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We study exciton-polariton nonlinear optical fluids in the high momentum waveguide regime for the first
time. We demonstrate the formation of dark solitons with the expected dependence of width on fluid
density for both main classes of soliton-forming fluid defects. The results are well described by numerical
modeling of the fluid propagation. We deduce a continuous wave nonlinearity more than ten times that on
picosecond time scales, arising due to interaction with the exciton reservoir.
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Exciton polaritons are half-light half-matter quasipar-
ticles resulting from strong coupling between photons and
quantum-well (QW) excitons [1]. They behave like photons
but experience nonlinearity at least 1000 times larger than
in weakly coupled semiconductors due to exciton-exciton
scattering [2]. In a waveguide geometry [3] the propagation
of light is dominated by the high momentum β and velocity
in the propagation direction z. The envelope of the optical
field evolves slowly compared to the wavelength 2π=β,
which leads to its evolution equation becoming formally
analagous to the nonlinear Schrodinger (NSE) or Gross-
Pitaevskii (GPE) equations, but with z playing the role of
time [4]. This high-momentum paraxial regime has been
exploited for photonic simulation of complex Hamiltonians
[5–9]. The high velocity and ease of growth and fabrication
also make waveguides promising for nonlinear polaritonic
circuits, simulators, and studies of topological phases [10].
Among the most fundamental solutions of the GPE are
dark solitons [11–21]. These are self-localized dark notches
on an infinitely extended bright background accompanied
by a phase jump at the center. In the field of nonlinear
optics they offer potential applications in all-optical signal
processing [22]. The giant polariton nonlinearity allows
dark soliton formation at the submillimeter length scales
needed for on-chip integration [19], a regime previously
inaccessible due to weak photon-only nonlinearities.
In this work we experimentally study spatial dark

polariton soliton formation in the high-momentum regime
for the first time. We resonantly inject both main classes of

initial condition from which dark solitons form. A phase
jump in the input field leads to the formation of a single
soliton while an amplitude defect gives a pair of solitons
with opposite phase jumps across their cores. Solitons are
formed within 600 μm at cw powers less than 30 mW. In
Bragg microcavities dark-solitonlike features were previ-
ously reported [19–21]. As discussed in Ref. [23] some of
the signatures used to show polariton dark soliton for-
mation may also occur in the linear regime for particular
input conditions so that previous observations of polariton
dark solitons have been the cause of controversy [23–25].
The self-localized nature of dark solitons arises from the
balance of the kinetic energy associated with the localized
defect, determined by its width, and the nonlinear potential
energy, proportional to the density n of the background
(analogous to the case of quantized vortices in a polariton
condensate [26]). Thus the unambiguous signature of
dark solitons, which we demonstrate in this paper, is that
the width should be determined by the density [23].
Quantitatively, the width decreases with increasing density
according to Eq. (1), which follows from the analytical
dark-soliton solution of the GPE [11,12,27],

ðX0=1.7627Þ2 ¼ vg;LP=ðβgnÞ: ð1Þ

Here X0 is the notch full width halfway between minimum
and maxima, vg;LP ¼ 24 μmps−1 and β ¼ 23.7 μm−1 are
the polariton group velocity and wave number, and ℏg is
the polariton-polariton interaction energy per unit polariton
density. To establish soliton behavior, this width-density
criterion should be evaluated over a range of densities and
for multiple defect types to exclude coincidental similarity
to soliton profiles in particular cases [25].
Compared to microcavities our waveguide is effectively

one dimensional in the coordinate, x, transverse to the fluid
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flow, with z being the evolution coordinate. As discussed
above it operates in the paraxial regime and is described
by qualitatively different physics to microcavities.
Experimentally, the range of densities over which solitons
can be studied in microcavities is limited because the fluid
speed of sound, which increases with density, exceeds the
flow velocity and prevents the nucleation of solitons [19]
before the soliton width strongly deviates from its low
density value [24]. The waveguide geometry allows injec-
tion of arbitrary initial density and field profiles, which then
evolve into solutions of the GPE. The fluid velocity in
waveguides (24 μmps−1 at this detuning) is at least ten
times larger than in microcavities and so is always well
above the sound velocity (up to 4.8 μmps−1 at our highest
densities [28]). We are therefore able to study the soliton
core size varying over a wide range of background densities
and verify the width-density criterion. The initial fields and
hence dynamics in the linear regime are fully characterized
so that the deviations caused by the nonlinearity are clear,
providing conclusive proof for the generation of polariton
dark solitons.
There is also still a great deal of experimental uncertainty

over the precise nature and strength of the polariton non-
linearity that underlies polariton soliton formation, with
estimates of the interaction strength varying over 3 orders
of magnitude [29–35]. A quantitative understanding of these
interactions is important as they underpin efforts towards
polariton fermionization [36–38] and strongly quantum-
correlated states in polaritonic lattices [39–41]. Here we
use the variation of the soliton core size with polariton
density to investigate the polariton nonlinearity in the cw
regime. The waveguide geometry allows the accurate deter-
mination of the absolute polariton density inside the wave-
guide [42].We thus deduce an interaction constant more than
an order of magnitude larger than previously observed in the
picosecond pulsed regime [2]. Using a numerical model of
coherently coupled waveguide photons and excitons and an
incoherent reservoir generated by scattering of the excitons
we self-consistently fit all experimental features using a
single value of the interaction strength. This provides a
quantitative measure of the absolute size of the polariton
interactions whereas previous investigations of excitonic
reservoirs considered the spin anisotropy [33,43,44].
The sample used in this work is the same as that in

Ref. [2,45]. A schematic of the experiment is shown in
Fig. 1(a). Figure 1(b) shows the polariton dispersion with the
avoided crossing between uncoupled photon and exciton
modes, characterized by Rabi splitting ℏΩ ¼ 9 meV.
Experiments were performed at 10 K. A cw laser beam
was modified using amplitude or phase masks and then
projected onto an input grating coupler [see Fig. 1(a)] [2,45].
The input transverse profile was a 29 μm FWHM Gaussian
with either a phase jump or intensity dip near the center,
corresponding to the two classes of initial conditions we
investigate [46]. The polariton fluid undergoes nonlinear

evolution in a 600 μm unpatterned region of planar wave-
guide and the light was collected by a second grating coupler
and imaged onto a CCD camera.
We first consider the case of the phase jump initial

condition. Figure 2(a) shows the intensity profile of the
incident beam and the beam after propagation through the
waveguide in the linear and nonlinear regimes. The input
profile is Gaussian with a narrow dark notch near the center.
At low excitation powers the nonlinearity is negligible and
the diffraction of the discontinuous phase in the input field

(a)

(b)

FIG. 1. (a) Schematic of polariton waveguide, and (b) lower
polariton dispersion relation seen in the angle resolved
photoluminescence spectrum.
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FIG. 2. Dark-soliton formation from the phase jump initial
condition. (a) Experimental (points) and theoretical (full lines)
intensity profiles of input field and output fields at three
powers. (b) Experimental output phase at low and high power.
[(c) and (d)] Experimental (points) and theoretical (full lines)
power dependences of full width at one third maximum of
background and FWHM of dark notches.

PRL 119, 097403 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

1 SEPTEMBER 2017

097403-2



results in a broad dip in the center of the Gaussian
background [46]. The background itself is wide enough
that it does not experience significant diffraction over the
600 μm propagation length. Above ∼2 mW incident power
the background broadens under the influence of nonlinear
self-defocusing [4] while the notch width decreases,
eventually forming a single narrow notch in a broad bright
background, which is the expected profile for a single dark
soliton [11]. Figure 2(b) shows a typical phase profile of the
output field measured in a separate experiment for low and
high power. For both powers a phase jump near x ¼ 0 is
superimposed on a slowly varying background phase
arising from the Gaussian background. The shaded region
indicates the FWHM of the intensity notch at high power.
The phase jump at high power is close to the value of π
injected at the input [46], as expected in the case of a single
dark soliton [11]. Figures (c) and (d) show the pump power
dependences of the widths of the background and of the
dark notch. Crucially, the width of the notch narrows
significantly as the density increases. This width-density
dependence is exactly the trend expected for dark solitons
and is the key evidence for their formation. Later we show
that the rate of decrease with power is consistent with the
size of the polariton nonlinearity in the system so that the
width-density criterion for dark-soliton observation is
quantitatively satisfied.
We now consider the amplitude defect initial condition.

The field profiles are shown in Fig. 3(a). The intensity
notch is clearly seen in the input field. At high density a pair
of well-defined dark notches is present on the broad bright
background of the output field. Figure 3(b) shows the
difference in output phases between low and high power
cases. An important evidence of dark-soliton formation is
that there is a modification of the phase profile at high
densities such that two phase jumps of opposite sign occur

at the positions of the dark notches (shaded grey) that are
not present at low power. This shows that the nonlinear
interaction has generated the correct phase profile for a pair
of dark solitons seeded by an intensity defect in the initial
condition [11]. The relative depth of the dark notches in
the intensity also increases at higher densities, consistent
with the increased size of the phase jumps. As shown in
Fig. 3(d), the notch widths decrease with increasing
density, which, as for the phase defect, satisfies the
width-density criterion for observation of dark solitons.
Thus, we satisfy the criterion for multiple defect types and
do so over a range of densities, providing conclusive
evidence of soliton formation.
We now consider the origin and size of the nonlinear

interaction responsible for generating the solitons.
Figure 4(a) shows the measured output power from the
waveguide vs the incident power, which is linear up to
10 mW where the narrowing of the dark notches and
broadening of the background is already pronounced. From
the gradient and known losses [2] we determine that 20�
2% of the incident light couples into the guided mode [42].
The soliton width-density dependence formula Eq. (1)

may be used to deduce an order of magnitude estimate of
the effective size of the polariton-polariton interaction
constant g using the peak polariton density n and soliton
width X0, both measured at the waveguide output. Values
of g for several powers are shown in Fig. 4(b) and are in
the range 25–37 μeV μm2 for powers where the output vs
input power is linear. The amplitude and phase defects give
values that agree to within a factor of 2. The difference
arises because Eq. (1), strictly valid for homogeneous
backgrounds, becomes modified for the amplitude defect
where the solitons are on a region of finite slope [16]. Since
there is no analytic expression for the corrections we use
the unmodified Eq. (1) here but provide a full numerical
treatment later in the paper. We see that the value of g found
from the numerical treatment, which does not assume
soliton behavior, agrees with that found here using
Eq. (1). This verifies that the dark notches satisfy the
width-density dependence quantitatively as well as quali-
tatively, providing further evidence that they are dark
solitons. We note that for a dark soliton with width X0 ¼
7 μm the balanced nonlinear and diffraction lengths are
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FIG. 3. As Fig. 2 for the amplitude defect initial condition.
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conditions. (b) Nonlinearity deduced from soliton width.
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equal to βðX0=1.7626Þ2 ¼ 370 μm, which is less than the
device length L ¼ 600 μm. We can therefore be sure that
solitons narrower than this are able to form in our
device [27].
The values of g we obtain are more than 2 orders of

magnitude larger than g ¼ 0.3 μeV μm2, which we previ-
ously deduced for dark and bright solitons using very
similar structures but with picosecond pulses [2]. Scaling
to account for the different detuning δ ¼ −7.6 meV in those
measurements gives g ¼ 1.5 μeV μm2, still over an order of
magnitude less than we see here. This may occur if some of
the polaritons are transferred into an excitonic reservoir
with a lifetime long compared to the picosecond pulses.
In the steady state the reservoir population will be larger
than that of strongly coupled excitons by the ratio of its
lifetime to excitation time, providing an excess exciton
population that makes the polariton interaction appear
stronger than it really is. The time scale of picosecond
pulses is short compared to the reservoir excitation rate so
no significant extra population builds up and only the
strongly coupled exciton population contributes to the
nonlinearity. The reservoir may be generated by scattering
into excitonic states in the tail of the inhomeogeneously
broadened exciton line [47,48], for which the density of
states is much larger than for polaritons. Alternatively,
the reservoir can be composed of localized, indirect, or
otherwise dark excitons [43,44,49–51]. We support the idea
of a time-scale-dependent interaction constant with addi-
tional time-resolved experiments presented in Supplemental
Material [52].
We now consider a numerical model that provides a

self-consistent fit to all features of the experimental data.
Polaritons propagating in the waveguide are described by
Eqs. (2) for the slowly varying coupled photon and exciton
envelope amplitudes A and ψ and the reservoir density nR.

�
i
∂
∂tþ iγp þ vg

�
i
∂
∂zþ

1

2βe

∂2

∂x2
��

A ¼
�
Ω
2

�
ψ ; ð2aÞ

�
i
∂
∂tþ iðγe þ γrÞ − gxðjψ j2 þ nRÞ

�
ψ ¼

�
Ω
2

�
A; ð2bÞ

∂nR
∂t ¼ 2γrjψ j2 − 2γRnR: ð2cÞ

Here, vg ¼ 58 μmps−1 and βe ¼ 23.6 μm−1 are the
photon group velocity and wave number at the exciton
frequency extracted from the fit to the dispersion relation
in Fig. 1(b). The loss rates γp and γr are due to photon
tunneling through the cladding and loss of excitons due to
scattering to the reservoir while γe quantifies all other
exciton loss channels. The reservoir decay rate is γR.
The total homogeneous exciton linewidth ℏðγe þ γrÞ ¼
13.2 μeV and ℏγp ¼ 32.9 μeV were obtained from an

independent fit to the spectral dependence of the loss
length [53]. The (polarization averaged) exciton interaction
energy per unit exciton density in one QW is given by ℏgx.
In the steady state, where ∂nR=∂t ¼ 0, Eq. (2c) can be

rearranged to give nR ¼ ðγr=γRÞjψ j2. Substituting this into
Eq. (2), the nonlinearity gxðjψ j2 þ nRÞ becomes geff jψ j2
where geff ¼ gxð1þ γr=γRÞ is an effective exciton-exciton
scattering that accounts for the fact that for every strongly
coupled exciton the reservoir contains another γr=γR
incoherent excitons. For cw driving we use the ansatz
A ¼ Aðx; zÞ exp ð−iδtÞ, and likewise for ψ, and eliminate ψ
using Eq. (2b) to leave a generalized GPE for ∂Aðx; zÞ=∂z
in terms of A [54]. This was solved using a standard split-
step Fourier method [4].
The model output is plotted as solid lines in Figs. 2 and

3. Good semiquantitative agreement is achieved with all
intensity profiles [panels (a)] and with the dark notch and
background widths [panels (c) and (d)] at all powers. The
only adjustable parameter ℏgeff ¼ 220 μeVμm2 fits all the
above data for both initial conditions at once so the model
provides a self-consistent explanation of all features. The
effective polariton-polariton interaction g corresponding to
the above exciton-exciton interaction is obtained using
ℏg ¼ ℏgeffjXj4=Nw ¼ 25 μeV μm2 where jXj2 ¼ 0.58 is
the exciton fraction andNw ¼ 3 is the number of QWs [29].
This value is in good agreement with ℏg ¼ 25–37 μeV μm2

found earlier by applying Eq. (1) to the measured notch
widths and densities. Thus, as noted earlier, the notch width
power dependence is in quantitative agreement with the
width-density dark-soliton criterion. At elevated powers the
g inferred from Eq. (1) increases due to additional nonlinear
processes that likely also cause the nonlinear loss evident
in Fig. 4(a). We finally note that literature values for ℏgeff
vary between 2 and 1740 μeV μm2 [29,30,34,35,55], which
suggests a strong sample dependence of the cw non-
linearity. The influence of the reservoir on the interactions
is a likely possible explanation for this sample dependence.
In conclusion, we have shown dark-soliton formation in

a high velocity polariton fluid in the paraxial waveguide
system. We observe dark notches with associated phase
discontinuities that clearly vary between the linear and high
density regimes. We have studied two different defect types
and fully characterized the behavior in the linear regime
so the effect of the nonlinearity is clear. The width of the
features has the expected quantitative dependence on the
background fluid density for a range of defects and
densities, fulfilling the criterion for conclusive observation
of polariton dark solitons. The experimental soliton and
background field dynamics for both initial conditions are
well reproduced using a numerical model of coupled
photon, exciton, and reservoir evolution equations. We
deduce a cw polariton-polariton interaction strength more
than an order of magnitude larger than on a picosecond
time scale, which may be attributed to the interaction of
polaritons with the reservoir.
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Data supporting this study are openly available from the
University of Sheffield repository [56]
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