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Abstract 

In age-related diseases, rise in intracellular reactive oxygen species (ROS) causes fragmentation of 

mitochondrial network. Our recent study demonstrated that ROS activation of TRPM2 (transient 

receptor potential melastatin-2) channels triggers lysosomal Zn2+ release that, in turn, triggers 

mitochondrial fragmentation. The findings provide new mechanistic insights that may have 

therapeutic implications.  
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In a normal cell, mitochondria exist as a tubular network that undergoes continuous fission and 

fusion1. Fission helps to eliminate dysfunctional parts of the network via mitophagy, whilst fusion 

allows merger of the functionally intact parts with the healthy mitochondrial network. These 

processes, collectively known as ‘mitochondrial dynamics’ ensure maintenance of a healthy network 

required for efficient energy production and mitochondrial signalling.  

The molecular machinery required for mitochondrial dynamics is mostly known1. Mitochondrial 

fission is initiated by the ER (endoplasmic reticulum)-mediated constriction of the mitochondrial 

tubule and recruitment of Drp1 (dynamin-related protein) from the cytoplasm onto the mitochondria 

via its receptors, mitochondrial fission factor (MFF) and mitochondrial dynamics protein 51 (MID51). 

Drp-1 molecules form a spiral around the ER-constricted fission site, and together with dynamin 2, 

cause mitochondrial fission. Mitofusin-1/2 (MFN-1/2) and OPA1 (Optic atrophy type 1) catalyse the 

fusion of the outer and inner membranes of mitochondria, respectively.  

Mitochondrial dynamics is finely regulated, but this regulation goes awry in a wide range of 

seemingly unrelated human diseases, including cardiovascular (e.g. ischemia), neuronal 

(Parkinson’s, Alzheimer’s and stroke) and infectious (some) diseases and certain cancers1, 2. A 

unifying feature of these diseases, however, is that many of them are age-related and are 

associated with an increased production of reactive oxygen species (ROS). ROS is a powerful 

stimulant of mitochondrial fission, but how ROS signal mitochondrial fission has remained unclear. 

In our recent publication3, we demonstrated that ROS use the oxidative stress-sensitive TRPM2 

channel to signal mitochondrial fragmentation. We used high glucose (diabetic) stress to stimulate 

ROS production and mitochondrial fragmentation in endothelial cells4. We found that chemical 

inhibition, RNAi-silencing and knock-out of TRPM2 channels prevented high glucose-induced 

mitochondrial fragmentation3. Given that Drp1 recruitment to mitochondria is Ca2+-dependent, the 

results presented no surprise. However, as TRPM2 activation can also rise cytosolic Zn2+, we tested 

the effect of Zn2+ chelators. The result was rather unexpected: Zn2+ chelators completely inhibited 

high glucose-induced mitochondrial fission. Follow-up studies led to the discovery of a novel 

signalling pathway involving an intriguing interplay between Ca2+ and Zn2+ in inter-organelle 

communication that ultimately leads to mitochondrial fission (Figure 1)3.  

The first step in the signalling pathway was a rise in intracellular ROS by the diabetic stress. By 

stimulating the TRPM2 channel, ROS increased the cytosolic Ca2+. Rise in Ca2+ triggered lysosomal 

membrane permeabilisation (LMP), leading to the release of its contents, including free Zn2+. 

Inhibition of TRPM2 channels prevented LMP completely3. This result is interesting in itself because 

although it is known that Ca2+ plays a role in ROS-induced LMP, the signalling protein responsible 

for the Ca2+ rise was hitherto unknown. The finding could dispel the current notion that LMP is a 

nonspecific process and may have implications for lysosomal diseases5.  

We found that the lysosomal Zn2+ release was accompanied an accumulation of free Zn2+ in 

mitochondria3. How Zn2+ escapes sequestration by the cytosolic buffers (e.g. metallothioneins) and 

enters mitochondria is unclear, but presence of lysosomes in the proximity of mitochondria and 

mitochondrial membrane transport mechanisms might be important. Rise in mitochondrial Zn2+ led 

to the recruitment of cytoplasmic Drp1 onto mitochondria and the consequent mitochondrial 

fragmentation. Drp1 recruitment to mitochondria requires depolarisation of mitochondrial membrane 

potential (〉ねmt) and is regulated by multiple posttranslational modifications1. Zn2+ could cause a 

loss of 〉ねmt by virtue of its ability to inhibit the mitochondrial electron transport chain6.  However, 

what effect Zn2+ might have on the posttranslational modifications to promote mitochondrial Drp1 

recruitment remains to be established. Regardless of the mechanisms, our study demonstrated that 

Zn2+ is ultimately responsible for mitochondrial fragmentation.  
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Excessive mitochondrial fragmentation is generally associated with apoptotic cell death. Previous 

studies suggested that LMP leads to mitochondria-mediated intrinsic apoptosis. Proteolytic actions 

of cathepsins released during LMP are thought to activate the pro-apoptotic bcl-2 (B-cell lymphoma 

2) pathway to induce intrinsic apoptosis5. Given our finding that Zn2+ induces mitochondrial 

fragmentation, and its previously known role in apoptosis7, it seems reasonable to suggest that Zn2+ 

might carry the apoptotic signal from lysosomes to mitochondria.  

Mitochondrial fission is associated with cancer cell proliferation and migration1, 2. Certain cancer 

cells display fragmented mitochondria due to increased expression or activation of Drp1, coupled 

with the downregulation of MFN-2. Importantly, reducing the mitochondrial fragmentation through 

Drp1 inhibition or MFN2 overexpression has been shown to inhibit cell proliferation1, 2. Notably, 

growth factor stimulation of K-Ras (Kirsten ras oncogene) increases ERK (Extracellular Signal-

regulated Kinase)-2-mediated Drp-1 phosphorylation, mitochondrial Drp1 recruitment and 

fragmentation leading to tumour growth1. As cancer cells often contain increased levels of ROS, it is 

reasonable to speculate a role for ROS-activated, TRPM2-mediated Zn2+ signalling in cancer cell 

proliferation. Supporting this idea, TRPM2 is upregulated in several cancers and its inhibition 

prevented prostate cancer (PC-3) cell proliferation8. Mitochondrial fission is also associated with 

cancer cell migration where fragmented mitochondria move towards the leading edge (lamellipodia) 

of migrating cells, which again was prevented by Drp1 inhibition9. Whether TRPM2-mediated Zn2+ 

signalling plays a role in this process is not known, but we have demonstrated that TRPM2 inhibition 

as well as Zn2+ chelation inhibits PC-3 and HeLa cell migration10.  

In conclusion, the stress signalling pathway identified in our study has provided new fundamental 

knowledge on how ionic signalling facilitates inter-organelle communication to drive mitochondrial 

fragmentation. The results have implications for a number of human diseases including cancer, and 

may have therapeutic potential.  
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Schematic of how diabetic stress induces mitochondrial fragmentation in endothelial cells. 

High glucose induces ROS (reactive oxygen species) production (1) leading to TRPM2 (transient 

receptor potential melastatin-2) activation (2), extracellular Ca2+ entry (3), Ca2+-induced lysosomal 

membrane permeabilisation (4), Zn2+ (red dots) transfer from lysosomes to mitochondria (5), Zn2+-

induced Drp1 (dynamin-related protein-1, orange filled circles) recruitment to mitochondria (6) and 

finally, mitochondrial fragmentation (7).   
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