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Abstract : We demonstrate a new simple technique to measure IR frequencies near 30 THz 

using a femtosecond (fs) laser optical comb and sum-frequency generation. The optical 

frequency is directly compared to the distance between two modes of the fs laser, and the 

resulting beat note is used to control this distance which depends only on the repetition rate 

fr of the fs laser. The absolute frequency of a CO2 laser stabilized onto an SF6 two-photon 

line has been measured for the first time. This line is an attractive alternative to the usual 

saturated absorption OsO4 resonances used for the stabilization of CO2 lasers. First results 

demonstrate a fractional Allan deviation of 3×10-14 at 1 s.  
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The frequency comb provided by femtosecond (fs) lasers is now widely used for optical 

frequency measurements 
1
. The most common scheme involves the comparison of the optical 

frequency to be measured with the nearest mode of the comb, and needs control of the absolute 

frequency of the comb. The frequency fp of the p
th

 mode of the comb depends on two 

radiofrequencies :  where f0ffpf rp += r and f0 are respectively the repetition rate and the 

comb frequency offset of the fs laser, and p is an integer around 10
6
. The repetition rate is easily 

detected with a fast photodiode, while the self referencing technique is commonly used for the 

detection of f0, which needs a broadening of the frequency comb to more than one octave 
2
. An 

alternative method is to use a second laser as an optical reference 
3
. For the measurement of 

infrared frequencies, another scheme can be implemented which is based on sum-frequency 

generation (SFG) in a nonlinear crystal. The absolute optical frequency is converted into a 

frequency difference : it is compared to the difference between two modes of the comb, that is to 

a very high harmonic of the repetition rate. This scheme is independent on the comb offset f0 and 

does not require any broadening of the comb for infrared frequencies around 30 THz. It was first 

demonstrated at 10 µm with a CO2/OsO4 stabilized laser
4
, then with an HeNe/CH4 stabilized 

laser at 3.39 µm
5, 6

 and with an acetylene-stabilized laser at 1.5 µm 
7
. An alternative scheme 

using the generation of an offset-free difference-frequency comb in a nonlinear crystal could also 

be used
8
. 

Here we demonstrate a simplified version of a molecular optical clock operating with a 

CO2 stabilized laser at 28 THz. Our previous scheme
4
 combined SFG and the use of two laser 

diodes as intermediate oscillators. A laser diode at 852 nm was phase locked to a fs mode. The 

sum of this diode and the CO2 laser frequency was generated in a crystal of AgGaS2 and a 

second laser diode, at 788 nm, was phase locked to the sum. Finally a second fs mode was phase 
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locked to the diode at 788 nm by feeding back to the fs cavity length. As a result, the CO2 laser 

controlled the separation between two modes of the comb. With this scheme 2 of the 3 phase-

lock loops are in fact sensitive to the offset frequency f0, although it was not necessary to detect 

or to control f0.   

Our new scheme uses only one phase-lock loop and no laser diodes. The basic principle 

is to perform the sum-frequency generation (SFG) of the fs laser comb and the CO2 laser in a 

nonlinear crystal. The resulting frequency comb can be expressed as . 

This SFG comb overlaps the high frequency part of the initial comb, and the beat notes 

 are obtained, which are insensitive to f

( )20 COffqff r

SFG

q ++=

( ) ( )2

SFG

q pf f f CO p q− = − − rf 0. A large number of (q, 

p) pairs gives the low frequency beat note  which is used to phase-lock the m( )2 rf CO mf− th
 

harmonic of the repetition rate to the CO2 laser frequency, thus building a molecular clock.  

A schematic view of the experimental apparatus is given in Figure 1. The fs Ti:Sa laser 

(GigaJet from Gigaoptics) emits 650 mW with a repetition rate around 1 GHz. Its spectrum spans 

30 nm (or 25 THz) (FWHM) around 800 nm. About 70 mW of fs laser, and 100 mW of CO2 

laser are focused in a 15 mm long crystal of AgGaS2 for type I SFG. The measured efficiency is 

around 0.5 mW/W
2
, and phase-matching bandwidth is about 1 nm (or 500 GHz). The sum comb 

is then combined with the initial fs comb with an adjustable phase delay in order to compensate 

the crystal dispersion. A few hundreds of mode pairs give rise to a beat note between the CO2 

laser frequency and the 28410
th

 harmonic of the repetition rate fr, with a signal to noise ratio 

(SNR) of 20dB in a bandwidth of 100 kHz. The beat note is 20 dB weaker than with the former 

scheme, but could be increased with an optimization of the SFG (use of GaSe instead of AgGaS2, 

shorter crystal) and a better adaptation of the temporal length of the initial and SFG combs. The 

signal is amplified by 40 dB using a tracking oscillator working around 200 MHz (bandwidth of 

 3 



tracking loop is 1 MHz), and is finally used to lock the fs laser repetition rate to the CO2 laser 

frequency.  

To complete the frequency measurement procedure, the repetition rate is detected with a 

fast photodiode and counted against a local oscillator at 1 GHz. This latter is phase-locked to a 

reference signal transmitted via a 43-km long optical fiber from the SYRTE laboratory, located 

in Paris 
4
. This laboratory developed a high stability oscillator, which is based on a combination 

of a cryogenic Sapphire oscillator (CSO), an H-Maser and a set of low noise microwave 

synthesizers 
9
. Its frequency is steered by the H-Maser in the long-term, and monitored by the Cs 

atomic fountain for accuracy
10

. This signal shows a frequency stability slightly below 10
-14×τ-1

 in 

the range 1-10 s, and 1× 10
-15

 from 10 to 10
5
 s, see Allan deviation as dashed line in Fig. 2. The 

transfer through the optical link degrades this stability by less than one order of magnitude, Allan 

deviation as Ÿ in Fig. 2, while the phase noise introduced by the link can be efficiently 

suppressed with an active correction 
11

. For the measurement reported here the transfer was done 

at 1 GHz and the optical link was free of any active control.  

 This set-up is used to measure the R(47) A2 two-photon resonance of the 2ν3 band of SF6 

12, 13
. This measurement forms part of our program to develop a new robust and efficient 

stabilization scheme for CO2 lasers. It is a first step towards the improvement of their spectral 

purity for very high resolution spectroscopy, which is essential for high sensitivy tests of 

fundamental physics with molecules. This two-photon line is an attractive alternative to the usual 

saturated absorption OsO4 resonances used for the stabilization of CO2 lasers 
14, 15

. The SF6 gas 

has the advantage of being less reactive than OsO4. Further, molecules of all velocities contribute 

to this two-photon resonance, and the excitation probability is quite high due to the very small 

detuning of 16 MHz of the intermediate level of the two-photon transition.  
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 We used our usual stabilization scheme (see Fig. 1) which includes a Fabry-Perot cavity 

(FPC) containing the molecular gas and an electro optic modulator (EOM) to perform the various 

frequency shifts and modulations for the locking loops 
15

. FPC gives a gain factor proportional to 

the finesse (about 100 in our set-up) on the SNR. Figure 3 displays the third harmonic of the 2-

photon resonance, used for the CO2 laser frequency stabilization. The experimental parameters 

are : 50 mW inside the FPC, pressure 3×10
-2

 Pa, 20 kHz HWHM for the two-photon line, SNR 

of 1000 in 1 kHz bandwidth.  

 First results demonstrate a fractional Allan deviation of 3×10
-14

 at 1 s, which reaches a 

minimum value of 6×10
-15

 at 30 s and then increases proportionally to τ due to the linear drift of 

the laser frequency (Figure 2). At short time, it is probably limited by the noise of the optical link 

used for the transmission of the primary reference, (Ÿ) in Figure 2. This Allan deviation is 

slightly better than with a saturated absorption line of OsO4 as a reference. Main progress is the 

daily stability of this Allan deviation, because OsO4 was quite reactive and its error signal 

degraded after a few hours. The short-term stability might be further improved by using a high 

frequency acousto optic modulator to reach the line instead of the EOM which has a very low 

efficiency. This will give the possibility of increasing the laser power for the 2-photon 

absorption.  

 The absolute frequency measurement of the R(47) two-photon resonance of SF6 was 

performed by repeating the CO2/SF6 frequency measurement during a period of 8 months, as 

shown on Fig. 4. First series of measurements (in 2004) used the previous set-up with the two 

laser diodes, when the second series in 2005 used the present scheme. The mean values for both 

series coincides to better than 2 Hz. The mean value of all the measurements is 

28 412 881 552 402 ± 44 Hz, where the uncertainty is the 1-σ deviation of the data. This is 
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consistent with the data ν = 28 412 881,6 ± 1,0 MHz calculated from references ref

12, 16
. The 

uncertainty of 1.5×10
-12

, limited by the reproducibility of the CO2/SF6 stabilization, is the same 

order of magnitude as with OsO4 
4; 11

. We estimate that the day to day reproducibility is mainly 

limited by the instability of the optical background . In particular, due to the low efficiency of the 

EOM, the carrier residual is still stronger than the sidebands at the input of the FPC and higher 

order modes can enter the cavity with an efficiency with depends on the optical alignment and its 

stability. This could affect the baseline of the reference signal. In addition, frequency shifts could 

be related to diaphragm effects in the FPC 
17

. 

 A simple set-up has been demonstrated for the absolute measurement of a molecular 

resonance around 30 THz. It includes a fs laser for which only the repetition rate must be 

controlled. The whole measurement apparatus is very robust and can be used continuously for 

several hours. As a first application, a 2-photon line of SF6 has been measured with a stability of 

3×10
-14

 at 1 s limited by the CO2/SF6 stability. Further applications include the characterization 

of the metrological performance of a 2-photon resonance detected in a Ramsey scheme 
18

 and the 

test of the possible temporal variation of fundamental constants using such a 2-photon molecular 

line 
19

. 

 The authors would like to acknowledge SYRTE for providing the reference signal from 

the primary standard for the absolute frequency measurements, through the optical link between 

the two laboratories. 
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Figure caption 

Figure 1 : Experimental set-up. AOM : acousto optic modulator, EOM : electro optic modulator, 

sb : sideband, FPC : Fabry-Perot cavity, SFG : sum-frequency generation, osc. : oscillator, CSO : 

cryogenic sapphire oscillator. 

 

Figure 2 : Fractional CO2/SF6 frequency stability as given by the Allan deviation (̈) of the 

repetition rate fr of the fs comb calculated from a series of 1-s gate measurements. For 

comparison is shown typical Allan deviation of the optical link (Ÿ) and of the RF reference 

(dotted line).
 11

 

 

Figure 3 : R(47) two-photon line of SF6 (third harmonic detection), detected in transmission of a 

FPC and used for frequency stabilization. Power inside the FPC : 50 mW, pressure 3×10
-2

 Pa, 1 

ms per point. 

 

Figure 4 : Frequency measurement of the CO2/SF6 stabilized laser; the dotted line separates the 

measurements performed with the old scheme from those performed with the present scheme. 
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Figure 1 
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Figure 2 
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Figure 3 
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