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QUANTISATION OF KADOMTSEV-PETVIASHVILI EQUATION

K K KOZLOWSKI1, E SKLYANIN2, AND A TORRIELLI3

Abstract. A quantisation of the KP equation on a cylinder is proposed that is equiv-
alent to an infinite system of non-relativistic one-dimensional bosons carrying masses
m = 1, 2, . . . The Hamiltonian is Galilei-invariant and includes the split Ψ†

m1
Ψ†

m2
Ψm1+m2

and merge Ψ†
m1+m2

Ψm1
Ψm2

terms for all combinations of particles with masses m1, m2

and m1 + m2, with a special choice of coupling constants. The Bethe eigenfunctions
for the model are constructed. The consistency of the coordinate Bethe Ansatz, and
therefore, the quantum integrability of the model is verified up to the mass M = 8
sector.

1. Introduction

The Kadomtsev-Petviashvili (KP) equation [10]

ϕtσ − ϕxx − 2β(ϕϕσ)σ + γϕσσσσ = 0, (1.1)

is one of the most studied nonlinear integrable equations in 2+1 variables (σ, x; t). The
aim of the present paper is to construct a quantised version of KP while preserving its
integrability.

A warning: For reasons explained below, we have deliberately deviated from the stan-
dard notation of [10] by changing the conventional variable x to σ and y to x.

Traditionally, KP is considered as an equation in (2+1)-dimensional space-time, both
variables σ and x playing the role of spatial variables. For our purposes, however, we
take a different stance, viewing only x as a genuine spatial variable and downgrading σ
to a mere label indexing the continuum of fields ϕ in (1+1)-dimensional space-time. The
notation (σ, x) stresses the changed roles of the two variables.

We also choose x to run from −∞ to ∞, whereas imposing the periodicity condition
σ ≡ σ + 2π on σ. We assume that ϕ → 0 sufficiently fast as x → ±∞.

We have also introduced two real coupling constants β and γ into the equation. Though,
in the classical case, they can be removed by a rescaling of the variables x, σ, ϕ, they are
useful for the quantisation and for discussing the limiting cases. Note that the constants
β and γ may have arbitrary sign, the case γ > 0 corresponding to the so-called KP-I,
respectively γ < 0 to KP-II, and γ = 0 to the so-called dispersionless KP [17]. Since the
substitution ϕ := −ϕ results in changing the sign of β, one may assume that β ≥ 0.

The paper is organised as follows. In Section 2, we describe the Poisson structure and
the Hamiltonian of the classical model. In Section 3, we quantise the model using the
simplest normal ordering prescription for the Hamiltonian. Passing from the field ϕ(σ, x)
to its Fourier components in the variable σ we obtain the description of the system in

1Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-
69342 Lyon, France.

2Department of Mathematics, University of York, York YO10 5DD, UK
3Department of Mathematics, University of Surrey, Guildford, GU2 7XH, UK
Date: July 27, 2016.

1



QUANTISATION OF KADOMTSEV-PETVIASHVILI EQUATION 2

terms of the discrete infinite set of canonical fields Ψ†
m(x), Ψm(x) labelled by the index

m = 1, 2, 3, . . . and describing scalar nonrelativistic bosons of mass m. The Hamiltonian is
Galilei-invariant and includes the split Ψ†

m1
Ψ†

m2
Ψm1+m2 and merge Ψ†

m1+m2
Ψm1Ψm2 terms

for all combinations of particles with masses m1, m2 and m1 +m2, with a special choice
of coupling constants.

In Section 4, we describe the Fock space F of the system and introduce a convenient
notation to handle the infinite number of fields. We realise as well the action of the
Hamiltonian on the N -particle state as a differential operator with singular delta-function
coefficients.

Due to the conservation of the total mass M , the quantum-field-theoretic problem is
reduced to a sequence of quantum-mechanical problems in sectors of fixed mass M . The
structure of mass-M sector FM is analysed in Section 5. Since the number of particles is
not preserved, the sector FM splits into the orthogonal sum of subspaces F m

M labelled by
compositions m of number M . The corresponding wave functions are defined on Weyl
alcoves x1 < x2 < . . . < xN , where N is the length of m = (m1, m2, . . . , mN).

In Section 6, we interprete the delta-function terms in the Hamiltonian as jump condi-
tions for the derivatives of components of the wave function, and formulate the complete
set of differential equations and boundary conditions for the wave functions.

In Section 7, we solve the eigenvalue problem in the sector M = 2, and compute the
two-particle S-matrix, as a rational function having 3 poles and 3 zeroes. The two possible
arrangements of the poles are labelled as quantum KP-I and KP-II cases.

In Section 8, we formulate the Bethe Ansatz in the subsector F (1...1)
M containing only

particles of mass-1. The Bethe eigenfunction is written as a linear combination of plain
waves with the coefficients that reproduce the correct 2-particle S-matrices. In Section
9, we extend the Bethe Ansatz to the generic sector of particles with different masses,
and formulate the factorisation conjecture that allows one to reduce the verification of

the consistency equations to those for the subsector F (M)
M containing a single particle of

mass M . In Section 10, we analyse those equations and describe a solution that is verified
by means of computer algebra up to M ≤ 8. A more technical discussion of the involved
combinatorial issues is left for the appendices.

In the concluding Section 11 we sum up the results and discuss the unsolved questions
and perspectives.

2. Classical KP

In this paper, we use the following notation: Z = {0,±1,±2, . . .} stands for the set
of integers, N = {1, 2, 3, . . .} the set of natural numbers, N0 = {0, 1, 2, 3, . . .} the set of
non-negative integers, R the set of real numbers, S1 = R/2πZ a circle.

The classical Kadomtsev-Petviashvili (KP) integrable hierarchy [10] is formulated in
terms of a real-valued scalar field ϕ(σ, x) on the cylinder S1 × R. The field ϕ vanishes
sufficiently fast as x → ±∞ and has Poisson brackets

{ϕ(σ, x), ϕ(τ, y)} = 2πδ′(σ − τ)δ(x− y), σ, τ ∈ S1, x, y ∈ R. (2.1)

Due to the periodicity of ϕ(σ, x) in σ, the average of ϕ over S1 belongs to the center of
the bracket (2.1). In what follows we always set it to 0, assuming that

∫ 2π

0

dσ ϕ(σ, x) = 0 ∀x ∈ R. (2.2)



QUANTISATION OF KADOMTSEV-PETVIASHVILI EQUATION 3

Due to (2.2), the antiderivative ∂−1
σ on the space of functions with zero average over S1

is defined correctly (one can always choose the integration constant in a unique way).
There exists an infinite series of commuting Hamiltonians Hp, p = 0, 1, 2, . . .

{Hp, Hq} = 0 (2.3)

expressed as integrals of local (w.r.t. x) densities

Hp =

∫ 2π

0

dσ

2π

∫ ∞

−∞

dxhp(σ, x). (2.4)

hp(σ, x) =
1

2

(
∂−p
σ ϕ

)(
∂p
xϕ
)
+O(β) +O(γ), β, γ → 0 (2.5)

such that

h0(σ, x) =
1

2
ϕ2(σ, x), (2.6a)

h1(σ, x) =
1

2

(
∂−1
σ ϕ

)(
∂xϕ

)
, (2.6b)

h2(σ, x) =
1

2

(
∂−2
σ ϕ

)(
∂2
xϕ
)
+

β

3
ϕ3 +

γ

2
(∂σϕ)

2. (2.6c)

The corresponding equations of motion ∂tp = {·, Hp} are

ϕt0 = ϕσ, (2.7a)

ϕt1 = −ϕx, (2.7b)

ϕt2 = ∂−1
σ ϕxx + 2βϕϕσ − γϕσσσ. (2.7c)

Note that H0 and H1 are generators of translations in σ and x respectively.
Differentiating (2.7c) in respect to σ we obtain the KP equation in the form (1.1).
Note that the equations of motion (1.1) are invariant under the Galilei transform

x := x+ 2vt, σ := σ + vx+ v2t. The infinitesimal Galilei boost

B =

∫ 2π

0

dσ

2π

∫ ∞

−∞

dxxh0(σ, x), {ϕ,B} = xϕσ (2.8)

commutes with the Hamiltonians as follows:

{Hp, B} = −pHp−1. (2.9)

3. Quantisation

Using the correspondence principle [·, ·] ≃ i~{·, ·} and setting ~ = 1 we obtain from
(2.1) the commutation relations for the field ϕ(σ, x):

[ϕ(σ, x), ϕ(τ, y)] = 2πiδ′(σ − τ)δ(x− y), ϕ† = ϕ. (3.1)

The corresponding Fourier components

ϕ(σ, x) =
∑

n∈Z

an(x) e
−inσ, an(x) =

∫ 2π

0

dσ

2π
ϕ(σ, x) einσ, a0(x) = 0, (3.2)

form the Heisenberg (oscillator) Lie algebra [9]

[am(x), an(y)] = mδm+n,0δ(x− y), a†n(x) = a−n(x). (3.3)
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Consider the highest-weight (h.w.) module generated by the h.w. vector (vacuum) | 0〉
such that

an(x) | 0〉 = 0, n > 0. (3.4)

Equivalently, the h.w. module is isomorphic to the bosonic Fock space F generated by
the canonical creation/annihilation operators Ψ†

n(x) and Ψn(x)

Ψn(x) = n−1/2an(x), Ψ†
n(x) = n−1/2a−n(x), n ∈ N, x ∈ R, (3.5)

[Ψm(x),Ψ
†
n(y)] = δmnδ(x− y), Ψm(x) | 0〉 = 0, m, n ∈ N, x, y ∈ R. (3.6)

Our quantisation prescription for the HamiltoniansH0,H1 andH2 is to take the classical
expressions (2.6), replace ϕ with the quantum operators and apply the Wick normal
ordering: Ψ† to the left, Ψ to the right. The result is

H0 =

∫ 2π

0

dσ

2π

∫ ∞

−∞

dx :
1

2
ϕ2(σ, x) : =

∑

m∈N

m

∫ ∞

−∞

dxΨ†
m(x)Ψm(x), (3.7)

H1 =

∫ 2π

0

dσ

2π

∫ ∞

−∞

dx :
1

2

(
∂−1
σ ϕ

)(
∂xϕ

)
: = −i

∑

m∈N

∫ ∞

−∞

dxΨ†
m(x) ∂xΨm(x), (3.8)

H2 =

∫ 2π

0

dσ

2π

∫ ∞

−∞

dx :
1

2

(
∂−2
σ ϕ

)(
∂2
xϕ
)
+

β

3
ϕ3 +

γ

2
(∂σϕ)

2 :

= −
∑

m∈N

1

m

∫ ∞

−∞

dxΨ†
m(x) ∂

2
xΨm(x)

+
∑

m1,m2∈N

βm1m2

∫ ∞

−∞

dx
[
Ψ†

m1+m2
(x) Ψm1(x) Ψm2(x) + Ψ†

m1
(x) Ψ†

m2
(x) Ψm1+m2(x)

]

+
∑

m∈N

γm

∫ ∞

−∞

dxΨ†
m(x)Ψm(x), (3.9)

where
βm1m2 = βm2m1 = β

√
(m1 +m2)m1m2, γm = γm3. (3.10)

As in the classical case, H0 andH1 being, respectively, generators of σ- and x-translations,
commute between themselves and with H2. The quantum Galilei boost

B =

∫ ∞

−∞

dxx :
1

2
ϕ2(σ, x) :=

∑

m∈N

m

∫ ∞

−∞

dxxΨ†
m(x)Ψm(x) (3.11)

commutes with the Hamiltonians as follows:

[H0,B] = 0, [H1,B] = −iH0, [H2,B] = −2iH1. (3.12)

Physically, the Hamiltonian H2 describes a non-relativistic, Galilei-invariant system of
one-dimensional Bose-particles labelled by the integer index m that can be interpreted
as particle’s mass. The interaction is local. The cubic β-terms describe processes where
2 particles of masses m1 and m2 merge into one of mass m1 + m2 and the respective
splitting. The unitary transformation Ψm 7→ −Ψm, Ψ

†
m 7→ −Ψ†

m simply changes the sign
of β, so one may assume β ≥ 0. For β=0 the fields decouple, and one gets the theory of
free particles with masses m and the rest energy γm3.

A model with such kind of interaction was first proposed in [14], and its variants and
generalisations under the general name ‘Lee model’ were popular in 1950-60s as toy models
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in nuclear physics. Our variant of the Lee model is distinguished on several counts: first,
by being 1D, second, by using infinitely many fields, and third, by the specific choice of
coupling constants (3.10) that, as we are expecting, makes the theory integrable. Other
examples of integrable 1D models of Lee type that have been studied previously include
the N -waves model [12] and continuous magnet [19].

The crucial question is thus whether the integrability of the theory is preserved in
the quantum case. One way of checking the integrability would be to construct higher
commuting quantum Hamiltonians Hn, n ≥ 3 for which the normal ordering prescription
can not be expected to work. Moreover, the problem of higher local quantum Hamiltonians
is notoriously difficult even in a much simpler case of the quantum nonlinear Schrödinger
equation [18]: the higher Hamiltonians are known to be extremely singular and do not
have well-defined normal symbols [5, 6, 8].

As our test of integrability, we choose instead to construct an explicit formula for the
simultaneous eigenfunctions of H0, H1 and H2 by means of the coordinate Bethe Ansatz
and to show that the multiparticle S-matrices are factorised into 2-particles ones.

4. Fock space

The canonical operators Ψ†
m(x) and Ψm(x) are labelled by the pairs (m, x) ∈ N× R.

It is convenient to treat the pair of labels as a single composite entity ξ = (m, x), or
η = (n, y). Denoting δξη = δmnδ(x− y) we can thus rewrite (3.6) as

[Ψξ,Ψ
†
η] = δξη, Ψξ | 0〉 = 0. (4.1)

The bosonic Fock space F is decomposed into N -particle components spanned by the
vectors

| f〉 =
∞∑

N=0

1

N !

∑

m∈NN

∫

RN

dx1 . . .dxN fN

(
m

x

) N∏

j=1

Ψ†
mj
(xj) | 0〉 (4.2)

defined in terms of the N -particle wave functions

fN

(
m

x

)
= fN

(
m1, m2, . . . mN

x1, x2, . . . xN

)
= fN (ξ1, . . . , ξN) = fN(ξ) (4.3)

depending on N discrete indices m = (m1, . . . , mN ) ∈ NN and N continuous vari-
ables x = (x1, . . . , xN) ∈ RN , and symmetric with respect to permutations of the pairs
ξi = (mi, xi). We shall use the notation

(| f〉)N(ξ) ≡ fN (ξ) (4.4)

to refer to the N -particle component of the vector | f〉.
Using the shorthand notation, one can rewrite (4.2) as

| f〉 =
∞∑

N=0

1

N !

∫
dξNfN(ξ)

N∏

j=1

Ψ†
ξj
| 0〉 , (4.5)

where ∫
dξN =

∑

m∈NN

∫

RN

dx1 . . . dxN . (4.6)
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The norm of the vector | f〉 is

‖f‖2 = 〈f | f〉 =
∞∑

N=0

1

N !

∫
dξN |fN(ξ)|2 . (4.7)

From (4.1) and (4.5) the action of the canonical operators on the N -particle wave
function can be computed easily:

(
Ψη | f〉

)
N
(ξ1, . . . , ξN) = fN+1(ξ1, . . . , ξN , η), (4.8)

or, simply (
Ψη | f〉

)
N
(ξ) = fN+1(ξ, η). (4.9)

Respectively,

(
Ψ†

η | f〉
)
N
(ξ1, . . . , ξN) =

N∑

j=1

δηξjfN−1(ξ1, . . . , ξ̂j, . . . , ξN), (4.10)

where ξ̂j means omitting ξj.
From (4.9), and (4.10) one easily derives the action of the Hamiltonians H0, H1 and

H2 on the state | f〉 in terms of its N -particle components.
From (3.7) one computes that

(H0 | f〉)N
(
m

x

)
= |m| fN

(
m

x

)
, |m| = m1 + . . .+mN , (4.11)

measuring thus the total mass of an N -particle system.
Similarly, from (3.8) one derives that H1 is the total momentum operator (generator

of infinitesimal translation):

(H1 | f〉)N
(
m

x

)
= −i(∂x1 + . . .+ ∂xN

)fN

(
m

x

)
. (4.12)

From (3.9) the action of H2 on | f〉 takes the form:

(
H2 | f〉

)
N

(
m1 . . . mN

x1 . . . xN

)
= −

(
1

m1
∂2
x1

+ . . .+
1

mN
∂2
xN

)
fN

(
m1 . . . mN

x1 . . . xN

)

+ 2
∑

1≤i1<i2≤N

βmi1
mi2

fN−1

(
m1 . . . m̂i1 . . . m̂i2 . . . mN , mi1 +mi2

x1 . . . x̂i1 . . . x̂i2 . . . xN , xi1

)
δ(xi1 − xi2)

+

N∑

k=1

∑

n1,n2∈N
n1+n2=mk

βn1n2fN+1

(
m1 . . . m̂k . . . mN n1 n2

x1 . . . x̂k . . . xN xk xk

)

+ (γm1 + . . .+ γmN
)fN

(
m1 . . . mN

x1 . . . xN

)
. (4.13)

As in (4.10), the hat marks omitted arguments. Due to the symmetry of the wave
function, the order of the arguments is irrelevant, so we put the new arguments replacing
the omitted ones at the end of the list.

Whereas the operators H0 and H1 preserve the number N of particles, the Hamiltonian
H2 does not do so, due to the exchange terms Ψ†

m1+m2
Ψm1Ψm2 and Ψ†

m1
Ψ†

m2
Ψm1+m2 . How-

ever, since H2 commutes with H0, it preserves the mass M = m1+ . . .+mN instead. The
original quantum-field-theoretical model splits thus into a series of quantum-mechanical
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ones restricted to the eigenspaces FM of H0 which we call mass-M sectors. By (4.13), in
each mass-M sector the Hamiltonian H2 is represented by a multicomponent differential
operator with singular (delta-function) coefficients.

5. Structure of mass-M sector

To describe the structure of the mass-M sector of the Fock space in more details we
shall need a few definitions from combinatorics [20].

A composition m of a nonnegative integer M ∈ N is defined as a sequence m =
(m1, . . . , mN) of mi ∈ N such that m1 + . . .+mN ≡ |m| = M . The number N = ℓ(m) is
called length of the composition, and M = |m| its weight. The number of compositions
of M equals 2M−1.

We introduce a partial order ≻ on the set of compositions: m ≻ m̃ means that
ℓ(m̃) = ℓ(m)−1 and m̃ can be obtained from m by replacing an adjacent pair (mi, mi+1)
for some i = 1, . . . , ℓ(m)− 1 with mi +mi+1, that is

m = (m1, . . . , mi−1, mi, mi+1, mi+2, . . . , mN),

m̃ = (m1, . . . , mi−1, mi +mi+1, mi+2, . . . , mN).

The set of compositions m of M becomes then an ordered graph, with vertices m

and arrows pointing from m to m̃ if m ≻ m̃. The graph is topologically equivalent
to an (M − 1)-dimensional hypercube having 2M−1 vertices and (M − 1)2M−2 edges, as
exemplified by Fig. 1. The vertex (1, . . . , 1) is the source, having no predecessors. Starting
from it and travelling along the arrows one can reach any point of the hypercube in a
variety of ways, terminating at the sink (M).

(11)

(2)

(a) M = 2

(111)

(21) (12)

(3)

(b) M = 3

(1111)

(211) (121) (112)

(31) (22) (13)

(4)

(c) M = 4

Figure 1. Composition hypercubes

The mass-M sector FM of our Fock space F is the eigenspace of the mass operator H0

corresponding to the eigenvalue M . It is spanned by the vectors

| f〉 =
∑

m: |m|=M

1

N !

∫

RN

dx1 . . .dxN fN

(
m

x

) N∏

j=1

Ψ†
mj
(xj) | 0〉 ∈ FM , (5.1)

with the norm

‖f‖2 =
∑

m: |m|=M

1

N !

∫

RN

dx1 . . .dxN

∣∣∣∣fN
(
m

x

)∣∣∣∣
2

(5.2)

(here and below we always imply N = ℓ(m)).
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The Weyl alcove WN is defined as

WN =
{
x ∈ RN : x1 < x2 < . . . < xN

}
. (5.3)

Due to the symmetry of the wave functions, the terms fN(ξ) contribute to the sum
(5.1) with the multiplicity N !. Consequently, one can replace the integration over RN

in (5.1) and in (5.2) with the integration over WN , having adjusted the combinatorial
coefficients:

| f〉 =
∑

m: |m|=M

∫

WN

dx1 . . .dxN fN

(
m

x

) N∏

j=1

Ψ†
mj
(xj) | 0〉 ∈ FM , (5.4)

‖f‖2 =
∑

m: |m|=M

∫

WN

dx1 . . . dxN

∣∣∣∣fN
(
m

x

)∣∣∣∣
2

. (5.5)

As a result, FM splits into the orthogonal sum

FM =
⊕

m: |m|=M

F m

M , (5.6)

where F m

M ≃ L2
(
WN

)
.

The vectors of FM are thus identified with the collection of 2M−1 functions fN(ξ) la-
belled by the compositions m, with arguments x ∈ WN . The component fN(ξ) describes
a collection of N = ℓ(m) one-dimensional particles with masses mi and coordinates xi

ordered from left to right.
In the next section we shall rewrite the eigenvalue problem for the differential operator

(4.13) with delta-function coefficients on functions fN(ξ) with x ∈ RN as an equiva-
lent system of differential equations and boundary conditions for functions fN (ξ) with
x ∈ WN .

6. From δ-function to boundary conditions

Replacing a delta-function term with boundary conditions is a standard trick, see e.g.
[3, 7, 15], for the case of a scalar Bose-gas (quantum nonlinear Schrödinger equation). We
only need to adapt the technique to the case of particles of different masses.

Let us analyse first a simple two-particle example. Let a function f(x1, x2) on R2 satisfy
the Schrödinger equation describing two particles of masses m1 and m2 and containing a
singular inhomogeneous term (external source)

[(
− 1

m1
∂2
x1

− 1

m2
∂2
x2

)]
f(x1, x2) + σ(x1)δ(x1 − x2) + τ(x1, x2) = 0, (6.1)

where the densities σ(x) and τ(x1, x2) are assumed to be smooth functions.
Since δ(x1 − x2) vanishes off the diagonal, one obtains immediately the differential

equation “in the bulk”

−
(

1

m1
∂2
x1

+
1

m2
∂2
x2

)
f(x1, x2) + τ(x1, x2) = 0, x1 6= x2. (6.2)

To derive the boundary conditions on the diagonal x1 = x2, assume that the function
f is piecewise smooth, meaning that it is given by two different expressions f (+)(x1, x2)
in the half-plane x1 − x2 > 0 and f (−)(x1, x2) in the half-plane x1 − x2 < 0. Furthermore,
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both functions f (±) are assumed to be smooth and defined in an open neighbourhood of
the cut x1 = x2, the domain of each function extending thus beyond its native half-plane.

Introducing the step function

θ(x) =

{
1, x > 0
0, x < 0

(6.3)

one can represent f as

f(x1, x2) = f (+)(x1, x2)θ(x1 − x2) + f (−)(x1, x2)θ(x2 − x1) (6.4)

(we treat f as a measurable function defining a distibution, so its values on the zero-
measure set x1 = x2 are irrelevant and can be left undefined).

Substitute now (6.4) into (6.1) and perform the differentiations, using the identities
valid for any smooth function ω(x1, x2)

ω(x1, x2)δ(x1 − x2) = ω(x1, x1)δ(x1 − x2),

ω(x1, x2)δ
′(x1 − x2) =

(
∂x2ω

)
(x1, x1)δ(x1 − x2) + ω(x1, x1)δ

′(x1 − x2),

so that the coefficients at θ- and δ-functions in the resulting sum depend only on x1. The
coefficients at θ(x1 − x2) and θ(x2 − x1) then give the “bulk” equation (6.2) for f (+) and
f (−), respectively. The coefficient at δ′(x1 − x2) gives the continuity condition

f (+)(x1, x1) = f (−)(x1, x1). (6.5)

The coefficient at δ(x1 − x2) gives, after a simplification using (6.5), the boundary
condition [

1

m1
∂x1(f

(+) − f (−)) +
1

m2
∂x2(−f (+) + f (−))

]
(x1, x1) = σ(x1). (6.6)

Let g(x± 0) denote the one-sided limiting values for g(x± ε) as ε ց 0. Then, one can
rewrite the continuity condition (6.5) as

f(x+ 0, x− 0) = f(x− 0, x+ 0) ≡ f(x, x), (6.7)

and the jump-of-transversal-derivative condition (6.6) as

−
[
(m2 ∂x1 −m1 ∂x2)f

]
(x+ 0, x− 0) +

[
(m2 ∂x1 −m1 ∂x2)f

]
(x− 0, x+ 0)

+m1m2 σ(x) = 0. (6.8)

In (6.8), it is assumed that the differential operator is applied first to the function of
two variables (x1, x2) and then the limit ε ց 0 is taken in (x1, x2) = (x± ε, x∓ ε).

The above argument works also in the multiparticle case since in the neighbourhood of
the cut xi = xj the functions depend on the rest of the variables continuously, and we can
ignore all remaining variables. Besides, when x’s are ordered as in (5.3) the only jump
conditions to take into account are those for the adjacent particles xi = xi+1.

Consider the eigenvalue problem H2 | f〉 = λ | f〉. Taking (4.13) and applying (6.2) we
then obtain the set of bulk equations labelled by the vertices m of the hypercube

λfN(ξ) =

N∑

i=1

(
− 1

mi
∂2
xi
+ γmi

)
fN (ξ) +

∑

m′≻m

βn1n2fN+1(ξ
′). (6.9)
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The sum over the compositions m′ such that m′ ≻ m is in fact a double sum over
the integers k, n1, n2 with n1 + n2 = mk that label the compositions and the associated
vectors ξ, ξ′ as

ξ =

(
m

x

)
=

(
m1 . . . mk−1 mk mk+1 . . . mN

x1 . . . xk−1 xk xk+1 . . . xN

)
,

ξ′ =

(
m′

x′

)
=

(
m1 . . . mk−1 n1 n2 mk+1 . . . mN

x1 . . . xk−1 xk xk xk+1 . . . xN

)
. (6.10)

Note also that in (6.9) one does not need to distinguish the limits xk ± 0 owing to the
continuity of fN+1.

Respectively, (6.8) produces the set of jump conditions labelled by the arrows of the
hypercube pointing from m that is the pairs

(m1, . . . , mk, mk+1, . . . , mN ) → (m1, . . . , mk +mk+1, . . . , mN), k = 1, 2, . . . , N − 1.

Applying (6.8) to (4.13) we get the jump of transversal derivative on the line xk = xk+1:

−
[
(mk+1 ∂xk

−mk ∂xk+1
)fN
](m1 . . . mk−1 mk mk+1 mk+2 . . . mN

x1 . . . xk−1 xk+1 + 0 xk+1 − 0 xk+2 . . . xN

)

+
[
(mk+1 ∂xk

−mk ∂xk+1
)fN
](m1 . . . mk−1 mk mk+1 mk+2 . . . mN

x1 . . . xk−1 xk − 0 xk + 0 xk+2 . . . xN

)

+2mkmk+1βmk ,mk+1
fN−1

(
m1 . . . mk−1 m̂k m̂k+1 mk+2 . . . mN mk +mk+1

x1 . . . xk−1 x̂k x̂k+1 xk+2 . . . xN xk

)
= 0.

(6.11)

To express the result as a function of the arguments (x1 < . . . < x̂k+1 < . . . < xN ) on a
Weyl alcove it remains to use the symmetry of fN and fN−1 to swap xk ↔ xk+1 in the
first term of (6.11) and, respectively, to rearrange the x’s in the increasing order in the
last term. The resulting final form of the jump condition can be recast in a compact form
by using the compositions m′,m′′ ≻ m of m and the associated vectors ξ′, ξ′′ and ξ:

ξ′ =

(
m′

x′

)
=

(
m1 . . . mk mk+1 . . . mN

x1 . . . xk − 0 xk + 0 . . . xN

)
,

ξ′′ =

(
m′′

x′′

)
=

(
m1 . . . mk+1 mk . . . mN

x1 . . . xk − 0 xk + 0 . . . xN

)
,

ξ =

(
m

x

)
=

(
m1 . . . mk−1 mk +mi+1 mk+2 . . . mN

x1 . . . xk−1 xk xk+2 . . . xN

)
. (6.12)

[
(mk ∂xk

−mk+1 ∂xk+1
)fN
]
(ξ′′) +

[
(mk+1 ∂xk

−mk ∂xk+1
)fN
]
(ξ′)

+ 2mkmk+1βmk,mk+1
fN−1(ξ) = 0. (6.13)

Note that the swappingmk ↔ mk+1 produces an identical equation. Also, formk = mk+1

the first and the second term in (6.13) are equal.
To conclude, the eigenvalue problem for the Hamiltonian H2 in the sector of mass M

is now formulated in terms of a set of functions fN(ξ) labelled by compositions m of M
with length N = ℓ(m) defined on Weyl alcoves WN . The equations for fN(ξ) are divided
into two classes: the bulk differential equations of 2nd order (6.9) labelled by the vertices
m of the compositions hypercube, and the jump conditions (6.13) for the transversal
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derivatives labelled by the edges of the compositions hypercube that correspond to the
merging (mk, mk+1) → (mk +mk+1) of the adjacent particles.

7. Solution in the sector M = 2

The number M = 2 admits two compositions: 1+1 and 2, see Fig. 1a. Respectively, the

mass-2 sector splits as F2 = F (11)
2 ⊕F (2)

2 , so that any vector | f〉 ∈ F2 can be represented
as

| f〉 =
∫

x1<x2

dx1dx2 f2

(
1 1
x1 x2

)
Ψ†

1(x1)Ψ
†
1(x2) | 0〉+

∫ ∞

−∞

dx1 f1

(
2
x1

)
Ψ†

2(x1) | 0〉 , (7.1)

‖f‖2 =
∫

x1<x2

dx1dx2

∣∣∣∣f2
(
1 1
x1 x2

)∣∣∣∣
2

+

∫ ∞

−∞

dx1

∣∣∣∣f1
(
2
x1

)∣∣∣∣
2

. (7.2)

The general bulk equation (6.9) produces two bulk equations corresponding to the
vertices of the graph in Fig. 1a:

λ f2

(
1 1
x1 x2

)
= (−∂2

x1
− ∂2

x2
+ 2γ1)f2

(
1 1
x1 x2

)
, (7.3a)

λ f1

(
2
x1

)
=

(
−1

2
∂2
x1

+ γ2

)
f1

(
2
x1

)
+ β11 f2

(
1 1
x1 x1

)
. (7.3b)

Respectively, equation (6.13) produces the jump condition corresponding to the single
arrow (11) → (2) of the graph in Fig. 1a:

2
[
(∂x1 − ∂x2)f2

]( 1 1
x1 x1

)
+ 2β11 f1

(
2
x1

)
= 0 (7.3c)

(the two terms with derivatives coincide due to the symmetry m1 = m2 = 1).
In the spirit of Bethe Ansatz [3, 7], we look for a solution of the boundary problem

(7.3) in the subsector m = (11) as a linear combination of plain waves: the incoming one
ei(u2x1+u1x2) and the scattered one ei(u1x1+u2x2), with the scattering coefficient S21:

f2

(
1 1
x1 x2

)
= ei(u2x1+u1x2) + S21e

i(u1x1+u2x2), x1 < x2. (7.4a)

The jump condition (7.3c) implies then that the wave function f1 in the subsector
m = (2) has to be the exponent ei(u1+u2)x1 , up to a coefficient R:

f1

(
2
x1

)
= Rei(u1+u2)x1 . (7.4b)

Substituting the Ansatz (7.4) into (7.3) we obtain, respectively, the bulk-11 equation:

u2
1 + u2

2 + 2γ1 = λ, (7.5a)

the bulk-2 equation:
(
1

2
(u1 + u2)

2 + γ2

)
R + β11(1 + S21) = λR, (7.5b)

and the jump (11) → (2) equation:

i(u2 − u1) + i(u1 − u2)S21 + β11R = 0. (7.5c)
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The system of three linear equations (7.5) for λ, S21, R is easily solved. Equation (7.5a)
gives immediately the value of λ, and the two remaining equations produce the answer

S21 = S(u2 − u1), S(u) = − P (iu)

P (−iu)
(7.6)

where P is the cubic polynomial

P (v) = v3 + (2γ2 − 4γ1)v − 2β2
11, (7.7)

or substituting β11 =
√
2β, γ1 = γ, γ2 = 8γ from (3.10),

P (v) = v3 + 12γ v − 4β2. (7.8)

Respectively,

R =
4iβ11u21

P (−iu21)
=

4
√
2iβu21

P (−iu21)
, u21 ≡ u2 − u1. (7.9)

As befits a Galilei-invariant theory, the S-matrix is invariant under the simultaneous
translations ua 7→ ua + c, a = 1, 2.

Note that the sum of the zeroes of the cubic polynomial P is 0 due to the absence
of the quadratic term. Since P has real coefficients and negative free term −4β2, it has
exactly one positive root. The two remaining zeroes lie in the left half-plane, and their
position is determined by the discriminant D = −432(16γ3 + β4). For D < 0 they are
complex-conjugated, and for D > 0 they are both real negative, as shown on Fig. 2.

It is tempting to call the case D < 0, or 16γ3 + β4 > 0 the quantum KP-I equation,
and D > 0, or 16γ3 + β4 < 0 the quantum KP-II equation. Note that the boundary
between the two cases is not γ = 0 as in the classical case but 16γ3 + β4 = 0 when P has
a double negative zero, the term β4 playing the role of a quantum correction. It remains
disputable what to call the dispersionless quantum KP: either 16γ3 + β4 = 0, or γ = 0
that corresponds to P (u) = u3 − 4β2, the zeroes forming an equilateral triangle.

The corresponding scattering coefficient S(u) given by (7.6) is a rational function having
three zeroes and three poles. Their positions (◦ for zeroes, • for poles), depending on D,
are shown on Fig. 3

❤

❤

❤

(a) qKP-I: D < 0

❤❤❤

(b) qKP-II: D > 0

Figure 2. Zeroes of P (u)

8. Bethe Ansatz in sector F (1...1)
M

The known multiparticle integrable models share two common features: the absence
of diffraction (preservation of the asymptotic momenta of the particles after collision),
and the factorisation of the multiparticle S-matrix into two-particles factors [3, 7]. For
the models with a delta-function interaction, like the quantum nonlinear Schrödinger
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①

❤

❤ ❤

① ①

(a) qKP-I: D < 0

①

❤

①

①

❤

❤

(b) qKP-II: D > 0

Figure 3. Zeroes and poles of S(u)

model [2, 15], such behaviour is manifested via the coordinate Bethe Ansatz [3, 7], or
the assumption that the eigenfunction can be written as a sum of plane waves with the
coefficients differing by a two-particles S-factor when any pair of momenta permutes.

In this section, we shall describe the Bethe Ansatz for our model in the subsector

F (1...1)
M of FM containing M particles of unit mass and corresponding to the composition

m = (1, . . . , 1) of M .
Let S[1,M ] be the permutation group of (1, . . . ,M). Let u ≡ (u1, . . . , uM) be the vector

of momenta, and v ≡ iu. Define the action of a permutation s = (s1, . . . , sM) ∈ S[1,M ]

on functions of v by substitutions s : vj 7→ vsj . Then, for a plane wave

exp(v · x) ≡ exp (v1x1 + . . .+ vMxM ) (8.1)

we have

s
(
exp(v · x)

)
=
(
exp(s(v) · x)

)
= exp (vs1x1 + . . .+ vsMxM) . (8.2)

We choose to normalise the Bethe wave function by making the coefficients at the
plane waves polynomial in vj . Such a normalisation was proposed first for the quantum
nonlinear Schrödinger equation in [7], c.f. Chapter 4, eq. (4.8), see also [3], Chapter 1,
eq. (1.24). Such a choice has the advantage of allowing for algebraic manipulations with
polynomials rather than rational functions.

Conjecture 1 (Bethe Ansatz for m = (1, . . . , 1)). The F (1...1)
M component of the eigen-

function of H2 can be chosen for x ∈ W1...1 as

fM

(
1 . . . 1
x1 . . . xM

)
=

∑

s∈S[1,M]

sgn(s)

(∏

j<k

P (vsk − vsj )

)
s
(
exp(v · x)

)
, (8.3)

where sgn(s) is the sign of the permutation s, and the polynomial P (u) is given by (7.8).

By construction, the Bethe wave function (8.3) is antisymmetric in the momenta v.
Note that the ratio of the coefficients for two plane waves in (8.3) differing by a transpo-
sition of two adjacent momenta vsj and vsj+1

is S(vsj − vsj+1
) due to (7.6), as expected.
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Two more conventional wave functions f (in) and f (out) having unitary factors at the
plane waves are defined from

fM

(
1 . . . 1
x1 . . . xM

)
= f (in) (−1)M(M−1)/2

∏

j<k

P (vj − vk) = f (out)
∏

j<k

P (vk − vj). (8.4)

Assuming that u1 < . . . < uM and x1 < . . . < xM , one can interpret t
(
exp(iu · x)

)
,

with t ≡ (M, . . . , 1), as the incident wave, and exp(iu ·x) as the outgoing scattered wave,
corresponding to the ordering of the particles carrying the momenta ui as t → −∞ or,
respectively, t → +∞.

The function f (in) is then normalised by the unit coefficient at the incoming wave
t
(
exp(iu · x)

)
, and f (out) by the unit coefficient at the outgoing wave exp(iu · x).

The functions f (in) and f (out) differ only by the factor (multiparticle S-matrix)

f (out) = Sf (in), S =
∏

1≤j<k≤M

S(uj − uk) (8.5)

that is factorised into a product of the factors corresponding to all two-particle collisions,
in the spirit of Bethe Ansatz.

By antisymmetry in v, the whole wave function (8.3) can be restored from a single term
containing exp(v · x). Let 1 ≤ a < b ≤ M . For a subsegment (a, . . . , b) ⊂ (1, . . . ,M)
define the polynomial

P[a,b](v) ≡
∏

a≤j<k≤b

P (vk − vj) (8.6)

and the linear operator P[a,b] acting on functions of v = (v1, . . . , vM) by antisymmetri-
sation, with the weight factor P[a,b], in respect to the group S[a,b] of permutations of
(a, . . . , b) acting on (va, . . . , vb)

P[a,b] : g(v) 7→
∑

s∈S[a,b]

sgn(s) P[a,b](s(v)) g(s(v)). (8.7)

The P[a,b] operator for a subsegment of (1, . . . ,M) will be used only in the Appendices.
In the main text we use the abbreviation P ≡ P[1,M ].

In terms of the operator P, the formula (8.3) for the Bethe function simplifies to

fM

(
1 . . . 1
x1 . . . xM

)
= P

(
exp(v · x)

)
. (8.8)

9. Bethe Ansatz in generic sector

The jump conditions (6.13) can be viewed as recurrence relations allowing one to obtain
the wave function fN (ξ) by differentiating the wave functions fN+1(ξ) corresponding to
the preceding compositions (in the sense of the relation ≻). Thus, starting from the
source m = (1, . . . , 1) and travelling along the arrows of the composition graph one can in
principle obtain the wave functions for all the remaining compositions of M . The problem
is, however, that different paths produce, in principle, different expressions, and one ends
with a bunch of consistency conditions for the wave function. To show that the Bethe
Ansatz works at all one has to prove that those conditions have a joint solution. Besides,
there remain the bulk conditions (6.9) that also have to be verified. The differentiation ∂xi

acting on the exponent in (8.8) are replaced by vi, and the resulting consistency equations
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take the form of a (very overdetermined) set of algebraic equations for the coefficients of
the Bethe wave functions.

To any composition m = (m1, . . . , mN) of M of length ℓ(m) = N , there corresponds a
split of the sequence of the momenta vi

v = (v1, . . . , vM) = (wm

1 ; . . . ;wm

N ) (9.1)

into the consecutive segments wm

j of respective length mj , so that

wm

j = (vm1+...+mj−1+1, . . . , vm1+...+mj
), j = 1, . . . , N (9.2)

or

(wm

j )i = vm1+...+mj−1+i, i = 1, . . . , mj . (9.3)

At the vertex m, the original coordinates (x1, . . . , xM) merge into consecutive groups
of length mi:

(x1, . . . , xM) 7→ Xm = (

m1︷ ︸︸ ︷
x1, . . . , x1,

m2︷ ︸︸ ︷
x2, . . . , x2, . . . ,

mN︷ ︸︸ ︷
xN , . . . , xN ), (9.4)

and now we set x = (x1, . . . , xN).
Let 〈w〉 denote the sum of the components of a vector w, e.g. 〈v〉 = v1 + . . .+ vM . Let

also

Wm = (〈wm

1 〉 , . . . , 〈wm

N 〉) (9.5)

so that

Wm · x = 〈wm

1 〉x1 + . . .+ 〈wm

N 〉xN , (9.6)

and

v ·Xm = Wm · x. (9.7)

Conjecture 2 (Bethe Ansatz for generic m). The Bethe eigenfunction in the generic
subsector F m

M can be written in the form

fN

(
m1 . . . mN

x1 . . . xN

)
= P

(
Qm(v) exp(Wm · x)

)
, (9.8)

where Qm(v) is a polynomial in v. In particular, Q(1...1)(v) ≡ 1.

If P : g 7→ 0 for some function g(v) we shall say that g(v) is P-reducible and write

g
P≡ 0. If g1 − g2

P≡ 0 we shall say that g1 and g2 are P-equivalent and write g1
P≡ g2. As

a consequence, all quantities under the sign of P are defined only up to P-equivalence.
Consider the bulk equation (6.9).
Since the vertex m = (1, . . . , 1) is the source of the composition graph, c.f. Fig. 1,

having no predecessors, the corresponding bulk equation (6.9) contains no β-terms and is
obviously satisfied by the Ansatz (8.3) producing the eigenvalue λ of H2

λ = −v21 − . . .− v2M +Mγ1. (9.9)

Let K(w) be the sum of the squares of the components of a vector w. Recalling that
γ1 = γ, by (3.10), we have λ = −K(v)+Mγ1 or, splitting the sum into groups of size mj ,

λ =

N∑

j=1

(
mjγ −K(wm

j )
)
. (9.10)
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Each ∂xj
in (6.9) is replaced by

〈
wm

j

〉
. Moving the λ term into the right-hand-side we

find that the coefficient in front of fN(ξ) produces the factor

N∑

j=1

K̃(wm

j ) + (m3
j −mj)γ, (9.11)

where we use the notation

K̃(wm

j ) = K(wm

j )−
〈
wm

j

〉2

mj
(9.12)

for the “kinetic energy” of the cluster wm

j reduced w.r.t. the center-of-mass. Note that

K̃(wm

j ) is invariant under translations wm

j 7→ wm

j + (c, . . . , c), as a manifestation of the
Galilei invariance.

Upon summing up over the compositions m′ ≻ m introduced in (6.10), the bulk
equation (6.9) takes finally the form
[(

N∑

j=1

K̃(wm

j ) + (m3
j −mj)γ

)
Qm(v) +

∑

m′≻m

βn1n2Q
m

′

(v)

]
exp(Wm · x) P≡ 0. (9.13)

After performing differentiations of the exponent, the jump equation (6.13) can be
recast in terms of the compositions m′,m′′ of m introduced in (6.12)
[
Vmkmk+1

(
wm

k

)
·Qm′

(v) + Vmk+1mk

(
wm

k

)
·Qm′′

(v)

+ 2mkmk+1βmk,mk+1
Qm(v)

]
exp(Wm · x) P≡ 0. (9.14)

Here, given an n1 + n2-dimensional vector u = (u1, . . . , un1+n2), we have defined

Vn1n2(u) = n2(u1 + . . .+ un1)− n1(un1+1 + . . .+ un1+n2) . (9.15)

Conjecture 3 (Factorisation property). The polynomial Qm(v) in (9.8) can be chosen,
up to a P-equivalent expression, in the factorised form

Qm(v) =
N∏

k=1

Q(mk)(wm

k ). (9.16)

A justification of the above conjecture is presented in Appendix A.

10. Bethe Ansatz in sector F (M)
M

Conjecture 3 suggests that it is sufficient to analyze the consistency equations only for
the compositions of unit length m = (M), N = 1. In this case, the exponent

exp(Wm · x) = exp((v1 + . . .+ vM)x1)

becomes completely symmetric and can be factored out from under P. The equations for
Q(M)(v) are thus purely polynomial.

For the bulk equation (9.13) we have now

m′ = (n1, n2), n1 + n2 = M, βn1n2 =
√
n1n2M β

wm
′

1 = (v1, . . . , vm), wm
′

2 = (vm+1, . . . , vM),
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and the equation takes form
(
K̃(v) + (M3 −M)γ

)
Q(M)(v1, . . . , vM)

+ β
∑

n1,n2≥1
n1+n2=M

√
n1n2M Q(n1)(v1, . . . , vn1)Q

(n2)(vn1+1, . . . , vM)
P≡ 0. (10.1)

For the jump equation (9.14) we consider the compositions

m′ = (m1, m2), m′′ = (m2, m1), m = (m1 +m2),

and denote v = (v1, . . . , vm1+m2), what recasts the equation in the form

Vm1m2(v)Q
(m1)(v1, . . . , vm1)Q

(m2)(vm1+1, . . . , vm1+m2)

+ Vm2m1(v)Q
(m2)(v1, . . . , vm2)Q

(m1)(vm2+1, . . . , vm1+m2)

+ 2m1m2βm1m2 Q
(m1+m2)(v1, . . . , vm1+m2)

P≡ 0. (10.2)

The equations (10.1) and (10.2) together with Q(1)(v) = 1 constitute the complete
set of conditions for the polynomials Q(M)(v1, . . . , vM), M = 1, 2, . . ., defined up to P-
equivalence. Extensive computer experiments have led us to the following explicit solution
to the equations (10.1) and (10.2).

Conjecture 4 (Solution). Set Q(1)(v) = 1 and for M ≥ 2 define the polynomial Q(M)(v)
as the following homogeneous polynomials of degree M − 1

Q(M)(v) =
2
√
M

M !(M − 1)
(2β)1−M

∑

1≤i<j≤M

(−1)j−i

(
M − 1

j − i− 1

)
(vi − vj)

M−1 (10.3)

invariant under translations vi 7→ vi + c. Then such Q(M)(v) satisfy all the equations
(10.1) and (10.2).

Note that Q(M)(v) do not contain coupling constants β, γ that are hidden inside the
P-operator.

Conjecture 4 has been confirmed by means of computer algebra for M ≤ 8. In fact,
instead of verifying Conjectures 4 literally, we have verified a stronger Conjecture 5, see
Appendix B.

11. Discussion

As a test of quantum integrability of the system, we have demonstrated consistency of
the Bethe Ansatz for M ≤ 8. This is a pretty convincing though not conclusive result.
A rigorous proof of Conjecture 4, or superseding Conjecture 5 remains an open problem.
The P operator, and the notions of 2- and 3-reducibility introduced in Appendix B seem
to be new combinatorial objects that might be of interest for themselves.

An alternative way to establish quantum integrability could be provided through the
Algebraic Bethe Ansatz [3] based on quantum Lax operator and R-matrix. That would
also help to identify the underlying quantum algebra. The work in this direction is in
progress.

Except for M = 2, we have not pursued a comprehensive study of the orthogonality
and completeness of the Bethe eigenfunctions, neither of the structure of bound states.
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In the case of the quantum nonlinear Schrödinger equation (delta-function Bose gas) it
is known that the bound states of the quantum model correspond in the classical limit
to the solitons of the classical model [13]. It would be interesting to study a similar
correspondence for the KP-model.

The model we study is associated with a cubic polynomial P with zero sum of the
roots (7.7) through which the two-particle S-matrix is expressed (7.6) and, in turn, the
factorised multiparticle S-matrix. The question arises what possible QFT models could be
associated with polynomials P of higher degree, or without the restriction on the roots.
In [11] the properties of Bethe equations associated with a generic polynomial P were
studied in an abstract way, without clarifying the nature of the corresponding QFT. In a
recent paper [16] a possible example of a model of that class is proposed.

The model we study is nonrelativistic and Galilei invariant. It appears that it corre-
sponds to a nonrelativistic limit of a relativistic integrable model known as affine AN−1

Toda field theory [1, 4] and given by the Lagrangian

L =
1

2

N∑

i=1

∂µϕi · ∂µϕi −
2M2

β2

N∑

i=1

exp

[
β√
2
(ϕi − ϕi+1)

]
. (11.1)

Indeed, the S-matrix for a pair of main particles of the Toda FT is conjectured in [1]
to be

S11(θ) =
sinh

(
θ
2
+ iπ

N

)
sinh

(
θ
2
− iπ

N
+ i b

2

)
sinh

(
θ
2
− i b

2

)

sinh
(

θ
2
− iπ

N

)
sinh

(
θ
2
+ iπ

N
− i b

2

)
sinh

(
θ
2
+ i b

2

) . (11.2)

Upon carrying out the rescaling

θ =
2κ−1πu

N
and b =

2κ−1τπ

N
(11.3)

and then sending N → +∞ one obtains the rational degeneration

lim
N→+∞

S11(θ) = S̃11(u) =
u3 + u

(
κ2 + τ 2 − κτ

)
− iκτ(κ− τ)

u3 + u
(
κ2 + τ 2 − κτ

)
+ iκτ(κ− τ)

. (11.4)

Thus choosing τ and κ such that κ2+ τ 2−κτ = −12γ and κτ(κ−τ) = 4β2 one obtains
the scalar S-matrix of qKP, or more precisely, qKP-II, since 0 < b < 2π/N :

S̃11(u) = SqKP(u) =
u3 − 12γu− 4iβ2

u3 − 12γu+ 4iβ2
. (11.5)
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stages of the project. A.T. thanks the EPSRC for funding under the First Grant project
EP/K014412/1, and the STFC for support under the Consolidated Grant project nr.
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Appendix A.

In the appendices we shall use again the non-abbreviated notation P[a,b] (8.6) and P[a,b]

(8.7) for a subsegment (a, . . . , b) ⊂ (1, . . . ,M).
Let us state a couple of elementary properties of the operator P[a,b]. It is assumed

below that v = (v1, . . . , vM).
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Lemma 1. If a function F (v) is P[a,b]-reducible, and a function G(v) is symmetric under
permutations S[a,b] ⊂ S[1,M ] then the product F (v)G(v) is also P[a,b]-reducible.

Proof. Since G(v) is invariant under S[a,b] it is factored out from the sum over S[a,b] in
(8.7).

Lemma 2. If a function F (v) is P[a,b]-reducible then F (v) is also P[1,M ]-reducible.

Proof. The product P[1,M ] factorises as P[1,M ] = P[a,b] · P̃ where the complementary factor

P̃ is S[a,b]-symmetric, hence the product F (v)P̃ is P[a,b]-reducible, by Lemma 1.
The sum over the group S[1,M ] can be rewritten as the double sum, first over the

subgroup S[a,b] ⊂ S[1,M ], then over the coset S[1,M ]/S[a,b]. The alternating sum over

S[a,b] with the weight P[a,b] then nullifies F (v)P̃.
Now we can justify Conjecture 3.

Proposition 1. Assume that a sequence of polynomials Q(m)(v1, . . . , vm), m = 1, 2, . . .
solve equations (10.1) and (10.2). Then Qm(v) given by (9.16) solve equations (9.13)
and (9.14).

Proof. Given the composition m = (m1, . . . , mk−1, mk, mk+1, . . . , mN), let (ai, . . . , bi) be
the consecutive subsegments of length mi of the sequence (1, . . . ,M), or, explicitly,

ai = m1 + . . .+mi−1 + 1, bi = m1 + . . .+mi, i = 1, . . . , N. (A.1)

By using the product structure of Qm one can recast the below sum as

[(
N∑

j=1

K̃(wm

j ) + (m3
j −mj)γ

)
Qm(v) +

∑

m′: m′≻m

βn1n2Q
m′

(v)

]
eW

m·x

=

N∑

j=1

{[
K̃(wm

j ) + (m3
j −mj)γ

]
Q(mj)(wm

j )

+
∑

n1+n2
=mj

βn1n2Q
(n1)
(
wm

j,1, . . . , w
m

j,n1

)
Q(n2)

(
wm

j,n1+1, . . . , w
m

j,mj

)
}

· eWm·x ·
N∏

a=1
6=j

Q(mj)(wm

a ) .

Here x = (x1, . . . , xN), W
m are as defined in (9.5) while the vector wm

j introduced in
(9.2) have components

wm

j =
(
wm

j,1, . . . , w
m

j,mj

)
.

The product outside of the bracket is symmetric in respect to permutations of the co-
ordinates of wm

j , viz. in respect to the action of the permutation group S[aj ,bj ]. By
construction, the functions appearing inside of the brackets are P[aj ,bj ]-reducible. Thus
Qm(v) given by (9.16) solves the bulk equation (9.13) in virtue of Lemma 1.

It thus remains to deal with the gluing conditions issuing from the jump of the transver-
sal derivatives. Here, we introduce the auxiliary compositions m′ ≻ m, m′′ ≻ m

m′ = (m1, . . . , mk−1, n1, n2, mk+1, . . . , mN),

m′′ = (m1, . . . , mk−1, n2, n1, mk+2, . . . , mN)
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with n1 + n2 = mk. Then, it holds
[
Vn1n2

(
wm

k

)
·Qm′

(v) + Vn2n1

(
wm

k

)
·Qm′′

(v) + 2n1n2βn1,n2Q
m(v)

]
· eWm·x

=

[
2n1n2βn1,n2Q

(mk)(wm

k ) + Vn1n2

(
wm

k

)
·Q(n1)

(
wm

k,1, . . . , w
m

k,n1

)
Q(n2)

(
wm

k,n1+1, . . . , w
m

k,mk

)

+Vn2n1

(
wm

k

)
·Q(n2)

(
wm

k,1, . . . , w
m

k,n2

)
Q(n1)

(
wm

k,n2+1, . . . , w
m

k,mk

)]
· eWm·x ·

N∏

a=1
6=k

Q(mj)(wm

a ) .

Again, the product outside of the bracket is symmetric in respect to permutations of the
coordinates of wm

k , viz. S[aj ,bj ]. By construction, the functions appearing inside of the
brackets are P[aj ,bj ]-reducible. Thus Q

m(v) given by (9.16) solves the jump of transversal
derivative condition (9.14) in virtue of Lemma 1.

Appendix B.

Checking P-equivalence of polynomials directly is difficult even with computer since
it involves summation over M ! permutations, which leads to the exponential growth of
the computational complexity with M . When verifying Conjecture 4, we checked in fact
some stronger conditions that we call 2- and 3-reducibility having the advantage of a
polynomial complexity.

Let P (v) be given by (7.8) and v = (v1, . . . , vM). Let vij = vi−vj , and Pij = P (vi−vj).

Assuming M ≥ 2, we shall say that a polynomial F (v) is 2-reducible and write F
2≡ 0 if

F (v) admits a decomposition

F (v) =
M−1∑

i=1

Pi,i+1Gi(v) (B.1)

with some polynomials Gi(v) such that Gi(v) is symmetric under permutation vi ↔ vi+1

for each i. Note that such a decomposition is not necessarily unique.

Proposition 2. If F is 2-reducible then F is P[1,M ]-reducible.

Proof. Note that Pi,i+1 is P[i,i+1]-reducible since Pi,i+1P[i,i+1] = Pi,i+1Pi+1,i is S[i,i+1]-
symmetric, hence nullified by the antisymmetrisation. Then, by Lemma 1, the i-th term
in (B.1) is P[i,i+1]-reducible, hence P[1,M ]-reducible, by Lemma 2.

The property of 2-reducibility is not always sufficient to prove the P-reducibility, and
we shall also use the notion of 3-reducibility defined below.

Lemma 3. The polynomial v12 − v23 = v1 − 2v2 + v3 is P[1,3]-reducible.

Proof. Note that P12 is P[1,2]-reducible, and P23 is P[2,3]-reducible, as shown in the proof
of Proposition 2. By Lemma 2, P12, P23, and therefore P12−P23 are P[1,3]-reducible. Now
note that the difference

P12 − P23 = v312 − v323 + 12γ(v12 − v23)

factorises into v12 − v23 and a quadratic polynomial J that is S[1,3]-symmetric:

P12 − P23 = (v12 − v23)J, (B.2)
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J = v212 + v12v23 + v223 + 12γ = v21 + v22 + v23 − v1v2 − v1v3 − v2v3 + 12γ. (B.3)

Then from the symmetry of J it follows that

0 = P[1,3](P12 − P23) = P[1,3]

(
(v12 − v23)J

)
= J P[1,3](v12 − v23) (B.4)

and therefore P[1,3](v12 − v23) = 0 since J 6= 0.
By Lemma 2, an immediate corollary is that vi,i+1 − vi+1,i+2 is P[1,M ]-reducible for any

M , and i = 1, . . . ,M − 2.
Remarkably, the condition that

J =
P12 − P23

v12 − v23
(B.5)

is an S[1,3]-symmetric polynomial fixes the polynomial P (v) uniquely as a cubic polyno-
mial with zero v2-term. The easiest way to prove this is to use the homogeneity and to
check the monomials vp to see that the solution is p ∈ {0, 1, 3}.

Assuming M ≥ 3, we shall say that a polynomial F (v) is 3-reducible and write F
3≡ 0

if F (v) admits a decomposition

F (v) =
M−2∑

i=1

(vi,i+1 − vi+1,i+2) Ji(v) (B.6)

with some S[i,i+2]-symmetric polynomials Ji(v).
Note that such a decomposition is not necessarily unique.

Proposition 3. If F is 3-reducible then F is P[1,M ]-reducible.

Proof. For the i-th term in (B.6) we have

P[i,i+2]

(
(vi,i+1 − vi+1,i+2) Ji(v)

)
= Ji(v)P[i,i+2](vi,i+1 − vi+1,i+2) = 0,

using first the symmetry of Ji, then Lemma 3. By Lemma (2), each term is P[1,M ]-
reducible.

The following conjecture supersedes Conjecture 4. It has been verified by means of
computer algebra for M ≤ 8.

Conjecture 5. For the polynomials Q(M)(v) given by (10.3) the left-hand-side of the jump
equation (10.2) is in fact 3-reducible, which, by Proposition 3, implies P[1,M ]-reducibility.

The left-hand-side of the bulk equation (10.1) is respectively a sum of a 2-reducible and
a 3-reducible parts, which, by Propositions 2 and 3, implies P[1,M ]-reducibility.
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