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Abstract. We study canonical intertwining operators between induced modules of the
trigonometric Cherednik algebra. We demonstrate that these operators correspond to
the Zhelobenko operators for the affine Lie algebra ŝlm. To establish the correspondence,
we use the functor of Arakawa, Suzuki and Tsuchiya which maps certain ŝlm-modules to
modules of the Cherednik algebra.

Introduction

0.1. In the present article we study the trigonometric Cherednik algebra CN

corresponding to the general linear Lie algebra glN . The complex associative
algebra CN is generated by the symmetric group ring CSN , by the ring PN of
Laurent polynomials in N variables x1, . . . , xN and by another family of pairwise
commuting elements denoted by u1, . . . , uN . The subalgebra of CN generated by
the first two rings is the crossed product SN ⋉ PN where the symmetric group
SN permutes the variables x1, . . . , xN . The subalgebra generated by SN and
u1, . . . , uN is the degenerate affine Hecke algebra HN introduced by Drinfeld [5]
and Lusztig [11]. The other defining relations in CN are given in Subsection 2.1 of
our article. In particular, the algebra CN depends on a parameter κ ∈ C.

The degenerate affine Hecke algebra HN has a distinguished family of modules
which are called standard . These modules are determined by pairs of sequences
λ = (λ1, . . . , λm) and µ = (µ1, . . . , µm) of length m of complex numbers such
that for every a = 1, . . . ,m the difference λa − µa is a positive integer, while
λ1 − µ1 + · · · + λm − µm = N. We denote the corresponding standard module of
HN by Sλ

µ . It is induced from a one-dimensional module of the subalgebra of HN

generated by u1, . . . , uN and by the subgroup of SN preserving the partition of
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the sequence 1, . . . , N to segments of lengths λ1−µ1, . . . , λm−µm. This subgroup
of SN acts on the one-dimensional module trivially, while up acts as µa − a + h
where a is the number of the segment of the sequence 1, . . . , N which the index p
belongs to, and h is the number of the place of the index p within that segment.

Now consider the symmetric group Sm which acts on sequences of length m of
complex numbers by permutations. We denote by the symbol ◦ the corresponding
shifted action of Sm. To define the latter action, one takes a sequence of length
m, subtracts the sequence (1, . . . ,m) from it, permutes the resulting sequence and
adds the sequence (1, . . . ,m) back. If λa − λb /∈ Z or equivalently µa − µb /∈ Z

for all a ̸= b, then the standard HN -module Sλ
µ is irreducible. Moreover, then for

every permutation σ ∈ Sm the standard module S σ◦λ
σ◦µ is isomorphic to Sλ

µ . Hence

there exists an intertwining mapping Sλ
µ → S σ◦λ

σ◦µ of HN -modules, unique up to
scalar multiplier. These mappings were already used by Rogawski [12].

The standard HN -module Sλ
µ has another realization due to Arakawa, Suzuki

and Tsuchiya [1]. Take the complex Lie algebra glm. The sequences of length
m of complex numbers can be regarded as weights of glm. There we employ the
Cartan subalgebra t of glm described in Subsection 1.3 of our article. Then the
above defined action ◦ becomes the shifted action of the Weyl group Sm of glm on
weights. Take the Verma module Mµ of glm corresponding to the weight µ.

The tensor product (Cm)⊗N ⊗ Mµ of glm-modules can be also equipped with
an action of the algebra HN , which commutes with the action of glm. Here the
symmetric groupSN ⊂ HN acts on (Cm)⊗N⊗Mµ by permutations of the N tensor
factors Cm, while the elements (1.2) of HN act as the operators (1.7) respectively.
Let n be the nilpotent subalgebra of glm defined in Subsection 1.3. The space
((Cm)⊗N ⊗ Mµ))

λ
n of n-coinvariants of weight λ inherits an action of the algebra

HN . As a HN -module it is isomorphic to Sλ
µ ; see our Proposition 1.3.

Following Zhelobenko [16], for any λ and µ obeying the above non-integrality
conditions, and for any permutation σ ∈ Sm, one can define a canonical linear map

((Cm)⊗N ⊗ Mµ))
λ
n → ((Cm)⊗N ⊗ Mσ◦µ))

σ◦λ
n . (0.1)

See also the work of Khoroshkin and Ogievetsky [10]. In particular, the linear
map (0.1) is HN -intertwining. Using Proposition 1.3, the map (0.1) determines
an HN -intertwining map Sλ

µ → S σ◦λ
σ◦µ . By the irreducibility of the source and of

target standard HN -modules here, the latter map coincides with the intertwining
map from [12] up to a scalar multiplier.

We will work with the special linear Lie algebra slm alongside of glm. Our
n is a subalgebra of slm. Further, the Cartan subalgebra h of slm described in
Subsection 1.3 is contained in t ⊂ glm. Let us denote by α and β the weights of
slm corresponding to the weights λ and µ of glm by restriction. Hence α and β
are elements of the space dual to h.

The Verma module Mβ is isomorphic to the restriction of Mµ to the subalgebra
slm ⊂ glm. However, another action of HN on (Cm)⊗N ⊗ Mβ can be defined by
using only the structure of Mβ as a module of slm. Namely, he symmetric group
SN ⊂ HN acts on (Cm)⊗N ⊗ Mβ again by permutations of the N tensor factors
C

m, but the elements (1.2) of HN act as the operators (1.9) respectively. The space
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((Cm)⊗N⊗Mβ))
α
n of n-coinvariants of weight α inherits an action of HN . As a HN -

module it is isomorphic to the pullback of Sλ
µ relative to the automorphism (1.5)

of HN where f = − (µ1+ · · ·+µm)/m; see Corollary 1.4. This automorphism acts
trivially on the elements of the subalgebra Sm ⊂ HN . Note that the latter space
of n-coinvariants can be naturally identified with the space ((Cm)⊗N ⊗ Mµ))

λ
n .

The shifted action of Sm on the weights of glm factors to an action on the
weights of slm. By again following [10] and [16], one defines a canonical linear map

((Cm)⊗N ⊗ Mβ))
α
n → ((Cm)⊗N ⊗ Mσ◦β))

σ◦α
n . (0.2)

If we identify the source vector spaces of the maps (0.1) and (0.2) as above, and
also identify the target vector spaces, then the two maps become the same. Note
that the shifted action ◦ of Sm on µ preserves the sum µ1 + · · ·+ µm. Hence the
map (0.2) is also HN -intertwining.

Via the Drinfeld duality between HN -modules and modules of the Yangians
of general linear Lie algebras [5] this interpretation of intertwining maps for the
standard modules of HN goes back to the work of Tarasov and Varchenko [15]; see
also our work [7]. In the present work we extend this interpretation to intertwining
maps for certain CN -modules. Instead of glm and slm above, we will use the

corresponding affine Lie algebras ĝlm and ŝlm.

0.2. We will regard ŝlm as a one-dimensional central extension of the current Lie
algebra slm[ t, t−1]. We choose a basis element C in the extending one-dimensional

vector space. For any ℓ ∈ C, a module of ŝlm is said to be of level ℓ if C acts as
the scalar ℓ on that module. Let us extend the Cartan subalgebra h of slm by the
one-dimensional space spanned by C, and denote by ĥ the Abelian subalgebra of
ŝlm so obtained. For ℓ = κ −m we will denote by α̂ and β̂ the extensions of the
weights α and β from h to ĥ, determined by setting α̂(C) = β̂(C) = ℓ. We will use

the Verma module M
β̂
of ŝlm as defined in Subsection 2.3.

Let us now regard HN as a subalgebra of CN . Denote by Ŝ λ
µ the module of

CN induced from the standard module S λ
µ of HN . The induced module also has

another realization [1]. Take the vector space PN ⊗ (Cm)⊗N . It can be naturally
identified with the tensor product of N copies of the vector space C

m[t, t−1]. By

regarding the latter space as a module of ŝlm of level zero, PN ⊗ (Cm)⊗N becomes

a zero level module of ŝlm. Further, the vector space

PN ⊗ (Cm)⊗N ⊗M
β̂

(0.3)

can be equipped with an action of the algebra CN . The symmetric group SN ⊂ CN

acts on (0.3) by simultaneous permutations of the variables x1, . . . , xN and of theN
tensor factors Cm while the subalgebra PN ⊂ CN acts on (0.3) via multiplication
in the first tensor factor. The elements (1.2) of HN ⊂ CN act on (0.3) as the
operators (2.7) respectively.

In general, the action of CN on the vector space (0.3) does not commute with

the action of ŝlm. However, let n̂ be the nilpotent subalgebra of ŝlm defined in
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Subsection 2.1. For ℓ = κ−m the action of the algebra CN on (0.3) preserves the
image of the action of n̂; see Corollary 2.2. Therefore the space

(PN ⊗ (Cm)⊗N ⊗M
β̂
) α̂n̂ (0.4)

of n̂-coinvariants of (0.3) of weight α̂ inherits an action of the algebra CN . The
automorphism (1.5) of HN extends to CN so that it acts on the elements of the
subalgebraPN ⊂ CN trivially. As a CN -module, (0.4) is isomorphic to the pullback

of Ŝ λ
µ relative to the extended automorphism (1.5) where f = − (µ1+ · · ·+µm)/m;

see our Corollary 2.2 and Proposition 2.3.
Now consider the semidirect group product Sm⋉Z

m. Extend the permutation
action of the group Sm on sequences of length m of complex numbers to an action
of Sm ⋉Z

m so that the elements of Zm act by addition of the respective elements
of ℓZm ⊂ C

m. Here we set ℓ = κ − m as above. The action ◦ of Sm on the
sequences also extends to an action of the group Sm ⋉ Z

m, where the elements
of Z

m however act by addition of the respective elements of κZm ⊂ C
m. Let

us denote by the symbol ◦ the latter action of Sm ⋉ Z
m on the sequences. If

λa − λb /∈ Z + κZ or equivalently µa − µb /∈ Z + κZ for a ̸= b, then the induced
CN -module Ŝ λ

µ is irreducible. Moreover, then for every element ω ∈ Sm ⋉ Z
m

the CN -module Ŝ ω◦λ
ω◦µ is isomorphic to Ŝλ

µ . Hence there is an intertwining mapping

Ŝλ
µ → Ŝ ω◦λ

ω◦µ of CN -modules, unique up to a scalar multiplier. These mappings
were used by Suzuki [13]. Recently they were further used by Balagović [2].

The group Sm ⋉ Z
m is isomorphic to the extended affine Weyl group of glm,

for details see Subsection 2.4. This group is Z-graded so that the degree of any
element of Sm is zero, while the degree of any element of Zm is the sum of its
m components. All the elements of degree zero make a subgroup of Sm ⋉ Z

m

isomorphic to the proper affine Weyl group of glm. Note that this subgroup is also

isomorphic to the Weyl group of the affine Lie algebra ŝlm.
Again regard λ and µ as weights of glm. Restrict them to the weights α and β

of slm. Extend the latter two to the weights α̂ and β̂ of ŝlm as above. The action ◦

of Sm⋉Z
m on λ and µ determines its action on α̂ and β̂. We will still denote by ◦

the action of Sm ⋉Z
m so determined. It can also be described as a shifted action

of the group Sm ⋉Z
m on those weights of ŝlm which take the value ℓ = κ−m at

C ∈ ĥ; see Subsection 3.1 for details.
By following [10] and [16], for every element ω ∈ Sm ⋉ Z

m we can define a
canonical linear map from the vector space (0.4) to the vector space

(PN ⊗ (Cm)⊗N ⊗M
ω◦β̂

)ω◦α̂
n̂ . (0.5)

Details of this definition are given in Subsection 4.1. Denote by g the Z-degree
of ω. Our linear map is CN -intertwining only if κ = 0 or g = 0. In general, it
becomes CN -intertwining if we pull the action of CN on the target space (0.5) back
through the automorphism (1.5) where f = κ g/m. Here we use Proposition 2.4
and its Corollary 2.5 which seem to be new.

By using Proposition 2.3 we can replace the source and the target modules of
this CN -intertwining linear map by their isomorphic modules. The source module
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can be replaced by the pullback of Ŝ λ
µ relative to the automorphism (1.5) where

f = − (µ1 + · · ·+ µm)/m. Note that the sum of the terms of the sequence ω◦µ is
equal to µ1 + · · · + µm + κ g by the definition of the action ◦ of Sm ⋉ Z

m on the
sequences. Therefore the target module here can be replaced by the pullback of
Ŝ ω◦λ

ω◦µ relative to the automorphism (1.5) where

f = − (µ1 + · · ·+ µm + κ g)/m+ κ g/m = − (µ1 + · · ·+ µm)/m.

Since the values of f for the source and the target modules are the same, our
canonical linear map from (0.4) to (0.5) also determines a CN -intertwining linear

map Ŝλ
µ → Ŝ ω◦λ

ω◦µ . By the irreducibility of the source and target modules here, the
latter map coincides with the intertwining map from [13] up to a scalar multiplier.

0.3. Let us now briefly survey our article. In Section 1 we collect basic facts about
the degenerate affine Hecke algebra HN , including the realisation of its standard
modules [1]. In Section 2 we recall the definition of the trigonometric Cherednik
algebra CN , and describe the action of CN on the spaces of n̂-coinvariants. By
using this action, we give the realisation of induced modules of CN mentioned
above. Towards the end of Section 2 we introduce the extended affine Weyl group
of glm, and describe its action on the spaces of n̂-coinvariants. Our Proposition 2.4
relates this action to the action of CN on the same spaces. This relation is the key
technical result of our article. In Section 3 we define the Zhelobenko operators for
the affine Lie algebra ŝlm. Theorem 3.6 relates these operators to the algebra CN .
Further details of this relation are worked out in Section 4.

Acknowledgements. The first named author has been supported by the RSF
grant 16-11-10316. The second named author has been supported by the EPSRC
grant N023919 and by a Santander International Connections Award. We dedicate
this article to Professor Alexandre Kirillov to celebrate his eightieth birthday.

1. Hecke algebras

1.1. We begin with the definition of the degenerate affine Hecke algebra HN

corresponding to the general linear group GLN over a local non-Archimedean field.
This algebra has been introduced by Drinfeld [D2]; see also the work of Lusztig [L].
The complex associative algebra HN is generated by the symmetric group algebra
CSN and by pairwise commuting elements u1, . . . , uN with the cross relations for
p = 1, . . . , N − 1 and q = 1, . . . , N

σp uq = uq σp for q ̸= p, p+ 1;

σp up = up+1 σp − 1.

Here and in what follows σp ∈ SN denotes the transposition of numbers p and
p + 1. More generally, σpq ∈ SN will denote the transposition of the numbers
p and q. The group algebra CSN can be then regarded as a subalgebra in HN .
Furthermore, it follows from the defining relations of HN that a homomorphism
HN → CSN , identical on the subalgebra CSN ⊂ HN , can be defined by mapping

up 7→ σ1p + · · ·+ σp−1,p for p = 1, . . . , N. (1.1)
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We will also use the elements of the algebra HN

zp = up − σ1p − · · · − σp−1,p where p = 1, . . . , N. (1.2)

Notice that zp 7→ 0 under the homomorphism HN → CSN defined by (1.1). For
every σ ∈ SN we have

σ zp σ
−1 = zσ(p). (1.3)

The elements z1, . . . , zN do not commute, but satisfy the commutation relations

[ zp, zq ] = σpq (zp − zq). (1.4)

The relations (1.3) and (1.4) easily follow from the above definition of the algebra
HN ; see, for instance, [7, Sect. 1]. Obviously, the algebra HN is generated by CSN

and the elements z1, . . . , zN . Together with relations in CSN , (1.3) and (1.4) are
defining relations of HN too.

It follows from the definition of HN that for any f ∈ C an automorphism of this
algebra, identical on the subalgebra CSN ⊂ HN , can be defined by mapping

up 7→ up + f for p = 1, . . . , N. (1.5)

Then by (1.2)

zp 7→ zp + f for p = 1, . . . , N.

By pulling the trivial one-dimensional module of the algebra CSN back through
the homomorphism (1.1), and further back through the automorphism (1.5), we
get a one-dimensional module of HN . On the latter module each of the elements
z1, . . . , zN ∈ HN acts as multiplication by f . Let us denote this module by S f+N

f ;
this peculiar choice of notation will be justified next.

Now fix a postive integer m. Take any two sequences λ = (λ1, . . . , λm) and
µ = (µ1, . . . , µm) of length m of complex numbers. For each a = 1, . . . ,m denote
νa = λa − µa and suppose that νa is a non-negative integer. Note that unlike
in the Introduction, here we allow the equality νa = 0. We still suppose that
ν1+· · ·+νm = N . Denote ν = (ν1, . . . , νm). LetSν be the corresponding subgroup
of the symmetric group SN . This subgroup is naturally isomorphic to the direct
product Sν1

× · · · × Sνm
. The tensor product Hν1

⊗ · · · ⊗ Hνm
can be naturally

identified with the subalgebra of HN generated by the subgroup Sν ⊂ SN and by
all the pairwise commuting elements u1, . . . , uN . Denote by Hν this subalgebra.
The induced module of HN

IndHN

Hν
Sλ1

µ1
⊗ Sλ2−1

µ2−1 ⊗ · · · ⊗ Sλm−m+1
µm−m+1

is called standard and denoted by Sλ
µ . If m = 1 and µ1 = f then λ1 = f +N and

Sλ
µ = S f+N

f . The reason to use, in the definition of Sλ
µ , the numbers λa − a + 1

and µa − a+ 1 rather than λa and µa will become clear in Subsection 1.3.
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1.2. Let us now recall a construction due to Cherednik [4, Example 2.1]. It has
been further developed by Arakawa, Suzuki and Tsuchiya [1, Subsect. 5.3]. Let U
be any module over the complex general linear Lie algebra glm. Let Eab ∈ glm
with a, b = 1, . . . ,m be the standard matrix units. We will also regard the matrix
units Eab as elements of the algebra End(Cm); this should not cause any confusion.
Let us consider the tensor product (Cm)⊗N ⊗ U of glm-modules. Here each of the
N tensor factors Cm is a copy of the natural glm-module. We shall use the indices
1, . . . , N to label these N tensor factors. For any index p = 1, . . . , N we will denote

by E
(p)
ab the operator on the vector space (Cm)⊗N acting as

id⊗(p−1) ⊗ Eab ⊗ id⊗(N−p). (1.6)

Proposition 1.1. (i) By using the glm-module structure of U , an action of the

algebra HN on the vector space (Cm)⊗N ⊗ U is defined as follows: the symmetric

group SN ⊂ HN acts by permutations of the N tensor factors C
m, and the element

zp ∈ HN with p = 1, . . . , N acts as

m∑

a,b=1

E
(p)
ab ⊗ Eba. (1.7)

(ii) This action of HN commutes with the diagonal action of glm on (Cm)⊗N⊗U .

For a proof of this proposition see [7, Sect. 1]. By using Proposition 1.1 we
obtain a functor EN : U 7→ (Cm)⊗N ⊗ U from the category of all glm-modules to
the category of bimodules over glm and HN . We will also use a version of this
proposition for the special linear Lie algebra slm instead of glm. Let us denote
I = E11 + · · ·+ Emm so that glm = slm ⊕ C I. Moreover, we have

m∑

a,b=1

Eab ⊗ Eba ∈
1

m
I ⊗ I + slm ⊗ slm. (1.8)

Hence an action of
m∑

a,b=1

E
(p)
ab ⊗ Eba −

1

m
id⊗N ⊗ I (1.9)

can be defined on the vector space (Cm)⊗N ⊗ U by using only the slm-module
structure of U . Because the element I ∈ glm is central, the operators (1.9) with
p = 1, . . . , N satisfy the same commutation relations (1.4) as the operators (1.7)
respectively instead of z1, . . . , zN .

Corollary 1.2. (i) By using the slm-module structure of U , an action of the

algebra HN on the vector space (Cm)⊗N ⊗U is defined as follows: the group SN ⊂
HN acts by permutations of the N tensor factors C

m, and the element zp ∈ HN

with p = 1, . . . , N acts as (1.9).
(ii) This action of HN commutes with the diagonal action of slm on (Cm)⊗N⊗U .

Using Corollary 1.2 we get a functor FN : U 7→ (Cm)⊗N ⊗U from the category
of all slm-modules to the category of bimodules over slm and HN . Our principal
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tool will be an analogue of this functor for the affine Lie algebra ŝlm instead of
slm. The role of the degenerate affine algebra HN will be then played by the
trigonometric Cherednik algebra CN .

1.3. Consider the triangular decomposition of the Lie algebra glm,

glm = n⊕ t⊕ n′.

Here t is the Cartan subalgebra of glm with the basis vectors E11 , . . . , Emm. Every
element of the vector space t∗ dual to t is called a weight of glm. We will regard
any sequence µ = (µ1, . . . , µm) of length m of complex numbers as such a weight,
by setting µ(Eaa) = µa for a = 1, . . . ,m. For any glm-module U , its subspace
consisting of all vectors of weight µ is denoted by Uµ. In the above display n is
the nilpotent subalgebra of glm spanned by all the elements Eab with a > b, while
n′ is spanned by all Eab with a < b. We will denote by Un the vector space U/nU
of the coinvariants of the action of the subalgebra n on U . Note that the Cartan
subalgebra h ⊂ glm acts on the vector space Un.

Consider the Verma module Mµ of the Lie algebra glm. It can be described as
the quotient of the universal enveloping algebra U(glm) by the left ideal generated
by all the elements Eab with a < b and by the elements Eaa − µa. The elements
of the Lie algebra glm act on this quotient via left multiplication. Let us apply
the functor EN to the glm-module U = Mµ. By using Proposition 1.2 we obtain
a bimodule EN (Mµ) of glm and HN . For any λ = (λ1, . . . , λm) consider the space
EN (Mµ)

λ
n of those coinvariants of this bimodule relative to n which are of the

weight λ. This space comes with an action of the algebra HN .

Proposition 1.3. The module EN (Mµ)
λ
n of the algebra HN is isomorphic to the

standard module Sλ
µ .

Proof. By repeatedly using [8, Thm. 1.3] the proof reduces to its particular case
when m = 1. In the latter case the proposition is immediate. �

Let us now give a counterpart [1, Prop. 5.3.1] of Proposition 1.3 for the Lie
algebra slm instead of glm. Let h be the Cartan subalgebra of slm with the basis
vectors E11−E22 , . . . , Em−1,m−1−Emm. Note that h ⊂ t. We have the triangular
decomposition

slm = n⊕ h⊕ n′

where n and n′ are the same as above. We will denote respectively by α and β
the restrictions of the weights λ and µ of glm to the subspace h ⊂ t. Thus α and
β will be weights of slm. Note that the restriction of the glm-module Mµ to the
subalgebra slm ⊂ glm is isomorphic to the Verma module Mβ , while the central
element I ∈ glm acts on Mµ as multiplication by µ1+ · · ·+µm. Therefore by using
the definition of FN we get a corollary to Proposition 1.3.

Corollary 1.4. The HN -module FN (Mβ)
α
n is isomorphic to the pullback of the

standard module Sλ
µ relative to the automorphism (1.5) of HN where

f = − (µ1 + · · ·+ µm)/m.
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Note that by pulling the standard module Sλ
µ back through the automorphism

(1.5) with any f we get another standard module, corresponding to the sequences
(λ1 + f, . . . , λm + f) and (µ1 + f, . . . , µm + f) instead of λ and µ. However, we
will use Corollary 1.4 as stated.

2. Cherednik algebras

2.1. Let PN = C[x1, x
−1
1 , . . . , xN , x−1

N ] be the ring of of Laurent polynomials in
N variables x1, . . . , xN with complex coefficients. We will denote by ∂1, . . . , ∂N
the derivation operators in PN relative to these variables. The trigonometric

Cherednik algebra CN depending on a parameter κ ∈ C is the complex associative
algebra generated by HN and PN , subject to the relations σ xp σ

−1 = xσ(p) for all
σ ∈ SN and to the commutation relations

[ zp, xq ] = −xp σpq for q ̸= p;

[ zp, xp ] = κxp +
∑

r ̸=p

xp σpr.

We can also employ the pairwise commuting generators u1, . . . , uN ∈ HN instead
of z1, . . . , zN ; see (1.2). Then instead of the above displayed relations in CN we get

[up, xq ] = −xq σpq for q < p;

[up, xq ] = −xp σpq for q > p;

[up, xp ] = κxp +
∑

r<p

xr σpr +
∑

r>p

xp σpr.

The latter set of defining relations shows that (1.5) extends to an automorphism
of the algebra CN identical in the subalgebras CSN and PN . By [6, Thm. 1.3]
multiplication in the algebra CN yields a bijective linear map

PN ⊗ CSN ⊗ C[u1, . . . , uN ] → CN .

Next we will state the generalizations of Proposition 1.1 and Corollary 1.2 to CN .
They go back to the work of Cherednik [3].

2.2. First consider the affine Lie algebra ĝlm over the field C. We will define it
as a central extension of the current Lie algebra glm[ t, t−1] by a one-dimensional
complex vector space with a fixed basis element which will be denoted by C. Here
t is a formal variable. Choose the basis of glm[ t, t−1] consisting of the elements
Ecd t

j where c, d = 1, . . . ,m whereas j ranges over Z. The commutators in the Lie
algebra glm[ t, t−1] are taken pointwise so that

[Eab t
i, Ecd t

j ] = (δbcEad − δda Ecb) t
i+j

for the basis elements. In the extended Lie algebra ĝlm we have the relations

[Eab t
i, Ecd t

j ] = (δbc Ead − δda Ecb) t
i+j + i δi,−j δbc δda C. (2.1)



SERGEY KHOROSHKIN, MAXIM NAZAROV

We will also work with the affine Lie algebra ŝlm. This is a subalgebra of ĝlm
spanned by the subspace slm[ t, t−1] ⊂ glm[ t, t−1] and by the central element C.

Let ĥ be the Abelian subalgebra of ŝlm spanned by C and by the Cartan subalgebra
h ⊂ slm. The vector spaces

n̂ = n⊕ t−1 slm[ t−1] and n̂ ′ = n′ ⊕ t slm[t]

are also Lie subalgebras of ŝlm by the relations (2.1). As a vector space,

ŝlm = n̂⊕ ĥ⊕ n̂ ′.

Let V be any module of ĝlm such that for any given vector in V , there exists

a degree i such that the subspace t i glm[t] ⊂ ĝlm annihilates the vector. Consider
the vector space

W = PN ⊗ (Cm)⊗N ⊗ V . (2.2)

Due to our condition on V for any p = 1, . . . , N there is a well-defined linear
operator on W

∞∑

i=0

m∑

a,b=1

x−i
p ⊗ E

(p)
ab ⊗ Eba t

i. (2.3)

Here E
(p)
ab is the operator (1.6) acting on (Cm)⊗N . Further, the symmetric group

SN acts on the tensor factor PN ofW by permutations of the variables x1, . . . , xN .
There is another copy of the group SN acting on the N tensor factors C

m of W
by permutation. Using these two actions of SN for any p = 1, . . . , N introduce
the Cherednik operator on W

κxp ∂p ⊗ id⊗N ⊗ id +
∑

r ̸=p

xp

xp − xr

(1− σpr)⊗ σpr ⊗ id

+
∞∑

i=0

m∑

a,b=1

x−i
p ⊗ E

(p)
ab ⊗ Eba t

i.

(2.4)

The vector space PN ⊗ (Cm)⊗N can be naturally identified with the tensor
product of N copies of the space C

m[t, t−1]. The latter space can be regarded as a

ĝlm-module where the central element C acts as zero. By taking the tensor product

of N copies of this module with V we turn the vector space W to a ĝlm-module.

The element Ecd t
j ∈ ĝlm acts on W as

id⊗ id⊗N ⊗ Ecd t
j +

N∑

q=1

x j
q ⊗ E

(q)
cd ⊗ id. (2.5)

For any complex number ℓ, a module of the Lie algebra ĝlm or ŝlm is said to
be of level ℓ if the element C acts on this module as that complex number. In
particular, the ĝlm-module Cm[t, t−1] used above is of level zero. We can now state
the main properties of Cherednik operators on W from [1], [14]. These properties
immediately follow from [8, Prop. 2.3].
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Proposition 2.1. (i) By using the ĝlm-module structure on V , an action of the

algebra CN on the vector space W is defined as follows: the elements xp, x
−1
p ∈

CN act via mutiplication in C[x1, x
−1
1 , . . . , xN , x−1

N ], the group SN ⊂ HN acts by

simultaneous permutations of the variables x1, . . . , xN and of the N tensor factors

C
m, and the element zp ∈ HN acts as (2.4).

(ii) This action of CN on W commutes with that of the Lie subalgebra glm ⊂ ĝlm.

(iii) If V has level κ−m then the action of CN preserves the subspace n̂W ⊂ W .

Below is a version of this proposition in the case when V is a module not of
ĝlm but only of ŝlm, also due to [1]. There for any vector in V we assume the

existence of i such that the subspace t i slm[t] ⊂ ŝlm annihilates the vector. Let
I = E11 + · · ·+ Emm as before. By (1.8) an action of

∞∑

i=0

x−i
p ⊗

( m∑

a,b=1

E
(p)
ab ⊗ Eba t

i −
1

m
id⊗N ⊗ I t i

)
(2.6)

can be defined on (2.2) by using only the ŝlm-module structure of V . Then for
every p = 1, . . . , N we have a modification of the Cherednik operator (2.4) on W ,

κxp ∂p ⊗ id⊗N ⊗ id +
∑

r ̸=p

xp

xp − xr

(1− σpr)⊗ σpr ⊗ id

+
∞∑

i=0

x−i
p ⊗

( m∑

a,b=1

E
(p)
ab ⊗ Eba t

i −
1

m
id⊗N ⊗ I t i

)
.

(2.7)

Here we use the sum (2.6) instead of (2.3) used in (2.4). Further, we can turn

the vector space (2.2) into another ŝlm-module by regarding PN ⊗ (Cm)⊗N as

ŝlm-module of level zero.

Corollary 2.2. (i) Using the ŝlm-module structure on V , an action of the algebra

CN on the vector space W can be defined as follows: the elements xp, x
−1
p ∈ CN

act via mutiplication in C[x1, x
−1
1 , . . . , xN , x−1

N ], the group SN ⊂ HN acts by

simultaneous permutations of the variables x1, . . . , xN and of the N tensor factors

C
m, and the element zp ∈ HN acts as (2.7).

(ii) This action of CN on W commutes with that of the Lie subalgebra slm ⊂ ŝlm.

(iii) If V has level κ−m then the action of CN preserves the subspace n̂W ⊂ W .

Using Corollary 2.2(i) and the definition (2.2), we get a functor AN : V 7→ W

from the category of all ŝlm-modules satisfying the annihilation condition stated
just before (2.6). Note that the resulting actions of ŝlm and CN on W do not

commute in general. However, this will be our analogue for ŝlm of the functor FN

introduced in the end of Subsection 1.2.

2.3. Let λ and µ be same sequences of length m of complex numbers as in
Subsection 1.1. Take the standard module Sλ

µ over the algebra HN . By regarding
HN as a subalgebra of CN , consider the induced module

IndCN

HN
Sλ
µ .
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Denote the latter module by Ŝ λ
µ . Its underlying vector space can be identified with

that of PN ⊗ Sλ
µ whereon the subalgebra PN ⊂ CN acts via multiplication in the

first tensor factor. Notice that by transitivity of induction and by the definition
of Sλ

µ , the CN -module Ŝ λ
µ is isomorphic to

IndCN

Hν
Sλ1

µ1
⊗ Sλ2−1

µ2−1 ⊗ · · · ⊗ Sλm−m+1
µm−m+1 .

Now suppose that ℓ = κ −m, so that our Corollary 2.2(iii) applies. Regard λ
and µ as weights of glm. Their restrictions to the subspace h ⊂ t are denoted by

α and β respectively. Define the weight β̂ of ŝlm as the element of the space dual
to ĥ such that

β̂(C) = ℓ and β̂(X) = β(X) for all X ∈ ĥ. (2.8)

Consider the Verma module M
β̂
of ŝlm. By definition, this is the quotient of the

universal enveloping algebra U(ŝlm) by the left ideal generated by n̂ ′ and by all the

elements X − β̂(X) where X ranges over ĥ. Since the element C ∈ ŝlm is central,

the first equality in (2.8) implies that the ŝlm-module M
β̂
is of level ℓ. Moreover,

V = M
β̂
satisfies the annihilation condition stated just before (2.6). Therefore we

can apply the functor AN to this V .
Further, let us define the weight α̂ of ŝlm similarly to β̂ and consider the space

AN (M
β̂
) α̂
n̂
of those coinvariants of AN (M

β̂
) relative to n̂ which have the weight

α̂. This space comes with an action of the algebra CN due to Corollary 2.2(iii).
The latter action is described by the next proposition [1, Prop. 5.2.3]. The proof
given in [1] was different, however.

Proposition 2.3. The HN -module AN (M
β̂
) α̂
n̂
is isomorphic to the pullback of Ŝ λ

µ

relative to the automorphism (1.5) of the algebra CN where

f = − (µ1 + · · ·+ µm)/m.

Proof. By the transitivity of induction, the module M
β̂
of the Lie algebra ŝlm is

isomorphic to the module of level ℓ parabolically induced from the Verma module
Mβ of slm. To define the parabolically induced module, we first extend the action

of slm on Mβ to the subalgebra p of ŝlm spanned by slm[t] and C. Namely, we
let the elements of t slm[t] act on Mβ as zero, while C acts as multiplication by ℓ.

Then we induce the resulting action from p to ŝlm.
Denote by q the subspace t−1 slm[ t−1] ⊂ slm[ t, t−1]. This is a Lie subalgebra

of n̂, and moreover n̂ = n⊕ q as a vector space. Consider the space of coinvariants
of AN (M

β̂
) relative to q. This space comes with mutually commuting actions of

CN and slm; see again Corollary 2.2. By [8, Thm. 2.5] the so obtained bimodule
of CN and slm is isomorphic to

IndCN

HN
FN (Mβ).

Proposition 2.3 now follows from Corollary 1.4 and from the definition of Ŝ λ
µ . �
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2.4. Denote by Tm the affine Weyl group of the Lie algebra glm. This group is
generated by the elements τc where c = 0, 1, . . . ,m − 1. However, we will let the
indices of the generators τc run through Z, assuming that τc+m = τc for c ∈ Z.
Then the defining relations of Tm are

τ2c = 1; τc τc+1 τc = τc+1 τc τc+1; τc τd = τd τc for c− d ̸= ±1 mod m.

The corresponding extended affine Weyl group is generated by Tm and an element
π such that

π τc = τc+1 π.

Let us denote the extended group by Rm. The group Rm acts on the set Z by
permutations of period m. Namely, each generator τc of Tm exchanges c + j m
with c+1+j m for each j ∈ Z, leaving all other integers fixed. The extra generator
π maps any integer d to d+ 1.

The group Rm is Z-graded so that the element π has degree one, while all
elements of Tm have degree zero. Further, the group Rm is isomorphic to the
semidirect product Sm ⋉ Z

m. We will use the isomorphism Rm → Sm ⋉ Z
m

defined by mapping

π 7→ (1, 0, . . . , 0)σ1 . . . σm−1 and τ0 7→ (1, 0, . . . , 0,−1)σ1m

while τc 7→ σc for c = 1, . . . ,m − 1. Here Sm and Z
m are regarded as subgroups

of Sm ⋉ Z
m. In particular, here (1, 0, . . . , 0) and (1, 0, . . . , 0,−1) are elements

of Z
m ⊂ Sm ⋉ Z

m. Via this isomorphism, the Z-grading on Rm defined here
corresponds to that on Sm ⋉ Z

m as defined in the Introduction. Relative to the
latter Z-grading, the degree of any element of Sm is zero, while the degree of any
element of Zm is the sum of its m components.

The group Rm acts by automorphisms of the Lie algebra ĝlm so that the central
element C is invariant,

τc : Eab t
i 7→ Eτc(a),τc(b) t

i for c = 1, . . . ,m− 1,

while

τ0 : Eab t
i 7→ Eτ0(a),τ0(b) t

i+δa1−δam−δb1+δbm + δi0 δab (δa1 − δam)C

and
π : Eab t

i 7→ Ea+1,b+1 t
i−δam+δbm − δi0 δab δam C.

Then
π−1 : Eab t

i 7→ Ea−1,b−1 t
i+δa1−δb1 + δi0 δab δa1 C.

Here we let a, b = 1, . . . ,m. If any of the indices of the matrix units appearing
in the last three displayed formulas is 0 or m + 1, it should be then replaced
respectively by m or 1.
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Take the level zero module C
m[t, t−1] of ĝlm. Let e1, . . . , em be the standard

basis vectors of Cm. The group Rm acts on the vector space C
m[t, t−1] so that

τc : ea t
i 7→ eτc(a) t

i for c = 1, . . . ,m− 1

while

τ0 : ea t
i 7→ eτ0(a) t

i+δa1−δam and π : ea t
i 7→ ea+1 t

i−δam .

Then

π−1 : ea t
i 7→ ea−1 t

i+δa1 .

Here we use the same interpretation of the indices of the standard basis vectors
of Cm as of the indices of the matrix units above. One can easily verify that the
actions of ĝlm and of Rm on C

m[t, t−1] extend to an action of the crossed product

algebra Rm⋉U(ĝlm). This algebra is defined by the above described action of the

group Rm on ĝlm. In the crossed product algebra,

πXπ−1 = π(X) for X ∈ ĝlm.

2.5. Suppose that the ĝlm-module V is also equipped with an action of the

extended affine Weyl group Rm. Moreover, suppose that the actions of both ĝlm
and Rm on V extend to an action of the crossed product algebra Rm ⋉ U(ĝlm).
By identifying the tensor product of N copies of Cm[t, t−1] with PN ⊗ (Cm)⊗N

we define an action of the group Rm on the latter vector space, and hence on its
tensor product (2.2) with V .

By the definition given in Subsection 2.4, the action of the element π ∈ Rm on
the Lie algebra ĝlm preserves the subalgebra n̂. Therefore the element π acts on

the space W n̂ of n̂-coinvariants of the ĝlm-module W . On the other hand, under
the assumption ℓ = κ −m, the Cherednik operator (2.4) also acts on W n̂ due to
Proposition 2.1. Let us denote by ζ p the operator on W n̂ corresponding to (2.4).
The next property of ζ p will be crucial for us.

Proposition 2.4. If the ĝlm-module V has level κ−m then for p = 1, . . . , N we

have an equality of operators on W n̂

π ζ p π
−1 = ζ p + id.

Proof. Extend the vector space W in (2.2) by replacing its first tensor factor PN

by the space of all complex valued rational functions in the variables x1, . . . , xN

with the permutation action of the symmetric group SN . Extend the action of the
element π onW accordingly. To this end, identify the tensor product PN⊗(Cm)⊗N

in (2.2) with the tensor product of N copies of Cm[t, t−1] as above. Then restate
the definition of the action of π on the vector space C

m[t, t−1] by regarding the
latter as the tensor product C

m ⊗ C[t, t−1]. Here we also use the given action of
the group element π ∈ Rm on the tensor factor V of (2.2).
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For p = 1, . . . , N consider the following operators on the extended vector space,

Dp = κxp ∂p ⊗ id⊗N ⊗ id,

Rp =
∑

r ̸=p

xp

xp − xr

σpr ⊗ σpr ⊗ id,

Tp =
∑

r ̸=p

xp

xp − xr

⊗ σpr ⊗ id +

∞∑

i=0

m∑

a,b=1

x−i
p ⊗ E

(p)
ab ⊗ Eba t

i.

Then (2.4) is the restriction of the operator Dp −Rp + Tp to the space (2.2).
By identifying PN ⊗ (Cm)⊗N with the tensor product of N copies of Cm[t, t−1]

and using the action of the element π on the pth of these N copies as defined in
Subsection 2.4,

πDp π
−1 = Dp + id⊗ κE

(p)
11 ⊗ id. (2.9)

The action of π on the tensor productPN⊗(Cm)⊗N commutes with the multiplica-
tion by any element of PN in the first tensor factor. It also commutes with the
operator σpr ⊗ σpr for any r ̸= p. Therefore

π Rp π
−1 = Rp.

Consider the operator Tp. In its definition, the summand corresponding to any
r ̸= p can be rewritten as

∞∑

i=0

m∑

a,b=1

x−i
p x i

r ⊗ E
(p)
ab E

(r)
ba ⊗ id.

Hence π Tp π
−1 equals the sum over the indices i = 0, 1, . . . and a, b = 1, . . . ,m of

∑

r ̸=p

x−i−δam+δbm
p x i+δam−δbm

r ⊗ E
(p)
a+1,b+1E

(r)
b+1,a+1 ⊗ id

+ x−i−δam+δbm
p ⊗ E

(p)
a+1,b+1 ⊗ (Eb+1,a+1 t

i+δam−δbm − δi0 δab δbm ℓ ).

(2.10)

Here we use the action of π ∈ Rm on U(ĝlm) as defined in Subsection 2.4. By the
definition of Tp, the sum over the indices i and a, b of the expressions displayed in
the two lines (2.10) equals

Tp +
∑

r ̸=p

∑

a̸=m

xp x
−1
r ⊗ E

(p)
a+1,1 E

(r)
1,a+1 ⊗ id−

∑

r ̸=p

∑

b̸=m

id⊗ E
(p)
1,b+1 E

(r)
b+1,1 ⊗ id

+
∑

a̸=m

xp ⊗ E
(p)
a+1,1 ⊗ E1,a+1 t

−1 −
∑

b̸=m

id⊗ E
(p)
1,b+1 ⊗ Eb+1,1 − id⊗ ℓE

(p)
11 ⊗ id.

By adding to this result the right-hand side of (2.9) and by subtracting Rp, we get
back the Cherednik operator (2.4) plus the sum

∑

r ̸=p

∑

a̸=1

xp x
−1
r ⊗ E

(p)
a1 E

(r)
1a ⊗ id −

∑

r ̸=p

∑

b̸=1

id⊗ E
(p)
1b E

(r)
b1 ⊗ id

+
∑

a̸=1

xp ⊗ E
(p)
a1 ⊗ E1a t

−1 −
∑

b̸=1

id⊗ E
(p)
1b ⊗ Eb1 + id⊗mE

(p)
11 ⊗ id.

(2.11)
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Here we used the equality κ− ℓ = m and replaced the indices a+ 1, b+ 1 by a, b.
The sum displayed in the two lines (2.11) can be rewritten as

∑

a̸=1

( N∑

r=1

x−1
r ⊗ E

(r)
1a ⊗ id + id⊗ id⊗N ⊗ E1at

−1
)
·xp ⊗ E

(p)
a1 ⊗ id

+
m∑

b=1

id⊗ E
(p)
bb ⊗ id−

∑

b̸=1

( N∑

r=1

id⊗ E
(r)
b1 ⊗ id + id⊗ id⊗N ⊗ Eb1

)
·id⊗ E

(p)
1b ⊗ id.

Here the sum over b = 1, . . . ,m is the identity operator on W . For any a ̸= 1 the
element E1a t

−1 ∈ n̂ acts on W as the sum in the brackets in the first of the last
two displayed lines; see (2.5). Hence the whole expression displayed in the first
line vanishes on the quotient W n̂. Further, for any b ̸= 1 the element Eb1 ∈ n̂

acts on W as the sum in the brackets in the second of the last two displayed lines.
Hence the whole expression displayed in the second line acts on W n̂ as the identity
operator. �

Below is a version of Proposition 2.4 in the case when V is a module not of
ĝlm but only of ŝlm. Here we regard W as ŝlm-module, and use the action of
the element π ∈ Rm on the corresponding space W n̂ of n̂-coinvariants. Under the
assumption ℓ = κ−m, the modified Cherednik operator (2.7) acts on W n̂ due to
Corollary 2.2. Let us denote by θ p the operator on W n̂ corresponding to (2.7).

Corollary 2.5. If the ŝlm-module V has level κ − m then for p = 1, . . . , N we

have an equality of operators on W n̂

π θ p π
−1 = θ p +

κ

m
id.

Proof. The modified Cherednik operator (2.7) is obtained by subtracting from
(2.4) the sum

1

m

∞∑

i=0

x−i
p ⊗ id⊗N ⊗ I t i.

But the action of π ∈ Rm on the latter sum amounts to subtracting from it the
operator

1

m
id⊗ id⊗N ⊗ C;

see Subsection 2.4. Since the module V has level κ−m, Proposition 2.4 implies that

π θ p π
−1 = θ p +

κ−m

m
id + id = θ p +

κ

m
id. �

3. Zhelobenko operators

3.1. Let t̂ be the subalgebra of ĝlm with the basis vectors C and E11, . . . , Emm.

Note that t̂ contains the subalgebra ĥ of ŝlm. Consider the action of the extended
affine Weyl group Rm on ĝlm defined in Subsection 2.4. This action preserves
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the subalgebra t̂ ⊂ ĝlm. By definition, we have π(C) = C and τ(C) = C for all
τ ∈ Tm. Further, we have

π(Edd) = Ed+1,d+1 for 1 6 d < m, π(Emm) = E11 − C,

τ 0(E11) = Emm + C, τ 0(Edd) = Edd for 1 < d < m, τ 0(Emm) = E11 − C,

while the generators τ 1, . . . , τm−1 act on the basis vectors E11, . . . , Emm naturally,
that is by transpositions of the indices 1, . . . ,m. Note that here we also have

π−1(Edd) = Ed−1,d−1 for 1 < d 6 m, π−1(E11) = Emm + C.

We will also use the action of the group Rm on the vector space t̂ ∗, dual to the
above action on t̂. To describe the dual action explicitly, let C ∗ and E ∗

11, . . . , E
∗
mm

be the basis vectors of t̂ ∗ dual to our chosen basis vectors of t̂. Then

π(C ∗) = C ∗ + E ∗
11 and τ 0(C

∗) = C ∗ + E ∗
11 − E ∗

mm,

π(E ∗
dd) = E ∗

d+1,d+1 for 1 6 d < m, π(E ∗
mm) = E ∗

11,

τ 0(E
∗
11) = E ∗

mm, τ 0(E
∗
dd) = E ∗

dd for 1 < d < m, τ 0(E
∗
mm) = E ∗

11

while the generators τ 1, . . . , τm−1 leave C
∗ invariant and act on the vectors E ∗

11, . . .
. . . , E ∗

mm by transpositions of the indices 1, . . . ,m.
Now for any given ℓ ∈ C and for any weight µ ∈ t∗ define an element µ̂ ∈ t̂ ∗ by

setting
µ̂(C) = ℓ and µ̂(X) = µ(X) for all X ∈ t.

Equivalently,
µ̂ = ℓC ∗ + µ1E

∗
11 + · · ·+ µmE ∗

mm.

Then

π(µ̂) = ℓC ∗ + (µm + ℓ )E ∗
11 + µ1E

∗
22 + · · ·+ µm−1E

∗
mm,

τ 0(µ̂) = ℓC ∗ + (µm + ℓ )E ∗
11 + µ2E

∗
22 + · · ·+ µm−1E

∗
m−1,m−1 + (µ1 − ℓ )E ∗

mm.

In particular, for any given ℓ ∈ C the action of the group Rm on t̂ ∗ preserves the
set of weights of the form µ̂. So we get an action of Rm on the set of sequences of
length m of complex numbers,

π : (µ1, . . . , µm) 7→ (µm + ℓ, µ1, . . . , µm−1 ),

τ 0 : (µ1, . . . , µm) 7→ (µm + ℓ, µ2, . . . , µm−1, µ1 − ℓ ),

while τ 1, . . . , τm−1 naturally act on these sequences by transpositions of the indices
1, . . . ,m. Note that via the isomorphism Rm → Sm⋉Z

m chosen in Subsection 2.4,
the same action of Rm on the sequences can be obtained by letting the elements of
Sm act by permutations, while the elements of Zm act by addition of the respective
elements of ℓZm ⊂ C

m.
We will also use the shifted action of Rm on t̂ ∗. It is defined by adding

mC ∗− E ∗
11 − 2E ∗

22 − · · · −mE ∗
mm (3.1)
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to the elements of t̂ ∗, then applying the above described action of Rm, and then
subtracting (3.1). We will employ the symbol ◦ to denote the shifted action. Put
ε0 = E ∗

mm − E ∗
11 while εc = E ∗

cc − E ∗
c+1,c+1 for c = 1, . . . ,m− 1. Note that then

τc ◦ µ̂ = τc( µ̂+ εc) for c = 0, 1, . . . ,m− 1. (3.2)

For any given ℓ the shifted action of Rm on t̂ ∗ preserves the set of weights of
the form µ̂. Hence we get a shifted action of Rm on the set of sequences of length
m of complex numbers. We will use the symbol ◦ to denote it as well. Then for
any sequence µ = (µ1, . . . , µm)

π ◦µ = (µm + ℓ+ 1, µ1 + 1, . . . , µm−1 + 1),

τ 0 ◦µ = (µm + ℓ+ 1, µ2, . . . , µm−1, µ1 − ℓ− 1),

τc ◦µ = (µ1, . . . , µc−1, µc+1 − 1, µc + 1, µc+2, . . . , µm) for c = 1, . . . ,m− 1.

Note that via our isomorphism Rm → Sm ⋉Z
m, the same shifted action of the

group Rm on the sequences can be obtained by using the last displayed formula
and by letting the elements of the subgroup Z

m ⊂ Sm⋉Z
m act by addition of the

respective elements of κZm where κ = ℓ +m. Indeed, because the group Rm is
generated by τ 1, . . . , τm−1 and π, it suffices to check the coincidence of two actions
of the element π only. Its image under the isomorphism Rm → Sm ⋉ Z

m is the
product (1, 0, . . . , 0)σ1 . . . σm−1; see Subsection 2.4. But by our definition of the
shifted action of the group Sm ⋉ Z

m on the sequences we have

σ1 · · ·σm−1 ◦µ = (µm −m+ 1, µ1 + 1, . . . , µm−1 + 1),

(1, 0, . . . , 0)σ1 · · ·σm−1 ◦µ = (µm −m+ κ+ 1, µ1 + 1, . . . , µm−1 + 1)

= (µm + ℓ+ 1, µ1 + 1, . . . , µm−1 + 1).

3.2. Consider the tensor product of N copies of the ŝlm-module C
m[t, t−1]. In

Subsection 2.2 we identified the vector space of this tensor product with PN ⊗
(Cm)⊗N . Put

B = PN ⊗ (Cm)⊗N ⊗U(ŝlm).

Following [9] regard B as bimodule over the associative algebra U(ŝlm) by setting

X (P ⊗A) = XP ⊗A+ P ⊗XA and (P ⊗A)X = P ⊗AX

forX ∈ ŝlm while P ∈ PN⊗(Cm)⊗N and A ∈ U(ŝlm). So the left module structure

on B is defined by regarding U(ŝlm) as a module over itself via left multiplication,
and then taking its tensor product with the module PN ⊗ (Cm)⊗N by using the

standard comultiplication on U(ŝlm). The right module structure on B is defined

by using only the right multiplication in the tensor factor U(ŝlm) of B. We will

also use the adjoint action of U(ŝlm) on B. Here

adX(P ⊗A) = X (P ⊗A)− (P ⊗A)X = XP ⊗A+ P ⊗ [X,A].
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The action of the group Rm on the Lie algebra ĝlm preserves the subalgebra

ŝlm. By again identifying the tensor product of N copies of Cm[t, t−1] with PN ⊗
(Cm)⊗N , we get an action of the group Rm on the former vector space, and hence
on the vector space of B.

Take the universal enveloping algebra U( ĥ ) of the Abelian Lie algebra ĥ ⊂ ŝlm.

Let U( ĥ ) be the ring of fractions of the commutative algebra U( ĥ ) with the set
of denominators generated by

{Eaa − Ebb + i C + j | 1 6 a < b 6 m and i, j ∈ Z }. (3.3)

The elements of this ring can also be regarded as rational functions on the vector
space ĥ∗. The elements of U( ĥ ) ⊂U( ĥ ) are then regarded as polynomial functions

on ĥ∗. Further, let U(ŝlm) be the ring of fractions of the algebra U(ŝlm) with the
same set of denominators.

Let us denote
B = PN ⊗ (Cm)⊗N ⊗U(ŝlm).

Using the right multiplication in U(ŝlm), the right action of U(ŝlm) on B extends

to a right action of U(ŝlm) on B. To extend the left action of U(ŝlm) on B to a

right action of U(ŝlm) on B, note that the vector space of B has a basis of elements
Y such that for any a, b and i as in (3.3) there exists k ∈ Z also depending on Y ,
such that

adEaa−Ebb+i C (Y ) = k Y .

Set
(Eaa − Ebb + i C + j)−1 Y = Y (Eaa − Ebb + i C + j + k)−1.

Hence the vector space B becomes a bimodule over the algebra U(ŝlm).

The action of the group Rm on the Lie algebra ĝlm preserves the subalgebra

ĥ ⊂ ŝlm. Moreover, the resulting action of Rm on U( ĥ ) preserves the set of
denominators generated by (3.3). So the action of Rm extends from B to B. We
will use the extended action later.

3.3. The Lie algebra ŝlm is generated by the elements

E0 = Em1 t, F0 = E1m t−1, H0 = C − E11 + Emm;

Ec = Ec,c+1, Fc = Ec+1,c, Hc = Ecc − Ec+1,c+1 where c = 1, . . . ,m− 1.

For each c = 0, 1, . . . ,m − 1 the elements Ec, Fc,Hc span a subalgebra of ŝlm
isomorphic to sl2. We will also use the element εc ∈ t̂ ∗ defined in Subsection 3.1.

Consider the vector spaces B and B introduced in Subsection 3.2. For every
c = 0, 1, . . . ,m− 1 define a linear map ξc : B → B by setting for any Y ∈ B

ξc (Y ) = Y +
∞∑

n=1

(n!H(n)
c )−1E n

c adn
Fc
(Y ) (3.4)

where
H(n)

c = Hc(Hc − 1) · · · (Hc − n+ 1)
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and we take the nth power of the adjoint operator corresponding to the element
Fc ∈ ŝlm. For any given Y ∈ B only finitely many terms of the sum (3.4) differ from
zero, so the map ξc is well defined. The definition (3.4) and the next proposition

go back to [16, Sect. 2]. By using the left action of the Lie subalgebra n̂ ⊂ ŝlm,
introduce the vector subspaces

J = n̂B ⊂ B and J = n̂ B ⊂ B .

Proposition 3.1. For any X ∈ ĥ and Y ∈ B we have

ξc(XY ) ∈ (X + εc(X)) ξc(Y ) + J, (3.5)

ξc(Y X) ∈ ξc(Y )(X + εc(X)) + J. (3.6)

Proof. It suffices to verify the properties (3.5) and (3.6) only for X = Hc and

for all X ∈ ĥ such that εc(X) = 0. In the latter case we have the relations

[Ec, X] = [Fc, X] = 0 in ŝlm. Then ξc(XY ) = X ξc(Y ) and ξc(Y X) = ξc(Y )X by
(3.4). Hence we get (3.5) and (3.6).

For X = Hc the proof of (3.5) is based on the following commutation relations

in the subalgebra of U(ŝlm) generated by the three elements Ec, Fc,Hc:

[E n
c ,Hc ] = − 2nE n

c and [E n
c , Fc ] = n (Hc − n+ 1)E n−1

c . (3.7)

Let us use the symbol ≡ to indicate equalities in B modulo the subspace J.
By (3.7), for any element Y ∈ B we get

ξc (Hc Y ) ≡ (Hc + 2 ) ξc (Y ) = (Hc + εc(Hc)) ξc (Y ).

Here the relation ≡ is obtained as in the proof of [7, Proposition 3.1]. By following
another calculation, as given in the end of the proof of [7, Proposition 3.1],

ξc (Y Hc) ≡ ξc (Y )(Hc + 2 ) = ξc (Y )(Hc + εc(Hc)). �

3.4. The property (3.5) allows us to define a linear map ξ̄c : B → B/J by setting

ξ̄c(Y A ) = ξc(Y )Z + J for A ∈U( ĥ ) and Y ∈ B

where the element Z ∈ U( ĥ ) is obtained from A by regarding it as a rational

function on the dual vector space ĥ∗, and then adding εc to the argument of that
rational function. Recall that in the end of Subsection 3.2 we defined an action
of the extended affine Weyl group Rm on the vector space B. For any index
c = 0, 1, . . . ,m− 1 consider the image τc(J) ⊂ B.

Proposition 3.2. We have τc(J ) ⊂ ker ξ̄c.
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Proof. Note that τc(Fc) = Ec. If c > 0 then let n̂c be the subspace of ŝlm spanned
by all the elements Eab t

i where i < 0, and by those elements Eab where a > b but
(a, b) ̸= (c+ 1, c). Further, let n̂ 0 be the subspace of ŝlm spanned by the elements
Eab where a > b, and by those elements Eab t

i where i < 0 but (a, b, i) ̸= (1,m,−1).
Then for any c = 0, 1, . . . ,m− 1 the image τc(J ) ⊂ B is spanned by the subspaces
n̂cB and EcB.

By using the relations (2.1) one can check that the subspace n̂c ⊂ ŝlm is
preserved by the adjoint action of the elements Ec, Fc,Hc. So we have ξc(XY ) ∈ J
for any X ∈ n̂c and any Y ∈ B; see (3.4). To prove Proposition 3.2 it remains to
show that ξc(Ec Y ) ∈ J for any Y ∈ B. By using the relations (3.7), this can be
shown by the same calculation as in the proof of [7, Prop. 3.2]. �

Proposition 3.2 allows us to define for c = 0, 1, . . . ,m− 1 a linear map

η c : B/J → B/J

as the composition ξ̄c τc applied to the elements of B which are taken modulo the
subspace J. This definition also goes back to [16], and we will call η 0, η 1, . . . , ηm−1

the Zhelobenko operators on B/J. The next proposition states their key property;
for its proof see [10, Sect. 6]. As in the beginning of Subsection 2.4, here we will
let the indices c of the operators η c run through Z, assuming that η c+m = η c.

Proposition 3.3. The operators η 0, η 1, . . . , ηm−1 on B/J satisfy the relations

η c η c+1 η c = η c+1 η c η c+1; η c η d = η d η c for c− d ̸= ±1 mod m.

Corollary 3.4. For any reduced decomposition τ = τc . . . τd in the group Tm the

composition η c . . . η d of operators on B/J does not depend on the choice of the

decomposition of τ .

By the definition given in Subsection 2.4, the action of the element π ∈ Rm

on the Lie algebra ŝlm maps Ec, Fc,Hc respectively to Ec+1, Fc+1,Hc+1. If the
index c + 1 here is m, it should be then replaced by 0. Furthermore, the action
of the element π on ŝlm preserves the subalgebra n̂. Hence the action of π on B
determines its action on the quotient B/J. It now follows from the definition (3.4)
that on B/J we have

π η c = η c+1 π. (3.8)

3.5. Using the right action of the Lie subalgebra n̂ ′ ⊂ ŝlm, introduce the vector
subspaces

J ′ = B n̂ ′ ⊂ B and J ′ = B n̂ ′ ⊂ B .

For any c = 0, 1, . . . ,m− 1 consider the image τc(J
′) ⊂ B.

Proposition 3.5. We have ξ̄c( τc(J
′)) ⊂ J + J ′.

Proof. Note that τc(Ec) = Fc. If c > 0 then let n̂ ′
c be the subspace of ŝlm spanned

by all the elements Eab t
i where i > 0, and by those elements Eab where a < b

but (a, b) ̸= (c, c + 1). Further, let n̂ ′
0 be the subspace of ŝlm spanned by all

the elements Eab where a < b, and by those elements Eab t
i where i > 0 but
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(a, b, i) ̸= (m, 1, 1). Then for any c = 0, 1, . . . ,m − 1 the image τc(J
′ ) ⊂ B is

spanned by the subspaces
B n̂ ′

c and BFc.

By using the relations (2.1) one can check that the subspace n̂ ′
c ⊂ ŝlm is

preserved by the adjoint action of the element Fc. Hence we have ξc(XY ) ∈ J ′

for any X ∈ n̂ ′
c and any Y ∈ B; see the definition (3.4). Further, note that

ξc(Y Fc) = ξc(Y )Fc for any Y ∈ B, because adFc
(Y Fc) = adFc

(Y )Fc. The proof
of Proposition 3.5 can be now completed by showing that here ξc(Y )Fc ∈ J. By
using (3.7), the latter inclusion is obtained by the same calculation as in the proof
of [7, Prop. 3.5]. �

By Proposition 3.5 for c = 0, 1, . . . ,m−1 the Zhelobenko operator η c determines
a linear map

B/(J + J ′) → B/(J + J ′).

Recall that ℓ = κ−m by an assumption made in Subsection 2.3. Denote by I the
subspace B (C−ℓ ) ⊂ B. Similarly, denote by Ī the subspace B (C−ℓ ) ⊂ B. Since

C ∈ ŝlm is central, the Zhelobenko operator η c also determines a linear map

B/(J + J ′ + Ī ) → B/(J + J ′ + Ī ). (3.9)

Observe that the vector space B/(J + J ′ + Ī ) coincides with the space of n̂-

coinvariants of the ŝlm-module (2.2) where the tensor factor V is the universal

Verma module of level ℓ. Namely, here V is the quotient of the universal enveloping
algebra U(ŝlm) by the left ideal generated by n̂ ′ and by the element C− ℓ. This V
satisfies the annihilation condition stated before (2.6). By applying Corollary 2.2

to this ŝlm-module V , we define an action of the Cherednik algebra CN on the
quotient vector space B/(J + J ′ + Ī ).

Note that the action of the element π on B also determines a linear map (3.9).
For κ ̸= 0 this map does not commute with the action of CN ; see Corollary 2.5.
However, we still have the following theorem.

Theorem 3.6. For c = 0, 1, . . . ,m − 1 and ℓ = κ − m the linear map (3.9)
determined by the Zhelobenko operator η c commutes with the action of CN .

Proof. First consider the linear map (3.9) determined by the Zhelobenko operator
η c for any c > 0. This map commutes with the action of CN by the definition (3.4)
of corresponding operator ξ c : B → B; see Corollary 2.2(ii). Here we also use the
observation that for any c > 0 the action of τc on B commutes with multiplications
by the variables x1, . . . , xN and with permutations of these variables in the tensor
factor PN of B, commutes with permutations of the N tensor factors C

m of B,
and commutes with (2.7) if (2.7) is regarded as an operator on B using the left

multiplication by elements of ŝlm in the tensor factor U(ŝlm) of B.
Consider the linear map (3.9) determined by the Zhelobenko operator η 0. We

can write η 0 = π−1 η 1 π; see the end of Subsection 3.4. The action of the element
π ∈ Rm on B commutes with multiplication by the variables x1, . . . , xN in the
tensor factor PN of B, and also commutes with simultaneous permutations of
these variables and of the corresponding N tensor factors Cm of B. By using the
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argument from the previous paragraph when c = 1, and by applying Corollary 2.5
when V is the universal Verma module of level ℓ, we can now complete the proof
of our theorem. If we denote simply by υ the linear map (3.9) determined by the
Zhelobenko operator η 1, then for any p = 1, . . . , N we have

π−1 υ π θ p = π−1 υ
(
θ p +

κ

m
id
)
π = π−1

(
θ p +

κ

m
id
)
υ π = θ pπ

−1υπ. �

The group Tm generated by τ0, τ1, . . . , τm−1 can be regarded as the Weyl group

of the affine Lie algebra ŝlm. The quotient of Rm by the relation πm = 1 can
be then regarded as the extended Weyl group of ŝlm. These two facts underline
our definition of the operators η 0, η 1, . . . , ηm−1. In the next section we will apply
Theorem 3.6 when the universal Verma module V of level ℓ appearing above is
replaced by the usual Verma module M

β̂
of ŝlm.

4. Intertwining operators

4.1. Using the right action of the Lie subalgebra ĥ ⊂ ŝlm, take the vector subspace

B (Eaa − Ebb − µa + µb) ⊂ B where 1 6 a < b 6 m.

This subspace depends on the weight µ ∈ t∗ via its restriction β to h ⊂ t . Let
I
β̂
be the sum of all these subspaces and of the subspace I ⊂ B introduced just

before stating Theorem 3.6. As an ŝlm-module, the quotient B/( J ′ + I
β̂
) can be

identified with
PN ⊗ (Cm)⊗N ⊗M

β̂
= AN (M

β̂
). (4.1)

Here ŝlm acts on the quotient via the left action of the algebra U(ŝlm) on its
bimodule B.

Now suppose that the sequence (µ1, . . . , µm) of complex numbers obeys the
conditions

µa − µb /∈ Z+ ℓZ for 1 6 a < b 6 m. (4.2)

Note that then the sequence λ = (λ1, . . . , λm) obeys the same conditions, since
λa − µa ∈ Z for a = 1, . . . ,m by our assumption. Similarly to I

β̂
, denote by Ī

β̂

the sum of all subspaces

B (Eaa − Ebb − µa + µb) ⊂ B where 1 6 a < b 6 m,

and of the subspace Ī. As a module of ŝlm, the quotient B/( J ′ + Ī
β̂
) can be also

identified with (4.1). The quotient B/( J + J ′ + Ī
β̂
) is then identified with the

space AN (M
β̂
) n̂ of n̂-coinvariants of (4.1).

The shifted action of the affine Weyl group Rm on t̂ ∗ determines an action of
Rm on ĥ ∗. We use the same symbol ◦ to denote the latter action. Then by (3.2)

τc ◦ β̂ = τc( β̂ + εc) for c = 0, 1, . . . ,m− 1.
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Here the summand εc defined in Subsection 3.1 is regarded as a linear function
on the vector space ĥ by restriction from t̂. Due to (3.6) and to the last displayed
equality, we have

ξ̄c( τc( Ī β̂ )) ⊂ J + Ī
τc◦β̂

.

So the Zhelobenko operator η c defined in Subsection 3.4 determines a linear map

B/( J + J ′ + Ī
β̂
) → B/( J + J ′ + Ī

τc◦β̂
); (4.3)

see also Subsection 3.5. Via the identifications described above, (4.3) becomes a
linear map

AN (M
β̂
)n̂ → AN (M

τc◦β̂
)n̂.

Then by (3.5) the restriction of (4.3) to the subspace of vectors of weight α̂ becomes
a linear map

AN (M
β̂
) α̂n̂ → AN (M

τc◦β̂
) τc◦α̂
n̂

. (4.4)

Now consider the action of the element π ∈ Rm on B. This action preserves
the subspaces J and J ′ of B. Further, by the definition of the subspace Ī

β̂
of B

we have
π( Ī

β̂
) = Ī

π( β̂ ).

Here we employ the usual, not shifted action of Rm on t̂ ∗. But we also have
π( β̂ ) = π◦β̂; see again Subsection 3.1. Hence the action of π on B determines a
linear map

B/( J + J ′ + Ī
β̂
) → B/( J + J ′ + Ī

π◦β̂
). (4.5)

Via the identifications described above, (4.5) becomes a linear map

AN (M
β̂
)n̂ → AN (M

π◦β̂
)n̂

Then the restriction of (4.5) to the subspace of vectors of weight α̂ becomes a
linear map

AN (M
β̂
) α̂n̂ → AN (M

π◦β̂
)π◦α̂n̂ . (4.6)

4.2. In Subsection 2.3 we did already assume that ℓ = κ − m. Under this
assumption, by Theorem 3.6 the action of the algebra CN on the vector space
B/(J+ J ′+ Ī ) commutes with the linear map (3.9) determined by the Zhelobenko
operator η c for c = 0, 1, . . . ,m−1. Further, since the action of CN on B commutes
with the right action of U(ŝlm), the algebra CN acts on the source and target
vector spaces of the linear map (4.3). Moreover, the map (4.3) intertwines these
two actions.

Therefore the linear map (4.4) corresponding to (4.3) is also CN -intertwining.
Indeed, the action of CN on (4.1) defined in Subsection 2.2 corresponds to the

action of CN on B/( J ′ + I
β̂
). Similar correspondence holds for τc ◦ β̂ instead of β̂.

We can replace the source and target CN -modules in (4.4) by their isomorphic
modules, using Proposition 2.3. The value of f appearing in that proposition is
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the same for the sequence µ and for the sequence τc ◦µ instead of µ; see the end
of Subsection 3.2. Hence our replacement modules in (4.4) will be pullbacks of

respectively Ŝ λ
µ and Ŝ τc◦λ

τc◦µ
relative to the same automorphism (1.5). By applying

the inverse of this automorphism, the Zhelobenko operator η c now determines an
CN -intertwining linear map

Ŝ λ
µ → Ŝ τc◦λ

τc◦µ
. (4.7)

Note that because ℓ = κ − m, the conditions (4.2) on the sequence µ can be
restated as

µa − µb /∈ Z+ κZ for 1 6 a < b 6 m.

Under the latter conditions both the source and target CN -modules in (4.7) are
irreducible by [1, Prop. 2.4.3]. Hence any intertwining linear map between them is
unique up to a factor from C. In the next subsection we will determine this scalar
factor for the intertwining map determined by the Zhelobenko operator η c.

Now consider the map (4.5) and the corresponding map (4.6), which are deter-
mined by the action of the element π ∈ Rm on B. The map (4.6) is not CN -
intertwining unless κ = 0; see Corollary 2.5. However, it will become intertwining
if we replace the target CN -module in (4.6) by its pullback via the automorphism
(1.5) of CN where f = κ/m.

We can now replace the source and target CN -modules of the latter intertwining
operator by their isomorphic modules, again using Proposition 2.3. The source
module can be replaced by the pullback of Ŝ λ

µ relative to the automorphism (1.5)
where f = − (µ1 + · · · + µm)/m. The target module here can be replaced by the

pullback of Ŝ π◦λ
π◦µ relative to (1.5) where

f = − (µ1 + · · ·+ µm + ℓ+m)/m+ κ/m = − (µ1 + · · ·+ µm)/m.

Here we used the formula for π◦µ given in Subsection 3.1. Since the values of f
for the source and the target replacement modules are the same, the action of π
on B now determines a CN -intertwining operator

Ŝλ
µ → Ŝ π◦λ

π◦µ . (4.8)

By the irreducibility of the source and of target induced CN -modules here, the
latter operator must coincide with the intertwining operator from [13] up to a
scalar multiplier.

Any element of Rm has a reduced decomposition of the form π gτc · · · τd where
g is the degree of this element relative to the Z-grading defined in Subsection 2.4.
By using Corollary 2.4 and the relation (3.8), the composition of linear maps

π gη c · · · η d : B/J → B/J

now determines a CN -intertwining operator Ŝλ
µ → Ŝ π gτc···τd◦λ

π gτc···τd◦µ
. It is defined as

a composition of intertwining operators of the form (4.7),(4.8) corresponding to
generators of Rm. This is the intertwining operator mentioned in the Introduction,
where ω is now the image of the element π gτc · · · τd under the isomorphism of
groups Rm → Sm ⋉ Z

m. Indeed, under this isomorphism the shifted actions of
the two groups on λ and µ correspond to each other.
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4.3. Here we will provide explicit formulas for the maps (4.3) and (4.5) determined
by the Zhelobenko operator η c with c = 0, 1, . . . ,m − 1 and by the action of the
element π ∈ Rm. For 1 6 a1, . . . , aN 6 m and i1, . . . , iN ∈ Z consider the element

Y i1...iN
a1...aN

= xi1
1 · · ·xiN

N ⊗ ea1
⊗ · · · ⊗ eaN

⊗ 1 ∈ B.

Due to the Poincaré-Birkhoff-Witt theorem for the universal enveloping algebra
U(ŝlm), the images of all these elements in the source quotient vector space of the
maps (4.3) and (4.5) make a basis in this quotient. Now suppose that the numbers
1, . . . ,m occur respectively ν1, . . . , νm times in the sequence a1, . . . , aN . Then the
image of the element Y i1...iN

a1...aN
in the source quotient has weight α̂ relative to the

left ĥ-module structure on the quotient. This is because the image of the element
1 ∈ U(ŝlm) in the Verma module M

β̂
has weight β̂.

Proposition 4.1. For 1 6 c < m, the Zhelobenko operator η c maps the image of

Y i1...iN
a1...aN

in the source quotient in (4.3) to the image of the next sum of elements

of B in the target quotient:

min(νc,νc+1)∑

h=0

∑

b1, ..., bN

h! (λc+1 − λc − 1) Y i1...iN
b1...bN

h∏

s=0

1

µc+1 − λc + s− 1

where b1, . . . , bN is a sequence obtained from a1, . . . , aN by changing νc − h terms

c to c+ 1, and also changing νc+1 − h terms c+ 1 to c.

Proof. Applying the action of τc on B to the element Y i1...iN
a1...aN

amounts to replacing
every c in the sequence a1, . . . , aN by c+1, and the other way round. Let d1, . . . , dN
be the sequence so obtained. Apply the operator ξc to the resulting element of B
by using (3.4). Note that for any n = 0, 1, 2, . . . we have an equality in B

E n
c adn

Fc
(Y i1...iN

d1...dN
) = xi1

1 · · ·xiN
N ⊗ E n

c (Fn
c (ed1

⊗ · · · ⊗ edN
)⊗ 1).

Modulo the subspace J ′ ⊂ B, the element of B displayed here at the right-hand
side equals

xi1
1 · · ·xiN

N ⊗ E n
c Fn

c (ed1
⊗ · · · ⊗ edN

)⊗ 1.

In its turn, the last displayed element equals the sum of elements of the form
Y i1...iN

b1...bN
taken with certain multiplicities. Here the multiplicity is the number of

ways the sequence b1, . . . , bN can be obtained from d1, . . . , dN by consecutively
replacing any n occurences of c by c + 1, and then consecutively replacing any n
occurences of c+ 1 by c in the result.

Denote by h the number of those terms of the sequence d1, . . . , dN which are
equal to c, but change to c + 1 in the sequence b1, . . . , bN . Obviously h 6 νc+1.
When passing from d1, . . . , dN to b1, . . . , bN as above, the numbers of occurences
of 1, . . . ,m remain the same. Therefore h is also the number of those terms of the
sequence d1, . . . , dN which are equal to c+1, but change to c in b1, . . . , bN . Hence
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h 6 νc. The above stated multiplicity is not zero only if h 6 n 6 νc+1. In this
case it is equal to

n!n! (νc+1 − h)!

(n− h)! (νc+1 − n)!
.

It follows that modulo the subspace J ′ ⊂ B, the element ξc(Y
i1...iN
d1...dN

) of B equals

min(νc,νc+1)∑

h=0

∑

b1, ..., bN

νc+1∑

n=h

n! (νc+1 − h)!

(n− h)! (νc+1 − n)!H
(n)
c

(Y i1...iN
b1...bN

) (4.9)

where b1, . . . , bN range as in Proposition 4.1. Here the sum over n = h, . . . , νc+1 can
be computed by the Gauss formula for the hypergeometric function F(u, v, w; z)
at z = 1,

F(u, v, w; 1) =
Γ(w) Γ(w − u− v)

Γ(w − u) Γ(w − v)

which is valid for any u, v, w ∈ C where w ̸= 0,−1, . . . and Re(w − u − v) > 0.
By setting u = h − νc+1 and v = h + 1 in that formula, we obtain an equality of
rational functions in w

νc+1∑

n=h

(−1)n−h n! (νc+1 − h)!

h! (n− h)! (νc+1 − n)!

n−h−1∏

s=0

1

w + s
=

νc+1−h−1∏

s=0

w − h+ s− 1

w + s
.

Replacing the complex variable w by the element h −Hc ∈ U(h) in this equality,
the sum of the fractions in (4.9) taken over the indices n = h, . . . , νc+1 equals

h!
h−1∏

s=0

1

Hc − s
·

νc+1−h−1∏

s=0

Hc − s+ 1

Hc − s− h
= h! (Hc + 1)

h∏

s=0

1

Hc − νc+1 + s+ 1
.

On the other hand, we also know that the image of the element (4.9) of B in the

target quotient in (4.3) has weight τc ◦ α̂ relative to the left ĥ-module structure on
the quotient. So when computing the image, we can replace the element Hc ∈ h

in (4.9) by the weight value

(τc ◦ α̂) (Hc) = λc+1 − λc − 2.

Using the relation λc+1 − νc+1 = µc+1, we now complete the proof. �

The action of π on B maps the element Y i1...iN
a1...aN

to Y j1...jN
b1...bN

where bp = ap + 1
and jp = ip − δapm for p = 1, . . . , N . Using this observation and (3.8) for c = m,
the next result can be derived from Proposition 4.1. It can also be obtained by
directly following the arguments employed in the proof of that proposition.

Proposition 4.2. For c = 0, the Zhelobenko operator η 0 maps the image of

Y i1...iN
a1...aN

in the source quotient in (4.3) to the image of the next sum of elements

of B in the target quotient:

min(ν1,νm)∑

h=0

∑

b1, ..., bN

h! (λ1 − λm − ℓ− 1) Y j1...jN
b1...bN

h∏

s=0

1

µ1 − λm − ℓ+ s− 1
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where

jp = ip + δap1 − δ bp1 = ip − δapm + δ bpm for p = 1, . . . , N

whereas b1, . . . , bN is a sequence obtained from a1, . . . , aN by changing ν1−h terms

1 to m, and also changing νm − h terms m to 1.
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