21, there is another
bad sequence (Sj)j∈N in A(x) and some k ∈ N such that size(S0) < size(Tk),
R(S0) = R(Tk) and c(S0) ≻ c(Tk).

We observe that
T0, T1, . . . , Tk−1, S0, S1, . . .

is again a bad sequence in A(x). Indeed, it suffices to note that for all n ∈ N we
have

(

c(Tk−1)

c(S0)

)n

≺

(

c(Tk−1)

c(Tk)

)n

�
c(R(Tk−1))

c(R(Tk))
=

c(R(Tk−1))

c(R(S0))
.

However, since size(S0) < size(Tk), this contradicts our minimality assumption.
Therefore, there are no bad sequences in A(x), as desired. �

By Proposition 9.6, this completes the proof of Lemma 5.21, as desired.

Acknowledgments. We thank the anonymous referee for the very careful report.
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