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Abstract 6 

Testate amoebae are widely used in ecological and palaeoecological studies of peatlands, particularly as 7 

indicators of surface wetness. To ensure data are robust and comparable it is important to consider 8 

methodological factors which may affect results. One significant question which has not been directly 9 

addressed in previous studies is how sample size (expressed here as number of Sphagnum stems) 10 

affects data quality. In three contrasting locations in a Russian peatland we extracted samples of 11 

differing size, analysed testate amoebae and calculated a number of widely-used indices: species 12 

richness, Simpson diversity, compositional dissimilarity from the largest sample and transfer function 13 

predictions of water table depth. We found that there was a trend for larger samples to contain more 14 

species across the range of commonly-used sample sizes in ecological studies. Smaller samples 15 

sometimes failed to produce counts of testate amoebae often considered minimally adequate. It seems 16 

likely that analyses based on samples of different sizes may not produce consistent data. Decisions 17 

about sample size need to reflect trade-offs between logistics, data quality, spatial resolution and the 18 

disturbance involved in sample extraction. For most common ecological applications we suggest that 19 

samples of more than eight Sphagnum stems are likely to be desirable.  20 

Keywords: Testate amoebae; Sample Size; Protist; Bioindication; Transfer function; Wetland 21 

Introduction 22 

Testate amoebae are a polyphyletic group of protists defined by the presence of a test (Meisterfeld, 23 

2002). Testate amoebae are abundant in a wide variety of habitats but are particularly abundant in 24 

freshwater wetlands where they are typically the dominant group of heterotrophic protists (Gilbert et 25 

al., 1998; Mitchell et al., 2008). Over recent years there has been considerable interest in the application 26 

of testate amoebae as bioindicators for a wide variety of environmental changes (Payne, 2013). The 27 

most widespread of these uses has been as indicators of water table depth in palaeoecological studies 28 

from peatlands (Charman, 1999; Qin et al., 2013; Van Bellen et al., 2014). After numerous studies over 29 

the last 25 years it is now well-established that testate amoebae taxa have differing preferences for 30 

peatland surface wetness (usually expressed as water table depth). Transfer functions which attempt to 31 

quantify these optima in surface samples have been widely used to produce quantitative 32 

reconstructions of changing water table depth in peatlands (Payne et al., 2016).  33 

As testate amoebae have become more widely studied in peatlands there has been an increasing focus 34 

on the testing and refinement of methods and interpretation. Studies have focussed on questions such 35 

as optimum preparation methods (Hendon and Charman, 1997; Avel and Pensa, 2013), sampling depth 36 

(Roe et al., 2017), taxonomic approach (Payne et al., 2011; Mitchell et al., 2014) and sample storage 37 

(Mazei et al., 2015). There are particularly important questions regarding the scaling relationships 38 

between sampling effort and data quality. Several studies have looked at the relationship between the 39 



number of individual tests counted under the microscope and the species richness (Warner, 1990; 40 

Woodland et al., 1998; Mitchell et al., 2000) and composition (Payne and Mitchell, 2009) of the 41 

assemblage identified. The influence of the size of sample analysed has been little considered despite 42 

extensive consideration in other contexts (Heck et al., 1975; Azovsky, 2000).  43 

Testate amoeba assemblages are known to show fine-scale spatial variation even in areas of relatively 44 

homogeneous vegetation and physical environment. In the most intensive study of this topic Mitchell et 45 

al. (2000) studied the testate amoeba assemblages of a Sphagnum magellanicum lawn in a Swiss 46 

peatland. Across a macroscopically homogeneous plot of only 40×60 cm these authors showed 47 

considerable variability in testate amoeba assemblages with clear spatial structuring of the species 48 

composition and large variability in biomass. Some individual taxa differed in relative abundance by an 49 

order of magnitude between adjacent samples. Another study of testate amoeba distribution in a 50 

macroscopically homogeneous Sphagnum angustifolium lawn has shown species-dependent spatial 51 

organisation down to a scale of 1 cm (Mazei and Tsyganov, 2007).   52 

Assuming this level of fine-scale spatial variability is typical for peatlands this raises the question: what is 53 

the optimum sample size for the determination of testate amoeba assemblages in ecological studies? 54 

The sample size considered in previous studies varies considerably from a single Sphagnum stem up to 55 

samples of more than 25 cm
2
 which may represent dozens of individual stems (Mitchell et al., 2000; 56 

Payne et al., 2006; Jassey et al., 2012). It seems plausible that different sample sizes may lead to 57 

datasets which differ in important respects. In this study we analysed surface samples spanning the 58 

range of commonly used sizes in order to assess whether and how such differences affect data quality 59 

and to make recommendations for future studies.  60 

Material and Methods 61 

Study site and Sampling 62 

Samples for the study were collected in a mesotrophic peatland (53.125511° N, 45.841298° E) located in 63 

the forest-steppe zone of the East European Plain (Penza Region, Russia) in July, 2007 (Supplementary 64 

Figure 1). The study area has a continental climate characterized by mean January temperature of –12 65 

°C and mean July temperatures of +20 °C. Mean annual precipitation is 500 mm yr
–1

, at the lower end of 66 

the range typical for northern peatlands (World Water and Climate Atlas, 1961–1991; New et al. 2002). 67 

The vegetation of the peatland is dominated by Carex spp. and Sphagnum spp.  68 

To consider how sample size-assemblage relationships may differ between microhabitats we conducted 69 

sampling in three locations spanning the range of surface wetness and vegetation commonly 70 

encountered in northern peatlands. Biotope 1 was the driest with vegetation cover of Sphagnum 71 

angustifolium and Polytrichum strictum and a canopy of Betula sp., the measured water table depth was 72 

26 cm. Biotope 2 was intermediate in wetness with open lawn vegetation of Sphagnum palustre and 73 

Sphagnum magellanicum and no trees, water table depth was 12 cm. Biotope 3 was a hollow with 74 

Sphagnum squarrosum and was the wettest of the sampling locations with a water table depth of 0 cm. 75 

In each location samples of different size (1, 3 and 8 Sphagnum stems) were extracted from the same 76 

location in three replicates and one larger sample of 16 stems was extracted giving a total of 30 77 

samples. We focus on the number of Sphagnum stems as an index of sample size because this is easily 78 

determined in the field and frequently used by analysts. Sampled stems extended to a depth of 6 cm. 79 

Material sampled was Sphagnum angustifolium in Biotope 1, Sphagnum palustre in Biotope 2 and 80 

Sphagnum squarrosum in Biotope 3. This difference in Sphagnum species sampled was necessitated by 81 



the aim to consider a variety of assemblages. However it is important to note that this may influence 82 

results because different Sphagnum species may contain different test densities and may grow at 83 

different rates meaning that the same stem depth represents differing time periods.  The samples were 84 

placed in plastic flasks and stored in 4% formalin to avoid the possibility of any post-sampling change in 85 

assemblage (Mazei et al., 2015).  86 

Testate amoeba analysis 87 

Samples were prepared for testate amoeba analysis following a modified water-based technique (Mazei 88 

and Chernyshov, 2011). Moss samples were suspended in deionised water and thoroughly shaken for 5 89 

minutes. The suspension was carefully poured in to a Petri dish (10 cm diameter) and left to settle. 90 

Testate amoebae were identified and counted by direct microscopy with a dissecting light microscope 91 

(Biomed, Russia) at a magnification of 160×. Tests were identified based on Mazei and Tsyganov (2006). 92 

The full volume of each sample was counted and all tests recorded, live individuals were not 93 

differentiated.  94 

Data analysis 95 

We analysed the data to determine how key properties of the identified assemblage varied with 96 

increasing sample size. We considered four widely used metrics: species richness, Simpson’s diversity 97 

index, compositional dissimilarity and transfer function predictions of water table depth. We first 98 

calculated two measures of diversity: species richness (the number of taxa recorded per sample) and 99 

Simpson’s diversity index (expressed as 1-D, where D is the raw index) which combines species richness 100 

with a measure of species evenness. Both may be expected to increase as sample size increases and 101 

more taxa are encountered. We calculated Simpson diversity using the ‘diversity‘ function in the R 102 

package vegan (Oksanen et al., 2007). Next we considered the similarity in assemblage between the 103 

smaller sized samples and the largest sized sample we analysed (16 stems). We quantified compositional 104 

dissimilarity using the Bray-Curtis index (Bray and Curtis, 1957). It can be expected that as sample size 105 

increases the assemblage structure may become increasingly similar to that of the largest sample. We 106 

calculated Bray-Curtis dissimilarity between each sample and that of the 16 stem sample using the 107 

’vegdist‘ function in vegan. Finally we considered the predictions of a transfer function for hydrological 108 

inference (Tsyganov et al., 2017). It can be expected that as sample size increases the model prediction 109 

of water table depth may become both more accurate and more similar to that of the largest sample. 110 

Tsyganov et al. (2017) have recently presented a transfer function for the peatlands of European Russia 111 

including samples from the site considered here. We applied the optimum weighted average/inverse 112 

deshrinking transfer function from that study to these samples to predict water table depth for each 113 

sample. Transfer function analyses used the R package rioja (Juggins, 2009).  114 

Our approach of counting all tests in the sample meant that count totals varied considerably amongst 115 

samples (89-1979 tests, mean=354). As this is likely to influence many of the metrics, we used 116 

rarefaction to reduce all datasets to a common count total (that of the lowest value encountered in any 117 

one sample: 89 tests). Rarefaction was conducted using the function ’rrarefy‘ in vegan which is based on 118 

sampling without replacement. We repeated this process 1000 times to give a range of plausible 119 

datasets for each sample. We calculated each metric using both these rarefied datasets based on 120 

consistent counts and the original dataset with variable counts. We tested for correlations between 121 

sample size and each metric using Spearman’s Rs.  122 



Our laboratory data collection only addressed four possible sample sizes (1, 3, 8 or 16 Sphagnum stems). 123 

To consider alternative sample sizes beyond these four we simulated alternative possibilities based on 124 

the combination of analysed samples. For each biotope we randomly selected combinations of the 125 

analysed samples in order to achieve each possible sample size from 1-16 stems and repeated analyses.  126 

Results 127 

In total, 29 testate amoeba taxa belonging to 10 genera were observed (Supplementary Table 1). The 128 

most abundant taxa were Arcella arenaria (27% of the total count), Euglypha tuberculata (18%), Arcella 129 

gibbosa (12%), Assulina seminulum (11%), Corythion dubium (11%) and Arcella polypora (5%) 130 

(Supplementary Table 1). All the taxa, except for Arcella gibbosa and Arcella polypora, were observed in 131 

more than 80% of all samples. Three taxa (Arcella arenaria irregularis, Euglypha aspera, Euglypha 132 

cristata major, Hyalosphenia minuta) were observed in one sample only. The number of species per 133 

sample varied from 4 to 19 (10 ± 0.67, mean ± SE, n = 30). 134 

The most clear-cut change with increasing sample size was that the count total increased substantially 135 

(Fig. 1). This is to be expected but it is interesting to note the scale of the difference. In one sample 136 

based on a single stem and one sample based on three stems the count total of 100 tests recommended 137 

by Payne and Mitchell (2009) was not achieved.  The higher total of 150 tests used in many studies was 138 

not achieved for five of nine samples based on one stem and four of nine samples based on three 139 

stems..  140 

The total number of testate amoeba species observed was greater than the total number of species in 141 

the largest samples (16 stems). The number of identified species differed among the biotopes and was 142 

greatest in biotope 2 (intermediate moisture content). Species richness increased with increasing 143 

sample size (this correlation was significant in two biotopes). Similar increases were apparent when 144 

considering both the raw count data (Fig. 2A) and the rarefied data based on consistent count (Fig. 3A). 145 

This suggests that the trends are not solely driven by increasing count total but also represent a real 146 

increase in the diversity of the assemblage identified with increasing sample size. The increase appears 147 

to be greatest as sample size exceeds eight Sphagnum stems with relatively little further change to 16 148 

stems (Supplementary Figure 2A). Trends with sample size were less apparent when considering 149 

Simpson diversity with a non-significant increase in biotope 3 but no clear trend in the other two 150 

biotopes in either raw or rarefied data (Fig. 2B, 3B). 151 

 Differences in species composition of testate amoeba assemblages were apparent with sample size. In 152 

the raw data there were strong (but non-significant) declines in Bray-Curtis dissimilarity from the largest 153 

samples with increasing sample size (Fig. 2C). Similar but more subtle declines could be observed in the 154 

rarefied data (Fig. 3C) and general declining trends were also present in the simulated data series 155 

(Supplementary Figure 2C). Although the results were non-significant they imply that assemblage 156 

composition varies with sample size with larger samples tending to be increasingly similar.  157 

Transfer function predictions of water table depth showed considerable variability between sample 158 

locations (Fig. 2D, 3D, Supplementary Figure 2D). Predictions for biotope 3, the wettest site were 159 

typically in the range of 5-7 cm, drier than the measured water table depth (0 cm) but within the 160 

expected prediction accuracy of the transfer function (Tsyganov et al., 2017). Predictions for biotope 1, 161 

the driest site were typically in the range 20-27 cm, close to the measured value of 26 cm. Predictions 162 

for the intermediate biotope 2 were the least accurate, typically 18-25 cm, considerably drier than the 163 



measured depth of 12 cm. Across all three biotopes there was little trend in predicted water table depth 164 

values with increasing sample size and no trends which were significant.  165 

Discussion 166 

Our study is of limited scale considering 30 samples from three locations in a single site, not 167 

differentiating live from dead individuals and considering relative abundance rather than test 168 

concentrations. In future research it would be desirable to replicate our work across a greater number 169 

of sites, replicate sampling within biotopes, consider concentrations as well as relative abundance and 170 

live individuals as well as all tests. Nevertheless, this is the first study of the topic and the results are 171 

revealing in several respects.  172 

In terms of count total our data show that the smallest samples investigated may fail to identify 173 

sufficient tests to reach commonly used target count totals . Results from samples containing less than 174 

eight Sphagnum stems may fail to reach totals considered minimally adequate to produce robust 175 

results. Results also imply that more taxa are likely to be located in larger samples. This is relatively 176 

unsurprising as larger samples will inevitably encompass more heterogeneity with different taxa and a 177 

larger total species pool. However, more surprisingly, the results here imply that this holds true even at 178 

fine scales over which key environmental controls on peatland testate amoebae vary relatively little. The 179 

range of sample size in this study encompasses the range of sample size encountered in the published 180 

literature, implying that some differences in species richness between published studies might be due to 181 

the size of the samples considered, rather than any fundamental difference in the investigated 182 

assemblages. Somewhat less robustly, our results also imply that assemblage composition tends to 183 

converge as sample sizes become larger. Smaller samples may reflect differences in environment at a 184 

smaller spatial scale than environmental measurements and therefore introduce noise into the data. 185 

Our results do not provide any direct evidence that sample size influences transfer function predictions. 186 

This may be because differences in assemblage represent taxa with similar hydrological preferences or 187 

that real trends are overwhelmed by noise in this relatively small dataset.  188 

Overall, our results imply the strong possibility that sample size may affect data quality in peatland 189 

testate amoeba studies. It is common in the literature for sample size not to be stated in the methods 190 

but it seems likely that sizes used may differ sufficiently to mean that results could be inconsistent. 191 

Differing sample size is probably one of several methodological factors which complicate current 192 

attempts to combine and synthesise testate amoeba datasets (Amesbury et al., 2016).  193 

The appropriate sample size for a study will always be a trade-off between various considerations. For 194 

studies which attempt to link testate amoeba assemblages to environmental variables the appropriate 195 

scale for the analysis of testate amoebae will depend on the scale at which the environmental variables 196 

are investigated. The most frequently measured variable is water table depth (Payne et al., 2012) which 197 

is unlikely to vary greatly over the scale of different potential sample sizes and is usually measured by 198 

inserting a dipwell or digging a hole which is unlikely to be less than ~5 cm diameter. For these purposes 199 

a larger sample would seem appropriate to maximise the pool of testate amoeba species identified. 200 

Where the environmental variables vary and are measured at finer resolution a smaller sample may be 201 

more appropriate despite the probable lower numbers of individuals and species (Mitchell et al., 2000). 202 

Small sample sizes may also be appropriate in situations where there is a need to minimise disturbance. 203 

This is particularly the case in experimental studies where the volume of material available is small (e.g. 204 

mesocosm experiments) or where the need to re-sample over time means that sampling needs to 205 

consider the possibility of disturbance to the plots (Mulot et al., 2014). Logistical constraints may also 206 



become important; when sample numbers are high or sample sizes very large the resulting volume of 207 

material may complicate sample transport and storage. The optimum sample size for a study is a matter 208 

for researcher discretion but it is important that an informed decision is made and that such trade-offs 209 

are recognised. We suggest that for many common applications a sample size of more than eight 210 

Spahgnum stems may be desirable. Comparisons between studies should acknowledge the 211 

methodological factors which may influence results of individual studies.  212 

Acknowledgements 213 

Data analysis was supported by the Russian Science Foundation, grant 14-14-00891 to YuM and UK-214 

Russia research cooperation was supported by a Royal Society International Exchange grant to RJP 215 

(IE150173). Microscopic analysis was supported by the Russian Foundation for Basic Research, grant 17-216 

04-00320 to ANT.  217 

Author contributions: YuM conceived the study, ASE analysed the samples, RJP, ANT and AYuT designed 218 

and conducted the data analysis. RJP and ANT wrote the first draft of the manuscript; all authors 219 

contributed comments and interpretation.  220 



Figure legends 221 

Figure 1. Change in test count with increasing sample size. Points show individual samples, lines show 222 

means by biotope. Series marked with * show significant correlations with number of Sphagnum stems 223 

analysed (Spearman’s Rs P<0.05). Y-axis is shown on a logarithmic scale to facilitate visualisation of 224 

differences at the lower end of the scale; common target count totals of 100 and 150 tests are marked 225 

by dashed horizontal lines. 226 

 227 

Figure 2. Change in testate amoeba assemblage metrics with increasing sample size based on original 228 

count data. Plots show: A) species richness, B) Simpson diversity, C) Bray-Curtis dissimilarity from the 229 

corresponding largest sample and D) predictions of water table depth using a transfer function model. 230 

Series marked with * show significant correlations with number of Sphagnum stems analysed 231 

(Spearman’s Rs P<0.05). Points show individual samples, lines show means by biotope. Material sampled 232 

was Sphagnum angustifolium in Biotope 1, Sphagnum palustre in Biotope 2 and Sphagnum squarrosum 233 

in Biotope 3. 234 

Figure 3. Change in testate amoeba assemblage metrics with increasing sample size based on rarefied 235 

data. Plots show: A) species richness, B) Simpson diversity, C) Bray-Curtis dissimilarity from largest 236 

sample and D) predictions of water table depth using a transfer function model. For each point figures 237 

show mean of 1000 cycles of rarefaction. Series marked with * show significant correlations with 238 

number of Sphagnum stems analysed (Spearman’s Rs P<0.05). Points show individual samples, lines 239 

show means by biotope. Material sampled was Sphagnum angustifolium in Biotope 1, Sphagnum 240 

palustre in Biotope 2 and Sphagnum squarrosum in Biotope 3. 241 
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