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Abstract. Storage requirement and computational efficiency have always been chal-
lenges for the efficient implementation of discontinuous Galerkin (DG) methods for
real life applications. In this paper, a fully implicit Jacobian-Free Newton-Krylov
(JFNK) method is developed in the context of DG discretizations for the three-
dimensional compressible Euler and Navier-Stokes equations. Compared with the
Jacobian-based methods, the Jacobian-Free approach saves the storage for the Jaco-
bian matrix which can be of great importance for DG methods. Three types of pre-
conditioners are investigated in which the block diagonal preconditioner requires
the least storage, while the block LU-SGS and ILU0 preconditioners require more
storage but are more computationally efficient. An implicit time-stepping strategy
is adopted for the stability of the current solver, which is based upon a hexahe-
dral spatial mesh, and the nonlinear solver package Kinsol is used to improve the
computational efficiency and robustness. Numerical results demonstrate that the
preconditioned JFNK-DG solver can substantially reduce the storage requirement
compared with the Jacobian based method without significantly compromising ac-
curacy or efficiency. Furthermore, as a good compromise between efficiency and
storage requirement, the ILU0 preconditioner shows the best choice of the precon-
ditioners presented.
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1 Introduction

Discontinuous Galerkin (DG) methods using high order approximations have become
an attractive alternative for the solutions of systems of conservative laws [1–4]. The
attractive features, such as high-order accuracy, great geometry flexibility, straightfor-
ward implementation of h/p adaptation and parallel computing make it suitable for
aerodynamic applications [5–9]. The same as the classical finite element methods, DG
methods can achieve high-order accuracy on grids by means of high-order polynomi-
al approximation within elements while the physics of wave propagation is accounted
for by means of solving Riemann problems at element interfaces, as in upwind finite
volume methods.

Despite these advantages, computational efficiency has always been a challenge in
DG methods for their use in real life applications. It is noted in Refs. [15–18] that the
explicit Runge-Kutta methods are not good choices for DG schemes in steady-state
simulations due to their severe stability limitations. Thus in this case the use of an
implicit time integration is almost mandatory. The Newton-Krylov method [10,34]
is considered as a robust and efficient approach for solving the nonlinear algebra-
ic equations that arise from a DG discretization and has been used in Refs. [11–13].
However in order to speed up convergence, this method often combines with pre-
conditioners, such as block diagonal(BD) [14], block Gauss Siedel(BGS) [15], Lower-
Upper Symmetry Gauss Siedel (LU-SGS) [16] factorization and Incomplete Lower-
Upper factorization with zero fill-in ( ILU0 ) [17]. Nevertheless there is a very large
storage requirement for the sparse Jacobian matrix and the preconditioners, especially
for three-dimensional simulations, which provides a limitation on DG schemes when
the grid density and/or the order of polynomial approximation increases [18]. Since
only the product of the Jacobian matrix and a vector is required in the Krylov subspace
methods, a difference quotient of the nonlinear function can be used as an approxima-
tion, which circumvents the construction and storage of the Jacobian matrix [19–20].
A good preconditioning is still required in order to obtain satisfactory performance,
making the schemes not completely matrix-free. Nevertheless, this can be formed
based upon an approximation of the true Jacobian matrix which is easy to implement
[21–23]. Regarding the specific Krylov subspace method, in this work we consider
only GMRES since it is appropriate for non-symmetric and indefinite linear systems.

In this paper, a Jacobian-Free Newton-Krylov approach for the discontinuous Galerkin
method is developed on hexahedral grids with a specific focus upon significantly re-
ducing the storage requirement against the original Jacobian based solver. A novel
feature of our work is that we conduct a comparative study of several preconditioners
in order to investigate their computational efficiency in the framework of the JFNK-
DG solver. To maximize the robustness of the three-dimensional solver, the Kinsol
package [24–26] is used combining with an implicit time-stepping strategy. The devel-
oped preconditioned JFNK-DG method is used to compute a variety of flow problems
on hexahedral grids to demonstrate its accuracy, efficiency and robustness. Numerical
results demonstrate that the preconditioned Jacobian-Free Newton-Krylov approach
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works well with DG method in solving the three-dimensional Euler and Navier-Stokes
equations.

2 Governing equations

The Navier-Stokes equations governing unsteady compressible viscous flow can be
expressed as

∂U (x, t)

∂t
+

∂Fk (U(x, t))

∂xk
=

∂Gk (U(x, t))

∂xk
, (2.1)

where the summation convention has been used. The conservative variable vector U,
inviscid flux vector F and viscous flux vector G are defined by

U =





ρ
ρui

ρe



 , Fj =





ρuj

ρuiuj + pδij

ρhuj



 and Gj =





0
σij

ulσl j + qj



 , (2.2)

where ρ,p and e denote the density, static pressure, and total energy per unit mass,
respectively. Furthermore, ui is the velocity vector of the flow in the coordinate direc-
tion xi. The components of the viscous stress tensor σij and the heat flux vector qj are
given by

σij = µ

(
∂ui

∂xj
+

∂uj

∂xi

)
− 2

3
µ

∂uk

∂xk
δij, qj =

1

γ − 1

µ

Pr

∂T

∂xj
, (2.3)

where T is the temperature of the fluid. With the state equation for perfect gas, the
system of equations can be completed:

p = (γ − 1) ρ
(
e − 0.5ujuj

)
. (2.4)

In the above equations, µ denotes the molecular viscosity, γ the ratio of the specific
heats and Pr is the dimensionless Prandtl number, which is taken 0.72 for air. Ne-
glecting viscous effects, the left-hand-side of Eq. (2.1) represents the Euler equations
governing unsteady compressible inviscid flows.

3 JFNK-DG method

3.1 DG discretization

Using a mixed formulation [12], Eq. (2.1) can be reformulated as

s = ∇U, (3.1)

∂U

∂t
+∇ · fc (U)−∇ · fv (U, s) = 0, (3.2)
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where s is an introduced auxiliary variable, while fc (U) and fv (U, s) are the inviscid
and viscous flux tensors. By introducing suitable piecewise polynomial test functions
φh and approximate solutions Uh at each cell K, we obtain the weak formulations:

∫

K
φhshdΩ =

∫

K
φh∇UhdΩ +

∫

∂K
φ−

h

(
Ûh − U−

h

)
· ndσ, (3.3)

∫

K
φh

∂Uh

∂t
dΩ −

∫

K
∇φh · (fc (Uh)− fv (Uh, sh)) dΩ+

∫

∂K
φh (fc (Uh)− fv (Uh, sh)) · ndσ = 0, (3.4)

where Ω is the domain, σ the boundary of Ω. The variables with superscript ” − ”
denote the values inside the cell K and Ûh · n denotes the numerical flux function.
fc (Uh) · n and fv (Uh, sh) · n are inviscid and viscous numerical fluxes, respectively.
The inviscid numerical flux fc (Uh) · n can be handled as in the Finite Volume (FV)
method. Here we use the well-known Local Lax-Friedrichs(LLF) [27] or Roe flux [28]
for the approximate solution of the Riemann problem. As for the viscous numerical
flux, Refs. [2,29,30] have proposed feasible approaches. However the well-known BR2
scheme [17] is used in the current solver.

3.2 Jacobian-Free Newton-Krylov approach

Using auxiliary variables in Eq. (3.3) to substitute them in Eq. (3.4), the discrete form
can be reformulated as a nonlinear ordinary differential equation system of the form

M
du

dt
+ R (u) = 0, (3.5)

where u is the global vector of unknown degrees of freedoms (DOFs) and M repre-
sents the global block diagonal mass matrix. At this point a temporal discretization is
required. When we are interested in steady-state solutions, it is possible to set du

dt to
be zero. However it is preferable to use an implicit time-stepping scheme with excel-
lent stability properties. This allows large time steps to be selected (and often allows
steady-state to be reached more efficiently when a good ”initial guess” is not avail-
able) and results in a nonlinear algebraic system G (un+1) = 0 in time step tn+1. Using
the implicit backward Euler method, G (un+1) can be expressed as

G (un+1) = M
un+1 − un

∆t
+ R (un+1) . (3.6)

In this expression, un and un+1 are the solution vectors at the times tn and tn+1, re-
spectively.

Newton’s method is used for solving the nonlinear system which results in a linear
system

J(u(k))δ(k+1) = −G(u(k)) (3.7)
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at the kth Newton step (k = 0, 1, 2, · · · ). In this system, u(k) represents the kth ap-
proximation to un+1, typically commencing with the initial guess u(0) = u(n). When
the solution to Eq. (3.7) has been found, the approximation to un+1 is updated as

u(k+1) = u(k) + δ
(k+1). The Jacobian matrix can be evaluated as J(u(k)) =

∂G(u(k))
∂u

which is an N × N block sparse matrix, where N is the number of elements in the
computational domain. The rank of each block is M × Ndo f , M being the number of
variables of the Navier-Stokes equations and Ndo f the numbers of DOFs for each vari-
able. When Krylov subspace methods [10] are used for solving this linear system, a
matrix-vector product is required at each GMRES iteration:

ω = J(u(k))p. (3.8)

It can be observed that

J(u(k))p ≈ G(u(k) + εp)− G(u(k))

ε
, (3.9)

where ε is a small scalar. Hence the product can be estimated directly without knowing
the matrix J(u(k)). Although an additional cost of evaluation of function G is required,
the more costly evaluation of the matrix J(u(k)) is not needed at the start of the kth

Newton step and the large memory required for storing the matrix is saved. Since
the storage of the Jacobian matrix grows quickly when the order increases for the DG
method, the Jacobian-Free approach seems especially attractive.

3.3 Preconditioning

The Jacobian matrix arising from a DG discretization is generally ill-conditioned and
the conditioning deteriorates as mesh size h is reduced or order p is increased, which
makes the standard GMRES iteration converge very slowly. In order to speed up,
preconditioning plays a significant role. In this work right preconditioning is used,
which reformulates Eq. (3.7) as

(J(u(k))P−1)(Pδ
(k+1)) = −G(u(k)), (3.10)

where P is the preconditioning matrix. To achieve a fast convergence, P should be an
approximation of the matrix J, but much easier to invert and save.

The Jacobian matrix J can be decompose into an lower diagonal part L, a block
diagonal part D and an upper diagonal part U as

J = L + D + U. (3.11)

When neglecting the off diagonal blocks L and U, the simplest block diagonal/Jacobi
preconditioner can be obtained

P = D. (3.12)
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Block LU-SGS preconditioner is considered as a more sophisticated preconditioner for
compressible flow simulations and has been widely used in FV and DG methods.

P = (D + L)D−1 (D + U) . (3.13)

Another often-used preconditioner in DG schemes is the Incomplete LU factorization,
in which an approximation of the Jacobian J̃ can be obtained

P = J̃ = L̃Ũ. (3.14)

In these preconditioners, the block diagonal method is often used due to its easy im-
plementation and small storage requirement. However this preconditioner fails to
capture much information from the original Jacobian matrix. On the contrary, the
block LU-SGS preconditioner and ILU0 preconditioner keep much of the Jacobian in-
formation, thus requiring more storage but are more efficient. See Refs. [14,15,23] for
more details of these preconditioners.

3.4 Storage requirement for preconditioners

When a DG discretization is adopted, the degrees of freedoms are only coupled with
those of the neighbouring elements and the number of nonzero blocks for each block
row K in the Jacobian is equal to the number of elements surrounding the element
K plus one ( = 7 for each interior hexahedral element). Neglecting the boundary
elements, 7 × N nonzero blocks are stored for the block LU-SGS or ILU preconditioner,
which leads to the overall amount of nonzeros storage

Memory(LU-SGS) = Memory(ILU) = 7 × N ×
(

M × Ndo f

)2
.

Since only the diagonal blocks are stored for the BD preconditioner, the nonzeros in
this preconditioner is

Memory(BD) = N ×
(

M × Ndo f

)2
.

In brief, the actual storage requirement of the preconditioners mentioned is MLUSGS ≈
MILU ≈ 7 × MBD, where Mx denotes the storage requirement of the preconditioner x.

4 Numerical results

In this section, a few examples, including both inviscid and viscous test cases, are p-
resented to illustrate the high efficiency and robustness of the JFNK-DG method in
terms of the storage requirement and computational CPU time. All of the compu-
tations are performed on a HP Compaq dx7518 desktop computer (2.67 GHz Q8400
CPU with 8Gbytes memory) with linux operating system except the last case which is
performed on a HP Z620 workstation computer (3.6 GHz Xeon CPU with 32 Gbytes
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memory). A restarted GMRES method is used for all these test cases, with a maximum
Krylov space of 60 vectors and a maximum number of 180 iterations (i.e. at most two
restarts). The nonlinear convergence residual is set to be 10−10 and the maximum step
is set to be 100 for each test case (i.e. non-convergence is assumed if this number of
nonlinear iterations is exceeded). In order for robustness, ∆t = 0.1 is used for the first
time steps of all the computations, which is then increased sharply to ∆t → ∞ (i.e.
one step of the Newton’s method in the computation of steady state solutions) in the
following time steps. Note that we do not propose this as an optimal strategy (the
study of which is beyond the scope of this paper) however it does allow us to make a
consistent comparison of the preconditioners considered.

4.1 An inviscid flow past a channel with a smooth bump

The inviscid flow past a channel with a smooth bump [31] is considered in this test
case. This simple problem is chosen to assess the accuracy of the numerical solution
obtained by the JFNK-DG method. The flow condition is given at a Mach number of
0.5 based on the freestream velocity. Three successive refined quadratic grids are used
to obtain the convergence rate, with point distribution of 17 × 8 × 4, 33 × 15 × 7 and
65 × 29 × 13, respectively. The L2-norm of entropy production is used as the error
measurement

∥ε∥L2(Ω)
=

√∫

Ω

ε2dΩ, (4.1)

where the entropy production is defined as

ε =
S − S∞

S∞

=
p

p∞

(
ρ∞

ρ

)γ

− 1. (4.2)

Table. 1 illustrates the computed rates of convergence of the JFNK-DG method. It can
be clearly observed that the expected order of O(hp+1) can be obtained. Since the un-
uniform grids are used for this test case with curved boundaries, the grid distribution
may cause some error on the computed order. This can be the reason why the order
between the second and third mesh is 2.88 for DG(p=2) results, which is not very close
to 3.
Table. 2-4 shows the convergence results for the different preconditioners in terms of

Table 1: Accuracy study for inviscid flow past a channel with a smooth bump

Order Mesh L2 error L2 order

DG,p=1 17 × 8 × 4 1.77E − 03 —
33 × 15 × 7 4.61E − 04 1.94

65 × 29 × 13 1.17E − 04 1.98
DG,p=2 17 × 8 × 4 1.85E − 04 —

33 × 15 × 7 2.17E − 05 3.09
65 × 29 × 13 2.49E − 06 2.88
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the number of non-linear Newton iterations, linear GMRES iterations and the execut-
ed CPU time. All the preconditioners are computationally efficient for this case and
converged solutions can be obtained within 10 nonlinear steps although the number of
grids increases. Although the LU-SGS and ILU preconditioners require more storage
requirement, they are several times efficient than the block diagonal preconditioner.

Table 2: Convergence results of the inviscid channel case (336 elements). nni:numbers of non-linear itera-
tions, nli: total numbers of linear iterations, time: total run time(min).

BD LU-SGS ILU
nni nli time nni nli time nni nli time

p=1 7 263 0.10 5 54 0.02 6 48 0.05
p=2 6 277 0.78 6 96 0.35 5 41 0.28

Table 3: Convergence results of the inviscid channel case (2688 elements). nni:numbers of non-linear
iterations, nli: total numbers of linear iterations, time: total run time(min).

BD LU-SGS ILU
nni nli time nni nli time nni nli time

p=1 7 515 1.40 7 151 0.52 6 72 0.40
p=2 6 399 8.57 6 126 3.27 5 66 3.23

Table 4: Convergence results of the inviscid channel case (21504 elements). nni:numbers of non-linear
iterations, nli: total numbers of linear iterations, time: total run time(min).

BD LU-SGS ILU
nni nli time nni nli time nni nli time

p=1 8 778 16.78 9 247 6.70 8 169 8.83
p=2 8 881 142.88 6 215 43.70 6 126 65.10

4.2 Laminar flow past a flat plate

A laminar flow over an adiabatic flat plate is chosen to study the performance of the
different preconditioners when using JFNK-DG method. In this case, the free-stream
flow condition is given as Ma∞ = 0.5 and Re∞ = 100, 000. The problem is solved
using a hierarchical basis on three successive refined grids with 960, 1920 and 3840
quadratic elements, respectively. Fig. 1 shows a portion of the coarse grid and the cor-
responding p=2 solution of velocity components on this grid. The non-dimensional
variables are given as ux = u/u∞, vy = v ×

√
Rex/u∞ versus η = y ×

√
Rex/x.

solutions of p=1, 2 are obtained, where the low-order converged solutions are used as
an initial guess of the higher-order computations.
Tables 5-7 show the convergence results of the different preconditioners. It can be ob-
served from the computational results that the block diagonal preconditioner is not
efficient for this convection-dominated laminar flow problem and the convergence
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Figure 1: Computational grid and solution of velocity profiles on coarse grid (960 elements, p=2 ) for laminar
flow past a flat plate.

results can’t be derived within 100 nonlinear iterations on the medium and fine grid-
s.The LU-SGS preconditioner performs notably better than the block diagonal pre-
conditioner for this laminar flow case, however it is significantly inferior to the ILU
preconditioner. Recall that the Reynolds number of this test case is 100000, which
means that the contribution of the convection term to the Jacobian dominates. The
LU-SGS preconditioners does not capture this contribution so well−hence it gives a
poorer approximation to the Jacobian than the ILU preconditioner.

Table 5: Convergence results of the laminar flat plate case (960 elements). nni:numbers of non-linear
iterations, nli: total numbers of linear iterations, time: total run time(min).

BD LU-SGS ILU
nni nli time nni nli time nni nli time

p=1 45 7726 8.43 18 2062 2.43 13 150 0.27
p=2 30 4970 27.73 8 956 5.72 6 123 1.02

Table 6: Convergence results of the laminar flat plate case (1920 elements). nni:numbers of non-linear
iterations, nli: total numbers of linear iterations, time: total run time(min). ’*’ denotes cases which did not
convergence in maximum nonlinear iterations.

BD LU-SGS ILU
nni nli time nni nli time nni nli time

p=1 * * * 29 4087 9.42 14 271 0.8
p=2 * * * 13 1887 23.01 8 184 3.1

4.3 Laminar flow past a sphere

A viscous flow past a sphere is considered in this case. The computation is performed
at a Mach number of 0.5, and Reynolds number of 118 based on the diameter of the
sphere. This test case is chosen to demonstrate the robustness of the current solver
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Table 7: Convergence results of the laminar flat plate case (3840 elements). nni:numbers of non-linear
iterations, nli: total numbers of linear iterations, time: total run time(min). ’*’ denotes cases which did not
convergence in maximum nonlinear iterations.

BD LU-SGS ILU
nni nli time nni nli time nni nli time

p=1 * * * 33 4734 22.38 14 463 2.43
p=2 * * * 12 1709 41.08 8 386 8.51

in the computation of viscous flows around a curved geometry. Since the model and
flow is symmetric, we consider only half of the configuration. Fig. 2 shows a portion of
the grid with 4216 quadratic hexahedral elements and the corresponding p=2 solution
of velocity streamlines on the pressure contours, which agrees well with the results in
Ref. [33] using Reconstructed Discontinuous Galerkin (RDG) method.
Table 8 gives the convergence results for this case. Similar to the results of the flat plate
case, the ILU0 preconditioner is much more efficient than the other preconditioners,
though the lower Reynolds number in this example means the superiority over LU-
SGS which is a little less marked.

X

Y

Z

X

Y

Z

(a) Grid (b) Solutions of streamlines

Figure 2: Computational grid and solution of streamlines on pressure contours for laminar flow past a sphere
(4216 elements, p=2)

Table 8: Convergence results of the laminar flow past a sphere test case (4216 elements). nni: total numbers
of non-linear iterations, nli: numbers of linear iterations, time: total run time(min).

BD LU-SGS ILU
nni nli time nni nli time nni nli time

p=1 30 2135 13.5 19 866 5.95 13 249 2.25
p=2 63 4131 126.8 27 1581 53.4 16 746 23.01
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4.4 Subsonic flow past a Delta Wing

A laminar flow at a high angle of attack around a delta wing with a sharp leading
edge and a blunt trailing edge is considered. This is a benchmark in the 3rd inter-
national workshop on high-order CFD methods [32] and the flow condition is given
as Ma∞ = 0.3 and Re∞ = 4000 with an angle of attack α = 12.5◦. This case is cho-
sen to compare the performance of the Jacobian-Free method with the Jacobian based
method in storage requirement and computational efficiency. 7159 quadratic hexa-
hedral elements are used for computation and the ILU0 decomposition approach is
adopted as the preconditioner. The memory saving achieved for different polynomial
approximation is reported in Table 9. It can be seen that a significant saving in storage
is achieved with the JFNK-DG method, which increases with the degree of polynomial
approximation, from 24% for p=1 to 36% for p=2, which demonstrates the superiority
of the Jacobian-Free approach.
Table 10 gives the convergence results of both methods. The computational CPU
time is normalized by TauBench time, which is 10.75 seconds for this desktop com-
puter. The computed lift and drag coefficients of both methods with order p = 2
are Cl = 0.35456 and Cd = 0.16919, which is very close to the reference value of

C
re f
l = 0.347 and C

re f
d = 0.17148 from the 3rd workshop. From the results it can be

observed that compared with the Jacobian base approach, the JFNK-DG method can
substantially reduce the storage requirement without significantly compromising ac-
curacy and efficiency.

Table 9: Memory requirements of different solvers for delta wing case (7159 elements)

Jacobian based (Mb) Jacobian free (Mb) Saving(%)

p=1 584.0 439.4 24.8%
p=2 2477.5 1573.8 36.5%

Table 10: Convergence results of different solvers for delta wing case (7159 elements). nni: total numbers
of non-linear iterations, nli: numbers of linear iterations, work units: normalized CPU time.

Jacobian based method Jacobian free method
nni nli work units nni nli work units

p=1 6 172 25.22 6 174 25.84
p=2 9 240 217.17 9 280 244.91

4.5 Subsonic flow past a DLR-F6 wing body transport configuration

A subsonic flow past a DLR-F6 wing body transport configuration is chosen to test the
reliability and robustness of the current JFNK-DG solver. The flow condition is given
as Ma∞ = 0.3 with an angle of attack α = 1◦. Solutions have been computed up to
p = 3 polynomial approximation for this case on a grid with 33448 quadratic hexahe-
dral elements. The total degrees of freedoms for different orders ranging from p = 1 to
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p = 3 are 668960, 1672400 and 3344800, respectively. ILU0 preconditioner is used for
this case and the resulted Mach number contours of order p = 3 are illustrated in Fig. 3
which is converged to a residual of 10−6. The computed lift and drag coefficients are
Cl = 0.52705 and Cd = 0.02386 for order p = 3. Table 11 shows the convergence re-
sults in terms of the number of non-linear Newton iterations, linear GMRES iterations
and the executed CPU time. In order to speed up, a preconditioner-freezing approach
is tested in this complex flow case in which the preconditioner is re-evaluated every
5 nonlinear iterations. Since the process of forming preconditioner is especially costly
for DG method, the preconditioner-freezing approach shows a great superiority for
this case.

X
Y

Z

Ma: 0.05 0.1 0.15 0.2 0.29 0.35 0.4 0.45

Figure 3: Solutions of Mach number contours for DRL-F6 wing body configuration (p=3)

Table 11: Convergence results of the subsonic flow past a DLR-F6 wing body configuration (33448 elements).
nni: total numbers of non-linear iterations, nli: numbers of linear iterations, time: total run time(min).

without preconditioner–freezing preconditioner–freezing
nni nli time nni nli time

p=1 6 158 32.3 6 149 5.35
p=2 8 272 117.9 8 280 38.96
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5 Conclusion

A fully implicit Jacobian-Free Newton-Krylov discontinuous Galerkin method has
been presented to solve the compressible Euler and Navier-Stokes equations on hexa-
hedral grids. Several preconditioners are investigated and compared in both storage
requirement and computational efficiency in the framework of the JFNK-DG solver. A
variety of three dimensional test cases have been conducted to demonstrate the effi-
ciency and robustness of the developed JFNK-DG solver. The contribution of this pa-
per is to show that, in comparison with with the Jacobian based method, the Jacobian-
Free approach can substantially reduce the storage requirement without significant-
ly compromising accuracy and efficiency. Furthermore, our numerical experiments
clearly demonstrate that, across a wide range of test cases, the ILU0 preconditioner
is a good choice considering both storage requirement and computational efficiency,
especially for complex flow simulations. Finally, we note that current trends in com-
puter hardware (e.g. many-core chips) suggest that the cost of CPU cycles relative to
memory capacity will decrease rapidly over the coming years. We suggest therefore
that the importance of low memory algorithms is likely to grow, even where this is at
the expense of additional numerical operations.
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