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Increasing global CO2 emissions have profound conse-
quences for plant biology, not least because of direct influ-
ences on carbon gain. However, much remains uncertain
regarding how our major crops will respond to a future
high CO2 world. Crop model inter-comparison studies
have identified large uncertainties and biases associated
with climate change. The need to quantify uncertainty has
drawn the fields of plant molecular physiology, crop breed-
ing and biology, and climate change modeling closer to-
gether. Comparing data from different models that have
been used to assess the potential climate change impacts
on soybean and maize production, future yield losses have
been predicted for both major crops. When CO2 fertilization
effects are taken into account significant yield gains are pre-
dicted for soybean, together with a shift in global production
from the Southern to the Northern hemisphere. Maize pro-
duction is also forecast to shift northwards. However, unless
plant breeders are able to produce new hybrids with im-
proved traits, the forecasted yield losses for maize will only
be mitigated by agro-management adaptations. In addition,
the increasing demands of a growing world population will
require larger areas of marginal land to be used for maize
and soybean production. We summarize the outputs of crop
models, together with mitigation options for decreasing the
negative impacts of climate on the global maize and soybean
production, providing an overview of projected land-use
change as a major determining factor for future global
crop production.
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Abbreviations: ABA, abscisic acid; AgMIP, the agricultural
model inter-comparison and improvement project; C3,
three carbon; C4, four carbon; CEP, C-terminally encoded
peptide; CLE, clavata3/embryo surrounding region; FACE,
free air CO2 enrichment; MATE, multidrug and toxin extru-
sion; MACSUR, modeling European agriculture for climate

change; PYR/RCAR, pyrabactin resistance1 (pyr1)/pyr1-like
(pyl)/regulatory components of aba receptors (rcar); RCH1,
resistant to high CO2; Rubisco, ribulose-1, 5 carboxylase oxy-
genase; ROS, reactive oxygen species.

Introduction

Atmospheric CO2 concentrations [CO2] have risen from about
280 mLL�1 in pre-industrial times to 400 mLL�1 at present (IPCC
2013). The increasing concentration rate has accelerated in
recent years to the extent that [CO2] may reach between 530
and 970 mLL�1 by the end of the 21st century, leading to sig-
nificant global warming (IPCC 2013). Higher temperatures and
high [CO2] can be both beneficial and detrimental to plants,
leading to changes in the global agricultural landscape. Average
global temperatures have increased by 0.76�C over the last 150
years and are likely to increase by at least another 1.7�C by the
end of this century. It is generally assumed that most plants are
adapted to atmospheric [CO2] below 300 kLL�1 and that evo-
lutionary adaptation may not keep pace with ongoing rapid
atmospheric CO2 increases (Ort et al. 2015).

Since high [CO2] will favor photosynthetic carbon assimila-
tion and depress photorespiration in plants with the C3 path-
way of photosynthesis, it is generally assumed that C3 plants
will benefit from increased carbon gain that will translate into
increased biomass and yield. Many aspects of plant metabolism,
molecular physiology, structure and development are modified
by growth under high atmospheric [CO2], not least because the
assimilation of carbon is tightly linked to primary nitrogen as-
similation (Terashima et al. 2015 and articles cited therein).
Moreover, increased [CO2] reduces the density of stomata
and also decreases the aperture of the stomatal pores resulting
in decreased evapotranspiration (Mansfield et al. 1990,
Vavasseur and Raghavendra 2005, Kim et al. 2010). Stomatal
development is also controlled by both [CO2] and the phyto-
hormone abscisic acid (ABA; Woodward 1987, Woodward and
Kelly 1995, Tanaka et al. 2013). Several components have been
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identified in the signaling pathway that reduces stomatal aper-
tures in response to elevated [CO2] including b-carbonic anhy-
drases (Hu et al. 2010), the HT1 protein kinase, the RHC1 MATE
transporter and the NtMPK4 protein kinase (Hashimoto et al.
2006, Marten et al. 2008, Tian et al. 2015). The generation of
reactive oxygen species (ROS) is involved in both high [CO2]-
induced decreases in stomatal density, requiring the presence
of ABA, PYR/RCAR and ABA receptors (Chater et al. 2015).
Despite extensive research efforts over the last 50 years, the
complex interplay between metabolic and environmental sig-
nals that determine the plant response to high CO2 is far from
resolved, particularly at the whole plant level. Much of our
current understanding of the responses of crop growth to
high atmospheric [CO2] has come from either studies in free
air CO2 enrichment (FACE) sites or chamber (closed or open-
top) experiments. Unfortunately, such studies have not always
yielded consistent results. CO2 enrichment does not necessarily
enhance plant growth or yield and differences in the responses
of these traits have been reported even within the same species
(Ainsworth and Long 2005, Luo et al. 2006, Leakey et al. 2009a b,
Hasegawa et al. 2013, Bishop et al. 2015). Nevertheless, these
studies provide the essential foundation data underpinning
crop models, predicting future changes in crop production
and their implications for food security.

Crop models have a central role in informing agro-industry
and policymakers about the risks and potential of adaptation
strategies to counter climate change, as well as directing plant
scientists and breeders towards the required traits in improved
varieties and cropping systems’ management practices to miti-
gate global climate change impacts. Crop model inter-compari-
son studies have identified large uncertainties and biases
(e.g. Asseng et al. 2013, 2014, Bassu et al. 2014), and unfortu-
nately they do not often incorporate current knowledge of
plant responses to growth under high atmospheric [CO2]
(Durand et al. 2017). This review summarizes current crop
models and the complexity of analysis, within the context of
our current knowledge on the impacts of a high [CO2] on the
C3 crop plant soybean (Glycine max), and the C4 crop maize
(Zea mays), which has an internal CO2 concentrating mechan-
ism. Maize and soybean are used to produce a wide range of
food and non-food products including pharmaceuticals and
biofuels, as well as important sources of livestock feed. Here,
we consider the projected impacts of a future high CO2 world
on the global production of maize and soybean. Currently,
maize is the most important grain crop and soybean the
fourth most important in terms of global production. Since
1960, soybean and maize grain yields increased 7.6 and 2.6
times, respectively. Together, the USA, Brazil and Asia (mainly
China and India) account for respectively 92% and 84% of the
world soybean and maize production. However, while the land
area on which grain legumes, such as soybean, are grown has
gradually increased over the past 50 years, this is still only a
quarter of that planted to cereals, such as maize (Foyer et al.
2016). In addition, while increases in cereal production over this
period have been predominantly due to increases in yield,
driven by the introduction of new varieties and improvements
in agronomic practices, increases in grain legume production

are due to both increases in land area planted and grain yield
(Foyer et al. 2016). For soybean in particular, grain yields have
increased in proportion to the land area planted. Moreover,
year-on-year increases in soybean yields are slowing while
area planted is increasing, suggesting that more marginal land
is being planted.

In this review, we will provide a brief overview of our current
understanding of the molecular, metabolic and physiological
responses of plants to increasing atmospheric [CO2] and briefly
summarize the history and types of crop models that are cur-
rently available. We then specifically address the question of
how increasing atmospheric [CO2] will alter global soybean and
maize production patterns. Using 118 peer-reviewed publica-
tions (31 for soybean and 87 for maize), we review the main
issues that should be taken into account when modeling these
two important crops, namely model inputs, the roles of [CO2]
adaptation, mitigation, and modeling uncertainties. Finally, we
discuss projected land-use change as a major determining
factor for future global crop production.

The plasticity of plant responses to high CO2

There is now an extensive literature on the responses of plant
biology to growth under high [CO2] conditions, with reviews
ranging from the control of photosynthetic electron transport
and re-programming of photosynthetic gene expression that
accompanies the suppression of photorespiration (Foyer et al.
2012) to effects on abiotic stress tolerance (AbdElgawad et al.
2016). It is not our intention therefore to describe the complex
and many-faceted responses of plants to CO2 enrichment but
rather to highlight a few of the salient points that form the basis
for current assumptions made in crop models.

Current atmospheres have a CO2:O2 ratio of 0.00194 but this
may increase to values as high as 0.0047 by the end of this
century (IPCC 2013), because CO2 is currently increasing at
an annual rate average of 2.1 kLL-1 (Dlugokencky and Tans
2017). This will benefit plants such as soybean that rely on C3
photosynthesis. High atmospheric [CO2] in FACE experiments
resulted in increased soybean photosynthesis rates of up to 46
% (Leakey et al. 2009a). This enhancement is possible because
the current atmospheric [CO2] of 400 kLL-1 is insufficient to
saturate the enzyme responsible for photosynthetic carbon as-
similation, ribulose-1,5-bisphosphate carboxylase-oxygenase
(Rubisco; Farazdaghi 2011). Gaseous CO2 is much more soluble
in water than O2, and thus the local CO2:O2 ratio in the chloro-
plast environment is currently about 0.026 at 25�C. Rubisco has
about a 100-fold greater affinity for CO2 than O2 in higher
plants, dictating that this enzyme catalyzes between two and
three cycles of carboxylation for every cycle of oxidation. In this
way, carbon is partitioned between the assimilatory C3 cycle
and the photo-respiratory pathways. Hence, higher CO2:O2

ratios will competitively inhibit the oxygenase activity of
Rubisco and C3 carbon fixation will be favored over photo-
respiration. However, the potential benefits offered by
increased carbon gain are often not fully realized because of
insufficient sink capacity when C3 plants are grown at elevated
[CO2] (Paul and Foyer 2001, Bernacchi et al. 2005). This results
in carbohydrate accumulation in source leaves, a signal that
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causes repression of genes encoding photosynthetic proteins
leading to a down-regulation of photosynthesis and a decrease
in leaf nitrogen (N) content (Leakey et al. 2009a). Limitations in
soil nitrate availability can also lead to down-regulation of
photosynthesis in plants grown at elevated [CO2]. The ‘progres-
sive N limitation’ hypothesis suggests that under CO2 enrich-
ment, plant N uptake from soils fails to keep pace with
photosynthesis and shoot carbohydrate accumulation (Foyer
et al. 2009). Growth at elevated [CO2] can also significantly
reduce leaf litter N availability, and lead to poor soil quality
because of suppressed decomposition and increased microbial
immobilization (Cha et al. 2017). It has also been argued that
photorespiration plays an important role in providing the re-
ductant required to drive the assimilation of nitrate into am-
monium (Rachmilevitch et al. 2004). Hence, that increasing
[CO2] will favor C3 plants, particularly in environments
where NH4+ is available as a nitrogen source. The increase in
carbon gain achieved by C3 plants under CO2 enrichment may
also serve ameliorate problems associated with ammonium
toxicity (Li et al. 2014).

The effects of increasing [CO2] on plant architecture and
partitioning of biomass between roots and shoots remains un-
certain. Much depends on the C/N balance in roots and shoots.
N-availability signals in the shoot influence the root system. The
shoot promotes root growth in proportion to total N-demand.
Plant architecture responses to increasing [CO2] are likely to
involve complex pathways of root-to-shoot and shoot-to-root
signaling. Signaling molecules include the small C-terminally
encoded peptide (CEP) family peptides, which control root
system architecture (Mohd-Radzman et al. 2015) and the
CLAVATA signaling pathway, which controls root development
and involves small signaling peptides of the clavata3/embryo
surrounding region (CLE) family that are important in the regu-
lation of stem cell division and differentiation in an N-respon-
sive manner (Araya et al. 2016). In N-deprived roots CEP
peptides are produced and transported to the shoot, where
they induce of expression of ‘CEP-downstream’ peptides that
are transported back to the root to increase the expression of
N-uptake transporters. There is a paucity of literature to date
concerning how high [CO2] influences whole plant signaling.

One particularly important result of the growth of C3 plants
under elevated CO2 is the priming of pathogen defenses
(Mhamdi and Noctor 2016). Multiple pathogen defense path-
ways are activated when C3 plants are grown with atmospheric
CO2 enrichment, leading to increased resistance to bacterial
and fungal pathogens. This high [CO2]-dependent priming of
pathogen defenses is linked to metabolic adjustments involving
redox signaling (Mhamdi and Noctor 2016). While growth
under elevated [CO2] may enhance the resistance/resilience
of C3 plants to pests and pathogens, a FACE study showed
no effects on aphid performance (Mondor et al. 2005).

C4 plants such as maize are able to concentrate CO2 in the
Rubisco-containing photosynthetic cells of the bundle sheath.
The CO2-concentrating mechanism of C4 photosynthesis facili-
tates high rates of carbon assimilation to occur even when
stomata are partially or fully closed, because the C4 pathway
delivers a high CO2 concentration in the vicinity of rubisco

limiting the oxygenation reaction and flux through the
photo-respiratory pathway. Hence the C4 pathway of photo-
synthesis provides a competitive advantage under growth con-
ditions that promote carbon loss through photorespiration,
such as high temperatures or decreased water availability
(Lopes and Foyer 2011). The transpiration rates and water
status of maize leaves, particularly the older leaf ranks, are
changed under conditions of atmospheric CO2 enrichment
even when plants are maintained under well-watered condi-
tions (Prins et al. 2010). Under well-watered conditions, ele-
vated CO2 has little effect on the photosynthesis or growth
of C4 plants in controlled environment (Soares et al. 2007,
Prins et al. 2010) or in the FACE studies (Leakey et al. 2009a,
b, Manderscheid et al. 2014). Moreover, the negative impact of
drought on yield is attenuated at high CO2 because of stomatal
closure (Lopes et al. 2011, Manderscheid et al. 2014). Such ob-
servations indicate that maize should perform better under
drought stress conditions when plants are grown at high
[CO2]. While higher temperatures should favor C4 plants
over C3 plants (Long and Ort 2010), a negative response of
global yields has been projected for maize as well as wheat
and barley as a result of increased temperatures (Tatsumi
et al. 2011, Asseng et al. 2014). Elevated temperatures have
been reported to exert a negative influence on a range of
plant processes such as photosynthesis through decreased ac-
tivation of Rubisco, stomatal closure, flower development,
pollen viability and hence fertility, and fruit ripening but in
many cases the precise mechanisms remain to be characterized.

The rise of crop modeling

Crop models are designed to calculate crop yield (and other
important parameters of the soil-plant system) as a function of
weather and soil conditions, plant-specific characteristics as
well as a choice of agricultural management practices (see
Table 1 for definitions for key terms used hereafter). Models
of cropping systems were first conceived in the 1960s (Jones
et al. 2017). Although it is fundamentally a curiosity-driven
activity, the development of crop models received major
boosts from various economic, technological and political
events. During the Cold War, fueled by the unexpected large
volume purchase of wheat by the Soviet Union in 1972, another
type of curiosity played an important role in the development
of key components of the DSSAT model suite (Jones et al. 2003)
enabling the USA to predict the yield of major crops produced
and traded worldwide, especially in the COMECON (Council
for Mutual Economic Assistance) countries (Ritchie 2000). The
current version of DSSAT (Decision Support System for
Agrotechnology Transfer) software application comprises
crop simulation models for various cereals, grain legumes and
root crops. Outside simulating plant growth, development and
yield formation the model is calculating the soil heat, water and
nitrogen balance as a function of the soil-plant-atmosphere
dynamics and agro-management options. Governmental
funds helped experts from different disciplines to develop
crop models with new capabilities: EPIC (Williams et al. 1989)
with a soil erosion module, APSIM (Keating et al. 2003) able to
simulate large number of different crops including trees and
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weeds. The Environmental Policy Integrated Climate (EPIC)
model is a cropping systems model that was developed to es-
timate soil productivity as affected by erosion. Today, EPIC
simulates approximately eighty crops with one generic crop
growth model using unique parameter values for each crop.
It predicts effects of management decisions on soil, water, nu-
trient and pesticide movements, and their combined impact on
soil loss, water quality, and crop yields. The Agricultural
Production Systems Simulator (APSIM) software is a modular
modeling framework developed to simulate biophysical pro-
cesses in agricultural systems, particularly as it relates to the
economic and ecological outcomes of management practices
with regards to climate risks. APSIM is structured around plant,
soil and management modules comprising diverse range of
crops, pastures and trees, soil processes including water bal-
ance, N and P transformations, soil pH, erosion and a full
range of management controls. The release of the first personal
computers in the early 1980s revolutionized not only the use
and development of crop models but it led to many innov-
ations in other fields (computer graphics, statistical analysis,
GIS, etc.) that have contributed to the modeling of agricultural
systems (Jones et al. 2017).

Crop modeling has been used for various applications over
the past few decades. Field-scale applications for decision sup-
port have a long history (Hoogenboom et al. 1994) that in turn
enabled work with seasonal weather forecasting (Hansen 2005),
frameworks to link crop and climate models (Challinor et al.
2003), or integrated assessments within watersheds or across
multiple sectors (Warszawski et al. 2014, Wriedt et al. 2009).
Crop models have been used to develop adaptation options
(Webber et al. 2014, Challinor 2009) and there is now

recognition of the need for combined assessments of adapta-
tion and mitigation, in support of achieving emissions targets
(Jarvis et al. 2011, Shirsath et al. 2017). The need to quantify
uncertainty (Challinor et al. 2013) and to improve models has
led to an increasing number of international collaborations
across modeling groups (Rosenzweig et al. 2013), as well as to
linking crop models to climate model ensembles (Ramirez-
Villegas et al. 2013). Recognition of the importance of vulner-
ability and agricultural management in determining impacts
and adaptation options has led to work across the natural-
social science interface (Simelton et al. 2012). For a detailed
history of crop models see the comprehensive work of Jones
et al. (2017).

Major types of crop models

Approaches used to assess the impacts of climate change on
agriculture include four major types.

1. Climate or more generally, environmental index-based methods

(Olesen et al. 2011) utilize a multidimensional scoring system of

production determining factors to provide a quasi-quantitative

assessment of the vulnerability of the investigated agricultural

system or area.

2. Statistical models express the relationship between yield or yield

components and weather parameters in a form of regression

equations (Lobell and Burke 2010) or other type of more ‘black-

box’ models (Delerce et al. 2016) which are calibrated by using

corresponding observed yield and weather data varying in time or

space or in both domains.

3. Niche-based models describe the geographical distribution of

a crop species using either a set of explicit fuzzy-logic equations

Table 1 Key definitions

Term Definition

Greenhouse gases (GHGs) These are gases (e.g. water vapor, carbon dioxide, methane) in the atmosphere that absorb and emit radi-
ation warming Earth’s surface to a temperature above what it would be without the atmosphere.

Climate change adaptation In the context of climate change adaptation means taking appropriate actions (e.g. move the planting
dates earlier or introducing drought tolerant varieties) to prevent or minimize the damage the adverse
effects of climate change can cause, or taking advantage of opportunities that may arise (e.g. expanding
cropping areas of certain crops).

Climate change mitigation In the context of climate change mitigation refers to efforts to reduce or prevent emission of greenhouse
gases. Mitigation can mean using new technologies and renewable energies, making older equipment
more energy efficient, or changing management practices (e.g. minimize soil cultivation) or consumer
behavior.

Representative concentration
pathways (RCPs)

These are four greenhouse gas concentration trajectories adopted by the Intergovernmental Panel on
Climate Change (IPCC) in 2014. They describe four plausible climate futures, all of which are considered
possible depending on how much greenhouse gases are emitted in the years to come. RCP2.6, RCP4.5,
RCP6, and RCP8.5, are named after a possible range of radiative forcing values (the difference between
the incoming radiation absorbed by the Earth and the energy radiated back to space) in the year 2100
relative to pre-industrial values (+2.6, +4.5, +6.0, and +8.5 W/m2, respectively)

Computable general
equilibrium (CGE)

These models are a class of economic models that use actual economic data to estimate how an economy
might react to changes in policy, technology or other external factors.

Scopus This is the world’s largest abstract and citation database of peer-reviewed research literature with over
22,000 titles from more than 5,000 international publishers.

Fuzzy logic This is a form of multi-value logic in which the truth values of variables may be any real number between
0 and 1. It is employed to handle the concept of partial truth, where the truth value may range
between completely true and completely false.
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that specify how environmental suitability (a continuous variable

in the range 0–1) varies across an environmental gradient (Zabel

et al. 2014) or a statistical model fitted with presences and ab-

sences of the crop in question (Estes et al. 2013).

4. Process-based models (Rosenzweig et al. 2014, Ewert et al. 2015,

Müller et al. 2017) are the mathematical (and nowadays usually

computer-based) representation of the most important processes

of the soil-plant system consisting of a set of ordinary or partial

differential equations and empirical equations organized into pro-

cedures or modules where the outputs of one procedure can serve

as input to other procedures and the model as a whole is able to

describe the temporal pattern of the key system parameters.

That is why these models are also called crop simulation
models. Each type of model has advantages and disadvantages
as well as limitations. However, all are useful tools when con-
sidering the potential impact of climate change. Researchers
select the model that best suits the application. From the
point of view of the present question, the major limitations
of the first three approaches are that they cannot capture
future climate-soil-crop relationships, adaptation through
crop management and carbon dioxide fertilization effect,
though there are techniques to estimate the latter in statistical
methods (McGrath and Lobell 2011). Probably this is the main
reason why process-based crop models are the most commonly
used tools for climate impact assessments (White et al. 2011).

State of the art of crop modeling

The capabilities of crop models depend in large part on the
observed data used for developing and testing the model, and
on modeling the crop at a degree of complexity that is appro-
priate to the aims of the study (Sinclair and Seligman 2000). The
results of any one particular study are highly dependent upon
input data quality and adequate quantification of uncertainty,
though synthesis across many studies helps achieving consen-
sus (Challinor et al. 2014b). Crop model ensembles should rep-
resent the underlying distribution of probabilities, which is not
straightforward (Wallach et al. 2016). Attention should be paid
to bias correction of climate data where necessary (Hawkins
et al. 2013). The assumptions underlying the results of the study
should be explicit, for example using a common uncertainty
reporting format (Wesselink et al. 2015). For adaptation, there
are number of issues that need attention when formulating a
study (see Lobell 2014).

Whilst the spread of results produced by crop models has
increased over time, robust conclusions can still result from
analysis of outputs (Challinor et al. 2014b). Crop models are
increasingly used for global assessments (Rosenzweig et al.
2014). There are currently two large modeling initiatives,
AgMIP (agmip.org) and Modeling European Agriculture for
Climate Change (MACSUR: macsur.eu). These networking
hubs coordinate and support crop model development, to-
gether with crop model based studies and impact assessments,
providing information for producers, policy-makers and the
public in the area of integrated climate change risk assessment
for global agriculture and food security. The projections
described for maize and soybean below are results of the

collaboration of several groups from the AgMIP and
MACSUR modeling initiatives.

Understanding the influence of land use on crop production
is an important challenge for such studies (Challinor et al.
2015). Effective use of crop models within integrated assess-
ment models is another important challenge (Ewert et al.
2015). Coupling crop models with computable general equilib-
rium (CGE; Table 1) models to bring supply and demand of
agricultural commodities together under the consideration of
global trade is another step forward in the evolvement of crop
models that allows further investigations, e.g. on the allocation
of cropland and land use change (Mauser et al. 2015). These
challenges for the use of crop models do nothing to detract
from the need for continued model improvement and repre-
sentation of processes (Hollaway et al. 2012, Challinor et al.
2014a), particularly where experimental limitations occur
(Reich and Hobbie 2013).

Projections for the future of C3 and C4 crops,
focusing on soybean and maize

Crop models have been widely used to estimate the potential
impacts of climate change on future agricultural productivity.
The protocols of the assessments vary to such an extent that
they impose serious limitations to cross-study syntheses and
increase the potential for bias in projected impacts (White et al.
2011). Despite this fact, the available results allow us to draw
some robust conclusions that are outlined below. With the help
of the SCOPUS database, we reviewed 118 peer-reviewed pub-
lications (31 for soybean and 87 for maize) that used crop
models to investigate the impact of climate change on the
production of maize and soybean worldwide in the second
half of the 21st century. These modeling studies covered all
the most important production areas in America, Asia,
Europe and Africa. Using these studies, we summarized the
key findings on model inputs, consideration of [CO2] response,
adaptation and mitigation for both crops.

Models and key model inputs in the soybean
studies

Fifteen different models were used to assess the potential cli-
mate change impacts on soybean. However, only two models
were used in more than two studies. CROPGRO and EPIC
model results were reported in 15 and 4 papers, respectively.
Seventeen studies investigated more than one location (from
two to 100) within the study area (point-based studies) and 11
studies used the gridded modeling approach covering the total
investigated area with a specific spatial resolution. No studies
used gridded and point-based estimates jointly. Regarding un-
certainty quantification, only two papers used more than one
crop model, though this technique helps avoiding model-
related biases in the climate change impact projections.
Conversely, with the exception of two studies, all used several
(two to 72) future climate projections to assess (or show) the
uncertainty arising from different climate model- and/or cli-
mate change scenario-related issues. The projected tempera-
ture rise used in the climate projections (compared to the

1837

Plant Cell Physiol. 58(11): 1833–1847 (2017) doi:10.1093/pcp/pcx141

Downloaded from https://academic.oup.com/pcp/article-abstract/58/11/1833/4159252
by University of Leeds Medical & user
on 30 November 2017

Deleted Text:  4) 
Deleted Text: s
Deleted Text:  
Deleted Text: in considerations of
Deleted Text: s
Deleted Text: STATE OF THE ART OF CROP MODELLING
Deleted Text: l
Deleted Text: l
Deleted Text: l
Deleted Text: l
Deleted Text: PROJECTIONS FOR THE FUTURE OF C3 AND C4 CROPS, FOCUSING ON SOYBEAN AND MAIZE
Deleted Text: l
Deleted Text: s
Deleted Text: MODELS AND KEY MODEL INPUTS IN THE SOYBEAN STUDIES
Deleted Text: 2
Deleted Text: 17
Deleted Text: 2
Deleted Text: l
Deleted Text: 2
Deleted Text:  
Deleted Text: 2-


baseline) varied between 0.9 and 9�C, but the majority of the
studies examined the effect of a 2–4�C temperature rise. These
temperature changes were associated with an increase in the
atmospheric [CO2] from 450–700 kLL�1, although the majority
of the papers postulated a [CO2] of 550–650 kLL�1 for the
future.

The effect of high [CO2] and adaptation options
on future soybean production

Of the literature used in this analysis, six studies failed to con-
sider the direct effect of high [CO2] on soybeans. All studies
projected yield losses for soybean, which might be mitigated by
agricultural management adaptations such as changing the
planting date (do Rio et al. 2016), change of cultivars (Battisti
et al. 2017) or introducing double-cropping systems (Lant et al.
2016). The global study of Tatsumi et al. (2011) projected yield
decrease for all the major soybean producing areas. However,
this study applied several significant simplifications such as use
of monthly step climatic data, ignoring CO2 fertilization effects
and the water-holding capacity of soils. Twenty-seven studies
that took into account CO2 fertilization effects projected sig-
nificant yield gains. Of these, only one global assessment that
took into account the added carbon gain arising from future
high atmospheric [CO2], projected moderate (5–15%) yield
losses and this was only for regions in US and Latin-America
(Deryng et al. 2014). The same study did not investigate the
potential of management adaptation options. In relation to
adaptation, in fact, we find that some 16 out of the 37 studies
investigated adaptation options. These studies suggest that
management adaptation options can have a significant effect
in counterbalancing the negative effects of climate change
(Tubiello et al. 2000, Challinor et al. 2014b). According to
some simulations, some crop management options (e.g.
winter rye cover) have no effect on future yields but they
have the potential to reduce soil erosion and nitrous oxide
emissions significantly (Basche et al. 2016).

The role of climate change mitigation policies in
future soybean production

Representative concentration pathways (RCPs) are four green-
house gas concentration trajectories (IPCC 2013), all of which
are plausible depending on how much greenhouse gases are
emitted in the years to come. The four RCPs, RCP2.6, RCP4.5,
RCP6, and RCP8.5, are named after the prospective radiative
forcing values in the year 2100 relative to pre-industrial values
(+2.6, +4.5, +6.0, and +8.5 Wm�2 respectively). The ultimate
aim of climate change mitigation policies is to reduce emissions
consistent with specific targets, thus helping to avoid high-end
emissions scenarios such as RCP8.5. The Paris Agreement
(2015), for example, aims at maintaining global average tem-
perature well below 2�C above pre-industrial levels; this has
been reported to significantly reduce the risks and impacts of
climate change (Schleussner et al. 2016). This aim could be
achieved in many ways including the use of low-carbon tech-
nologies, renewable energy sources, transportation optimiza-
tion, as well as promoting individual-lifestyle changes (cycling

instead of driving, alternative diets, etc.). In the agricultural
sector, climate change mitigation policies may be implemented
via promoting reforestation, low input soil management, re-
source efficient farm management, more sustainable fertilizer
subsidy provision, and improving knowledge and transfer
mechanisms all aiming at increasing carbon sequestration
and/or decreasing greenhouse gas emissions. Climate mitiga-
tion policies play an important role in ensuring that new tech-
nologies are implemented and mitigation targets are met. They
are hence central to avoiding future global yield losses.

Across the soybean studies reviewed here, mitigation poli-
cies are typically addressed by modeling crop yields for different
RCPs. Comparison between different RCPs allows determin-
ation of the likely benefits of climate change mitigation. For
example, the yield reduction reported by Deryng et al. (2014)
was the result of using the most extreme RCP8.5 based climate
projections which is in fine agreement with the findings of
Bhattarai et al. (2017) who, on the other hand, used not only
RCP8.5 but RCP2.6 and RCP4.5 based projections resulting in
marginal yield losses (�2%) for RCP8.5 and yield gains (11 and
13%) for RCP2.6 and RCP4.5, respectively. The studies reviewed
here thus strongly suggest that successful climate change miti-
gation policies that secure the future [CO2] pathway below
RCP4.5, will allow future resolution of soybean production
problems.

Another important aspect of future crop production is the
extent to which areas where crops are grown may shift as con-
ditions change. Some studies have shown that there is a large
northerly and southerly shift in land that is suitable for soybean
production (Lant et al. 2016). This shift incorporates significant
areas of the Northern hemisphere reaching as far as Ireland
(Holden and Brereton 2003). Soybeans are already grown in
Canada and varieties are already being trialed for production
in the UK. Thus, due to the projected future yield and sowing
area gains an expansion of soya production could be expected
worldwide, although as with projected yield changes, these
shifts in production areas could change depending upon the
emissions pathway.

Models and key model inputs in the maize studies

Twenty-one different models were used for assessing the po-
tential climate change impacts on maize. The two most fre-
quently used models were the CERES (member of the DSSAT
model suite) and EPIC that were used in 45 and eight studies,
respectively. About a third (23) of the assessments were based
on data of only one particular site of the study area and/or
applied only one climate projection for the future. The pro-
jected temperature rise and the associated atmospheric carbon
dioxide increase of the climate projections of the maize studies
were similar to those of the soybean studies. Regarding crop
model uncertainty, twenty-two studies used the gridded mod-
eling approach and five papers used more than one crop model
for the impact assessments. The most comprehensive of these
was the study of Bassu et al. (2014), which evaluated 23 maize
simulation models for four locations representing a wide range
of maize production conditions in the world. They found that
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only an ensemble of models (a minimum of about eight to 10
needed) was able to simulate absolute yields accurately and
that there was a large uncertainty in the yield response to
[CO2] among models. The uncertainty envelope is mainly due
to inconsistency in the way models simulate assimilation, as
well as in whether or not models simulate enhanced [CO2]
effects on transpiration.

Model and scale related uncertainty in the maize
studies

In a global study, Blanc and Sultan (2015) showed that the
projected changes for maize production were highly model-
dependent, ranging from a 15% decrease to a 20% increase in
yield in the Corn Belt. However, large scale investigations may
contradict local (country scale) studies even if the same model
was used. For example, Supit et al. (2012) projected a yield
increase for Turkey as a result of climate change while Sen
et al. (2012) predicted that yields will decrease in this region.
One reason for this kind of discrepancy could be the lack of use
or quality in the soil data used for yield projections (Tatsumi
et al. 2011). The impact of climate change on specific regions
could vary significantly because of differences in soil character-
istics (Chipanshi et al. 2003). Surprisingly, no local model-based
impact studies were found for France, Indonesia, Ukraine or
South-Africa, although these countries are among the top 10
global maize producers.

Prospects for future maize production

While a number of studies have predicted increases in maize
yields in the major corn-producing areas of the world such as
the USA (Tubiello et al. 2002), China (Guo et al. 2010) and
Argentina (Travasso et al. 2009), most studies have projected
global decreases in maize yields (Schlenker and Roberts 2009,
Byjesh et al. 2010, Supit et al. 2012, Deryng et al. 2014, Lin et al.
2015), even in studies that took the beneficial effect of CO2

fertilisation into account. Many studies accounted the pre-
dicted yield reduction by one or more of the three main rea-
sons: (i) Increasing frequency and severity of drought; (ii)
Increasing risk of heat waves around flowering; (iii)
Shortening of the vegetation period. However, it may also be
the case that current models fail to account for the water-
saving mechanisms afforded by C4 metabolism and physiology
appropriately. Higher water use efficiencies would be expected
in maize under high [CO2]. Thus, models failing to take this
feature into account might underestimate biomass and yield
gains under high [CO2]. Durand et al. (2017) assessed the ac-
curacy of maize crop models in simulating the interactions of
changes at high atmospheric [CO2]. Under well-watered con-
ditions the models were able to reproduce the absence of yield
response to elevated [CO2]. However, under water deficit con-
ditions the models failed to capture the extent of the [CO2]
response that was observed in the field (Deryng et al. 2016).

Regional gridded modeling studies are particularly import-
ant in maize yield projections because they are able to distin-
guish between sub-regions that may be positively or negatively
affected by climate change. The currently high yielding sub-

regions of China may face yield decreases while the current
low yielding sub-regions may expect yield increase (Xiong
et al. 2007). Current high yielding sub-regions are near-opti-
mum zones providing very favorable conditions for maize pro-
duction. Almost any environmental change in these areas could
only be negative as it would distance the system from its near-
optimum state. On the other hand, marginal areas (far from the
optimum) most likely benefit from the environmental changes,
by getting closer to the optimum state of the system. However,
yield losses per unit area do not necessarily translate into overall
productivity for a given region, because the projected area of
cultivated land used for multiple-cropping systems may be sig-
nificantly increased as a result of climate change (Yang et al.
2015). Moreover, the indirect effects of climate change can
become important; for example, the projected increases in
insect pests as a result of increased winter survival
(Diffenbaugh et al. 2008). Such factors could significantly alter
the pest management landscape of North American maize pro-
duction, leading to substantial economic impacts through
increased seed and insecticide costs, as well as decreased yields.

Roles for adaptation options and climate change
mitigation policy in future maize production

Modeling studies do not depict a clear positive or negative
picture for future global maize production but they clearly em-
phasize the need for explicit adaptation actions such as breed-
ing of heat/drought tolerant hybrids. The majority of the
studies (13 out of 20) that assessed certain adaptation options
concluded that a shift in planting date, together with the use of
longer maturing hybrids and alternative soil and nitrogen man-
agement practices will be insufficient to counter negative im-
pacts of climate change (Tubiello et al. 2000, Ko et al. 2012,
Moradi et al. 2013). Studies also agree that the more extreme
the scenario (RCP8.5 or similar scenarios form the earlier IPCC
reports) the more severe the yield losses that could be ex-
pected. This highlights the necessity and opportunities for
joint mitigation-adaptation efforts. A global study suggest
that the drastic climate mitigation policy of RCP2.6 could
avoid more than 80% of the projected global average yield
losses (USA: �20%, Brazil: �50%, Argentina: �40%) that are
otherwise projected by the 2080s under RCP8.5 (Deryng et al.
2014).

Methods used to project land use changes for
maize and soybean production

Coupling land use (Monfreda et al. 2008) and baseline and
future land suitability data (Zabel et al. 2014) with future diet
(Tilman and Clark 2014) and GHG emission (Smith et al. 2008)
scenarios we have projected future of global maize (Fig. 1) and
soybean (Fig. 2) production areas. Baseline (1981–2010) and
future (2071–2100) land suitability determinations for each grid
cell were made using the fuzzy-logic methodology of Zabel et al.
(2014) by incorporating data on local daily climate (tempera-
ture, precipitation, solar radiation), soil (texture, hydraulic char-
acteristics, pH, organic carbon content, salinity, sodicity) and
topography (elevation, slope). We consider 16 economically
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important staple and energy crops (including maize and
soybean) at a spatial resolution of 30 arc seconds. The param-
eterization of the membership functions that describe each of
the crops’ specific natural requirements is taken from Sys et al.
(1993). As a result of the fuzzy logic approach, values in a range
between 0 and 1 describe the suitability of a crop for each of the
prevailing natural conditions at a certain location. The smallest
suitability value over all parameters finally determines the suit-
ability of a crop. Daily climate data are taken from the global
climate model ECHAM5 (Jungclaus et al. 2006) for SRES A1B
climate scenario conditions. Soil data are taken from the
Harmonized World Soil Database (FAO et al. 2012), and top-
ography data are retrieved from the Shuttle Radar Topography
Mission (Farr et al. 2007).

The ‘No Change’ scenario is the extrapolation of the current
trends, i.e. assuming that no major GHG emission reductions will
be achieved by the introduction of mitigation policies or
enhanced climate-smart agro-technologies. Moreover, the scen-
ario predicts that increases in income and urbanization will drive
a global dietary transition that involves increasingly higher con-
sumption of refined sugars, fats, oils and meats (Tilman and Clark

2014). Together, these features will result in increased demands
for maize and soybean production. In contrast, the ‘Major
Change’ scenario envisages successful and effective GHG mitiga-
tion policies, together with the instigation of new GHG emission
reducing agricultural practices. This will involve significant
health-driven changes in diets and adoption of alternative
diets such as Mediterranean, pescetarian or vegetarian diets
that are characterized by higher consumption of fruits, vege-
tables and pulses and a lower meat consumption (Tilman and
Clark 2014). The vast majority of soybean (75%) is currently used
to feed livestock, with only about 6% used directly as human
food. Future decreases in meat consumption will therefore lead
to large decreases in soya demand. Global crop production area
maps were created using these scenarios with a 10 km (5 arc
minute) spatial resolution. According to current land use (LU)
given by (Monfreda et al. 2008) each grid cell can have two states:
used (harvested area fraction of the crop is at least 1% of the grid
cell area) and not used (Table 2).

The objective of the projections shown in Fig. 1 and Fig. 2 is
to highlight likely changes in land use patterns. The crop pro-
duction scenarios reported here predict significantly different

Fig. 1 Current maize growing areas (blue), together with predicted abandoned (red) and added (green) maize growing areas by 2100. Gray shade
shows the areas that are not used for producing the specific crop. The ‘No change’ scenario (A) is the extrapolation of the current trends with no
major GHG emission reductions or no major changes in dietary trends that would result in an increasing need for maize production. The ‘Major
change’ scenario (B) will be attained if successful GHG mitigation policies are enforced and significant health-driven changes in diets occur that
result in a decreasing need for maize production.
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demands for land use for maize (Fig. 1) and soybean (Fig. 2)
production. Both the used and the not-used cells may remain in
the same land use category or may be changed in the future
providing four options that can be defined by certain rules for
both scenarios (Table 2). If land is ‘used’ today according to the
definitions used above, we assume that these areas will be un-
altered in the future (2071–2100) in the ‘Major Change’ scenario,
if the suitability increases by at least 10%. If suitability increases
less than 10% or decreases until 2071–2100, we assume that
these areas will be abandoned and not be used in the future.

Crucially, areas that are currently not used for maize (Fig. 1B)
and soybean (Fig. 2B) production will probably be added if
future land suitability is higher than the 67th percentile of
today’s global suitability on used areas. Conversely, areas that
are currently not used will also not be used in the future if suit-
ability is lower than the 67th percentile. Since demands for soy-
bean and maize production are higher in the ‘No Change’
scenarios than in the ‘Major Change’ scenarios, more areas will
be required for the production of these crops. Accordingly, we
assume lower thresholds for future land suitability, as well as

lower percentiles of suitability on today’s production areas for
maize and soybean respectively. Hence, greater areas of marginal
land will have to be used for the cultivation maize and soybean in
order to fulfill increasing demands.

Conclusions and Perspectives

Future land use maps were created for maize and soybean using
the basic rules outlined in Table 2 (Fig. 1). Major changes in
policy, agricultural practice and diet imply that major shifts will
occur in the area used for maize and soya production. Our
assessment of modeling outputs predicts that large portions
of current areas of significant maize and soya production may
be abandoned in the future. On the other hand, large new areas
will become available in the future (Table 3) in order to meet
the increasing demands on maize and soya production, particu-
larly if no significant policy, agro-technological and diet-related
changes take place in the future. According to the projections
Europe will face major challenges in both production scenarios,
especially in case of maize. Aligned to other studies (Ruiz-

Fig. 2 Current soybean growing areas (blue), together with predicted abandoned (red) and added (green) soybean growing areas by 2100. Gray
shade shows the areas that are not used for producing the specific crop. The ‘No change’ scenario (A) is the extrapolation of the current trends
with no major GHG emission reductions or no major changes in dietary trends that would result in an increasing need for soybean production.
The ‘Major change’ scenario (B) will be attained if successful GHG mitigation policies are enforced and significant health-driven changes in diets
occur that result in a decreasing need for soybean production.
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Ramos and Mı́nguez 2010, Supit et al. 2012, Fodor et al. 2014,
Mihailović et al. 2015) a stern warning sign could be given to the
European Union that effective adaptation actions are required
to mitigate the harmful impacts of climate change across the
continent. At the other end of the spectrum is Africa, where
climate change may allow a massive increase in soybean pro-
duction no matter which production scenario becomes a reality
in the future. It is not surprising that soybean is called Africa’s
Cinderella crop (Kolapo 2011). The studies that were assessed
here predict a more promising future for soybean, particularly
in terms of production areas, gained and abandoned (Table 3).
These crop models provide essential underpinning information
to farmers, agro-industries and policymakers, so that appropri-
ate cropping systems and/or management practices can be put
in place to counter global climate change.

Crop models have an important role to play in informing
plant scientists and breeders of essential traits that must be
developed in future crop varieties. However, there is a wide gulf
between plant science and crop modeling such that much of
our current knowledge of plant responses to elevated atmos-
pheric [CO2] is not taken into account in many current models.
Crucially, current models do not incorporate the latest findings
about how crops respond to a changing climate. There is there-
fore an urgent need for a new interface of information exchange
between crop modelers and plant scientists highlighting

weaknesses and overlooked processes, and to influence how
models are built, to include how recent changes in our under-
standing of [CO2]-mediated effects on plants might be forma-
lized and incorporated into models. It is thus timely to renew
discussions in order to remove the large uncertainties and
biases in some current crop models, as well as informing
plant scientists of the essential underpinning traits that will
ensure food security over the next 50 years. Current crop vari-
eties are not well suited to future unpredictable weather pat-
terns caused by climate change. Modern breeding programs
have selected for dwarf shoot systems, minimizing the produc-
tion of vegetative tissues. Moreover, elite crop varieties are de-
veloped and bred under ideal growth conditions so the
selective pressure for plant performance under sub-optimal
conditions has largely been removed. This has favored small
root systems, a trait that may have inadvertently decreased
the resilience of plants to both abiotic and biotic stresses,
which are likely to increase as a result of climate change.

Finally, plant physiologists should be aware of areas where
collaboration and data generation would greatly assist crop
modelers:

1. Grain quality aspects: While FACE experiments clearly indicate that

CO2 enrichment affects grain quality characteristics that are im-

portant for consumer nutrition and health, and for industrial

Table 2 Rules of projections of future of crop production areas. LSt, land suitability today (1981–2010); LSf, Land Suitability in the future
(2071–2100); PERC33(LSt) and PERC67(LSt), 33rd and 67th percentile of the distribution of the LSt values of the grid cells used for maize/
soya production over the global grid. LU denotes land use. Acronyms refer to certain areas with different colors in Figs 1 and 2

Scenario No change

LU today Used Used Not used Not used

LU in the future Used Not used Used Not used

LU change Unaltered Abandoned Added Unaltered

Rule If If If If

LSf> 0.9� LSt LSf� 0.9� LSt LSf> PERC33(LSt) LSf� PERC33(LSt)

Acronym NoCh_Used NoCh_Aband NoCh_Added NoCh_Notused

Scenario Major change

LU today Used Used Not used Not used

LU in the future Used not used Used Not used

LU change Unaltered Abandoned Added Unaltered

Rule If If If If

LSf> 1.1� LSt LSf� 1.1� LSt LSf> PERC67(LSt) LSf� PERC67(LSt)

Acronym MaCh_Used MaCh_Aband MaCh_Added MaCh_Notused

Table 3 Predicted global gains and abandoned areas of maize and soya production. The ‘No change’ scenario is the extrapolation of the
current trends with no major GHG emission reductions or no major changes in dietary trends that would result in an increasing need for
maize or soybean production. The ‘Major change’ scenario will be attained if successful GHG mitigation policies are enforced and significant
health-driven changes in diets occur that result in a decreasing need for maize or soybean production

Scenario Transition Acronym (see Fig. 1) Maize [km2] Soya [km2]

No change Abandoned NoCh_Aband 3,364,115 299,005
Added NoCh_Added 27,740,977 30,524,853

Major change Abandoned MaCh_Aband 13,287,592 6,506,380
Added MaCh_Added 10,137,774 6,547,211
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processing and marketing (Högy et al. 2009), CO2 enrichment ef-

fects on grain quality traits remain poorly characterized in terms of

metabolite, proteome and transcript profiles. Some field-scale crop

models already include yield quality related outputs, including

sugar and acid concentrations (Bindi and Maselli 2001), grain pro-

tein (Asseng et al. 2002) and grain protein composition (Martre

et al. 2006) protein composition. The yield quality calculation

methods that are embedded in the models are often not thor-

oughly tested, especially not by using data from elevated CO2 ex-

periments. While manipulation of some of the enzymes of primary

carbon assimilation was found to protect soybean seed yields

against the negative effects of elevated temperature on plants

grown at high CO2 (Köhler et al. 2016), there are no comparable

studies in the literature on effects on grain quality.

2. More accurate vegetation-related to CO2 fluxes: An important

aspect of the crop simulation models typically used for climate

change impacts assessments is that they harness important,

widely validated knowledge on crop responses to biotic and abi-

otic factors (Boote et al. 2013). Recent progress in crop, ecosys-

tem, and climate modeling has led to integration of these

disciplines in support of integrated assessments of agro-ecosys-

tems at the global or regional level (e.g. Osborne et al. 2007, 2015,

Wang et al. 2005). In these cases, crop models may provide the

underlying information, parameters and mathematical formula-

tions that underpin the vegetation models used. Nevertheless,

much work remains to be done in crop simulation models if

these are to be fully integrated within vegetation models.

Foremost, adequately simulating vegetation within complex

agro-ecosystems requires detailed consideration of CO2 uptake

for gross primary productivity and CO2 release through respir-

ation (Cramer et al. 2001). While progress has been made in de-

veloping and testing leaf-to-canopy assimilation in some crop

models, only a handful of models for the major crops, including

maize and soybean, include detailed photosynthesis-respiration

routines for both assimilation and CO2 fertilization (Bassu et al.

2014, Li et al. 2015). Moreover, respiration costs associated with

the maintenance of existing tissue (maintenance respiration) and

the production of new tissue (growth respiration) are either

highly uncertain or not estimated or reported in crop simulation

studies. Furthermore, testing of CO2 fluxes or canopy assimilation

using eddies of air, although feasible, is rarely if at all conducted for

crop simulation models (Hollinger et al. 2005, Paul et al. 1999).

Finally, appropriate consideration and validation of CO2 fluxes in

crop models will also help improving the calculation of water

fluxes and evapotranspiration, which is a key source of uncer-

tainty in crop simulation (Liu et al. 2016).

3. Canopy temperature and evapotranspiration: The importance of

models predicting global warming effects on crop yield to include

canopy temperature instead of using air temperature was demon-

strated by Julia and Dingkuhn (2013). They found that rice panicle

temperature varied between 9.5 below and 2�C above air tem-

perature at 2 m depending on the microclimate and therefore

heat stress causing sterility was more likely to occur in warm-

humid than hot-arid environments due to humidity effects on

transpiration cooling. Even though some crop models calculate

canopy from air temperature, which is then used on some but not

necessarily all temperature-related processes in the crop model,

Webber et al. (2015) found that this did not necessarily improve

yield simulations. The study compared nine process-based crop

models that used three different approaches of simulating canopy

temperature (empirical, energy balance assuming neutral atmos-

pheric stability, and energy balance correcting for the atmos-

pheric stability conditions) in their ability to simulate heat

stress in irrigated wheat in a semi-arid environment. Methods

assuming neutral atmospheric stability determine the resistance

of the surface to transfer water vapor and heat to the air as a

function of crop height and wind speed whereas methods cor-

recting for atmospheric stability include canopy temperature in

the calculations. They found that for all models the reduction in

the root mean square error was larger if canopy temperature was

only used for the processes simulating heat stress but that using

canopy temperatures for all processes did not necessarily im-

proved yield simulations. Models that performed well in simulat-

ing yield under heat stress had varying skill in simulating canopy

temperature (the method energy balance assuming neutral at-

mospheric stability performed worst). Models differ in parameter

values which might be able to somewhat alleviate the impact

from using air temperature. Unfortunately the models could

not be tested with observed canopy temperature as it was not

measured continuously throughout the growing season. Webber

et al. (2015) concluded that a more systematically understanding

of heat stress events and how to model them is needed.

4. Effects of high ozone concentrations: Ozone is highly phytotoxic

and can cause significant damage to vegetation and crops even at

current concentrations in many parts of the world (Wang and

Mauzerall 2004, Booker et al. 2009, Mills et al. 2011, Hollaway et al.

2012). Both maize and soybean are sensitive to ozone (McGrath

et al. 2015), with predicted global yield losses ranging from 2.5–8%

for maize and 9.5–15% for soybean for the year 2030 (Avnery et al.

2011). However, the negative effects of ozone are included only in

a few crop models. For example, the WOFOST model accounts for

ozone damage to crops by using a flux-based approach in which

the ozone flux inside the plant is regulated by the stomatal con-

ductance (Cappelli et al. 2016). The model shows that for wheat

there are large yield losses under high ozone exposure (i.e. up to

30% loss for ozone concentration of 60 ppb; Cappelli et al. 2016).

While the effects of ozone on plant biology have been extensively

studied, the effect of pollution on crop productivity and quality is

an important area for future work, particularly as global ozone

concentrations are projected to remain at high levels (Fowler et al.

2008). The responses of plants to atmospheric ozone should be

assessed in combination with other stresses to address current as

well as the future responses under climate change.

5. Acclimation to elevated CO2: Current knowledge of how plants

sense and signal changes in atmospheric [CO2] other than effects

on photosynthesis, is limited. Moreover, much remains uncertain

concerning the mechanisms that define many of the observed

plant responses to increased atmospheric [CO2] or how these

mechanisms will influence biotic and abiotic stress responses

under field conditions. In particular, relatively little is known

about how high [CO2] will influence the soil microbiome or

plant interactions with beneficial fungi and bacteria.
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shifts of Köppen climate zones under the SRES-A1B and SRES-A2. Int. J.
Climatol. 35: 3320–3334.

Mills, G., Hayes, F., Simpson, D., Emberson, L., Norris, D., Harmens, H., et al.
(2011) Evidence of widespread effects of ozone on crops and (semi-)

natural vegetation in Europe (1990–2006) in relation to AOT40-and
flux-based risk maps. Global Change Biol. 17: 592–613.

Mohd-Radzman, N.A., Binos, S., Truong, T.T., Imin, N., Mariani, M. and
Djordjevic, M.A. (2015) Novel MtCEP1 peptides produced in vivo dif-

ferentially regulate root development in Medicago truncatula. J. Exp.
Botany 66: 5289–5300.

Mondor, E.B., Tremblay, M.N., Awmack, C.S. and Lindroth, R.L. (2005)
Altered genotypic and phenotypic frequencies of aphid populations

under enriched CO2 and O3 atmospheres. Global Change Biol. 11:
1990–1996.

Monfreda, C., Ramankutty, N. and Foley, J.A. (2008) Farming the planet.
Part 2: Geographic distribution of crop areas, yields, physiological types,

and net primary production in the year 2000. Global Biogeochem. Cycles
22: GB1022.

Moradi, R., Koocheki, A., Nassiri Mahallati, M. and Mansoori, H. (2013)
Adaptation strategies for maize cultivation under climate change in

Iran: Irrigation and planting date management. Mitig. Adapt. Strat.
Global Change 18: 265–284.

Müller, C., Elliott, J., Chryssanthacopoulos, J., Arneth, A., Balkovic, J., Ciais,
P., et al. (2017) Global gridded crop model evaluation: benchmarking,

skills, deficiencies and implications. Geosci. Model Dev. 10: 1403–1422.
Olesen, J.E., Trnka, M., Kersebaum, K.C., Skjelvåg, A.O., Seguin, B., Peltonen-
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