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Abstract. Heckman introduced N operators on the space of polynomials in N
variables, such that these operators form a covariant set relative to permutations
of the operators and variables, and such that Jack symmetric polynomials are
eigenfunctions of the power sums of these operators. We introduce the analogues
of these N operators for Macdonald symmetric polynomials, by using Cherednik
operators. The latter operators pairwise commute, and Macdonald polynomials
are eigenfunctions of their power sums. We compute the limits of our operators at
N →∞ . These limits yield a Lax operator for Macdonald symmetric functions.

Introduction

The Jack polynomials constitute a distinguished basis in the space of symmetric
polynomials in N variables x1, . . . , xN . They also depend on one parameter.
These polynomials were first introduced in [5] but also appeared independently
in [18] as eigenfunctions of a family of commuting differential operators playing
the role of Hamiltonians of a quantum version of the classical Calogero-Moser
model. The latter is a completely integrable system of one-dimensional particles
interacting via a special two-particle potential [2,9].

The Macdonald polynomials [8] are deformations of the Jack polynomials.
They depend on two parameters usually denoted by q and t . These polynomials
are eigenfunctions of certain commuting finite-difference operators, which are
commuting Hamiltonians of the quantum Ruijsenaars-Schneider model [13,14].
The latter model is a relativistic version of the quantum Calogero-Moser model.

There are two different constructions of commuting Hamiltonians. First, there
is an explicit formula known as Sekiguchi-Debiard determinant in the Jack case,
or Macdonald determinant in the Macdonald case [8]. The second construction is
based on the theory of Hecke algebras. Namely, the commuting Hamiltonians in
the Jack case can be obtained as power sums of the Dunkl operators representing
the degenerate affine Hecke algebra. Respectively, the commuting Hamiltonians
in the Macdonald case can be obtained as power sums of the Cherednik operators
which represent the non-degenerate affine Hecke algebra [3].
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On the other hand, studying the classical counterparts of the above mentioned
quantum integrable systems is based on using Lax matrices whose characteristic
determinants serve as generating functions of the commuting Hamiltonians. For
the Jack polynomials, a quantum version L of the Lax matrix was used in [19] to
produce an alternative formula for the Hamiltonians. Instead of a deteminantal
generating function, they used a matrix element of the resolvent (u−L )−1 taken
relative to a particular vector and covector pair. Here u is a formal variable.

In the case of Jack polynomials, the similarity between the structures of the
matrix L and of the Dunkl operators is rather striking. However, in the case of
Macdonald polynomials the Lax matrix of the quantum Ruijsenaars-Schneider
model has a structure different from that of the Cherednik operators. Moreover,
a resolvent type formula for the Hamiltonians was unknown in the latter case.
In the present article we solve this problem. We then use our solution to study
the commuting Hamiltonians for the Macdonald polynomials when the number
N of their variables tends to infinity. Thus we continue our recent works [10,11].

At N → ∞ the Jack polynomials become symmetric functions in infinitely
many variables x1 , x2 , . . . . By using the Lax matrix formalism, in [10] we have
constructed a family of pairwise commuting operators such that Jack symmetric
functions are their eigenvectors. In [10] we expressed these commuting operators
in terms of the power sums xn

1 + xn
2 + . . . where n = 1, 2, . . . .

The Jack symmetric functions can be regarded as degenerations of Macdonald
symmetric functions. In [11] we extended the results of [10] to the latter setting.
In particular, by again using the Lax matrix formalism we constructed a family
of pairwise commuting operators such that the Macdonald symmetric functions
are their eigenvectors. In [11] we expressed these commuting operators in terms
of the Hall-Littlewood symmetric functions of the variables x1, x2, . . . and of
the parameter t. These expressions involve only the Hall-Littlewood symmetric
functions corresponding to partitions with one part, see Subsection 1.2 below.

Soon after [10] was published, A.N. Sergeev and A.P.Veselov communicated
to us their remarkable works [16,17] where in particular they found essentially
the same commuting operators as we did in [10]. Their approach was different
however. They first computed the limits at N →∞ of the Heckman operators [4]
acting on all polynomials in the variables x1, . . . , xN . These N operators do not
commute in general. But the restrictions of the power sums of these N operators
to the space of symmetric polynomials do commute. Moreover, Jack symmetric
polynomials are eigenfunctions of these restrictions. Jack symmetric functions
are then eigenfunctions of the limits of these restrictions at N →∞ .

Here we extend this approach from Jack to Macdonald symmetric functions.
It has been discovered by I. V.Cherednik [3] that the Macdonald polynomials in
the variables x1, . . . , xN are eigenfunctions of power sums of some N commuting
operators, acting on all polynomials in these variables. These operators are called
the Cherednik operators, see our Subsection 2.2 for their definition. It has been
also known [15] that the Cherednik operators have limits at N →∞ . However,
explicit expressions for these limits are unknown. We offer a solution to this open
problem by firstly introducing for the Macdonald polynomials the analogues of
non-commuting Heckman operators, see our Subsection 2.4. These analogues act
on the rational functions of x1, . . . , xN and are denoted by Z1, . . . , ZN . They are
related to the Cherednik operators by Proposition 2.4. The principal property of
the operators Z1, . . . , ZN is stated as Theorem 2.5, see also Proposition 2.2.
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An explanation is needed here regarding our scheme of referring to lemmas,
propositions, theorems and corollaries. When referring to these, we indicate the
subsections where they respectively appear. There is no more than one of each of
these in every subsection, so our scheme should cause no confusion. For example,
Proposition 2.2 is the only proposition that appears in Subsection 2.2.

In Subsection 2.6 we reformulate Theorem 2.5 by introducing a certain N×N
matrix Z with operator entries acting on the rational functions of x1, . . . , xN . It
is closely related to the Lax matrix of the classical Ruijsenaars-Schneider model
[13]. To be precise, let γi be the operator defined by (2.1). In the classical limit
q → 1 , when the canonical commutation relation γi xi = q−1xi γi degenerates to
the Poisson bracket {γi , xi} = − γi xi , our Z degenerates to this Lax matrix up
to a change of variables and up to conjugation by a diagonal matrix. In the same
classical limit, the Macdonald determinant (2.3) degenerates to the characteristic
determinant of the Lax matrix. Thus we have found a way to derive a quantum
analogue of this Lax matrix directly from the Cherednik operators.

It is well known how the quantum Hamiltonians [14] of the trigonometric
Ruijsenaars-Schneider model are related to the Macdonald operators (2.4), see
for instance [7]. But our generating series (2.32) for quantum Hamiltonians differs
from the Macdonald determinant and is new. A similar resolvent type expression
was used for the quantum Calogero-Moser model in [19]. The eigenstates of the
latter model are the Jack symmetric polynomials. The limit at N → ∞ of the
generalisation of that model to particles with spin has been studied in [6] as
another extension of our work [10].

Following the approach of [16,17] in Subsection 3.1 of our article we compute
the limits at N → ∞ of the operators Z1, . . . , ZN . Then we also compute the
limit of the restriction of the operator sum (2.20) appearing in Theorem 2.5 to
the space of symmetric polynomials in x1, . . . , xN . This limit is a formal power
series in another variable u with operator coefficients acting on the symmetric
functions of x1, x2, . . . . After renormalisation and a change of the variable u , this
limit becomes the same generating series of the pairwise commuting operators
as we constructed in [11]. For details, see Subsections 3.2 and 3.3 here.

In this article we generally keep to the notation of the book [8] for symmetric
functions. When using results from [8] we simply indicate their numbers within
the book. For example, the statement (6.9) from Chapter I of the book will be
referred to as [I.6.9] assuming it is from [8].

1. Symmetric functions

1.1. Standard symmetric functions. Fix any field F . For every positive integer N
denote by ΛN the F-algebra of symmetric polynomials in N variables x1, . . . , xN .
The algebra ΛN is graded by the polynomial degree. The substitution xN = 0
defines a homomorphism ΛN → ΛN−1 preserving the degree. Here Λ0 = F . The
inverse limit of the sequence

Λ1 ← Λ2 ← . . .

in the category of graded algebras is denoted by Λ . Note that we get a canonical
homomorhism Λ → ΛN . The elements of the algebra Λ are called symmetric
functions. Following [8] we now will introduce some standard bases of Λ .

Let λ = (λ1, λ2, . . . ) be any partition of 0, 1, 2, . . . . The number of non-zero
parts is called the length of λ and is denoted by ℓ(λ) . If ℓ(λ) 6 N then the sum
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of all distinct monomials obtained by permuting the N variables in xλ1
1 . . . xλN

N
is denoted by mλ(x1, . . . , xN ) . The symmetric polynomials mλ(x1, . . . , xN ) with
ℓ(λ) 6 N form a basis of the vector space ΛN . By definition, for ℓ(λ) 6 N

mλ(x1, . . . , xN ) =
∑

16i1<...<ik6N

∑

σ∈Sk

c−1
λ xλ1

iσ(1)
. . . xλk

iσ(k)

where we write k instead of ℓ(λ) . Here Sk is the symmetric group permuting
the numbers 1, . . . , k and

cλ = k1! k2! . . .

if k1, k2, . . . are the respective multiplicites of the parts 1, 2, . . . of λ . Further,

mλ(x1, . . . , xN−1, 0) =

{

mλ(x1, . . . , xN−1) if ℓ(λ) < N ;

0 if ℓ(λ) = N .

Hence for any fixed partition λ the sequence of polynomials mλ(x1, . . . , xN ) with
N > ℓ(λ) has a limit in Λ . This limit is called the monomial symmetric function
corresponding to λ . Simply omitting the variables, we will denote the limit by
mλ . With λ ranging over all partitions of 0, 1, 2, . . . the symmetric functions mλ

form a basis of the vector space Λ . Note that if ℓ(λ) = 0 then we set mλ = 1 .
We will be also using another standard basis of the vector space Λ . For each

n = 1, 2, . . . denote pn(x1, . . . , xN ) = xn
1 + . . .+ xn

N . When the index n is fixed
the sequence of symmetric polynomials pn(x1, . . . , xN ) with N = 1, 2, . . . has a
limit in Λ , called the power sum symmetric function of degree n . We will denote
it by pn . More generally, for any partition λ put

pλ = pλ1
. . . pλk

where k = ℓ(λ) as above. The elements pλ form another basis of Λ . Equivalently,
the elements p1, p2, . . . are free generators of the commutative algebra Λ over F .

In this article we will be using the natural ordering of partitions. By definition,
here λ > µ if λ and µ are partitions of the same number and

λ1 > µ1, λ1 + λ2 > µ1 + µ2, . . . .

This is a partial ordering. Note that by [I.6.9] any monomial symmetric function
mµ is a linear combination of the symmetric functions pλ where λ > µ .

Define a bilinear form 〈 , 〉 on Λ by setting for any two partitions λ and µ

〈 pλ , pµ 〉 = kλδλµ where kλ = 1k1k1! 2
k2k2! . . . (1.1)

in the above notation. This form is obviously symmetric and non-degenerate. We
will indicate by the superscript ⊥ the operator conjugation relative to this form.
In particular, by (1.1) for the operator conjugate to the multiplication in Λ by
pn with n > 1 we have

p⊥
n = n∂/∂ pn . (1.2)

Next put

en(x1, . . . , xN ) =
∑

16i1<...<in6N

xi1 . . . xin .
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For any fixed n the sequence of the symmetric polynomials en(x1, . . . , xN ) with
N = 1, 2, . . . has a limit in Λ , denoted by en and called the elementary symmetric
function of degree n .We will also use a formal power series in another variable v ,

E(v) = 1 + e1v + e2v
2 + . . . =

∏

i>1

(1 + xiv) . (1.3)

By taking logarithms of the left and right hand side of the above display and then
exponentiating,

E(v) = exp
(

−
∑

n>1

pn
n

(−v)n
)

. (1.4)

Also put

hn(x1, . . . , xN ) =
∑

ℓ(λ)6N

mλ(x1, . . . , xN )

where the sum is taken over partitions λ of n . Then the sequence of symmetric
polynomials hn(x1, . . . , xN ) with N = 1, 2, . . . has a limit in Λ , denoted by hn

and called the complete symmetric function of degree n . By [I.2.6] for the series

H(v) = 1 + h1v + h2v
2 + . . . .

we have the relation

E (−v)H(v) = 1 . (1.5)

Hence (1.4) implies

H(v) = exp
(

∑

n>1

pn
n

vn
)

. (1.6)

The elements h1, h2, . . . as well as the elements e1, e2, . . . are free generators of
the commutative algebra Λ over the field F . We will also use the vertex operator

H⊥(v) = 1 + h⊥
1 v + h⊥

2 v2 + . . . = exp
(

∑

n>1

p⊥
n

n
vn

)

. (1.7)

It follows from (1.2) and (1.7) that for any n = 1, 2, . . . we have the equality

H⊥(v) pn = vn + pn . (1.8)

It also follows from (1.2) and (1.7) that H⊥(v) : Λ→ Λ[v ] is a homomorphism
of F-algebras. See [I.5, Example 29] for both of the last two statements. Hence
by applying H⊥(v) to any symmetric function in the variables x1, x2 , . . . we get
the same symmetric function but in the variables v, x1, x2 , . . . .
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1.2. Hall-Littlewood symmetric functions. Let F be the field Q(t) with t a formal
parameter. The Hall-Littlewood symmetric functions [III.2.11] are labelled by
all partitions of 0, 1, 2, . . . and constitute another remarkable basis of the vector
space Λ over F . In the present article we will use only the elements of this basis
corresponding to the single part partitions (1), (2), . . . . These elements will be
denoted by Q1 , Q2 , . . . respectively. Their generating series is

Q(v) = E(−tv)H(v) = 1 +Q1v +Q2v
2 + . . . .

By using (1.3) and (1.5) we get the relation

Q(v) =
∏

i>1

1− t xi v

1− xiv
(1.9)

while by using (1.4) and (1.6) we get the relation

Q(v) = exp
(

∑

n>1

1− tn

n
pnv

n
)

. (1.10)

1.3. Macdonald symmetric functions. Now let F be the fieldQ(q, t) where q and t
are formal parameters. Then define a bilinear form 〈 , 〉q,t on Λ by setting

〈 pλ , pµ 〉q,t = kλ δλµ

ℓ(λ)
∏

i=1

1− qλi

1− tλi

(1.11)

for any partitions λ and µ . This form is symmetric and non-degenerate. If q = t ,
it specializes to the form defined by (1.1). We will indicate by the superscript ∗

the operator conjugation relative to 〈 , 〉q,t . In particular, by (1.2) and (1.11)

p∗
n =

1− qn

1− tn
p⊥
n

for any n > 1 . Hence by using (1.10) we get

Q∗(v) = 1 +Q∗
1 v +Q∗

2 v
2 + . . . = exp

(

∑

n>1

1− qn

n
p⊥
n vn

)

.

Note that by using (1.6), the latter identity can be rewritten as

Q∗(v) = H⊥(v q)−1H⊥(v) . (1.12)

Similarly toH⊥(v) the map Q∗(v) : Λ→ Λ[v ] is a homomorphism of F-algebras.
By [VI.4.7] there exists a unique family of elements Pλ ∈ Λ such that

〈Pλ , Pµ 〉q,t = 0 for λ 6= µ

and such that any Pλ equals mλ plus a linear combination of the elements mµ

with µ < λ in the natural partial ordering. The elements Pλ ∈ Λ are called the
Macdonald symmetric functions .

By [VI.4.10] the canonical homomorphism Λ→ ΛN maps Pλ 7→ 0 if ℓ(λ) > N .
If ℓ(λ) 6 N then the image of Pλ ∈ Λ under the homomorphism Λ→ ΛN is the
Macdonald symmetric polynomial usually denoted by Pλ(x1, . . . , xN ) . All these
polynomials with ℓ(λ) = 0, 1, . . . , N form a basis of the vector space ΛN over F.
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2. Cherednik operators

2.1. Macdonald operators. Let F = Q(q, t) as in Subsection 1.3. For i = 1, . . . , N
the inverse q-shift operator γi acts on any rational function f ∈ F(x1, . . . , xN ) by

(γif)(x1, . . . , xN ) = f(x1, . . . , q
−1xi, . . . , xN ) . (2.1)

Denote by ∆(x1, . . . , xN ) the Vandermonde polynomial of N variables

det
[

xN−j
i

]

N

i,j=1
=

∏

16i<j6N

(xi − xj) .

Put

DN (u) = ∆(x1, . . . , xN )−1 · det
[

xN−j
i

(

1 + u t j−1γi

)

]

N

i,j=1
(2.2)

where u is another variable. The last determinant is defined as the alternated sum

∑

σ∈SN

(−1)σ
N
∏

i=1

(

x
N−σ(i)
i

(

1 + u tσ(i)−1γi

))

(2.3)

where as usual (−1)σ denotes the sign of permutation σ . In every product over
i = 1, . . . , N appearing in the alternated sum all the operator factors pairwise
commute, hence their ordering does not matter. Note that DN (0) = 1 .

By (2.2) theDN (u) is a polynomial of degreeN in the variable u with operator
coefficients. It also follows from (2.2) that these coefficients map the space ΛN

to itself. By [VI.3.3] for any k = 1, . . . , N the coefficient of DN (u) at uk equals

∑

|I|=k

SI(x1, . . . , xN )
∏

i∈I

γi (2.4)

where the sum is taken over all subsets I of {1, . . . , N} of size k , whereas

SI(x1, . . . , xN ) = t k(k−1)/2
∏

i∈I
j /∈I

xi − t xj

xi − xj
.

Now for every k = 1, . . . , N consider the restriction of the operator (2.4) to
the space ΛN . By [VI.4.16] all these restrictions to ΛN pairwise commute. They
are called the Macdonald operators. The Macdonald polynomials Pλ(x1, . . . , xN )
with ℓ(λ) 6 N make a common eigenbasis of these operators. By [VI.4.15] the
eigenvalue of DN (u) corresponding to any such eigenvector Pλ(x1, . . . , xN ) is

N
∏

i=1

(1 + u q−λi t i−1 ) . (2.5)

Note that our definition (2.2) of the DN (u) differs from [VI.3.2] by changing
the parameters q 7→ q−1 and t 7→ t−1 . However, by [VI.4.14] the Macdonald
polynomials Pλ(x1, . . . , xN ) are invariant under this change of their parameters.
After this change, we also replaced the variable X used in the definition [VI.3.2]
by u tN−1 . The reasons for these alterations will be explained in Subsection 3.1.
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2.2. Cherednik operators. For i, j = 1, . . . , N with i 6= j introduce the operator
acting on the vector space F(x1, . . . , xN )

Rij = 1 +
(1− t)xj

xi − xj
(1− σij) =

xi − t xj

xi − xj
+

( t− 1)xj

xi − xj
σij (2.6)

where σij ∈ SN acts by exchanging the variables xi and xj . It is immediately
obvious from the definition (2.6) that the operator Rij maps polynomials in the
variables x1, . . . , xN to polynomials. Further, one can check that

tR−1
ij = t+

( t− 1)xj

xi − xj
(1− σij) =

t xi − xj

xi − xj
+

(1− t )xj

xi − xj
σij .

The Cherednik operators C1, . . . , CN acting on F[x1, . . . , xN ] are then defined by

Ci = t i−1Ri,i+1 . . . RiN γi R
−1
1i . . . R−1

i−1,i . (2.7)

These operators pairwise commute. In general, they do not map the space ΛN

to itself. However, any symmetric polynomial of the operators C1, . . . , CN with
the coefficients from the field F does. Moreover by [3, Subsection 1.3.5] we have

Proposition. The action of DN (u) on ΛN coincides with that of the product

N
∏

i=1

(1 + uCi) . (2.8)

In accord with the remark we made at the end of previous subsection, the
operator Ci differs from the operator defined by [3, Equation 1.3.32] by changing
the parameters q 7→ q−1 and t 7→ t−1 . Our normalisation of Ci is also different.

2.3. Coherence property. We will use the following property of operators (2.7).
For k = 1, . . . , N − 1 let

C
(k)
1 , . . . , C

(k)
N−k (2.9)

be the Cherednik operators acting on F[xk+1, . . . , xN ] instead of F[x1, . . . , xN ] .

Lemma. The action of

N
∏

i=k+1

(1 + uCi) (2.10)

on the space ΛN coincides with the action of

N−k
∏

i=1

(1 + u t kC
(k)
i ) . (2.11)
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Proof. First let us prove by the downward induction on k = N,N − 1 , . . . , 1, 0
that the action of (2.10) on the space ΛN coincides with the action of the product

N
∏

i=k+1

(1 + u t i−1Ri,i+1 . . . RiN γi ) (2.12)

where the factors corresponding to the indices i = k + 1, . . . , N are arranged
from left to right. If k = N then neither of the products (2.10) and (2.12) has
any factors, so the statement to prove is trivial. Now assume that our statement
is already proved for some k > 0 . Consider the product obtained from (2.10) by
replacing the index k by k− 1 . By the induction assumption, the action on ΛN

of the so obtained product coincides with that of

(1 + uCk)
N
∏

i=k+1

(1 + u t i−1Ri,i+1 . . . RiN γi ) (2.13)

The last k − 1 factors of the Cherednik operator Ck appearing in (2.13)

R−1
1k , . . . , R−1

k−1,k

commute with Ri,i+1 and γi for any i = k+1, . . . , N . They also act trivially on
ΛN . After removing these k − 1 factors from Ck in (2.13) we get the product

(1 + u t k−1Rk,k+1 . . . RkN γk )
N
∏

i=k+1

(1 + u t i−1Ri,i+1 . . . RiN γi ) .

Thus we are making the induction step, and our statement is proved for any k .
By using this statement in the particular case when k = 0 , the action of (2.8)

on the space ΛN coincides with the action of the product

N
∏

i=1

(1 + u t i−1Ri,i+1 . . . RiN γi ) .

By applying the latter result to the set of operators (2.9) instead of C1, . . . , CN

we obtain that for 0 < k < N the action of (2.11) on ΛN coincides with that of

N−k
∏

i=1

(1 + u t i+k−1Ri+k,i+k+1 . . . Ri+k,N γi+k ) .

The last displayed product equals (2.12) by renaming i+k to i . But we had also
proved that the action of (2.10) on ΛN coincides with the action of (2.12). ⊓⊔
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2.4. Covariant operators. For i, j = 1, . . . , N with i 6= j denote

Aij =
xi − t xj

xi − xj
and Bij =

( t− 1)xj

xi − xj
(2.14)

so that by (2.6)
Rij = Aij +Bij σij .

Define operators Z1, . . . , ZN acting on F(x1, . . . , xN ) by setting Zi = Wiγi where

Wi =
∏

l 6=i

Ail +
∑

j 6=i

Bij

(

∏

l 6=i,j

Ajl

)

σij . (2.15)

In general, these operators do not map polynomials in the variables x1, . . . , xN

to polynomials. But by definition, these operators make a covariant set relative
to the action of the symmetric group SN by permutations of the variables:

σ−1Zi σ = Zσ(i) for σ ∈ SN . (2.16)

Note that for N > 1 the operators C1, . . . , CN on F[x1, . . . , xN ] do not enjoy the
covariance property. On the other hand, our Z1, . . . , ZN do not commute.

For k = 1, . . . , N −1 let Λ
(k)
N ⊂ F[x1, . . . , xN ] be the subspace of polynomials

symmetric in the variables xk+1 , . . . , xN . Then

ΛN ⊂ Λ
(1)
N ⊂ . . . ⊂ Λ

(N−1)
N = F[x1, . . . , xN ] .

Now consider the Cherednik operator C1 acting on F[x1, . . . , xN ] . Our definition
of the operator Z1 originates from the following proposition.

Proposition. The actions of the operators C1 and Z1 on Λ
(1)
N coincide.

Proof. We will prove that the action of C1 on Λ
(k)
N coincides with the action of

R12 . . . R1k

(

∏

k<l6N

A1l +
∑

k<j6N

B1j

(

∏

k<l6N
l 6=j

Ajl

)

σ1j

)

γ1 . (2.17)

We will use the downward induction on k = N − 1 , . . . , 1 . Our proposition will
be then obtained when k = 1 . If k = N − 1 then by the definition (2.7) we have

C1 = R12 . . . R1N γ1 = R12 . . . R1,N−1 (A1N +B1N σ1N ) γ1

as required. Now assume that our statement is proved for some k > 1 . Since

Λ
(k−1)
N ⊂ Λ

(k)
N (2.18)

we then know in particular that the action of C1 on the space Λ
(k−1)
N coincides

with the action of the product (2.17). The latter product can be rewritten as

R12 . . . R1,k−1 ×

(A1k +B1k σ1k )
(

∏

k<l6N

A1l +
∑

k<j6N

B1j

(

∏

k<l6N
l 6=j

Ajl

)

σ1j

)

γ1 .
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In its turn, the expression in the last displayed line can be rewritten as
(

∏

k6l6N

A1l + B1k

(

∏

k<l6N

Akl

)

σ1k +

∑

k<j6N

(A1k B1j +B 1k Bkj σ1k )
(

∏

k<l6N
l 6=j

Ajl

)

σ1j

)

γ1 .

Here none of the indices of the factor Ajl can be equal to 1 or k , because j > k
and l > k . Further, here σ1k σ1j = σ1j σjk where the factor σjk commutes with
the operator γ1 on F[x1, . . . , xN ] and acts trivially on the subspace (2.18). Thus
by the identity

A1k B1j +B 1k Bkj = B1j Ajk

the action of the operator C1 on Λ
(k−1)
N coincides with the action of

R12 . . . R1,k−1 ×

(

∏

k6l6N

A1l + B1k

(

∏

k<l6N

Akl

)

σ1k +
∑

k<j6N

B1j

(

∏

k6l6N
l 6=j

Ajl

)

σ1j

)

γ1

= R12 . . . R1,k−1

(

∏

k−1<l6N

A1l +
∑

k−1<j6N

B1j

(

∏

k−1<l6N
l 6=j

Ajl

)

σ1j

)

γ1 .

Thus we have made the downward induction step. ⊓⊔

We have already noted that for any i = 1, . . . , N the Cherednik operator Ci

maps the polynomials in the variables x1, . . . , xN to polynomials. On the other
hand, the operator Zi commutes with those permutations of the variables that
preserve xi . By using these two observations when i = 1, our proposition implies

Corollary. Both operators C1 and Z1 map the space Λ
(1)
N to itself.

2.5. Main identity. Our main result of the current section is the theorem below.
Define operators U1, . . . , UN acting on F(x1, . . . , xN ) by setting

Ui = ( t− 1)
(

∏

l 6=i

Ail

)

γi . (2.19)

Similarly to Z1, . . . , ZN the operators U1, . . . , UN make a covariant set relative
to the action of the group SN by permutations of the variables x1, . . . , xN :

σ−1Ui σ = Uσ(i) for σ ∈ SN .

Theorem. The action of the ratio DN (u t)/DN (u) on ΛN coincides with the
action of the sum

1 + u
N
∑

i=1

Ui (1 + uZi )
−1 . (2.20)
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Proof. We will relate operators on the space F(x1, . . . , xN ) by the symbol ∼ if
their actions on the subspace ΛN coincide. In Subsection 2.1 we already noted
that the coefficients of the polynomial DN (u) map the space ΛN to itself. Let
us multiply by DN (u) on the right both the ratio and the sum appearing in our
theorem, and then subtract DN (u) from the results. We get to prove the relation

DN (u t)−DN (u) ∼ u
N
∑

i=1

Ui (1 + uZi)
−1 DN (u) . (2.21)

In the notation of Subsection 2.1 the left hand side of the relation (2.21) equals

u

N
∑

k=1

uk−1( t k − 1)
∑

|I|=k

SI(x1, . . . , xN )
∏

i∈I

γi .

Now consider the summand at the right hand side of (2.21) with the index i = 1 .
By Proposition 2.2 the action of this summand on ΛN coincides with that of

U1 (1 + uZ1)
−1

N
∏

j=1

(1 + uCj) ∼ U1

N
∏

j=2

(1 + uCj) ∼ U1

N−1
∏

j=1

(1 + u tC
(1)
j )

where we used Proposition 2.4 and then Lemma 2.3 in the particular case k = 1 .
Hence by applying Proposition 2.2 once again, but to the Cherednik operators

C
(1)
1 , . . . , C

(1)
N−1

instead of C1, . . . , CN we obtain that the summand at the right hand side of the
relation (2.21) with the index i = 1 acts on ΛN as

U1

N
∑

k=1

(u t)k−1
∑

|J|=k−1

SJ(x2, . . . , xN )
∏

j∈J

γj =

N
∑

k=1

(u t)k−1 ( t− 1)
∑

|J|=k−1

(

∏

l 6=1

A1l

)

SJ(x2, . . . , xN ) γ1

∏

j∈J

γj . (2.22)

Here J ranges over all subsets of {2, . . . , N} of size k − 1 . It follows that the
summands at the right hand side of (2.21) with i = 2, . . . , N act on ΛN as the
operators obtained from (2.22) via conjugation by σ12 , . . . , σ1N respectively.

Thus the right hand side of (2.21) acts on ΛN as the operator sum of the form

N
∑

k=1

uk−1
∑

|I|=k

TI (x1, . . . , xN )
∏

i∈I

γi

where I ranges over all subsets of {1, . . . , N} of size k , and each TI (x1, . . . , xN )
is a certain rational function of the variables x1, . . . , xN over the field Q(t) . To
prove the relation (2.21) it now suffices to demonstrate that for each I

( t k − 1)SI(x1, . . . , xN ) = TI (x1, . . . , xN ) . (2.23)
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Moreover, because both sides of (2.21) are invariant under conjugation by the
elements of SN , it suffices to verify (2.23) only in the case when I = {1, . . . , k} .
Note that in the latter case the left hand side of (2.23) equals

( t k − 1) t k(k−1)/2
∏

16j6k
k<l6N

Ajl . (2.24)

Now consider the right hand side of (2.23) in the case when I = {1, . . . , k} .
Let us denote it by T for short. The contribution to T from (2.22) corresponds
to the set J = {2, . . . , k} and hence equals

t k−1 ( t− 1)
(

∏

l 6=1

A1l

)

t (k−1)(k−2)/2
∏

26j6k
k<l6N

Ajl =

( t− 1)
(

∏

1<l6k

A1l

)

t k(k−1)/2
∏

16j6k
k<l6N

Ajl . (2.25)

If we conjugate (2.22) by any σ1i with i > 1 , the result will make contribution
to B only when i 6 k , and this contribution will correspond to J = {2, . . . , k} .
Indeed, then we will need J in (2.22) such that σ1i ({1}⊔J) = {1, . . . , k} . Hence
for each index i = 2, . . . , k we get a contribution to T

σ1i

(

( t− 1)
(

∏

1<l6k

A1l

)

t k(k−1)/2
∏

16j6k
k<l6N

Ajl

)

=

( t− 1)
(

∏

16l6k
l 6=i

Ail

)

t k(k−1)/2
∏

16j6k
k<l6N

Ajl . (2.26)

By dividing (2.24),(2.25),(2.26) by ( t−1) t k(k−1)/2 and by cancelling there all
the common factors Ajl the relation (2.23) now reduces to the identity

t k − 1

t− 1
=

k
∑

i=1

∏

16j6k
j 6=i

xi − t xj

xi − xj
.

The latter identity is easy to verify, and we omit the details of verification. ⊓⊔

Consider the operator sum over i = 1, . . . , N appearing in (2.20). Denote by
IN (u) the restriction of this operator sum to the subspace ΛN ⊂ F(x1, . . . , xN ) .
The IN (u) expands as a formal power series in u with coefficients acting on ΛN .
Our theorem means that the action of the coefficients of the series 1+u IN (u) on
ΛN coincides with the action of the respective coefficients of DN (u t)/DN (u) .
The latter ratio should be also expanded as a formal power series in u here.

The coefficients of the series IN (u) will be called the quantum Hamiltonians
corresponding to the basis of Macdonald polynomials in the vector space ΛN . In
the next subsection we give another expression for IN (u) by using the resolvent
of a certain N ×N matrix with operator entries which act on F(x1, . . . , xN ) .
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2.6. Matrix resolvent. Take any f ∈ Λ
(1)
N and consider the column vector

F =









f
σ12 (f)

...
σ1N (f)









Now define a N ×N matrix Z with operator entries acting on the vector space
F(x1, . . . , xN ) as follows. The i , j -entry Zij of the matrix Z is defined by setting

Zii =
(

∏

l 6=i

Ail

)

γi , (2.27)

Zij = Bij

(

∏

l 6=i,j

Ajl

)

γj for i 6= j . (2.28)

Then by using the definition (2.15) we have

Zi = Wiγi = Zii +
∑

j 6=i

Zij σij (2.29)

where for j 6= i we also use the relation σij γi = γj σij . It follows from (2.29) that











Z1 (f)

Z2 σ12 (f)
...

ZN σ1N (f)











= Z F . (2.30)

Indeed, in its first entry the vector equality (2.30) holds by (2.29) with i = 1 . If
i 6= 1 then by using (2.29) we get

Zi σ1i (f) = Zii σ1i (f) + Zi1 σi1 σ1i (f) +
∑

j 6=1,i

Zij σij σ1i (f) =

Zii σ1i (f) + Zi1 (f) +
∑

j 6=1,i

Zij σ1j (f) = Zi1 (f) +
∑

j 6=1

Zij σ1j (f)

as required. Here for three pairwise distinct indices 1, i, j we also use the relations

σij σ1i (f) = σ1j σij (f) = σ1j (f) .

By the the covariance property (2.16) of the operators Z1, . . . , ZN the column
vector at the left hand side of (2.30) has a form similar to F . Namely, it can be
obtained by replacing the polynomial f in F by Z1(f) . Here we use Corollary 2.4.
By expanding (1 + uZi )

−1 for every i = 1, . . . , N as a formal power series in u
and by repeatedly using the above arguments, we get the equality













( 1 + uZ1 )
−1 (f)

( 1 + uZ2 )
−1 σ12 (f)
...

( 1 + uZN )−1 σ1N (f)













= ( 1 + uZ )−1 F . (2.31)
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Now suppose f ∈ ΛN so that the polynomial f is symmetric in all the variables
x1, . . . , xN . Then

f = σ12 (f) = . . . = σ1N (f)

so that F = E f where E is the column vector of size N with every entry being 1 .
Let U be the row vector of size N where the i-entry is the Ui defined by (2.19).
By using (2.31) and the definition of the series IN (u) as given in Subsection 2.5

IN (u) f = U ( 1 + uZ )−1 E f .

Thus we have proved that the action of IN (u) on ΛN coincides with the action of

U ( 1 + uZ )−1 E . (2.32)

Hence we now obtain the following corollary to Theorem 2.5.

Corollary. The action of the ratio DN (u t)/DN (u) on ΛN coincides with that of

1 + u U ( 1 + uZ )−1 E .

3. Inverse limits

3.1. Limits of covariant operators. Let F = Q(q, t) as before. We will find first
the inverse limit at N →∞ of the restriction of the operator Z1 to the subspace

Λ
(1)
N ⊂ F(x1, . . . , xN ) . (3.1)

By Proposition 2.4 the operator C1 has the same restriction to Λ
(1)
N . The limit

will be an operator acting on the space Λ[v ] and denoted simply by Z . To define
the limit extend the canonical homomorphism Λ→ ΛN to a homomorphism

πN : Λ[v ] → Λ
(1)
N : v 7→ x1 .

Here
πN : pn 7→ pn(x1, . . . , xN ) for n = 1, 2, . . . .

We will now define an operator Z on the vector space Λ[v ] explicitly. Denote
by ξ and η the automorphisms of the F-algebra Λ[v ] which act trivially on the
subalgebra Λ but map the variable v to q−1v and t v respectively. Thus ξ is the
inverse q -shift of v while η is the usual t-shift. Next equip the vector space F[v ]
with the standard inner product so that 1, v , v2, . . . form an orthonormal basis.
Denote by v◦ the operator on F[v ] conjugate to multiplication by v . Explicitly,

v◦ : vn 7→

{

vn−1 if n > 0 ,

0 if n = 0 .

Extend the operator v◦ from F[v ] to Λ[v ] by Λ-linearity. The extension will
still be denoted by v◦. For every f ∈ Λ extend from Λ to Λ[v ] by F[v ]-linearity
the operator of multiplication by f and its conjugate operator f⊥ . Recall that
the superscript ⊥ here indicates conjugation relative to the inner product (1.1).
The conjugate f ∗ relative to the inner product (1.11) extends from Λ to Λ[v ] in
the same way as f⊥ does. Using these conventions, put Z = Wγ where

γ = ξ Q∗(v) and W = η Q(v◦ ) .
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Theorem. We have a commutative diagram of F-linear mappings

Λ[v ] Λ[v ]

Λ
(1)
N Λ

(1)
N

Z

πN πN

Z1

(3.2)

Proof. We will verify commutativity of the two diagrams obtained from (3.2) by
replacing Z ,Z1 respectively by γ , γ1 and W ,W1 . Our theorem will then follow.

Firstly observe that the extended operator Q∗(v) : Λ[v ]→ Λ[v ] appearing in
the definition of γ is a homomorphism of F-algebras, and so is ξ : Λ[v ]→ Λ[v ] .
Hence it suffices to show that the compositions πN γ and γ1 πN coincide on v and
on pn for n = 1, 2, . . . . By applying the compositions to v we get the same result:

v q−1v q−1x1γ πN

and v x1 q−1x1 .πN γ1

To check the coincidence on any generator pn note that by the identity (1.12)

γ = ξ H⊥(v q)−1 H⊥(v) = H⊥(v)−1 ξ H⊥(v) .

Hence due to (1.8) by applying πN γ and γ1 πN to pn we also get the same result:

pn q−nvn − vn + pn q−nx1 + xn
2 + . . .+ xn

Nγ πN

and

pn xn
1 + . . .+ xn

N q−nx1 + xn
2 + . . .+ xn

N .
πN γ1

Now consider the compositions πNW and W1πN . By definition, the extended
operator W : Λ[v ]→ Λ[v ] commutes with multiplication by any f ∈ Λ . But

W1 =
∏

1<l6N

A1l +
∑

1<j6N

B1j

(

∏

1<l6N
l 6=j

Ajl

)

σ1j (3.3)

by (2.15). In particular, the restriction of the operator W1 to the subspace (3.1)
commutes with multiplication by πN (f) ∈ ΛN . Hence it suffices to show that the
compositions πNW and W1πN coincide on the elements 1, v , v2 , . . . ∈ Λ[v ] .
Let us use the generating series of these elements

1 + u v + u2v2 + . . . =
1

1− u v
(3.4)

in the other variable u . By applying πNW to the series (3.4) we get

1

1− u v

Q(u)

1− u t v

1

1− u t x1

N
∏

i=1

1− u t xi

1− uxi
.

W πN

(3.5)
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Here we employed the general fact that for any formal power series G(u) with the
coefficients from F

G(v◦ )
1

1− u v
=

G(u)

1− u v
.

We have also employed the relation (1.9) with the variable v replaced by u .
On the other hand, by applying W1πN to the series (3.4) we get

1

1− u v

1

1− ux1

1

1− ux1

∏

1<l6N

x1 − t xl

x1 − xl
+

πN W1

∑

1<j6N

( t− 1)xj

( 1− uxj ) (x1 − xj )

∏

1<l6N
l 6=j

xj − t xl

xj − xl
.

Here we also used (2.14) and (3.3). It easy to verify that the results obtained in
(3.5) and in the last two displayed lines are the same. Consider them as rational
functions of u and assume that x1, . . . , xN 6= 0 . Then both rational functions
vanish at u = ∞ and have poles only at u = x−1

1 , . . . , x−1
N . All these poles are

simple, and the corresponding residues of the two functions coincide. ⊓⊔

Note that for any index i = 2, . . . , N one can also consider the restriction of
the operator Zi to the subspace of F(x1, . . . , xN ) consisting of the polynomials
in x1, . . . , xN symmetric in all the variables but xi . By the covariance property
(2.16) our Corollary 2.4 implies that the operator Zi preserves this subspace. We
could have defined the extension πN of the homomorphism Λ → ΛN from Λ to
Λ[v ] by mapping the variable v to xi instead of x1 . The image of πN would be
then the latter subspace of F(x1, . . . , xN ) . The inverse limit of the restriction
of Zi to that subspace would be then the same operator Z acting on Λ[v ]. This
coincidence follows immediately from the property (2.16).

It is the change of parameters q 7→ q−1 and t 7→ t−1 in the original definition
[VI.3.2] that allowed us to state the last theorem in terms of the Hall-Littlewood
symmetric functions Q1 , Q2 , . . . . Otherwise we would have to change t 7→ t−1

in the definition of the latter symmetric functions. The change of the variable X
in [VI.3.2] and the corresponding choice of normalization of the operator Ci as
in (2.7) and as in Proposition 2.2 ensure that every Zi has a limit at N →∞ .

3.2. Limits of quantum Hamiltonians. In this subsection we will find the inverse
limits at N → ∞ of the quantum Hamiltonians corresponding to the basis of
Macdonald polynomials in ΛN . These quantum Hamiltonians are defined as the
operator coefficients of the series IN (u) acting on the vector space ΛN , see the
end of Subsection 2.5. We will denote by I (u) the inverse limit of the series IN (u).

The coefficients of the series I (u) will be certain operators Λ→ Λ[w ] where
w is yet another formal variable. We will then eliminate the dependence of the
coefficients on w by renormalising the series I (u) . Hence the coefficients of the
renormalised series (3.11) will be operators acting on Λ .

Consider the sum (2.20) over i = 1, . . . , N appearing in (2.20). By (2.19) the
action of this sum on the subspace ΛN ⊂ F(x1, . . . , xN ) coincides with that of

V1 γ1 ( 1 + uZ1 )
−1 (3.6)
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where we set

V1 = ( t− 1)

N
∑

i=1

(

∏

16l6N
l 6=i

Ail

)

σ1i .

Here σ11 = 1 . We will demonstrate that the operator V1 maps the subspace
(3.1) to ΛN . At the same time we will determine the inverse limit at N →∞ of
the restriction of the operator V1 to the subspace (3.1). The latter limit will be
an operator Λ[v ]→ Λ[w ] denoted simply by V . To determine this limit extend
the canonical homomorphism Λ→ ΛN to a homomorphism

τN : Λ[w ]→ ΛN : w 7→ tN .

Here
τN : pn 7→ pn(x1, . . . , xN ) for n = 1, 2, . . . .

This definition of the homomorphism τN goes back to [12, Section 6]. Now define
V explicitly as the unique Λ-linear operator Λ[v ]→ Λ[w ] such that

V : vn 7→

{

−Qn if n > 0 ,

w − 1 if n = 0 .

Proposition. We have a commutative diagram of F-linear mappings

Λ[v ] Λ[w ]

Λ
(1)
N ΛN

V

πN τN

V1

(3.7)

Proof. The operator V : Λ[v ]→ Λ[w ] commutes with the multiplication by any
f ∈ Λ . In turn, the restriction of the operator V1 to the subspace (3.1) commutes
with multiplication by πN (f) ∈ ΛN . So it suffices to show that the compositions
τN V and V1 πN coincide on the elements 1, v , v2 , . . . ∈ Λ[v ] . Let us again use
the generating series (3.4) of these elements. By applying τN V to (3.4) we get

1

1− u v
w −Q(u) tN −

N
∏

i=1

1− u t xi

1− uxiV τN

(3.8)

where we used (1.9). On the other hand, by applying V1 πN to (3.4) we get

1

1− u v

1

1− ux1

N
∑

i=1

t− 1

1− uxi

∏

16l6N
l 6=i

xi − t xl

xi − xl
.

πN V1

(3.9)

The results obtained in (3.8) and (3.9) are equal to each other. Indeed, consider
them as rational functions of u and assume that x1, . . . , xN 6= 0 . Then both
rational functions vanish at u =∞ and have poles at u = x−1

1 , . . . , x−1
N . These

poles are simple, and the corresponding residues of two functions coincide. ⊓⊔
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By the surjectivity of πN the last proposition implies that the operator V1

maps the subspace (3.1) to ΛN . Moreover, it implies that the inverse limit at
N →∞ of the restriction of the operator sum (3.6) to the subspace (3.1) equals

V γ ( 1 + uZ )−1 =
∞
∑

n=0

(−u)n V γ Zn .

By the definitions of Z , γ and V here for every n > 0 the composition V γ Zn is
an operator Λ[v ]→ Λ[w ] . The above stated equality of the inverse limit follows
from the commutativity of the diagram

Λ[v ] Λ[v ] Λ[v ] Λ[w ]

Λ
(1)
N Λ

(1)
N Λ

(1)
N ΛN

Zn

πN

γ

πN

V

πN τN

Zn

1
γ1 V1

Here we use the commutativity of (3.2),(3.7) and that of the diagram obtained
from (3.2) by replacing Z ,Z1 respectively by γ , γ1 . The commutativity of the
diagram so obtained has been established as a part of our proof of Theorem 3.1.

Denote by δ the embedding of Λ to Λ[v ] as the subspace of degree zero in v .
Then we have a commutative diagram

Λ Λ[v ]

ΛN Λ
(1)
N

δ

πN

where the left vertical arrow is the canonical projection. The bottom horizontal
arrow is the natural embedding. It follows that the inverse limit of IN (u) equals

I (u) = V γ ( 1 + uZ )−1 δ . (3.10)

By the above definition, every coefficient in the formal power series expansion
of I (u) in u is a certain operator Λ→ Λ[w ] . Now consider the series

(1 + u) ( 1 + uw )−1 ( 1 + u I (u)) (3.11)

where the summand 1 in front of u I (u) stands for the embedding of Λ to Λ[w ]
as the subspace of degree zero in w . This should cause no confusion. In the next
subsection we will show that the series (3.11) does not depend on w . Hence the
coefficients of this series will be operators mapping the vector space Λ to itself.

Note that by the definition of the homomorphism τN and by the above given
arguments, the series (3.11) is equal to the inverse limit at N →∞ of

(1 + u) ( 1 + u tN )−1 ( 1 + u IN (u)) . (3.12)
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But by using the multiplicative formula (2.5), the eigenvalue of DN (u t)/DN (u)
on the trivial Macdonald polynomial 1 ∈ ΛN corresponding to λ = (0, 0, . . . ) is

(1 + u)−1 ( 1 + u tN ) .

Hence our Theorem 2.5 implies that the eigenvalue of (3.12) on 1 ∈ ΛN equals 1 .
By taking the limit at N →∞ the eigenvalue of (3.11) on the trivial Macdonald
symmetric function 1 ∈ Λ also equals 1 . This explains the definition of (3.11).

3.3. Reduced space. Here we will use the vector space decomposition

Λ[v ] = Λ⊕ vΛ[v ] . (3.13)

The second direct summand in (3.13) will be called the reduced space. Relative
to this decomposition the operator γ on Λ[v ] is represented by the 2× 2 matrix
with operator entries

[

1 0

β α

]

where β denotes the composition of the restriction of γ to the first summand
in (3.13) with the projection to the second summand. The map γ preserves the
second summand, and α denotes the restriction of γ to it. Similarly, the operator
W on Λ[v ] is represented by the 2× 2 matrix with operator entries

[

1 Y

0 X

]

where X and Y respectively denote the compositions of the restriction of W to
the second summand in (3.13) with the projections to the first and to the second
summands. Note that the operator Z = Wγ is then represented by the product

[

1 Y

0 X

] [

1 0

β α

]

=

[

1 + Y β Y α

Xβ Xα

]

. (3.14)

By definition the operator V : Λ[v ]→ Λ[w ] acts on the first direct summand
in (3.13) as multiplication by w − 1 . The restriction of V to the second direct
summand does not depend on w . Thus it maps vΛ[v ] to Λ . Moreover, by the
definitions of V and W this restriction coincides with the operator −Y . Hence
relative to (3.13) the operator V is represented by the row with operator entries

[

w − 1 , −Y
]

.

Finally denote L = αX . This is an operator on the reduced space vΛ[v ] .
We shall call it the Lax operator for the Macdonald symmetric functions in Λ .
This terminology is justified by the following theorem.

Theorem. The series (3.11) is equal to (1 + u) (1 + u+ uJ (u))−1 where

J (u) = Y ( 1 + uL)−1β .

In particular, the series (3.11) does not depend on the variable w .



Cherednik operators at infinity 21

Proof. Relative to (3.13) the operator δ : Λ→ Λ[v ] is represented by the column
with two operator entries

[

1
0

]

.

Therefore the operator product ( 1 + uZ )−1 δ appearing in the definition (3.10)
of the series I (u) is represented by the first column of the 2×2 matrix inverse to

[

1 + u+ uY β uY α

uXβ 1 + uXα

]

.

Here we employ the matrix representation (3.14) of the operator Z . To find that
column we will use a well known formula for the inverse of a 2× 2 block matrix
with invertible diagonal blocks, see [1, Lemma 3.2]. The block matrix is assumed
to be invertible too. The first entry of the first column that we find in this way is

( 1 + u+ uY β − uY α (1 + uXα)−1 uXβ )−1 =

( 1 + u+ uY β − u2 Y αX (1 + uαX )−1β )−1 =

( 1 + u+ uY (1− uL (1 + uL)−1 )β )−1 =

( 1 + u+ uY (1 + uL)−1 β )−1 =

( 1 + u+ uJ (u))−1 . (3.15)

The second entry of the first column of the inverse matrix that we find is then

− (1 + uXα)−1 uXβ ( 1 + u+ uJ (u))−1 =

−u X (1 + uL)−1β ( 1 + u+ uJ (u))−1 . (3.16)

The product V γ in (3.10) is represented by the row with operator entries

[

w − 1 , −Y
]

[

1 0

β α

]

=
[

w − 1− Y β , −Y α
]

.

The series I (u) is equal to the product of this row by the column representing
( 1+uZ )−1 δ . That column has the entries (3.15) and (3.16). Hence I (u) equals

(w − 1− Y β )( 1 + u+ uJ (u))−1 + Y αuX (1 + uL)−1β ( 1 + u+ uJ (u))−1

= (w − 1− Y (1− uL (1 + uL)−1)β )( 1 + u+ uJ (u))−1

= (w − 1− Y (1 + uL)−1β )( 1 + u+ uJ (u))−1

= (w − 1− J (u))( 1 + u+ uJ (u))−1 .

Our theorem immediately follows from the last displayed expression for I (u) . ⊓⊔

Note that by replacing in the series −uJ(u) the variable u by −u−1 we get
the same generating series for the limits of the quantum Hamiltonians at N →∞
as was denoted in [11, Section 2] by I (u) . But in the present article the notation
I (u) was introduced in (3.10) and has a meaning different from that in [11].
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