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Abstract 

In this article, plasmonic nanopaerticles (PNP) were used to improve the solar thermal conversion 

efficiency and the abortion prosperity under eight different wavelength spectrum was compared. 

Gold nanoparticles (GNP) is synthesized through an improved citrate-reduction method, which 

was used to illustrate the photo-thermal conversion of PNPs under a solar simulator with eight 

filters. Experimental results showed that the best light intensities at wavelength of 710 nm could 

reach 0.004 W/cm2 when applied to two suns. With the increase of the irradiation time, the GNP 

temperature increased linearly and the temperature could be increased by 3.5 K within 300 s. In 

addition, there were no infrared, no visible light, and no UV filters utilized to compare GNP 

photothermal conversion efficiencies in three main spectrum regions. As eight filters were applied 

in the current experiment, more specified wavelength spectrum and longer time need to be tested 

for the purpose of optimisation. 

Keywords: plasmonic nanoparticles, wavelength spectrum, photo-thermal conversion efficiency, light 

filter. 
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1.Introduction 

    Nowadays it can be recognized that nanomaterials could produce completely different 

characteristics from the traditional material in terms of surface effect, small size effect, 

quantum size effect and other physical and chemical properties. Nanomaterials has 

been widely applied in the fields of energy, chemicals, automotive, construction, 

microelectronics and information. Nanotechnology has become a hot topic in the 

nanomedicine, nanochemistry, nanoelectronics, nanomaterials, nanobiology and other 

public areas.  

    Nanofluids (NNFs), as part of the nanomaterials, which attracts wide range 

applications in practical. Combining photovoltaic with solar thermal utilization such 

as solar heat and power plant, it can improve the utilization of the solar radiation, 

reducing the operating temperature of the battery pack. Thus, the power generation 

efficiency can be improved tremendously. In the solar power plants, due to the heat 

transfer medium working at a temperature range of 300-700 �, nanofluids properties 

of the metal will be impacted accordingly. What's more, the nanoparticles will be 

precipitated and accumulated. Accordingly, further research is needed for solar power 

applications. 

    Kim et al. [1] applied thermal energy balance to analyze the thermal performance 

of a U-tube solar collector using 20% PG (propylene glycol) as the working fluid. In 

Nomenclature 

A   area (m2)                             Greek 

c   specific heat (J/kg·K)                  ε   extinction  coefficient 

d   particle diameter (m)                  ø   volume fraction(%) 

I   solar intensity (W/m2)                 η    photothermal conversion efficiency 

L   distance of light travelled (m)           �   difference 

m   mass (kg)                             Subscript 

p   Radiation transmitted through a sample (W/m2)   

P0  Incident ratiation (W/m2)                n   nanoparticle 

SAR specific absorption (W/g)               w  water 

T   Temperature (K)                      UV  Ultraviolet Rays 

t    time (s)                             VIS  visible 

                                        IR   Infrared Spectroscopy 
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their study, solar collector efficiency was calculated and energy savings was predicted 

for various nanofluids, such as MWCNT, CuO, Al2O3, SiO2 and TiO2. It was found 

that the solar collector efficiency increased in the following order from greatest to 

least: MWCNT, CuO, Al2O3, TiO2, and SiO2 nanofluids. Kim et al. [2] experimentally 

investigated the efficiency of a U-tube solar collector as a function of the 

concentration of Al2O3 nanofluid and the size of the nanaparticles. It was concluded 

that the Al2O3 nanofluid was effective in increasing the efficiency of the U-tube solar 

collector. In the research work of Al-Nimr  and Al-Dafaie [3], a mathematical model 

was developed to test the transient temperature distribution of the silver nanofluid 

pond at different volume fractions, heat transfer coefficients and exposure time 

conditions. Comparing with conventional solar pond and conquered the traditional 

brine ponds troubles, presented nanopaticles had obvious advantages in solar storage. 

Chen et al. [4], Kosuga et al. [5], Lenert and Wang [6] and De Boni et al. [7] set up test 

rigs to investigate the absorption of the gold or silver nanoparticles at different 

specialized wavelength range of 500-1000 nm. All their experimental results showed 

that the temperature increased remarkably and the efficiency was analyzed as a direct 

absorption solar collector.  

    The working medium in the solar energy systems play an important role in solar 

absorption. Colangelo et al. [8] investigated the Al2O3-therminol nanofluids property, 

such as stability, viscosity, FI-IR spectra, cluster size and thermal conductivity. It 

would be very helpful to evaluate the non-Newton fluid characteristic in the solar 

absorption system. Over the past decades, many researchers devoted to study the 

nanofluids photothermal absorption characteristics. It is recognized that the rate of the 

absorption was influenced by nanopaticles length, diameter, volume fraction and 

particle size distributions [9-12]. Mercatelli et al. [13], Chen et al. [14] and Karami et al. 

[15] investigated TiO2, Al, Au, SiO2, silver, copper-oxide and carbon nanotubes at 

corresponding optimal heat absorption wavelength of light itself with particle sizes, 

concentrations, lengths, and diameter. It was found that there is a great difference in 

the optimum wavelength, that is, with the growth of the nanorod diameter and length, 

the optimal wavelength increases. Lucas et al. [16] conducted an experimental study to 
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investigate the grand optical absorption at wavelength of 808 nm. It was observed that 

when the light intensity was increased, the surface of the nanopartical temperature 

was linear. It was stated that the combined micro-electromechanical systems (MEMS) 

with the infrared absorbent gold nanoparticals have significant potential application in 

light-actuated switches and mechanical construction. Kim et al. [17] concluded that 

taking advantage of nanofluid photothermal prosperity in catalyst would also have a 

positive effect. Nair [18] performed an experiment to study the 20-30 nm Ag/TiV 

oxide grain samples in UV-DRS spectra. Their result showed that in the visible light 

photocatalytic activity of Ag/TiV oxide better three and seven times than TiV oxide 

and Degussa P25 respectively. Due to different working materials, the line of the 

absorption TiV/Ag oxide and Degussa P25 decreased abruptly at around 390 nm in 

UV-DRS spectrum. 

     In recent years, the application of nanofluid in medical engineering has 

obtained great achievements. El-Sayed et al. [19] and Ou et al. [20] found that the 

malignant cells require no more than half of the power energy leading to benign cells 

nobinary. With anti-EGFR/Au conjugates bonded easily and it has a high efficient 

absorption near the visible spectrum band. Taking advantage of precious metal heat 

transfer characteristics, experimental medium is gold nanoparticles in genaral. For 

example, in the application of killing cancer cells, Ye et al. [21] used nanotubes as the 

core of the body to stimulate the outsourcing of the organic matter, in particular of the 

laser wavelength action. The cancer cells would be heated up to 42�, then it will be 

dying. Experimental results showed that the survival rate of the cancer cells 

significantly decreased. When do experiments on mouse body, equipments can detect 

concentrations of the different parts of the gold nanotubes in the organs. The 700-900 

nm nanoparticles carry drugs as targeted heat by the laser to kill the cancer cells. Liu 

et al. [22], Bhana et al. [23], Zhou et al. [24] and Paci et al. [25] performed fundamental 

research on the goldnanoparticles that used in drug manufacturing. In the 

near-infrared wavelength, gold nanoparticles showed good light absorption properties.  

    Ebrahimian and Ansarifar [26] studied the nanofluid performance in VVER-1000 

nuclear reactor core. Due to the excellent heat transfer coefficient of the nanofluid, it 
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would be an ideal method for cooling annular fuel. With smaller nanoparticle size and 

bigger volume fraction, the temperature of the fuel center decrease. In addition, it was 

found that 0.03 volume fraction and 10 nm size of Al2O3 achieved the best 

presentation in regular circulation. Garoosi et al. [27] conducted a numerical study to 

examine two dimensional containing circular cylinder correlation parameters: 

Rayleigh number, volume fraction, particle size, type of nanomaterial, shape of the 

enclosure and the orientation of the hot and cold cylinders etc. However, after Lee and 

Kang [28] used aqueous solution nanofluids to enhance the CO2 absorption of the 

base fluid, it is concluded that the effect of the nanoparticles on the mass transfer 

enhancement is more significant in the region of unsaturated state than that of the 

saturated state. 

    Mercatelli's results revealed that 270 nm wavelength absorption up to maximum 

while at the lowest penetration rate and with the volume increase penetration rate 

show a downward trend [13]. Although in a low concentration of GNPs based on the 

fluid i.e. 0.15 ppm, the solution has great performance in photothermal absorption 

efficiency. In the near-infrared wavelength absorption rate to can be creep to 12ć 

within 300 s. Gold nanofluid characteristic with a different circumstance showed 

different performance in photothermal absorption and radiation [29-30]. Kosuga took 

advantage of photothermal films in assembling particular energy of the solar 

spectrumm, temperature rise up to 40 ɗ only in 100 s [5]. 

    It is aforementioned from the above research works, gold nanofluid has huge 

perspective in the near future that can be used in heat convention and solar absorption 

domain. However, previous studies have shown that the extinction coefficient do not 

represent the real photo-thermal energy conversion process, especially for the 

photothermal conversion experiment in the whole spectrum. Therefore, it has still 

much room to investigate the photothermal conversion performance of the GNPs in a 

single wavelength. The objective of the current work is to use five slices filters to 

study the photothermal conversion performance of GNPs by measuring temperature 

changes of the fluid in a single wavelength. In the current study, five different filters 

will be used to investigate the photothermal conversion performance of the GNPs and 
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the temperature of the nanofluid changes will be measued in a single wavelength 

comparing with other related research results. 

 

2. Experimental approach 

2.1. Gold nanoparticle synthesis and characterization 

    In general, gold nanoparticles can be synthesized by three methods: citrate 

reduction (CR) method, the Brust-Schiffrin method, and the modified Brust-Schiffrin 

method. In the present work, we will take citrate reduction method which is similar to 

Chen and Wen [31], Philip [32] and Kim [33]’s preparation of goldnanoparticle 

aggregates with three different methods. The base solution is HAuCl4 in potassium 

carbonate (K2CO3) solution (K-gold solution) and then adding (a) L-ascorbic acid, (b) 

alcoholic solvents, (c) NaBH4 respectively. During the experiment, all of the solutions 

were exposed in the wavelength range of 300 to 1100 nm using Agilent UV-Visible 

spectrometer. The result shows that the extinction curves have a peak value of weave 

occurs at around 700 nm.  

During the experiment, gold nanoparticles dispersions are formulated through 

simultaneous production and dispersion of the nanoparticles in situ. GNPs were 

synthesized by the citrate reduction method with the aid of ultrasonication for particle 

morphology control [34]. According to CR method, 5.0×10-6 mol of HAuCl4 was 

added to 190 ml (DI) water and mixed solution was heated until boiling under the 

magnetic blend condition. 10 ml of sodium citrate (0.5%) was added to the HAuCl4 

solution, then, the solutions were placed in the 80� ultrasonic bath for 30 min until its 

color changed to wine-red. GNP dispersions were purified by the membrane dialysis 

method.  

In the current experiment, 100 ml of GNP dispersion was added to the membrane 

tube with 2-3 nm in diameter, which allows the diffusion of the ions but keeps GNPs 

at it. Then, the membrane was put in a flask of DI water, stirred by a magnetic blender. 

The DI water was replaced twice per day and this step lasted for five days. Based on 

the UV-Vis spectrum test results, the concentration of various impurities diminished 

exponentially with the increasing DI water changing times. In the current work, the 
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photothermal conversion effect can be ignored. The gold nanoparticles mass 

concentration is 0.0028% (1.5 ppm). 

 The concentration of the gold nanoparticles solution is measured by an atomic 

absorption spectrometer (Varian 220FS SpectrAA Atomic Absorption Spectrometer & 

GTA110) transmission electron microscopy (TEM) equipped with an Energy 

Dispersive X-ray spectroscope (EDX) was applied to identify the size and shape of 

the nanoparticles and take 200 KV as its bias voltage. Dynamic light scattering (DLS) 

device (Malvern nanosizer) was used to observe the particle size distribution in the 

solution. As shown in Fig. 1, the gold nanoparticles presents in clear red-wine color 

and in the ball shape according to the TEM images. In Fig. 2, almost 90% of GNPs 

diameters in the range of 15 nm to 30 nm in the DI water. Apparently, TEM 

measurement is a bit smaller than the DLS values. GNPs dispersion status in the 

solution on the basis of the DLS results is illustrated in Fig. 2. 

2.2. Photothermal conversion experiment 

    Photothermal conversion experimental equipment was schematically shown in 

Fig. 3. For the case of producing big deviation in the sunlight directly, a solar 

simulator (Newport Co. Oriel Xenon Arc lamp) was applied to simulate the light 

source. This could generate spectral as similar as solar and it can change the radiation 

intensity in between 1 am and 2 am. The test facility can be well performed according 

to the ASTM standard (ASTM G-173, 2011), such as temporal instability below 5%, 

non-uniformity of irradiance of up to 5% and spectral match (fraction of ideal 

percentage) of 0.7-1.25. In order to minimize the deviation due to the temperature 

gradient, GNPs dispersion was spread in the dish no more than 3 mm and was covered 

with a glass sheet (3.5 cm diameter), which was put in the solar simulator central spot. 

There are different filters below the sunlight producer which light could through 

length, including 410, 520, 710, 860, 1064 nm. Light through the filter which 

concluding visible spectrum 410, 520, 710 nm and infrared wavelength 860, 1064 nm 

heat gold nanofliud. K-type thermocouple (Omega 5TC-TT-K-36-36) was used to 

measure the sample temperature located at the bottom center of the Petri dish. In the 

labview environment, achieved date was deposited in a PC though a data acquisition 
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hardware (thermocouple input devices, NI, USB-9211, 4-Channel, 24-bit).  

3. Results and discussion 

   Prior to the discussion, it is worthy to mention air mass (AM) which is normally 

used in the photothermal conversion experiments, and it represents the solar spectrum 

at mid-latitudes. According to the standard of ASTM G-173, the solar intensity (I) is 

1000 W/m2 at AM=1.5. Solar radiation energy concentrated between 150-4000 nm 

wavelength. During this wavelength range it can be divided into three main regions, 

i.e., shorter wavelength ultraviolet, longer wavelength infrared regions and visible 

regions. Solar radiation energy mainly accumulates in the visible and infrared regions, 

the former accounting for 50% of the total amount of solar radiation, while another 

accounted for 43%, only 7% in the ultraviolet regions. In the vicinity of 475 nm 

wavelength, solar radiation power reaches the highest value. It is found that in the 

near-infrared (NIR) region it shows significantly photothermal absorption property 

and it could be used for controlling as the external stimulus to motivate drug release 

[35]. In the present study, solar simulator can emit similar to the sunlight wavelength 

light intensity, and with filters which only five light wavelengths could through it. Its 

spectral irradiance can be clearly shown in Fig 4. 

    Since the Earth is an elliptical orbit around the Sun, the distance between the Sun 

and the Earth is not a constant. The average distance is 1.5×108 km, therefore, the 

Earth's atmosphere solar radiation intensity is almost a constant. It is called "solar 

constant" which can be used to describe the intensity of the solar radiation above the 

Earth's atmosphere. It refers to the solar radiation that at the average Earth-Sun 

distance and beyond the Earth's atmosphere bound, per unit surface area 

perpendicular received. After the detection, international academic community agrees 

that "solar constant" is taken to be 1357 W/m2. During the current experiment, using 1 

Sun, at 710 nm the intersity can reach 1500 W/m2, but only reach maximum 3500 

W/m2 in the two Sun power. When the "solar constant" more than twice of the 

original value, each specific wavelength of the light intensity has increased, but not to 

multiply increased. At 710 nm, the light intensities is increased to 2.10×10-3 W/m2, 
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while increased to 1.55×10-3 W/m2 at 520 nm. However, at 710 nm, the light 

intensities increments are four times that that at 860 nm. At 410 nm and 1064 nm, 

almost no influence on the light intensity when add the "solar constant". It can be 

observed that increasing the "solar constant" the light intensities could be changed at 

different wavelengths. 

    Fig. 4 shows the variation of the spectral irradiance with wavelength. The solar 

radiation spectrum at five different filters, i.e., 410, 520, 710, 860 and 1064 nm are 

illustrated. It can be obviously observed that the spectral irradiance in the visible 

wavelength is higher than that in the infrared wavelength. However, as illustrated in 

Fig. 5, near the infrared wavelengths, the photothermal conversion efficiency 

performs better than that at visible light wavelength. Ye et al. [21] explored different 

lengths goldnanotubes absorption properties and similar results was obtained. Zhou et 

al. [24] found the advantage of the gold nanoparticles which have a high photothermal 

conversion efficiency near infrared region, raising the cancer cell temperaturee up to 

42 ć. In their experiment, DI water and nanofluids were light 300 s, the highest 

temperature appeared in the near infrared region. At 1064 nm, the nanofluid 

temperature raising 3.4ć, DI water temperature is increased only by 2.5ć. At five 

different wavelengths, the largest slope occurs at 1064 nm, that is, with longer 

exposure time, the temperature will continue to increase. Nanofluid temperature is 

increased about 3.5 ć at 710/860 nm, but water absorption is lower. 

    Gold nanopartical temperature can be taken as solution temperature, which can 

be measured by thermocouple at the bottom of the dish. On the other hand, nanofluid 

temperature can be assumed as uniform since the depth of the solution is no more than 

3 mm. 

The photothermal conversion efficiency (η) can be formulated by [29]: 

tIA�

T)�mcm(c
η nnww +

=         (1) 

where cw, cn are the specific heat of the water and nanoparticle, respectively. mw, mN 

are the mass of the water and nanoparticle, �T stands for the whole temperature rise 

in a �t time interval. A represents the illumination area of the fluid in the experiment. 
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Since the particle concentration can be ignored ( 0~
mc

mc

ww

nn ), the photothermal 

conversion efficiency can be rewritten as:  

    
�t
�T

IA
mc

η ww ⋅≈          (2) 

Clearly the efficiency is directly linear to the temperature rise rate. 

    As show in Fig. 6, the efficiency curve is opening upward parabola. From 410 

nm to 520 nm, compared with DI water and GNPs, the η  did not significantly 

increased. In addition, with the increase of the wavelength the eintoiciency curve 

turns to a downward trend. When the wavelengths are more than 710 nm, the 

efficiency increases linearly, at 860 nm it increased by about 5%, and reached a 

maximum 20% at 1064 nm. Compared with that in Fig. 6, between 710 nm and 1064 

nm, the light intensity is decreasing, whereas the efficiency shows in the opposite 

direction. It has been obviously demonstrated that there is no relationship between the 

light intensity with the absorption efficiency and photothermal absorption efficiency. 

Their performance depends on the nature prosperities of itself. 

    It is defined that the ratio of the radiant power transmitted (P) divided by the 

radiant power incident (P0) as the transmittance of the sample i.e. P/P0, which reveals 

the absorption spectrum. It was measured by a spectrometer (PerkinElmer, lambda 35) 

of nanogold spitting at various concentrations.  Based on the Beer's law, the 

absorbance can be formulated as the logarithm (base10) of the reciprocal of the 

transmittance [29], as shown: 

                        
L

P
P εφ=








0log

                               
˄3  ˅

whereε is the extinction coefficient, φ represents the volume fraction, L stands for 

the length of the light passing through the nanofluids. Since ∅� could be regarded as 

a constant value, the former formulation can be simplified to log ���� 	 ∝ �. Fig.7 can 

reflect the extinction coefficient changes directly. 

    Fig. 7 illustrates the varisation of the gold nanoparticals at different mass 
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concentrations. It shows that similar tendency is obtained in the current study. The 

absorbance spectrum decreases initially with the wavelength range of 300-460 nm, 

followed a peak value at around 520 nm and then continue tending to decrease till the 

end. For the case of same wavelength, the higher the mass concentrations the larger 

the extinction coefficient, but the increment of the absorption efficiency decreases 

with double mass concentrations. There must exist an optimum value between the 

increment of the mass concentrations and the extinction coefficient. Compared with 

the results shown in Fig. 5, within the infrared wavelength region, photothermal 

conversion is well performed while the extinction coefficient is very low. By contrast 

to that in Fig. 4, at the vicinity of 710-1064 nm, the light intensity is very good, but 

the extinction coefficient is almost down to zero. Based on the above analysis, not 

obvious link between the light intensity and the extinction coefficient is observed. It 

somehow depends on the nature of the nanoparticles. 

   Fig. 8 demonstrates the temperature profiles when the solar simulator combined 

with the UV-VIS, UV-IR and VIS-IR waveband spectrum filters radiate under two 

cases of DI water and GNPs 300 s. For the case of the VIS-IR exposure GNPs the 

temperature can reach 10 ć, and the DI water temperature rise is very close to 7.5 ć. 

In the UV-IR region, the goldnanoparticles temperature increased by only 4 ć, 

whereas the DI water temperature is almost unchanged. GNPs temperature slope is 

only 4 300⁄ 	while the case for the DI water is less than 2 300⁄ . Markedly different 

irradiated with UV-IR, VIS-IR spectrum could be up to 10 300⁄  for twofold former 

cases. In this figure, the UV-VIS, VIS-IR, DI water temperature can increase about 

6 ć, it proved that most of the energy of the sun concentrated in the vicinity of the 

visible spectrum. For GNPs, at VIS-IR spectrum, it contributes to a higher thermal 

efficiency and UV-VIS afterwards. It can also be noted that the temperature slope 

shows a decreasing trend after 300 s, i.e. exposed continuous light, GNPs temperature 

would be verge to a stable value exposed light in a long timeǄ 

    The particle’s capability in absorbing energy per unit mass can be described as 

the specific absorption rate (SAR), as shown in Fig. 9. According to [34], the lowest 

particle concentration leats to the maximum SAR.  



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

SAR can be calculated as [29]: 

             

( ) [ ]gkW
t

SAR
m

TmcTmcm
n

wwwNnnww /,
1000

c
∆⋅

∆−∆+
=

                 ˄ 4  ˅

where T n
∆ and T W

∆ are the temperature increments at the samet∆ time interval for 

water and nanofluids respectively. Apparently, 0
1000
c ≈

∆
∆

t
T Nw ˈthen, the SAR 

calculation can be simplified as: 
 

                             









∆
∆

−
∆

∆
⋅

=
tt

SAR TT
m

mc WN

n

ww

1000                ˄ 5  ˅

And CONS
TT WN

n

ww

m
mc =









∆
∆−∆

⋅ t1000
, so SAR ∝ �∆T� − ∆T��, i.e. SAR valuation is 

lie on the difference of the temperature rise between the nanoparticle dispersion and 

the base fluid. 

    In Fig. 9, within the VIS-IR region, the SAR can reach to the maximum value of 

2kW/g, which is higher that the other two cases, i.e., UV-VIS and UV-IR. When the 

visible wavelength content reduces, the SAR value decreases accordingly. As 

illuatrated in Fig. 5, the maximum temperature difference of GNPs and water is at 710 

nm-1064 nm, while the minimum temperature difference occurs at 410 nm. This 

coincides with the present experimental data that the lowest photothermal efficiency 

appeared in the vicinity of the ultraviolet light. It can be recognized that the optimal 

photothermal conversion efficiency could be within the visible light region. In a 

previous study, Zhang et al. [29] studied the relationships between the SAR and the 

GNPs concentration changes in the whole wavelength ranges, whereas the current 

work is to investigate the relationship between the SAR and the other two wavelength 

regions of allareasa. Apparently, it is essential to study the relationship between SAR 

and GNPs mass concentration within a certain wavelength region [29] . 

Fig. 10 shows the comparision of the photothermal conversion efficiency 

between the GNPs and DI water in UV-VIS, UV-IR and VIS-IR waveband. Exposed 

at different wavelength regions, as demonstrated in Fig. 10, the optimal photothermal 
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conversion efficiency (η) of the gold nanoparticle could reach 30% in VIS-IR 

waveband instead of 20% in a single wavelength 1064 nm only 20% that shown in 

Fig. 5. It is beyond imagination that η of the DI water attain 20% in VIS-IR 

waveband is equal to 1064 nm. And the difference value of η between GNPs with DI 

water is 10%, while the most differentials only 5% in 860 nm, as shown in Fig. 5. 

Compared with the results in Fig. 9, the photothermal conversion efficiency is similar 

to the SAR histogram trend in the corresponding area for UV-VIS/UV-IR/VIS-IR. In 

UV-VIS/VIS-IR wavebands, both of them contain visible wavelength regions, when 

the temperature increases, SAR and η shows better presentations. In He's report [36], 

the transmittance of the Cu-H2O nanofluids over solar spectrum (250-2500 nm) was 

invested by UV-Vis-NIR spectrophotometer according to the integrating sphere 

principle. For the lights in Fig. 6, the transmittance of the Cu-H2O nanofluids are 

down to zero near infrared spectra range of 1370-2500 nm yet has excellent 

transmittance in the 500-1370 nm. It was concluded that the absorption coefficient of 

the Cu-H2O nanofluids presents the best performance in the UV waveband then 

sliding smoothly with the wavelength increasing in the visible area, and then rise 

abruptly in the infrared. By comparison with the experiment of [36], the result is 

totally different what have achieved from the current work. Considering the results 

from Figs. 9 and 10, the photothermal conversion efficiency (η) of the GNPs VIS 

waveband has better absorption coefficient than that for UV and IR. Recently, Jin et al. 

[37] performed a combined experimental and numerical stduy to investigate the 

photothermal conversion efficiency of the gold nanofluid under natural solar 

irradiation condition. In their study, when the visible light range from 500 nm to 800 

nm mainly contribute to the absorption which achieves good agreement. Based on the 

comparative analysis, different nanofluid material can reach high photothermal 

conversion efficiency in a specified condition in terms of goldnanoparticle. It can be 

recognized that the nanofluid material could have the potential to absorb the solar 

radiation in the VIS-IR light range. 
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4. Conclusions 

   This work experimentally investigates the photothermal conversion characteristics 

at a single wavelength and waveband of sunlight emitted by solar simulators of gold 

nanoparticle dispersion. Major findings based on the experimental results are as 

follows:: 

    (1) There are no direct relationships between the light intensities, extinction 

coefficient and photothermal conversion, whch depends on the prosperities of the 

nanoparticles itself. 

    (2) GNPs achieves the best photothermal conversion efficiencies at 710-1064 nm 

infrared waveband. Both the visible light and infrared waveband shows better 

temperature rise than that in a single wavelength region.  

    (3) Photothermal conversion efficiencies of the GNPs under different filter 

conditions show remarkable performance i.e. 20% enhancement in vicinity of 1064 

nm. 

    (4) Two thirds of the waveband fields through GNPs show prodigious results that 

VIS-IR has the best photothermal absorption than the other two regions indicated by 

temperature increment and slope. 

    (5) Both SAR and η show better presentations in VIS-IR wave region, and η 

does have been improved compared with that without GNPs. 
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Fig. 1. TEM image of GNPs, inset: resulting dispersion of red-wine color. 
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Fig. 2. Particle size distributions in an aqueous medium measured by  
dynamic light scattering (DLS) . 
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Fig. 3. Schematic illustration of the photothermal conversion experimental system. 
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Fig. 4. Solar radiation spectrum and filters used in the experiment. 
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Fig. 5. Photothermal conversion efficiencies of GNPs at different filters conditions. 
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Fig. 6. Light intensities passing through filters. 
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Fig. 7. The absorbance spectrum of gold nanofluids at different mass concentrations 

(extinction coefficient). 
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Fig. 8. The temperature lines in UV-VIS, UV-IR, VIS-IR waveband. 
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Fig. 9. UV-VIS, UV-IR, VIS-IR wavelength SAR of GNPs at AM = 1.5. 
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Fig. 10. Photothermal conversion efficiency (η) of GNPs and DI water in UV-VIS, 
UV-IR, VIS-IR waveband. 
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Research Highlights: 

 

•  Photothermal conversion characteristics at a single wavelength is studied.  
•  Photothermal conversion characteristics at waveband of sunlight is investigated.  
•  GNPs achieves the best photothermal conversion efficiencies at 710-1064 nm. 
•  Both visible light and infrared waveband demonstrate ideal temperature rise. 


