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Abstract 

 

The likelihood ratio (LR) is now widely accepted as the appropriate framework for evaluating 

expert evidence. However, an empirical issue in forensic voice comparison is the number of 

speakers required to generate robust LR output and adequately test system performance. In 

this study, Monte Carlo simulations were used to synthesise temporal midpoint F1, F2 and F3 

values from the hesitation marker um from a set of raw data consisting of 86 male speakers of 

standard southern British English. Using the multivariate kernel density LR approach, these 

data were used to investigate: (1) the number of development (training) speakers required for 

adequate calibration, (2) the number of test speakers needed for robust validity, and (3) the 

effects of varying the number of reference speakers. The experiments were run over 20 

replications to assess the effects of which, as well as how many, speakers are included in 

each set. Predictably, LR output was most imprecise using small samples. Comparison across 

the three experiments shows that the greatest variability in LR output was found as a function 

of the number of development speakers – where stable LR output was only achieved with 

more than 20 speakers. Thus, it is possible to achieve stable performance with small numbers 

of test and reference speakers, as long as the system is adequately calibrated. Importantly, 

however, LRs for individual comparisons may still be substantially affected by the inclusion 

of additional speakers in each set, even when large samples are used. 
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1 Introduction 

 

In recent years it has been claimed that forensic science has undergone a paradigm shift (Saks 

& Koehler 2005) in the approaches used for analysing and evaluating expert evidence. As 

outlined in Morrison (2014), essential elements of this shift involve the adoption of the data-

driven, numerical likelihood ratio (LR) for estimating the strength of forensic evidence, and 

the empirical estimation of the validity and reliability of the system used to compute the LR 

(for a detailed overview see Robertson & Vignaux 1995, Aitken & Taroni 2004, and 

Morrison 2009). While there is general agreement across the forensic sciences that the LR is 

the appropriate framework for evaluating evidence, within the field of forensic speech 

science there remain practical issues associated with the computation of a numerical estimate 

of the strength of voice evidence (French et al. 2010, Gold & Hughes 2014, Morrison & 

Enzinger 2016). In this paper, one such issue is addressed, namely that of sample size, 

focussing on the number of development, test and reference speakers required to adequately 

calibrate forensic voice comparison systems, evaluate their validity, and compute robust LR 

output. 

 

Forensic voice comparison and the likelihood ratio 

 

Forensic voice comparison (FVC) involves the comparative analysis of the speech patterns in 

a recording of an unknown offender (e.g. covert recording of a drugs deal) and those in a 

recording of a known suspect (e.g. police interview recording). The expert analysis of the 

suspect and offender samples is used to aid the trier-of-fact in determining the innocence or 

guilt of the defendant. FVC accounts for the majority of work conducted by forensic speech 

scientists. Worldwide many different approaches are used for the analysis of speech samples 

in FVC cases, with one of the most common being combined auditory and acoustic analysis 

(Gold & French 2011, Morrison et al. 2016), based on principles from linguistic and phonetic 

theory. Using this approach, a wide range of features is available to the expert for analysis, 

including segmental features (consonants and vowels), suprasegmental features (fundamental 

frequency, intonation, rhythm), syntax, lexical choices, and even non-linguistic features such 

as hesitation markers, pauses, and coughs. 

 

Within the field of forensic speech science there is growing, in-principle acceptance that the 

LR is the appropriate framework for expressing the strength of FVC evidence (Champod & 



Meuwly 2000, Broeders 2001, Nolan 2001, Rose & Morrison 2009). The LR is an estimation 

of the strength or weight of the evidence under the competing propositions of the prosecution 

and defence, expressed as: 

 

(1) 

𝑝(𝐸|𝐻&)

𝑝(𝐸|𝐻()
 

 

where 𝑝 is probability, 𝐸 is evidence (i.e. the observations derived from the offender sample), 

| is ‘given’, 𝐻& is the prosecution proposition and 𝐻( is the defence proposition. In FVC, the 

prosecution proposition is almost always that ‘the suspect and the offender are the same 

speaker’, while the defence proposition can be reduced to ‘the suspect and the offender are 

different speakers’ (for more on the importance and implications of using a carefully defined, 

appropriate defence proposition see Morrison et al. 2012, Morrison & Stoel 2014, Hughes & 

Foulkes 2015). The LR involves two elements: similarity and typicality. The numerator of the 

LR is equivalent to the similarity between the suspect and offender samples with regard to the 

features analysed by the expert. The denominator is equivalent to the typicality of the 

observations of the features in the offender sample relative to patterns in the relevant 

population (Aitken & Taroni 2004) (i.e. what is the probability of finding the offender values 

assuming they were produced by another member of the population defined by the defence 

proposition?). 

 

LR-based system testing 

 

In FVC casework the analyst uses a system to compute a numerical LR. In this context, 

system refers broadly to “a set of procedures and databases that are used to compare two 

samples, one of known origin and one of questioned origin, and produce a (LR)” (Morrison 

2013: 174). Systems can therefore differ in many respects, such as the features analysed, the 

equation used to compute the scores, the database used to represent the relevant population, 

and the methods used for the calibration and combination of LRs. Prior to the computation of 

a LR for a given suspect and offender (evidential) comparison, many systems may be tested 

and the best one chosen on the basis of optimum validity and reliability. 

 

System testing consists of two stages. The first is the feature-to-score stage in which a series 



of LR-like scores are computed for a set of test data where it is known, a priori, whether the 

samples contain the voices of the same speaker (SS) or different speakers (DS). In the 

computation of scores, typicality is estimated based on a set of reference data representative 

of the relevant population. The second stage is score-to-LR mapping. This involves 

computing a second series of SS and DS scores for an independent set of development (or 

training) data, again using the reference data to calculate typicality. Based on the scores for 

the development data, calibration coefficients are generated (see Morrison 2013) which are 

then applied to the scores for the test data to convert them to LRs. Calibration is a means of 

optimising system validity and is claimed to be “essential if one wishes to interpret system 

output as (LRs)” (Grigoras et al. 2013: 620), although the extent to which calibration is 

necessary depends on how well the statistical model fits the underlying data. The calibrated 

LRs can then be used to estimate the validity and reliability of the system. 

 

Applied to a FVC case, system testing would be performed following the procedures above. 

The system with the best validity and reliability would then be fixed and used to compute and 

calibrate a LR for the evidential suspect and offender comparison. The validity and reliability 

of the system, based on the test data, would be presented to the court along with the absolute 

value of the calibrated LR. 

 

Sample size and the LR in FVC 

 

A significant practical issue in LR-based FVC is the number of speakers required in each of 

the development, test, and reference sets to produce robust and replicable LR output. A 

relatively small body of research has addressed some elements of this issue for acoustic-

phonetic FVC. This work has largely concentrated on the number of reference speakers 

needed to quantify typicality.  

 

Ishihara & Kinoshita (2008) analysed long-term fundamental frequency (parameterised using 

the mean, standard deviation, kurtosis, mode and modal density) from non-contemporaneous 

samples of spontaneous speech from 241 male speakers of Japanese. The speakers were 

divided into two groups, and within each group 12 differently sized population samples were 

created, varying from 10 to 120 speakers. This allowed for the computation of two scores for 

each comparison for the same population size. Cross-validated scores were computed for all 

241 speakers using the multivariate kernel density (MVKD; Aitken & Lucy 2004) equation, 



and typicality assessed against the differently sized reference sets. Ishihara & Kinoshita 

found that median SS log10 LRs (LLR) were three orders of log magnitude greater when 

using 10 reference speakers compared with using all 120. The overall range of LR scores also 

decreased as the amount of reference data increased, with DS pairs more sensitive to the size 

of the reference sample. With 10 speakers the median DS LLR value was around -30. Using 

120 reference speakers, the DS median LLR was located between -2 and -3. Equal error rate 

(EER) was also found to improve as the number of speakers increased, although 

“improvement (was) more rapid up to the population size 30” (2008: 1943). The same data 

were also examined in Ishihara & Kinoshita (2014), but the analysis was expanded to focus 

on calibrated LR output and include Cllr and different measures of precision (including 

credible intervals) as a function of reference sample size. Both validity and precision were 

found to improve (i.e. reduce) as sample size increased.  

 

While Ishihara & Kinoshita (2008, 2014) focused on the effects of small numbers of 

reference speakers, Rose (2012) investigated an upper limit for reference sample size at 

which point LR performance stabilises. Rose (2012) used Monte Carlo simulations to 

synthesise F1, F2 and F3 midpoint values for Australian English /aː/ for up to 10,000 

speakers based on data from the Bernard (1970) corpus. Monte Carlo simulations involve 

generating synthetic data from a distribution which is representative of the population being 

modelled. Simulations are a useful tool for testing issues of sample size, particularly when 

sufficiently large sets of raw data are unavailable (a detailed overview of the procedures 

involved in Monte Carlo simulations is provided at 2.3). Using both normal (Lindley 1977) 

and kernel density (Aitken & Lucy 2004) LR approaches, scores were computed based on 

real suspect and offender case data and assessed as a function of the number of reference 

speakers between five and 60. Output was compared against what Rose refers to as the true 

LR which was based on all of the available data (10,000 reference speakers). The term true is 

not used by Rose to mean the statically true value – i.e. the actual, ground truth value for the 

population under perfect conditions – but rather the most precise estimate of that actual value 

based on the maximum amount of available data. 

 

The results of Rose (2012) are comparable with those of Ishihara & Kinoshita (2008). Based 

on univariate analyses of individual formants, SS scores were generally higher in magnitude 

than the true value when using fewer than 10 speakers. The overall range of LRs was also 

considerably greater when using small numbers of reference speakers. However, relatively 



stable scores were achieved (within two standard deviations of the true scores) by the 

inclusion of 30 reference speakers. This was the case even for F2, which displayed the 

greatest sensitivity to sample size. A similar pattern was found in the multivariate analysis, 

with the distributions of values skewed towards stronger scores when using small samples. 

Compared with the univariate analysis, the range of scores based on the multivariate data was 

far more sensitive to sample size. However, Rose’s (2012) study was based on a single SS 

comparison. Therefore, it was not possible to assess the performance of a set of test data as a 

function of the number of reference speakers or assess how system validity is affected by 

sample size. Further, the scores were not calibrated. 

 

Hughes, Brereton & Gold (2013) used Monte Carlo simulations to assess the point at which 

LR output becomes asymptotic with very large numbers of reference speakers (up to 1000 

synthetic speakers) using univariate articulation rate (AR) data as input. The magnitude of 

calibrated LLRs, as well as EER and Cllr, were found to be stable with as few as 10 reference 

speakers. This suggests that for AR very small samples are sufficient for estimating the 

population distribution. However, as acknowledged by Hughes, Brereton & Gold (2013), 

given the relative lack of speaker discriminatory power offered by AR, the extent to which 

these results are transferable to other speech features is potentially limited. Hughes & 

Foulkes (2014) considered the effects of reference sample size using cubic polynomial 

representations of the first two formants of /uː/ (four coefficients x two formants) across 

varieties of English. Consistent with Ishihara & Kinoshita (2008) and Rose (2012), scores 

were found to be misleading and spread over a wider range when using smaller numbers of 

reference speakers (fewer than 10). Finally, Hughes (2014) replicated the experiment in 

Hughes & Foulkes (2014) using cubic polynomial representations of F1~F3 for /aɪ/ (four 

coefficients x two formants). Results were generally found to be consistent with previous 

studies, although more speakers were required (around 50) before calibrated LLR output 

became stable. 

 

A number of general patterns emerge from previous research into reference sample size. 

Firstly, small numbers of reference speakers should generally be avoided as they provide 

misrepresentative estimations of typicality and therefore produce misleading LR output. This 

is consistent with a general principle in statistics that population distributions will be 

increasingly imprecise as the size of the sample decreases (and conversely, precision will 

increase as sample size increases). Secondly, there is evidence to suggest that the absolute 



number of reference speakers required to produce asymptotic LR output will differ across 

features. In particular, sensitivity to reference sample size variation has been found to be 

correlated with the dimensionality of the input feature. That is, features with higher numbers 

of dimensions require more speakers to adequately model the multivariate distribution of 

values in the population than features with smaller numbers of dimensions. This is evidenced 

by comparing the results for articulation rate (AR) (one dimension – least sensitive to sample 

size) from Hughes, Brereton & Gold (2013), /u:/ (eight dimensions) from Hughes & Foulkes 

(2014) and /aɪ/ (12 dimensions – most sensitive to sample size) from Hughes (2014). 

 

Although previous research has focused primarily on the effects of reference sample size, LR 

output is also necessarily affected by the size of the development and test sets. Yet, it seems 

that no empirical research has been conducted to investigate this issue. This study, therefore, 

expands on previous work on sample size in LR-based FVC to examine the effects of the 

number of (i) development, (ii) test, and (iii) reference speakers on the magnitude of 

calibrated LRs and system validity (Cllr). Using midpoint measurements of the first three 

formants of the vocalic portion of the hesitation marker um, multiple replications of each 

experiment were conducted to assess the imprecision in LR output with different sample sizes 

and sets of speakers. This is done using data synthesised from an existing set of data from 86 

male speakers via Monte Carlo simulations. The results are considered in terms of the effects 

of sample size variation in each of the development, test and reference sets individually, as 

well as the potential trade-offs across sets. 

 

2 Method 

 

2.1 Corpus and input features 

 

Speech samples were drawn from the Dynamic Variability in Speech corpus (DyViS; Nolan 

et al. 2009). DyViS was collected for the purposes of forensic phonetic research and contains 

a sociolinguistically homogeneous set of 100 male speakers of standard southern British 

English (SSBE; for an overview see Kerswill 2006) aged between 18 and 25. Speakers were 

recorded participating in four tasks. For the purposes of the present study tasks 1 and 2 

recordings were analysed. Although collected for forensic purposes, the DyViS corpus is not 

entirely forensically realistic. The two tasks were recorded on the same day, but not as part of 

the same session. In this way they are not non-contemporaneous in the sense of considerable 



time between sessions (see Enzinger & Morrison 2012); however, the tasks themselves 

involve different speaking styles with different interlocutors and should furnish some 

forensically realistic within-speaker variability. Very little work has investigated the effects 

of within-speaker variability on LR-based system performance or the relative importance of 

different sources of variability. Therefore, any corpus used will necessarily not reflect all of 

the relevant facts of any given forensic case. Task 1 involved a mock police interview in 

which the participant was questioned about a crime. Participants were presented with slides 

providing information about the crime and told to avoid incriminating information. Task 2 

involved a telephone conversation with a mock accomplice. For this study, the high quality 

near-end recordings were analysed. Recordings were between 10 and 30 minutes in duration, 

and were digitised at a sample rate of 44.1kHz and 16 bit-depth. 

 

Midpoint F1, F2 and F3 values from the vocalic portions of the hesitation marker um 

(sometimes represented orthographically as erm) were used as input data. um was chosen as it 

provides multidimensional data which are typical of many segmental acoustic-phonetic 

features analysed in FVC. Therefore, procedures for simulating data develop those in 

Hughes, Brereton & Gold (2013), who considered only univariate data. Hesitation markers 

have also been shown to have very good speaker discriminatory power, with empirical 

research suggesting that they outperform lexical vowels (Foulkes et al. 2004, Hughes 2014). 

The finding that hesitation markers outperform lexical vowels is, to some extent, predictable. 

Since hesitations are non-linguistic, they are not constrained by the phonological system in 

the same way as lexical vowels, which offers greater scope for individual variation. Further 

hesitation markers are less susceptible to coarticulation as they frequently occur adjacent to 

silence. For more on the speaker discriminatory power of hesitation markers using the same 

data see Hughes et al. (2016a,b). 

 

2.2 Data extraction 

 

Existing formant data for um from DyViS were available from Hughes et al. (2016a,b). 

Tokens had been manually segmented and values for F1, F2 and F3 extracted at +10% steps 

across the duration of the vowel. The To formant (burg)… function in PRAAT (Boersma & 

Weeink 2014) was used for formant estimation, with the tracker set to identify between 5 and 

6 spectral peaks within a range of 0 to 5 kHz. The original dataset consisted of 92 speakers 

(eight speakers had been removed from the original 100 as they did not produce any tokens 



of um; see Hughes et al. 2016a) with up to 20 tokens per speaker. Initially, four speakers with 

fewer than 10 tokens per session were removed from the analysis. For the purposes of the 

present study only the midpoint values were used. This is because of the considerably greater 

degree of complexity involved in simulating highly multivariate data such as formant 

dynamics compared with three midpoint values. The raw data were inspected visually and 

obvious measurement errors (e.g. F1 measured as F2) corrected by hand. Where values were 

missing at the +50% step (midpoint), the mean of the two adjacent values (+40% and +60%) 

was used. Where erroneous values could not be resolved, the whole token was removed from 

the analysis. For two speakers, this meant that there was insufficient data for analysis and so 

these speakers were also removed. The resulting dataset therefore consisted of 86 speakers, 

with between 10 and 20 tokens per session per speaker, although only 11 speakers had fewer 

than 20 tokens per session. A more detailed overview of the processes of data extraction and 

descriptive patterns of acoustic variation in the data are provided in Hughes et al. (2016a,b). 

 

2.3 Monte Carlo simulations 

 

Monte Carlo simulations involve generating synthetic data from a distribution representing 

the true distribution of values for a given parameter within a given population. In this study, 

simulations were used to generate data for synthetic speakers from the relevant population of 

male, SSBE speakers aged between 18 and 25. For each synthetic speaker, data representing 

tasks 1 and 2 were synthesised (see below). Since the sampling distribution represents the 

entire population, any number of speakers may be generated, allowing for multiple 

repetitions of the experiments in this study using independent sets of speakers. The following 

sections outline the processes used to simulate data. 

 

2.3.1 Modelling 

 

Data for synthetic speakers were generated using the same two-step simulation procedure 

described in Hughes, Brereton & Gold (2013). This approach uses the MVKD equation as a 

basis for simulating values, since MVKD is used to compute scores in the experiments in this 

study. In MVKD, within-speaker variation (including data from the suspect) is modelled 

using a Gaussian distribution (Morrison 2011a). Therefore, individual synthetic speaker data 

for each session was modelled as Gaussian distributions. The two-stage simulation involved 

firstly simulating means and standard deviations (SDs) for two sessions for each synthetic 



speaker from the distributions of means and SDs in the raw data. Individual tokens for each 

synthetic speaker were then simulated from the normal distributions parameterised by these 

mean and SD values.  

 

 

Figure 1: Histograms of raw means (left) and SDs (right) for F1 (top), F2 (middle) and F3 

(bottom) based on task 1 data for 86 speakers fitted with a kernel density 

 

Initially, it was necessary to establish the appropriate distribution for modelling the raw 

means and SDs from which to generate synthetic values. By-speaker means and SDs were 

calculated for the 86 speakers for F1, F2 and F3 for each session separately. Figure 1 displays 

the histograms of raw means and SDs for each formant from task 1 fitted with a kernel 

density estimate. Figure 1 suggests that the normal distribution provided a relatively accurate 

model of the distributions of the session means. The distributions of SDs in all three cases 

appeared positively skewed. Figure 2 displays the distributions of the natural log values of 

the SDs from task 1 plotted as a histogram with estimated kernel densities. The normal 

distribution provided a good approximation of the log-transformed data. Across all three 



formants, the distributions of log values were relatively symmetrical, with the mean 

approximately at the point of maximum density. On this basis, it was decided that synthetic 

SDs would be sampled from a lognormal distribution (see 2.3.3). The lognormal distribution 

is also justifiable on linguistic grounds. This is because the majority of speakers are expected 

to display moderate levels of within-session variability (c. 40-100 Hz). However, while there 

is inherently a floor effect in terms of potential within-session variability, there is far greater 

scope for high levels of variability for a small proportion of speakers. 

 

 

Figure 2: Histograms of the natural log values of raw SDs for F1 (left), F2 (centre) and F3 

(right) based on task 1 data for 86 speakers fitted with a kernel density 

 

2.3.2 Correlations 

 

In order to generate appropriate multisession, multivariate data it was necessary to 

incorporate some within- and between-session correlations between input variables into the 

simulations. Therefore, the correlation structure of the raw data was analysed prior to 

conducting simulations.  

 

Figure 3 displays the within-session correlation matrices generated from the means and log 

SDs for tasks 1 and 2 based on Pearson correlation tests. A correlation coefficient threshold 

of ±0.2 was used for defining meaningful relationship, with coefficients greater than 
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threshold considered for inclusion in the simulations. For task 1, two pairs of variables 

generated correlations coefficients greater than threshold; F1 log SD ~ F2 log SD and F2 log 

SD ~ F3 log SD. The same correlations were also found for task 2 (with larger correlation 

coefficients), along with three additional pairs of variables. However, the three additional 

correlations in task 2 were not included in the simulations since their absence from task 1 

provides evidence that the correlations are not robustly found across sessions in the 

population at large. 

 

 

Figure 3: Pearson correlation matrices for within-session correlations between F1, F2, and F3 

means and log SDs for task 1(left) and task 2 (right) data (correlation coefficients of greater 

than ±0.2 are marked, and correlations shared across both tasks are in bold) 

 

Figure 4 displays the Pearson correlation matrix for between-session correlations. Again, a 

correlation coefficient of ±0.2 was used as threshold. Figure 4 reveals a complex between-

session correlation structure, with multiple variables related to each other to different extents 

and in different directions. In order to simplify the simulations in this study, only the 

strongest, pairwise correlations were considered. Therefore, given the size of their correlation 

coefficients, the relationships between F1, F2, and F3 means were included, along with the 

relationships between F1 log SDs and F2 log SDs. Although this approach captures some of 

the important correlation structure in the raw data whilst also maintaining relative simplicity 

in the simulation procedures, it also overestimates within-speaker variability across sessions. 

This is because some between-session variables which have weaker, potentially meaningful 



correlations are assumed to be independent. This was expected to have the effect of reducing 

the overall performance of the systems tested. Therefore, overall performance is expected to 

be worse than that reported in Hughes et al. (2016a,b).
1
 

 

 

Figure 4: Pearson correlation matrix for between-session correlations between F1, F2, and F3 

means and log SDs 

 

2.3.3 Monte Carlo simulations 

 

On the basis of 2.3.2, simulations were conducted by firstly generating independent mean F1, 

F2, and F3 values from the raw task 1 data. These values represented the mean for each 

formant for the synthetic task 1 data for each synthetic speaker. Having established that the 

means for a single session are normally distributed in 2.3.1, the procedures outlined in 

Hughes, Brereton & Gold (2013) for sampling from the normal distribution were followed to 

create synthetic speaker means. The synthetic, task 1 F1 SD was also generated 

                                                
1
 The experiments in this study were also conducted using simulations based on contemporaneous 

recordings (but see Enzinger & Morrison, 2012) which assumed independence across the means and 

SDs of the individual formants (Hughes, 2014). The patterns were broadly the same as those reported 

in section 3 here, in terms of the effects of sample size, but the strength of evidence was considerably 

greater and the validity considerably better. This was because the evidence from each formant was 

statistically independent (essentially doubling of evidence where the underlying data are actually 

highly correlated; see Rose, Lucy & Osanai, 2004).  
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independently. However, the lognormal nature of the SDs for a single session (see 2.3.1) also 

needed to be included in the simulations. The procedures for this are broadly the same as 

those used for the normally distributed means, although the probability density function 

(PDF) is defined differently for lognormal data. 

 

The SD of F1 is denoted by 𝑥, where 𝑥* is the  F1 SD for an individual speaker. The raw 𝑥* 

values from all 86 speakers’ task 1 data were transformed using the natural logarithm (𝑙𝑛), 

and the mean (𝜇) and SD (𝜎) of the logged values calculated. These properties of the 

distribution of logged values were used to define the lognormal PDF: 

 

(2) 

1

𝑥𝜎 2𝜋
	𝑒
4
(56 748)9

:;9  

from Patel & Read (1982: 24) 

 

Based on this, the lognormal distribution was normalised by applying the transformation: 

 

(3) 

𝑧 = 	
(𝑙𝑛	 𝑥 −	𝜇7)

2𝜎7
 

 

This conversion transforms linguistically meaningful values (in the 𝑥-space) to normalised 𝑧-

space values, such that the area under the normalised distribution is equal to one. Having 

defined 𝑧	for lognormal data, the cumulative distribution function (CDF) of the lognormal 

PDF can be calculated as: 

 

(4) 
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from Wang & Guo (1989: 333) 



With explicit knowledge of the inverse CDF, synthetic zi values were generated using a 

random variable Zi ∈ [0, 1] and then converted back to the y-space by applying the 

transformation: 

 

(5) 

𝑧 = 	
𝑙𝑛 𝑦 −	𝜇7

2𝜎7
,	

𝑧	 2	𝜎7 = 𝑙𝑛 𝑥 −	𝜇7	

𝑧	 2	𝜎7 +	𝜇7 = 𝑙𝑛 𝑥 	

	∴ 	𝑥 = 𝑒 B	 :	;RS	8R  

 

The synthetic task 1 F1 SD for each synthetic speaker (𝑥*) was then used to generate a task 1 

F2 SD (𝑦*) value. Synthetic F2 SD values were sampled from a normal distribution, in the 

same way as Hughes, Brereton & Gold (2013), where the mean was defined by the linear 

correlation between log(F1 SD) and log(F2 SD) (see Figure 3): 

 

(6) 

𝑎	ln(𝑥*) + 𝑏 

 

The SD of the sampling distribution was the mean of the residuals around the linear trend 

line. The same procedure as for the synthetic mean values was then followed to generate a 

synthetic log F2 SD value. The exponential of this value was then used as the synthetic task 1 

F2 SD value (𝑦*). The same process was used to generate synthetic task 1 F3 SDs from the 

synthetic F2 SDs. These procedures, finally, produced normal distributions (parameterised 

using the synthetic means and SDs) for each synthetic speaker representing their task 1 data. 

 

Synthetic task 2 data were generated entirely using correlations. Synthetic mean F1, F2, and 

F3 values for task 2 were created from the synthetic mean F1, F2, and F3 values for task 1 

using the correlation in the raw data and the procedure outlined above (although without the 

log conversion). In this way, the simulations captured the between-session correlations whilst 

maintaining the independence of the mean values within-sessions. Synthetic task 2 SDs for 

F1 and F2 were created from their synthetic counterparts from task 1, based on the 

correlation in the raw data. The task 2 F2 SD was then used to produce the F3 SD based on 



the within-session correlation in 2.3.2. This approach was considered preferable to using the 

between-session correlation since the within-session correlation for task 2 was stronger. This 

also introduced important within-session correlation into the synthetic task 2 data which 

would have been completely absent if using only between-session correlations. 

 

 

Figure 5: Cumulative distribution functions of F1 (top), F2 (middle), and F3 (bottom) means 

and SDs for tasks 1 (left) and 2 (right) based on the raw data (86 speakers; dashed line) and 

an example set of 1000 synthetic speakers (solid line) 

 

The simulation procedure generated normal distributions (i.e. means and SDs) for F1, F2, and 

F3 for each synthetic speaker for both tasks 1 and 2. Tokens for synthetic speakers were then 

sampled independently from these normal distributions: 𝑥	~	𝑁(𝜇, 𝜎). In this way, the 

simulation procedure may not capture within-speaker correlations across individual tokens, 

which in turn may further overestimate within-speaker variability and reduce overall system 

performance. These issues with the simulations are considered in section 4. In order to 

evaluate the appropriateness of the simulation procedures the distributions of means and SDs 

for the raw data were compared with those of an example set of 1000 synthetic speakers. The 



two data sets are shown in Figure 5. There was considerable overlap between the two sets, 

indicating that the simulations accurately model the distributions in the raw data. 

 

2.4 Experiments 

 

In this study, multiple replications of the same experiment were conducted to assess the 

sensitivity of LR output to variation in the number of (1) development, (2) test, and (3) 

reference speakers. For each experiment, only the number of speakers in the target set (i.e. 

development, test or reference) was varied to remove confounding sources of sample size 

variability. Across all experiments same- (SS) and different-speaker (DS) scores for the 

development and test sets were computed using a MATLAB implementation (Morrison 2007) 

of MVKD (Aitken & Lucy 2004) with the reference data used to assess typicality. In 

computing scores, each speaker’s task 1 data functioned as nominal suspect data, and the task 

2 data as nominal offender data – for DS pairs only one LR per pair was computed. The test 

scores were then converted to calibrated log10 LRs using calibration coefficients derived from 

a logistic regression model trained on the development scores (Brümmer et al. 2007, 

Morrison 2013). The calibration coefficients consist of a scale coefficient and a shift 

coefficient, which are respectively the slope and intercept of the logistic regression model. 

 

Experiment (1) considered the number of development speakers required for adequate system 

calibration and the effects on the performance of a large set of test data. Sets of 500 test 

speakers and 500 reference speakers with 100 tokens per speaker per sample (task 1 vs. task 

2) were initially generated. An independent set of 100 development speakers with 100 tokens 

per speaker per sample was then created. Scores were computed initially using two 

development speakers. The calibration coefficients were calculated and applied to the scores 

for the 500 test speakers. This process was looped, increasing the number of development 

speakers by one each time. Experiment (2) assessed the number of test speakers required to 

reliably estimate system validity. Scores were computed for 500 synthetic development 

speakers using 500 synthetic reference speakers (100 tokens per speaker per sample), and 

calibration coefficients calculated. A set of 100 test speakers (100 tokens per speaker per 

sample) was then created and scores computed for between two and 100 speakers. At each 

stage, calibration coefficients from the development data were applied. Finally, Experiment 

(3) investigated the effects of varying the number of reference speakers. Scores were 

computed for a set of 500 development speakers and 500 test speakers using between two and 



100 reference speakers (100 tokens per speaker per sample). Each experiment was run over 

20 replications. 

 

Across the three experiments, the effects of sample size were assessed in terms of the 

resulting test data – although for experiment (1) the effects on calibration coefficients were 

also evaluated. The effects on the strength of evidence were analysed initially, but only for 

experiments (1) and (3). This was because the strength of evidence for individual 

comparisons in experiment (2) would not change; only the number of comparisons would 

increase. The overall effects on the strength of evidence were analysed using the median SS 

and DS LLR, as a measure of central tendency. The effects on individual comparisons were 

also considered using the root mean square (RMS) difference. The RMS difference is the 

mean difference, within each replication, between the LLRs for each comparison as the 

number of speakers increases (increasing by two per step). SS and DS pairs were treated 

separately. The RMS difference is defined as: 

 

(7) 

1

𝑛
(𝑥* − 𝑦*)

:

6

*YZ

 

 

where: 

n = number of test comparisons per replication 

xi = i
th

 (SS or DS) LLR within a replication 

yi = i-1
th

 (SS or DS) LLR within a replication. 

 

Across all 20 replications the maximum difference at each incremental step was also 

calculated to highlight the largest potential change in the strength of evidence with the 

addition of speakers in either the development or reference sets. Differences in strength of 

evidence as a function of sample size were evaluated with reference to Champod & Evett’s 

(2000) verbal scale (Table 1). 

 

 

 

 

 



Table 1 – Verbal expressions of log10 LRs (Champod & Evett, 2000) 

Log10 LR Verbal expression  

 

 

 

 

…for the prosecution/defence 

±4 : ±5 Very strong support 

±3 : ±4 Strong support 

±2 : ±3 Moderately strong support 

±1 : ±2 Moderate support 

0 : ±1 Limited support 

 

System validity was evaluated using the log LR cost function (Cllr; Brümmer & du Preez 

2006) and equal error rate (EER). Cllr penalises the system based on the magnitude, rather 

than absolute proportion of the contrary-to-fact LRs it produces and is philosophically 

consistent with the LR framework for evaluating evidence (Morrison 2009). The closer the 

Cllr to zero the better the system validity. A system which consistently produces LLRs of zero 

will have a Cllr of 1 (i.e. provides no useful information for separating SS and DS pairs), 

meaning that Cllr values of greater than 1 indicate very poor system performance. EER is an 

accept-reject metric based on the absolute proportion of contrary-to-fact LRs produced by a 

system. It is philosophically inconsistent with the LR framework, as it implicitly relies on 

posterior probability (although priors are not used explicitly in computing the EER point). 

One further limitation of EER is that it is not affected by score-level logistic regression 

calibration. Therefore, calibration loss cannot be assessed (see Brümmer 2010). Nevertheless, 

it is included here as it provides useful information about system performance. 

 

In the following section, results are presented as scatter plots displaying values for each 

replication, as well as the mean and 95% credible intervals (CI) of values across replications. 

The 95% CI is a probabilistic region of a posterior distribution, where the probability of the 

true mean value being contained within the upper and lower bounds is 0.95. Credible 

intervals are Bayesian and therefore “philosophically consistent with the (LR) framework” 

(Morrison 2011b: 95), relying as they do on priors (their interpretation is fundamentally 

different from frequentist confidence intervals). In this paper, 95% CIs were calculated using 

non-informative priors. Following Rose (2012), the system based on all of the available data 

(500 development speakers, 500 test speakers, 500 reference speakers) was assumed to be the 

most precise and output from this system is referred to as the true output (e.g. true LLRs, true 

EER, true Cllr). The distributions of values at each N speakers stage was compared against 

the true distribution of values as a means of assessing relative stability. 



3. Results 

 

3.1  Experiment (1): Number of Development Speakers 

 

The goal metrics for the development set in system testing are calibration coefficients which 

are applied to the test scores to produce calibrated LRs. Figure 6 displays the effects of 

development set size on the shift (intercept; left) and scale (slope; right) terms. Each point is 

the calibration coefficient for each of the 20 replications. For both terms, the means across 

replications are considerably larger than the true mean values with very small numbers of 

development speakers (fewer than ten), and there is considerably more imprecision (wider 

CIs). Calibration shift values stabilise with the inclusion of more than 10 development 

speakers and vary only minimally within a range extremely close to zero – bare in mind that 

the closer the shift value (the additive term) to zero the less it affects the resulting calibrated 

LRs. The calibration scale values are more sensitive to sample size and do not stabilise until 

more than 20 or 30 development speakers are included. As the multiplicative term, the closer 

the scale value to one the less effect it has on the resulting calibrated LRs. Up to the 30 

speakers point the scale values vary within a relative large range away from one. In order to 

see the effects of these coefficients on system output, however, it is necessary to consider the 

calibrated LRs for the test data. 

 

 



Figure 6: Calibration coefficients (shift/intercept – left; scale/slope – right) across the 20 

replications as a function of development sample size, shown on a natural log scale (ln) (solid 

black line = mean, dashed black line = 95% CIs, dotted grey line = maximum difference) 

 

Figures 7 and 8 display median SS and DS LLRs and RMS and maximum differences for 

each of the 20 replications using between two and 100 development speakers. The greatest 

imprecision in median values across replications was found when using the smallest numbers 

of development speakers. With two and four development speakers, there was substantial 

overestimation of the strength of SS evidence (median values up to log10 43 with just two 

development speakers). However, by the inclusion of 12 development speakers, all SS 

median values across all replications were within the same log10 order of magnitude (between 

0 and 1, equivalent to limited support for the prosecution). The system-level imprecision with 

small numbers of development speakers was also reflected in the variability for individual 

comparisons. Between two and four development speakers the mean SS RMS difference 

across replications was 2.77, with the strength of most SS comparisons decreasing as sample 

size increased. With more than 10 development speakers the mean SS RMS difference for all 

replications was less than 0.2, although only with more than 30 speakers did the maximum 

difference reduce to below one order of magnitude. 

 

 

Figure 7: Medians LLRs (left) and RMS differences (right) for SS comparisons across the 20 

replications as a function of development sample size (solid black line = mean, dashed black 

line = 95% CIs, dotted grey line = maximum difference)  



The same patterns of variation were also found for DS comparisons, although the sizes of the 

effects were greater and more development speakers were required before stable LR output 

was achieved. Between two and 10 development speakers there was considerable 

overestimation of the strength of DS evidence (i.e. large negative values) relative to the true 

medians - the mean of the median values based on two development speakers was as strong 

as log10 -69. As further development speakers were added, the distribution of DS medians 

became more like the distribution of true values based on 100 speakers. Only with more than 

30 development speakers did all replications produce median values within the same range as 

the true values (between 0 and -2, with the mean marginally stronger than -1, equivalent to 

moderate support for the defence). The same imprecision was found for individual 

comparisons. With fewer than 20 development speakers, changes in sample size had marked 

effects of the strength of individual comparisons with mean RMS differences of between 2 

and 3. While DS RMS differences were all within one order of magnitude with the inclusion 

of more than 20 speakers, certain individual DS comparisons were still extremely sensitive to 

changes in development sample size.  

 

 

Figure 8: Medians LLRs (left) and RMS differences (right) for DS comparisons across the 20 

replications as a function of development sample size (solid black line = mean, dashed black 

line = 95% CIs, dotted grey line = maximum difference) 

 

Figure 9 displays Cllr as a function of the number of development speakers. The greatest 

variability in validity across replications was found with the smallest number of development 



speakers. On average, with between two and 10 development speakers Cllr is markedly higher 

(i.e. poorer) than the true Cllr values based on 100 speakers. This is because strength of 

evidence is exaggerated with small samples (i.e. LLRs much further away from the zero 

threshold than the true LLRs, see above), meaning that the systems produced very high 

magnitude consistent-with-fact LLRs, and more significantly, very high contrary-to-fact 

LLRs which negatively affect the validity of the system. By the inclusion of between 20 and 

30 speakers, the distribution of Cllr values is essentially the same as that produced using 100 

speakers (with values spread over a range of 0.53 to 0.58).  

 

 

Figure 9: Log LR Cost Function (Cllr) across the 20 replications as a function of the number 

of development speakers (inset: with the y-axis scaled to show the 0.5 to 0.6 range; solid 

black line = mean, dashed black line = 95% CIs) 

 

3.2  Experiment (2): Number of Test Speakers 

 

Figure 10 displays Cllr as a function of the number of test speakers. The true Cllr values, using 

100 test speakers, range from 0.47 to 0.62. Relative to this distribution, there is greater 

variability in system validity across replications when using very small numbers of test 

speakers. The widest range of Cllr values is found using just two test speakers, where validity 

is both over- (0.09) and under-optimistic (2.03). This means that comparisons of systems 



based on small numbers of test comparisons will necessarily be unreliable, since the 

performance is a reflection of the specific sample used rather than the inherent speaker 

discriminatory power of the feature in the given population. The imprecision in validity 

reduces as the number of test speakers increases, such that the distribution of Cllr values based 

on 30 or more test speakers is essentially equivalent to that based on all 100 speakers. 

Irrespective of the wider CIs with smaller numbers of test speakers, the mean of the Cllr 

values remains relatively stable across replications. 

 

 

Figure 10: Log LR Cost Function (Cllr) across the 20 replications as a function of the number 

of test speakers (solid black line = mean, dashed black line = 95% CIs) 

 

Figure 11 displays EER as a function of test set size. Just as for Cllr, with the smallest 

numbers of test speakers EER was both over and under optimistic relative to the distribution 

of true EERs, with some replications producing EERs of 0% (no contrary-to-fact LRs) and 

others producing 100% (all contrary-to-fact LRs). This is unsurprising given that the small 

number of test speakers produce an extremely small number of SS and DS comparisons. As 

the number of test speakers increased, the imprecision across replications decreased (the CIs 

became narrower). However, EERs were not consistently within the range of 10% to 30% 

until the inclusion of more than 25 test speakers 

 



 

Figure 11: Equal error rate (EER) across the 20 replications as a function of the number of 

test speakers (solid black line = mean, dashed black line = 95% CIs) 

 

 

3.3 Experiment (3): Number of Reference Speakers 

 

In this section the effects of reference sample size are considered in terms of the LLRs (and 

their validity) produced from the test set. However, the reference sample was used to 

generate scores for both the development and test sets. Therefore, the effects on the resulting 

calibrated LLRs will necessarily reflect effects of the reference sample size on both the 

feature-to-score and score-to-LR stages. The independent effects on these two elements are 

considered in 4. 

 

Figures 12 and 13 display medians and RMS differences for SS and DS comparisons across 

all replications as a function of the number of reference speakers. There was very little 

difference in the distribution of SS medians based on the smallest numbers of reference 

speakers compared with the true distribution using 100 speakers. In fact, all SS medians 

across all replications were consistently within the range of +0.5 and +0.8, in all cases 

equivalent to limited support for the prosecution. As the number of reference speakers 

increases between two and 10, there is greater change in the LLRs for individual 



comparisons, compared with the addition of reference speakers when the sample is already 

much larger. With fewer than 10 reference speakers, individual LLRs change by as much as 

two orders of magnitude. With more than 10 reference speakers, even the largest changes in 

individual LLRs do not exceed 0.35. 

 

 

Figure 12: Medians LLRs (left) and RMS differences (right) for SS comparisons across the 

20 replications as a function of reference sample size (solid black line = mean, dashed black 

line = 95% CIs, dotted grey line = maximum difference) 

 

As in Figure 8, the effects for DS comparisons are similar to those for SS comparisons, but 

the effects are somewhat stronger. There is greater variability in the distributions of DS 

medians (even the true medians extend between -0.94 and -1.30). There was also marginally 

more sensitivity to small numbers of reference speakers, although median values never 

extended beyond a two order of magnitude range (between limited and moderate support for 

the defence). Certain comparisons are necessarily affected more by variability in sample size 

than indicated by the system-level central tendency. Again, there are greater fluctuations in 

individual LLRs with the smallest number of reference speakers, although this stabilises with 

more than 10 speakers. After this point, certain comparisons still experience considerable 

fluctuation. For example, between 20 and 22 reference speakers an LLR for one DS 

comparison decreased by 2.26. 

 



 

Figure 13: Medians LLRs (left) and RMS differences (right) for DS comparisons across the 

20 replications as a function of reference sample size (solid black line = mean, dashed black 

line = 95% CIs, dotted grey line = maximum difference) 

 

 

Figure 14: Log LR Cost Function (Cllr) across the 20 replications as a function of the number 

of reference speakers (solid black line = mean, dashed black line = 95% CIs) 

 



Figure 14 shows Cllr as a function of the number of reference speakers. Across replications, Cllr 

was stable as the number of reference speakers increased, such that the distribution of values 

based on two reference speakers was essentially the same as the true distribution of values 

based on 100 reference speakers. There was marginally more variability in validity with the 

smallest number of reference speakers, although Cllr only extended outside the 0.5 to 0.6 range 

for one replication (using four reference speakers). 

 

4 Discussion 

 

Number of Development, Test and Reference Speakers 

 

In Experiment (1), calibration shift values were relatively insensitive to the number of 

speakers once more than 10 were included in the development set. However, calibration scale 

values required considerably more development speakers before stabilising (more than 25), 

and were extremely large with small sample sizes. This effect on scale values meant that LRs 

were generally more extreme (in both directions) when using small numbers of development 

speakers. The distribution of calibrated SS LLRs was found to stabilise with the inclusion of 

more than 20 development speakers. Greater sensitivity was found for DS LLRs with 

stability achieved only with more than 30 development speakers. Despite this, the distribution 

of Cllr values across replications became essentially equivalent to that of the true Cllr values 

by the inclusion of 20 or more development speakers. These results highlight that calibration 

should not be performed with fewer than 20 development speakers. In Experiment (2), Cllr 

was more variable (both over- and under-optimistic) when using small numbers of test 

speakers (i.e. fewer than five). This is dependent entirely on the specific comparisons 

included, since the LLRs themselves are stable due to the large numbers of development and 

reference speakers used. Only with more than 20 test speakers was the distribution of Cllr 

values equivalent to that of the true Cllr values based on 100 test speakers. On this basis, it 

would be inappropriate to perform comparative system testing and validation using a small 

number of test speakers (fewer than 20). 

 

In Experiment (3), the distributions of calibrated SS LLRs were found to be essentially robust 

to reference sample size. DS medians were also relatively stable, even when using small 

numbers of reference speakers, with the distribution of values based on fewer than 10 

reference speakers equivalent to the distribution of true medians using 100 speakers. This 



contrasts with the results for Hughes & Foulkes (2014; based on /u:/) and Hughes (2014; 

based on /aɪ/) where stronger DS LLRs were found using the smallest number of speakers. In 

the present study, Cllr was also incredibly stable, contrasting with the linear improvement in 

Cllr with the addition of more speakers in Hughes & Foulkes (2014). These results provide 

further evidence that sensitivity to sample size is, at least in part, determined by the 

dimensionality of the feature. LR output for um in this study was more sensitive to reference 

sample size than that based on AR (one dimension; Hughes, Brereton & Gold, 2013) and less 

sensitive to sample size than the scores based on the more multivariate features, /u:/ and /aɪ/. 

 

Inherent speaker discriminatory power may also explain why stable system-level LR output 

is achieved with considerably smaller samples than those in Hughes & Foulkes (2014) and 

Hughes (2014). In this study, the midpoint formant values from the hesitation markers 

produced relatively weak evidence (typically between limited and moderate support for 

prosecution or defence, based on the true LR output using the largest number of speakers in 

each set). Thus, the maximum range of LLR variation is relatively narrow, irrespective of 

sample size. This means that contrary-to-fact LLRs will also be of relatively low magnitude, 

which in turn means that Cllr remains stable, if not overly impressive. The performance 

reported here is markedly poorer than that in Hughes & Foulkes (2016a,b). There are two 

reasons for this, both of which are linked to the simulation procedures. Firstly, in order to 

simplify the simulations, these results are based on formant midpoints rather than the full 

formant trajectories and the durations of the nasal /m/. Secondly, the simulations themselves 

overestimate the within-speaker variability in the original data set. For more powerful 

speaker discriminants, it is predicted that larger numbers of speakers would be required to 

achieve stable LR output. 

 

As in previous studies, DS comparisons were found to be more sensitive to sample size 

variability than SS comparisons. This is due, in part, to the inherently larger LLRs produced 

by DS comparisons due to the fact that DS pairs can be much more dissimilar from each 

other than SS pairs can be similar (Rose et al. 2006). This may also be due to the much larger 

number of DS comparisons, such that it is much more likely to find a comparison where 

offender values are situated on the tails of the reference distribution. Thus, small fluctuations 

in the underlying distributions due to changes in the size and make-up of the sample have 

more marked effects on the resulting LLR.  

 



Aside from system-level effects, it is important to highlight variation in individual LLRs in 

Experiments (1) and (3). With very small numbers of speakers, changes in sample size can 

have considerable effects on the LLRs for individual comparisons. In some cases, the 

addition of two development or reference speakers changed the LLR by up to three orders of 

magnitude (e.g. the difference between limited and strong support for prosecution or 

defence). Again, this affects DS comparisons more than SS comparisons. However, such 

effects were also found with relatively large samples. For example, Figure 7 shows that 

between 48 and 50 development speakers the LLR for one DS comparison changed by over 

two orders of magnitude. These results highlight that, in casework, although you may have a 

sufficient number of speakers in each set to ensure that the general performance of the system 

(in terms of strength of evidence and validity) is stable, changes to sample size may still 

affect the specific value of the LR presented to the court for the evidential comparison.    

 

Trade-offs in sample size 

 

Comparison of the results of the three experiments also raise issues relating to the potential 

trade-offs between the numbers of development, test and reference speakers used either in 

system testing and validation or in casework. Predictably, effects were found as a function of 

all three sources of sample size variability. However, the relative importance of the size of 

each of the development, test and reference data sets is dependent on which element of the 

LR output one is interested in.  

 

In calibration, scores for the development data are used which are computed using the 

reference data to assess typicality. Comparison of the results for Experiments (1) and (3) 

shows that in generating meaningful calibration coefficients, the size of the development set 

is of primary concern. Given the stability in the strength of evidence reported in Experiment 

(3), it is clear that calibration coefficients are robust to small numbers of reference speakers 

provided that a large amount of development data is used. That is, to achieve more precise 

calibrated LLRs it is preferable to have a large set of development speakers and a small set of 

reference speakers rather than vice versa. System validity is most sensitive to the number of 

development and test speakers used, but not particularly affected by the number of reference 

speakers. On the basis of these potential trade-offs, in any form of LR-based FVC testing, 

large sets of development and test data should be considered a priority. With sufficiently 



large amounts of development and test data (30/40 speakers per set), a moderate number of 

reference data (15 speakers) should suffice to provide relatively precise LR output.  

 

Variation in LR output 

 

Finally, the results of the three experiments have highlighted that even with relatively large 

numbers of speakers the range of variability in LR output may be relatively wide when using 

different data sets of data representative of the relevant population. In Experiments (1) and 

(3), while the true median SS LLRs were spread over a narrow range of 0.2, the true median 

DS LLRs were spread over a range of up to one order of magnitude – this is the difference 

between limited and moderate support for prosecution or defence. In Experiment (2), Cllr 

values were spread over a range of around 0.2 even with the largest number of available test 

speakers. This is a relatively large range of potential variability in terms of the absolute value 

for system validity which is reported to the court. 

 

5 Conclusions 

 

This paper has examined the effects of development, test and reference sample sizes on the 

magnitude of LLRs and the performance of a FVC system based on the formant midpoints of 

the hesitation marker um. The results have important implications for FVC casework. As in 

previous work, the findings suggest that small numbers of speakers (fewer than 20 in each 

set) should be avoided in LR computation and testing. Further, consistent with general 

principles in statistics, continual increase in precision was achieved as the size of the sample 

increased, although this is susceptible to the law of diminishing returns. Importantly, 

comparison of the results of the three experiments shows that priority should be given to 

larger development and test samples. This is because with large numbers of development and 

test speakers, stable LR output can be achieved using relatively small numbers of reference 

speakers. This is especially important given the effects of small samples on calibration scale 

coefficients, rather than shift coefficients. 

 

Synthetic data were used in this study in the absence of sufficiently large samples of real data 

to test over multiple replications. The synthetic data are not used here to argue that they 

should replace real data in casework. Rather, as outlined in Hughes et al. (2013), simulations 

are an extremely useful tool for examining sample size sensitivity and experts might consider 



using them as a form of pre-testing in casework to understand how their system performs 

with different amounts of data, before testing with real data. It is also essential, particularly in 

casework, that experts consider the effects of sample size in terms of the magnitude of the 

LLR for the specific evidential comparison. This is because even with large samples there 

may still be large fluctuations in the strength of evidence for a single comparison if just two 

speakers are added or removed to the development or reference sets.  

 

However, further work is required to assess the robustness of such effects under more 

forensically realistic conditions and to provide more systematic analysis of the potential 

trade-offs across sets given the limitations of time and resources in FVC casework. Attention 

should also be focused on fully Bayesian methods whereby the greater uncertainty in the 

computation the more the LLR is scaled towards zero (threshold/ no evidence) (see Brümmer 

2011 and Brümmer and Swart 2014 for more). In the case of sample size, the smaller the 

number of speakers the greater the inherent uncertainty. Thus, following the fully Bayesian 

approach strength of evidence should be weaker with smaller samples; the opposite of the 

pattern found in the simulations in this study. 
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