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The development and patterning of stomata in the plant

epidermis has emerged as an ideal system for studying

fundamental plant developmental processes. Over the past

twenty years most studies of stomata have used the model

dicotyledonous plant Arabidopsis thaliana. However, cultivated

monocotyledonous grass (or Gramineae) varieties provide the

majority of human nutrition, and future research into grass

stomata could be of critical importance for improving food

security. Recent studies using Brachypodium distachyon,

Hordeum vulgare (barley) and Oryza sativa (rice) have led to the

identification of the core transcriptional regulators essential for

stomatal initiation and progression in grasses, and begun to

unravel the role of secretory signaling peptides in controlling

stomatal developmental. This review revisits how stomatal

developmental unfolds in grasses, and identifies key

ontogenetic steps for which knowledge of the underpinning

molecular mechanisms remains outstanding.
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Introduction
Stomata function as the interface between plants and

atmosphere, exerting control over gaseous diffusion and

balancing the uptake of carbon dioxide with the loss of

water vapour [1]. Regulation of stomatal development is

of critical importance in allowing plants to adjust their

gaseous exchange to suit the prevailing environmental

conditions [2–4]. Stomatal development has been exten-

sively studied, and has emerged as an excellent system for

investigating cell-fate specification and cellular differen-

tiation [5,6��]. The distribution of stomata on the leaf
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surface is a highly regulated process with a level of

plasticity, and components regulating stomatal develop-

ment continue to be identified [7,8]. Much of our current

understanding stems from work conducted on the model

dicot Arabidopsis thaliana and many comprehensive

reviews are available [9,10].

Although cereal grasses provide the majority of human

nutrition we still know surprisingly little about their

stomata. As scientific focus moves towards the engineer-

ing of ‘climate ready crops’ that will be better suited to

predicted warmer, drier, higher carbon dioxide environ-

ments, understanding the regulatory mechanisms of grass

stomatal development and patterning could prove key to

future success. In this review, we outline recent advances

emerging from studies of grasses and discuss the out-

standing questions.

The grass stomatal lineage

The development of stomatal complexes in grasses dif-

fers to that of the dicots in a number of ways. Most

notably, grass stomata are formed from dumbbell-shaped

guard cells (GCs) that are flanked by subsidiary cells (SC)

which develop in parallel rows within defined and specific

epidermal cell files. In contrast, the GCs of dicots are

kidney-shaped and form stomata that are scattered

throughout the epidermis in a less orderly pattern. In

nascent leaves, grass stomatal development occurs along a

spatiotemporal gradient with the earliest stages occurring

basally, and proceeding as cells move upwards as the leaf

expands [11,12]. This developmental pathway can be

broken down into 6 stages and is illustrated using barley

(Hordeum vulgare) in Figure 1. Initially, close to the leaf

base, prior to stomatal-lineage cell specification, potential

precursor cells proliferate in particular files (Stage 1). As

undifferentiated cells are pushed further up the leaf blade

alternate cells enter the stomatal development pathway

via an asymmetric ‘entry’ division leading to a smaller

guard mother cell (GMC) and a larger sister cell (Stage 2).

Cells from files on either side of a newly formed GMC

then also divide asymmetrically to form subsidiary mother

cells (SMCs) (Stage 3). After the cells have increased in

size, mature GMCs are flanked by two nascent SCs (Stage

4), a final symmetric division of the GMC leads to the

formation of two immature GCs (Stage 5). The stomatal

complex matures and expands to form a pair of dumbbell-

shaped GCs, which separate to form the stomatal pore

(Stage 6). Thus, each mature grass stomatal complex

includes a central pore, a dumbbell-shaped GC pair

and two flanking SCs. Each complex overlies an airspace,
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Figure 1
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Six stages of grass stomatal development. (1) Selection of stomatal lineage cells within defined rows. (2) Asymmetric entry divisions generate

smaller guard mother cells (GMCs), depicted by white arrows, and larger epidermal cells. (3) GMCs then expand and laterally induce subsidiary

mother cell (SMC) formation (see white arrows) via asymmetric divisions. (4) Subsidiary cell maturation. (5) GMCs divide symmetrically. (6) GMC

elongation and maturation to form the guard cell (GC) complex. All confocal images were taken from the base of leaf 2 of 6-day-old barley

seedlings (cv. Golden Promise) stained with propidium iodide. Scale bar = 5 mm.
or ‘sub-stomatal cavity’, which forms between the meso-

phyll cells of the underlying layer, to facilitate efficient

gaseous diffusion in and out of the leaf. Several recent

studies provide insights into the transcriptional and reg-

ulatory mechanisms underpinning grass stomatal devel-

opment. These make use of grass genome sequences and

build on knowledge gained from Arabidopsis.

Brachypodium: A model for recent discovery

Despite differences in morphology and patterning, the

basic helix-loop-helix transcription factors underpinning

stomatal fate in Arabidopsis, SPEECHLESS (SPCH),

MUTE and FAMA together with heterodimeric partners
Current Opinion in Plant Biology 2018, 41:1–7 
INDUCER OF CBF EXPRESSION1 (ICE1) and

SCREAM2 (SCRM2) are highly conserved, with origins

which predate the divergence of the mosses and horn-

worts from ancestral land plants [5,6��,13,14��]. The dis-

covery of functionally orthologous grass genes [15–18] has

shed light on the mechanisms responsible for stomatal

development and patterning in grasses. Liu et al. [12]

investigated putative orthologues of SPCH, MUTE and

FAMA in both rice and maize (Zea mays) and revealed at

least one SPCH and a FAMA gene that are required for

stomatal development in rice. More recently, Raissig et al.
[14��] used the wheat relative Brachypodium distachyon
(Brachypodium), to dissect the roles of grass SPCH and
www.sciencedirect.com



Grass stomatal development Hepworth et al. 3
ICE/SCRM orthologues. They found that although

Brachypodium uses SPCH and ICE/SCRM gene products

to regulate stomatal formation, the grass pathway is

‘alternatively wired’ to achieve correctly patterned sto-

mata. Specifically, a SPCH duplication event has occurred

in grasses leading to two functional but partially redun-

dant paralogues: BdSPCH1 and BdSPCH2 which both

act early during stomatal development. For ICE/SCRM
family members, a divergence of function has occurred in

comparison to Arabidopsis orthologues. Rather than being

functionally redundant, BdICE1 and BdSCRM2 control

overlapping stages of stomatal development; BdICE1

primarily functions during the initial asymmetric entry

division, BdSCRM2 acts later during the differentiation

of GMCs prior to the formation of SMCs [14��]. The

observation that the expression of the BdSPCH1/2 and

BdICE1/SCRM2 genes is limited to stomatal cell files

suggests that the regulation of these genes or proteins

across the leaf blade is critical for the correct patterning of

stomata across the leaf. How such spatial regulation is

achieved is a key next line of enquiry.

The presence of flanking SCs is common to all grass

stomatal complexes and these cells have long been

believed to assist in altering aperture size in a timely

and energy efficient manner [19]. However, despite their

important role, little has been known about how SCs are

developmentally programmed. Again, recent studies in

Brachypodium are beginning to shed light on the area.

The discovery that BdMUTE moves from GMCs, via

plasmodesmata, into neighboring SMCs where it acts to

establish SMC identity has advanced our understanding

of monocot stomatal development considerably [6��].
Mutants lacking BdMUTE function known as subsidiary
cell identity defective (sid) plants, produce GCs without

flanking SCs. These plants have allowed researchers to

test the importance of SCs in grass stomatal behaviour, for

the first time. The finding that sid plants have reduced

stomatal gas exchange and impaired growth, confirm the

important role of SCs and suggests opportunities for

the enhancement of stomatal aperture control and plant

productivity via the targeted manipulation of SC

development.

Signaling peptides regulate grass stomatal development

In concert with the bHLH transcription factors, a family

of cysteine-rich cell-to-cell signaling peptides regulates

the cellular divisions and cell fate transitions required

for stomatal development. These epidermal patterning

factors (EPFs) and their associated receptor components

are well-characterised in Arabidopsis with EPF2 primarily

regulating asymmetric entry divisions and EPF1 primar-

ily overseeing the differentiation of GMCs and stomatal

spacing. The EPF-like peptide known as EPFL9 or

STOMAGEN positively regulates stomatal development

by competing with EPF2 during early stomatal develop-

ment to promote stomatal lineage cell fate [20–25].
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Recently, Hughes et al. [26�] characterised the role of

HvEPF1; a barley orthologue of AtEPF1/2 (Figure 2),

which when ectopically expressed inhibits stomatal

development. Analysis of HvEPF1 over-expressing bar-

ley leaf epidermis revealed that many GMCs do not

progress to form stomatal complexes. Moreover, high

levels of expression of HvEPF1 inhibit the asymmetric

‘entry’ division that produces GMCs, the maturation of

GMCs, the production of SMCs and sub-stomatal cavity

formation. Thus a grass signaling peptide similar in

sequence to Arabidopsis EPF1 and 2 is able to prevent

GMC formation and cause the arrest of GMC develop-

ment prior to SMC generation but how HvEPF1

functions at normal endogenous levels remains to be

investigated. One potential function given the large

number of arrested GMCs devoid of SCs, is that HvEPF1

primarily downregulates HvSPCH protein levels thereby

preventing GMCs from proceeding further through

the stomatal lineage. Whether HvEPF1 activity directly

or indirectly regulates the HvMUTE gene or protein or

other targets downstream of HvSPCH is intriguing area

for future study.

The severe reductions in stomatal frequency and gas

exchange brought about by increasing HvEPF1 levels

led to improved barley drought tolerance and water use

efficiency. Any reduced capacity for photosynthesis did

not impact on grain production under either well-watered

or drought conditions. These results suggest promising

routes for cereal crop improvement through stomatal

density manipulation. Our knowledge of grass EPF/L

function is further extended by a study describing the use

of gene editing techniques to knock-out a rice orthologue

of Arabidopsis EPFL9, OsEPFL9a (Figure 2) causing up

to 8-fold reductions in stomatal density [27�]. These

barley and rice EPF/L studies confirm that, as in Arabi-

dopsis, both positive and negative stomatal development

regulators are active in grasses.

Phylogenetic and functional analyses suggest that in

addition to the stomatal bHLH transcription factors

and the epidermal patterning factors, their cognate recep-

tor components TMM and ERECTA family, are almost

certainly also conserved throughout land plants [28,29].

This provides a strong indication that a conserved func-

tional stomatal development module exists in the grasses.

However, whilst the evidence is clear that a number of

EPF/L peptides are conserved between dicots and mono-

cots [13,26�], the specifics relating to how each function in

grasses is not clear. As several grass genome sequences are

now accessible, we revisit the EPF/L story in grasses

(Figure 2). Almost all of the grass genomes that we

surveyed encode two peptides which cluster closely with

Arabidopsis EPF1 and EPF2 stomatal regulators. The

exception is wheat (Triticum aestivum) which being

hexaploid has multiple orthologues of both EPF1 and

EPF2. Strikingly, our analysis reveals that for EPFL9, a
Current Opinion in Plant Biology 2018, 41:1–7
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Figure 2
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Phylogenetic analysis of EPIDERMAL PATTERNING FACTOR (EPF) and EPF-like (EPFL) peptides in grass species. Sequences were obtained via

BLAST searches of peptides encoded by the Hordeum vulgare (barley), Triticum aestivum (wheat), Brachypodium distachyon and Oryza sativa (rice)

genome sequences using Phytozome v12. Additional sequences from BLAST searches of the genomes of Arabidopsis thaliana, Selaginella

moellendorffii and Physcomitrella patens are included to provide evolutionary context. All amino acid sequences with a BLAST score of at least

60 against Arabidopsis AtEPF1 (AT2G20875.1) and all sequences derived from Arabidopsis EPFL9 (AT4G12970.1 or STOMAGEN) BLAST searches

were used for the subsequent alignment of retrieved sequences. EPFL6 is included to illustrate relatedness of EPF and EPFL peptides. SmEPF1-1

and SmEPF1-2 sequence information was taken from [28]. Three other sequences virtually identical to HvEPF1 (HORVU2Hr1G116030.1,

HORVU2Hr1G116040.1 and HORVU2Hr1G116070.1) were omitted as they are assumed to be annotation errors and are not present when other

barley genome browsers are interrogated. The evolutionary history was inferred using the Neighbor-Joining method [30]. The optimal tree with the

sum of branch length = 4.77465428 is shown. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test

(1000 replicates) are shown next to the branches [31]. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary

distances used to infer the phylogenetic tree. The evolutionary distances were computed using the Poisson correction method [32] and are in the

units of the number of amino acid substitutions per site. The analysis involved 33 amino acid sequences. All positions containing gaps and missing

data were eliminated. There were a total of 38 positions in the final dataset. Evolutionary analyses were conducted in MEGA7 [33].
gene duplication event has occurred in the grasses leading

to at least two distinct EPFL9-like genes in all species

surveyed.

Having identified at least two EPF1/EPF2 genes and two

EPFL9 equivalents (Figure 2), the next question is ‘Do

all of the identified EPF/L genes encode peptides that

regulate stomatal development, and if so, how do they

facilitate communication between developing stomatal

lineage cells?’ It is clear that grass stomatal complexes are

formed by two distinct types of asymmetric divisions

(which form the GMC and SMCs) and that the bHLH

transcription factors regulating these divisions have to
Current Opinion in Plant Biology 2018, 41:1–7 
some degree functionally diversified from Arabidopsis

[6��,14��]. It remains unknown whether EPF signaling

peptides evolved in parallel to bHLH transcription

factors to regulate SC development in grasses. Clearly,

further functional studies of the potential regulators of

grass stomatal formation identified here (Figure 2) and

elsewhere [28,34,35] are required to further decipher

stomatal development and patterning in grasses.

Complexity of stomatal patterning in grasses

Whilst in Arabidopsis the development of stomata is

possible in most parts of nascent leaves this is not the

case in grasses. As grass leaves grow and increase in width
www.sciencedirect.com
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Figure 3
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The complexities of inter-file and intra-file patterning of grass stomatal precursors. (a) Rice stomatal lineage cells developing in neighboring

stomatal files. Guard mother cells (GMCs) formed from asymmetric entry divisions can be seen (white arrows) developing in close proximity to

GMCs flanked by subsidiary cells (SCs). (b) Barley stomatal lineage cells developing in adjacent rows. GMCs without SCs can be seen (white

arrows) developing in close proximity to more advanced stomatal lineage complexes where subsidiary mother cells asymmetric divisions or

symmetric GMC divisions are occurring. (c) Rice stomatal file with different stage stomatal lineage cells forming in a non-linear order from leaf

base to tip. White arrows highlight the more mature developmental stage. (d) Barley stomatal file highlighting the non-linearity of stomatal

development from leaf base to tip. White arrows highlight the more mature developmental stage. All images were generated using confocal

microscopy from 6-day-old rice (cv. IR64) and barley (cv. Golden Promise) seedlings stained with propidium iodide. Scale bar = 10 mm.
more stomatal and non-stomatal files must form. How

these are specified remains unknown. Our observations of

developing leaves in rice and barley seedlings suggest

that in the earlier forming leaves this process is dynamic

with files containing stomatal lineage cells at differing

developmental stages occurring in close proximity

(Figure 3a and b). It is not uncommon to concurrently

observe GMCs flanked by nascent SCs in one stomatal

file and more recently formed GMCs without SCs in an

adjacent file (white arrows, Figure 3a), or symmetrically

dividing GMCs with flanking in close proximity to

nascent GMCs where SCs have yet to form (white arrows,

Figure 3b). With EPF/L peptides known to be important

in regulating stomatal lineage cell placement in Arabi-

dopsis [25], it will be interesting to learn to what extent

their control extends both within and between stomatal

files in grasses.
www.sciencedirect.com 
Our observations also revealed that the linearity of grass

stomatal development within files of stomata is not always

continuous and that earlier staged cells can occasionally

form further from the leaf base than more advanced

stomatal structures (Figure 3c and d). This suggests that

the stomatal development module in grasses must not

only be fluid between cell files but also within a file. We

are yet to determine the importance of EPF/L peptide

function in enabling such patterning.

Next steps

We have begun to gain insights into how grasses regulate

the production of stomata. However, a number of funda-

mental questions remain unanswered. Most notably,

‘What are the regulatory switch(es) that specify which

epidermal files will produce stomata during early leaf

development?’ and ‘How is the regular spacing of stomata
Current Opinion in Plant Biology 2018, 41:1–7
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within files achieved whilst also maintaining the devel-

opment and spacing of SCs?’. Learning the answers to

such questions could facilitate the generation of more

refined cereal crop cultivars that are better suited to the

predicted future climate, or increased frequency of severe

weather events. For example, by increasing the number

of stomata in grasses and or altering stomatal perfor-

mance, we may be able to increase the photosynthetic

potential of plants [35]. Moreover, increases in stomatal

number could lead to transpirational water flux that may

be beneficial in aiding root development, and nutrient

uptake [36–39]. Conversely, by reducing stomatal num-

ber we should be able to improve soil water retention,

drought tolerance and water use efficiency [26�].
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