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A Quasi-Cache-Aware Model for Optimal Domain Partitioning in
Parallel Geometric Multigrid

Gaurav Saxena ∗,†, Peter K. Jimack and Mark A. Walkley

School of Computing, University of Leeds, Leeds LS2 9JT, UK

SUMMARY

Stencil computations form the heart of numerical simulations to solve Partial Differential Equations using
Finite Difference, Finite Element and Finite Volume methods. Geometric Multigrid is an optimal O(N),
hierarchical tool employing stencil computations in its chief constituents, namely smoothing, restriction,
and interpolation. When Multigrid is parallelized over distributed-shared memory architectures, traditionally
the domain partitioning creates cubic partitions of the mesh to minimize overall communication. Thus,
the orthodox approach considers only load-balancing and communication minimization for completely
determining the domain partitioning. In this article, we show that these two factors are not sufficient to
obtain optimal partitions for Parallel Geometric Multigrid. To this effect, we develop and validate a high level
analytical model to show that “close to 2-D” partitions for Geometric Multigrid can give higher performance
than the partitions returned by the MPI Dims create() function which minimizes the communication
volume by default. We quantify sub-domain level cache-misses in Parallel Geometric Multigrid and
obtain families of optimal domain partitions. We conclude that the sub-domain level cache-misses for the
application-specific stencil computational kernel and communicated planes should be taken into account in
addition to communication minimization/load-balance to obtain optimal partitions for Parallel Geometric
Multigrid. Copyright c© 2010 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Domain partitioning ; Geometric Multigrid ; Quasi-cache-aware ; Topology ; Stencil ;
Cache Misses

1. INTRODUCTION

Partial Differential Equations (PDEs) [1, 2, 3] can be used to model natural phenomena which

involve the rate of change of variables with respect to other quantities. Since analytical solutions are

not generally possible, they are solved numerically by simulation methods to obtain an approximate

solution. Before simulating, the continuous physical domain must be discretized so that it can be

represented on digital systems. Finite Difference Methods (FDMs), Finite Element Methods (FEM)

and Finite Volume Methods (FVM) [4, 1, 5] are commonly used to discretize a PDE on such

domains. Iterative methods like Jacobi, weighted Jacobi (ω-Jacobi), Gauss-Seidel (GS), Red-Black

Gauss-Seidel (RBGS), Conjugate Gradient (CG) and other numerical methods can then be used

to compute the solution [5, 4, 6]. Due to the slow rate of convergence of these iterative methods

and the time taken to solve large systems, multilevel algorithms have been created that accelerate

the rate of convergence to the solution. Multigrid methods are a class of multilevel algorithms that

have been shown to be extremely effective in solving Elliptic PDEs, a class of PDEs which are

completely specified using boundary conditions [1, 3, 5].
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2 G. SAXENA, P. K. JIMACK, M. A. WALKLEY

The Multigrid [7, 8] method is an optimal hierarchical method which can be used for solving

sparse systems of linear equations that arise from local discretization of Elliptic PDEs in O(N)
time, where N is the number of unknowns or the degrees of freedom in the system. The

discretization operator, in Finite Difference methods for example, can be expressed as a stencil - a

fixed geometrical figure which is utilized to update the solution at various points in the discretized

domain. The hierarchy in Multigrid consists of several systems corresponding to discretizations

on several levels of grids of decreasing resolution, where the finest level grid represents the

actual problem to be simulated. It accelerates the convergence of the solution by eliminating low

frequency error components on the series of coarse grids. To further decrease the solve time of

Multigrid methods, they are parallelized on distributed, shared memory or hybrid architectures to

allow simulation of extremely large scale problems [9, 10, 11], where the unknown variables can be

of the order of billions or trillions. These parallel processes typically communicate using the MPI

(Message Passing Interface) [12] library, the de-facto standard for distributed programming. It is

the parallelization of Multigrid that is extremely challenging and requires a very careful design and

implementation to achieve near perfect linear Weak Scaling and preserve its optimality.

Overheads in the form of communication, load-imbalance, limited memory-bandwidth,

imbalance between processor and memory speeds, network and memory latencies, complex

memory hierarchies necessitate careful optimization [13, 14, 15, 16, 17, 18, 19, 20]. These can

be broadly classified as serial overheads or parallel overheads. Serial overheads, i.e. overheads

which would still be present in the absence of multicore architectures, can be considered as a subset

of parallel overheads (overheads which come into existence only because of the introduction of

multicores). For example, Cache misses, TLB (Translational Lookaside Buffer) misses and memory

latencies are examples of serial overheads which we shall collectively refer to as Serial Control

Parameters (SCPs). Operating System inter-process latencies, network bandwidth/latencies, non-

optimal process placement, non-optimal domain partitions and cache conflicts in shared caches are

examples of parallel overheads, which we shall refer to as Parallel Control Parameters (PCPs).

Clearly, SCPs are a subset of PCPs. Figure 1 shows the various SCPs and PCPs. More research

has explored SCPs and their optimization compared to PCPs, whilst there is a complex interaction

of SCPs and PCPs which has little literature. Our focus is to investigate this. Due to the large

interaction space between SCPs and PCPs, we restrict ourselves to the single most important SCP

which we practically (and from the literature [17, 18, 19, 21, 22, 23]) identify to be Cache Misses.

We take the first step in connecting Cache misses to Domain Partitioning (shown in rectangular

boxes in Figure 1) on Hybrid architectures and then extend the model developed in [24] to parallel

Geometric Multigrid (GMG). In general, domain partitioning is governed by two factors : load-

balance and communication minimization. Cache optimizations are typically considered only after

the domain partitioning is performed, i.e. at the sub-domain level. We develop a high level analytical

model based upon [24] which is “quasi-cache aware”, i.e. it is formulated in a cache-aware way by

taking into account the cache-line size but produces a cache-oblivious result. The model analyzes

cache-misses and uses this as a guiding factor to perform domain partitioning. Thus, the model looks

at cache-optimization from a higher level compared to temporal and spatial cache-optimizations at

the sub-domain level alone. Further, our model seeks to put this in the context of all the factors that

might influence the choice of sub-domain shape and size. Thus, we qualitatively and quantitatively

consider factors such as cache-misses, prefetching, cache-eviction policy, Vectorization etc., and

explore their effect on determining optimal sub-domain dimensions. Though these factors have

been separately well explored in the literature, the focus of our work is on establishing a connection

between them and domain partitioning. We present the results of our investigations to evaluate the

model’s effectiveness in a multiple grid scenario and discuss its limitations to open further research

avenues.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
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Figure 1. Serial Control Parameters (SCPs) Vs Parallel Control Parameters (PCPs), DP (Domain
Partitioning), PP (Process Placement). Our focus : Cache Misses and Domain Partitioning

2. BACKGROUND AND RELATED WORK

We sub-divide this section into three logical parts which can be thought of as the constituent parts

of parallel Geometric Multigrid (GMG). The first part recaps the main concepts behind Multigrid.

The second part elaborates the concept of stencils, while emphasizing cache optimization. Finally,

we describe the role of domain partitioning in the parallelization of GMG.

2.1. Multigrid

Multigrid [7, 5, 25, 8] is a multilevel convergence acceleration concept that involves using coarser

forms [7, 25, 26] of the given fine grid to remove the low-frequency errors and provide a better

estimate of the approximated solution. Local Iterative schemes [7, 8, 5, 25] can remove high

frequency error components quickly (known as smoothing) but decrease the low-frequency error

spectrum very slowly. These low-frequency components can be represented as relatively high

frequency components on coarser grids [7, 8, 27]. The smoothing properties of iterative methods

and the equivalent system of equations at various levels form the basis of Multigrid [27]. Depending

on the pattern of the traversal between grids, two common types of cycles are categorized as

V-cycles and W-cycles [7, 8].

Let Ahuh = fh denote a linear system of equations arising from a local discretization of an

elliptic PDE, where the superscript h denotes the grid spacing. Successive grid levels (finest

to coarsest) are represented as: Ωh → Ω2h → Ω4h...→ Ω2
ih. We use standard coarsening in our

implementations which reduces the degrees of freedom by one-eighth on the immediate coarser grid.

After ν1 pre-smoothing operations on Ωh, an approximation to uh is obtained (denoted by vh) and

the residual is then calculated as rh = fh −Ahvh. A restriction (I2hh ) operator transfers this residual

to the next immediate coarser grid (Ω2h). In the 2-grid method, the error e2h is obtained after solving

A2he2h = r2h (error equation) exactly on the coarser grid. This error is then transferred back to the

finest grid using the interpolation/prolongation operator (Ih
2h) to obtain a better approximation to

the solution on the finer grid, followed by ν2 post-smoothing operations. For Multigrid, the error

equation is not solved exactly, instead it is replaced by a recursive use of the 2-grid method to

update the estimated error. Only at the coarsest level is an exact solve used. The recursive algorithm

halts when the ratio of the current norm of the residual (||rk||) to its initial norm ((||r0||)) becomes

less than a specified tolerance. Typically the pre-smoothing (ν1) and post-smoothing (ν2) iterations

of the smoother vary between one and three for most practical problems [27].

2.2. Stencils and Cache Optimization

When PDEs are discretized using FDMs, the weighted contributions of the values of the neighbours

of a point in geometrical space are used to approximate the differential operator at the point.

This fixed geometrical shape known as a Stencil is then cycled through the entire domain. A 5-pt

stencil in 2-D and a 7-pt stencil in 3-D are very commonly used. In a 7-pt stencil the differential

operator at the central point is approximated as the weighted contribution of its six immediate

neighbours, two in each direction. A 19-point and 27-point stencil may also be used in discretized

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
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4 G. SAXENA, P. K. JIMACK, M. A. WALKLEY

problems representing a 3-dimensional space [28, 17, 18]. Typically each iterative update of a point

on a 7-pt stencil results in eight floating point operations (flops) when constant coefficients are

considered [18]. Stencil computations are typically memory-bound as compared to compute-bound

because the vertical memory bandwidth limits their performance/arithmetic intensity rather than

computations. However, in some applications due to e.g. varying coefficients, nonlinearities,

or more complex grids this may not be the case. Since data is mapped out linearly in memory

regardless of the dimension of an array data structure, the non-contiguous access pattern produced

by stencils increases the cache-misses [24]. Efforts have been made to optimize and exploit spatial

and temporal principles of the cache memory hierarchy to bridge the gap between the fast processor

speed and the comparatively slower memory access times [21, 17, 18, 19, 29, 20]. The Restriction

and Interpolation inter-grid transfer operators in Multigrid are also Stencils. We make use of 27-pt

stencils in 3-D for both these operators.

It is advisable to optimize implementations to fetch a higher fraction of data from the higher levels

of memory (registers and L1 cache) while reducing the fraction of data fetched from lower level L3

cache (generally shared) and main memory [20]. Cache tiling/blocking techniques aim at bringing

a sub-domain of data into the cache instead of traversing the entire domain in a single iteration

[21, 29, 20]. The effectiveness of these cache tiling/blocking techniques in modern microprocessors

has decreased due to advances in compiler technology and increasing size of on-chip caches [30],

which enables data fetching from fixed sized memory regions. Fusion techniques are used in the

Red-Black Gauss-Seidel (in 2-D, 5-pt stencil) method to combine the update of red and black points

in a single sweep by updating red points in row i followed by black points in row i− 1. Further, the

red and black points for unknowns and the corresponding right-hand side values can be stored in

different arrays to reduce the traffic between various cache hierarchies, although the total traffic to

the main memory remains the same [31]. Initial ground-breaking work proposed the use of partial

3-D blocking for 3-D loops which maximizes the size of the dimension which has continuous data

[28]. Analytical cost models for cache tiling fail to address the difference between load and store

operations [21]. Further, cache conflict misses occur when the data is read from and written to

different grids represented by multi-dimensional arrays in the memory as in the case of Jacobi (not

in-place) updates [22]. However, these cache optimization techniques also interfere with automatic

optimization techniques implemented in the hardware and software in the modern microprocessors

[24]. These automatic streaming techniques consist of SIMD (Single Instruction Multiple Data)

instructions (also called Vectorization) and prefetching. Microbenchmarks like the Stanza Triad

(STriad) and Stencil Probe have been created that attempt to act as a proxy for modelling the prefetch

behaviour of the actual program [21, 18]. These benchmarks do not account for the packing or

unpacking times and the changing latency in the context of using derived datatypes in the Message

Passing Interface (MPI) [32, 12] implementations. Researchers have used hardware performance

counters like cache-misses, Translational Look-Aside Buffers (TLB) misses, mispredicted branches,

hardware prefetches and regression analysis to predict the performance of stencil codes [23].

Cache oblivious/transcendental [33] algorithms have been proposed which ignore the hardware

characteristics of caches as opposed to Cache aware algorithms which use cache specifications to

minimize cache misses. The idea behind every memory optimization is to maximize the re-use of

data while it still resides in the cache memory [20].

2.3. Domain Partitioning

The first step in the parallel implementation of a problem is division of computational work or

data among processes/cores. We use a Domain partitioning (data division) approach where the

largest data-structures representing the problem domain are assigned to processes/cores [6, 34]. In

a distributed architecture where each sub-domain resides with a separate process, ghost cells/halo

data must be introduced to exchange the neighbouring data for stencil computations [6, 32, 5].

Figure 2 shows the division of a 4x4 vertex centered domain into four sub-domains, each having

a local size of 4x4 including ghost/halo cells. For structured stencil problems, e.g. solving a PDE

on a unit cube using the flat MPI model and using a Cartesian topology [12], each process has a

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
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Figure 2. A 4x4 Vertex Centered Grid (VCG) is partitioned among 4 cores. The result is a 4x4 sub-domain
with 4 original ’C’ cells and added ghost layer cells ’G’. Each dotted partition is converted to a 4x4 sub-

domain on an individual core. Domain size = Nx ×Ny , sub-domain size = (Px + 2)× (Py + 2)

.

maximum of 6 neighbours if a 7-pt stencil is used with a 1-element deep ghost zone. Increased layers

of ghost cells can allow more iterations to be performed between communication steps, but at the

expense of increased memory usage [35]. Further, it is not necessary that each process will contain

an equal number of sub-domain points, especially domains which have dimensions of the form

(2l + 1)× (2m + 1)× (2n + 1) (in 3-D) [27, 7]. This creates a certain amount of load-imbalance

between processes. Another type of load imbalance arises in domains where the work done per-

grid point is variable. An example of the latter category is a Dirichlet-Neumann [8] boundary value

problem where a boundary point adjacent to the Dirichlet boundary has to perform less compute

work as compared to a boundary point which is immediately adjacent to the Neumann boundary.

Parallelization further introduces a bottleneck when coarser grids in multigrid are solved due to

the lower ratio of computation to communication. Communication aggregation and vertical traffic

avoidance do not offer substantial benefits at coarser levels [35]. Further, for a very large core count,

it can even be the coarsest grid which contributes to the maximum percentage of run-time [36] and

the scalability of MPI Waitall() becomes a bottleneck. Scalability of the coarsest level solvers

is an important issue [35, 37]. The coarsest level solver is generally a direct solver [16] e.g. MUMPS

(Multifrontal Massively Parallel sparse direct Solver, [9]) or SuperLU (SupernodalLU) [38], though

recent research suggests that more efficient approaches can be used in practice [9, 16].

3. TERMINOLOGY AND PROBLEM DESCRIPTION

This section introduces the notation and assumptions on which our model is based, and gives a brief

low-level description of the problem under consideration. This is followed by a description of the

test problem that we use for our experiments.

3.1. Notation and Assumptions

A structured 3-D grid having dimensions NxNyNz can be divided among P parallel processes

running on individual cores in several ways. In general, Di represents the number of processes along

direction i where i = x, y, z. Thus, P can be decomposed as any valid permutation of Dx, Dy and

Dz such that P = DxDyDz , and for simplicity, we assume that mod(Ni, Di) = 0. In the following

we consider cuts/partitions parallel to the Cartesian axes and the model assumes a 7-pt stencil with

a 1-element deep ghost zone. Each sub-domain with a single element deep ghost/halo zone has

dimension (Px + 2)(Py + 2)(Pz + 2). The 3-D sub-domain on each core can be viewed as 3 parts :

the inner Independent Computational (IC) kernel which needs no data from neighbouring processes

(zone 1), the next-to-boundary layer (Dependent Planes) which requires data from neighbouring

processes for its update (zone 2) and the buffer/ghost/halo region (zone 3) [24]. Thus, in the worst

case, a sub-domain will need to pass six planes to its nearest neighbour processes. Without loss of

generality we assume that the unit stride dimension is in the Z-direction (see Z-axis in Figure 3a

or 3b) and the data is in row-major order. It can be noted that four of the six nearest neighbours

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
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1
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(a) Front Z-plane
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(b) Left Y-plane

Figure 3. Single Z and Y-Plane, data continuity and distance between adjacent points shown in red

(a) 4x4x4 (b) 4x16x1 (c) 8x4x2

Figure 4. Examples of 3-D Process Topologies.

in the 7-pt stencil are not contiguous in memory. We collectively refer to the two YZ planes as X-

planes, the two XY planes as Z-planes, and the two XZ planes as Y-planes. Figures 3a and 3b show

the position of a single Z and Y-plane. The distance between adjacent mesh points for a Z-plane is

Pz + 2 and 1 for the Y-plane (except at the boundaries where it is (Pz + 2) ∗ (Py + 1) + 2).

3.2. Problem Description

This division of P as DxDyDz can have a large effect on the packing/unpacking times of data

which is to be sent to/received from the neighbouring sub-domains, the update of dependent planes,

and the compute times of the Independent Compute kernel. There are several permutations of

Dx, Dy and Dz which satisfy P = DxDyDz . We refer to a valid permutation as a Topology or

a Process Topology (MPI Cartesian Process Topology [12]) in this article. For example, a total

of 28 Process Topologies exist for P = 64, three of which namely, Dx ×Dy ×Dz = 4× 4×
4, Dx ×Dy ×Dz = 4× 16× 1 and Dx ×Dy ×Dz = 8× 4× 2 are shown in Figure 4. These

process topologies decide the sub-domain data dimensions of the hierarchy of grids. Typically and

traditionally, the topology which minimizes the communication volume to be sent, created by the

default MPI Dims create(), is chosen as the preferred topology for domain partitioning/mesh

partitioning. We investigate the optimality of partitions returned by MPI Dims create() and

whether only minimizing communication is sufficient to obtain optimal sub-domain dimensions

for parallel GMG. Our work in [24] demonstrated the dependence of domain partitioning for single

grids on cache-misses in computation and communication. Since parallel GMG is significantly more

complex than a single grid and incorporates further stencil operators, the current research examines

the efficacy of extending the model to parallel GMG.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
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Figure 5. Dirichlet-Neumann mixed Boundary Value Problem

3.3. Test Problem

Parallel Geometric Multigrid has been implemented for a 3-D mixed Dirichlet-Neumann boundary

value problem on a unit cube to solve −∇2u = − 3π2

4
sin πx

2
sin πy

2
sin πz

2
, which has a smooth

solution u(x, y, z) = sin πx
2
sin πy

2
sin πz

2
. We use a vertex-centered finite-difference scheme in our

implementation. Dirichlet boundary conditions (u = 0) are applied to the front, left and bottom

faces of the cube whereas Neumann boundary conditions ( ∂u
∂n

= 0) are present at the top, right and

back faces. A halo layer is added to the Neumann boundaries as the Neumann boundaries are also

considered as unknown values [1]. These halo layers need to be updated at each iteration according

to the neighbouring point inside the physical sub-domain. Figure 5a shows the Dirichlet-Neumann

boundaries on the domain ∂Ω specified on a unit cube. Figure 5b shows a cut through Z = 1

2
.

Clearly, ∂Ω = ΓD ∪ ΓN and ΓD ∩ ΓN = φ.

A full 27-pt Restriction scheme was implemented to transfer data to the coarser grid. This

needs communication steps to make the corner points available to a process. Therefore, the

communication pattern is different from that used in the smoother. The case of Trilinear

Interpolation onto the finer grid is similar. At the finest grid level, the l2 norm of the residual can

be calculated after each V-cycle and the execution stops when the ratio of the current norm to the

initial norm becomes less than a specified tolerance i.e.
||rk||
||r0||

< TOLN . However, for performance

analysis purposes, it is sufficient to fix the number of V-cycles. The levels are numbered from the

highest to the lowest - starting at the finest grid (level L) to level zero corresponding to the coarsest

grid. The coarsest grid problem can be solved till convergence (or a fixed number of iterations can

be performed depending on the experiment). The iterative scheme used is Jacobi (or ω-Jacobi) with

the option to change the weighting factor (ω) for both smoothing (fine and coarser grids) and solve

(coarsest grid) operations. The general optimum values of ω for 1-D, 2-D, 3-D are 2

3
, 4

5
and 6

7
,

respectively (for pure Dirichlet boundaries) [8] but for our mixed Dirichlet-Neumann test case we

found ω = 1 to be optimal. Although the number of unknowns per process is equal, the problem

is slightly load-imbalanced because the processes containing the upper, right and back Neumann

boundary have to perform slightly more work than processes containing the lower, left and bottom

Dirichlet boundaries. This is because in addition to the points to be updated, the former category

of processes must also adjust the Neumann boundary before the values of the boundary points

can be updated. However, such processes do not send/receive planes to/from other processes at the

Neumann boundary. The number of iterations in the downward phase of the V-cycle is ν1 (pre-

correction smoothing) and ν2 on the upcycle (post-correction smoothing). The complete V-cycle is

written as V (ν1, ν2) where typically we use ν1 = ν2 = 3.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
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4. OUR MODEL

We now discuss the derivation of our quasi-cache aware model that utilizes the cache-line length

and the data access pattern in a 7-pt stencil. Our work in [24] exhaustively identified and quantified

cache-misses as the single most important factor influencing domain partitioning of structured

single level grids and thus, while extending the model, our focus remains on the cache-misses

in the update/packing/unpacking of the dependent planes and the update of the Independent

Compute kernel. We further elaborate on the super-set of factors influencing cache-misses directly

or indirectly to shed light on the complexity of attaining truly optimal sub-domain dimensions

for high performing partitions in Parallel Geometric Multigrid. It is to be noted that our high

level model is different from the analytical models used to model multigrid cycle times and

performance. Classical analytical models have attempted to model the execution timing and analyze

the overall Weak Scaling using only the relaxation phase of semi-coarsening Multigrid with 1-

D, 2-D and 3-D processor topologies/partitions [39, 40]. A baseline model with penalties in

parallel settings has been formulated for modelling the cycle of Algebraic Multigrid [40, 41]. An

analytical/empirical comparison for the execution times of an iteration of Newton-Multigrid and

FAS (Full Approximation Scheme) has been carried out [42]. Performance prediction of Multigrid

codes on large number of cores by benchmarking the code on a very small number of processes

presents another alternative [43]. Most of these models take into account only the algorithmic

characteristics and not the hardware parameters. Our model is different from these models in

the sense that we take into account the cache-line characteristics but obtain a cache-oblivious

result. Further, our model does not predict the execution timings but predicts the topologies which

outperform the standard MPI Dims create() topology.

4.1. Deriving the Model

We consider an elliptic, linear PDE : ∇2u = f . The discretized form is Au = f , with A being

the discretization matrix and u representing the vector of unknowns. The key component of the

smoothing phase of Multigrid consists of an iterative method such as the “out-of-place” weighted

Jacobi (ω−Jacobi) as shown in Equation (1) below :

vi,j,k = (1− ω)ui,j,k + ω(ui±1,j,k + ui,j±1,k + ui,j,k±1 + h2fi,j,k) (1)

The Red Black Gauss-Seidel (RBGS) updates “in-place”, however, the observations that we make

will still hold in principle (though with some quantitative differences). The advantage of RBGS is

that the local working set consists of only two arrays which reduces the memory traffic and the

cache conflict misses. The disadvantage of RBGS is that the red and black points are communicated

separately and hence it requires twice the message exchanges as ω-Jacobi, resulting in twice the

latency of messages as a penalty. The worst case for Neumann updates occurs at the top back right

boundary process which has three Neumann boundaries. The cache misses for updating the three

boundaries in the X, Y and Z-direction are
PyPz

8
, PxPz

8
and PxPy, respectively. It is to be noted

that in this case both the read and write array are the same. However, the planes which undergo

Neumann updates are not communicated to any other process and nor do they receive data from

other processes. Thus, the packing/unpacking cost of such planes is zero. Since the cache-misses

for packing and unpacking planes is more than that of Neumann updates for the plane, we can

safely consider processes which send and receive data from other processes to derive the upper

bound for cache misses. Such a process does not touch any boundary and sends/receives all six

planes to/from neighbouring processes.

Assuming that the cache-line length is L bytes and the width of a double element is D, the

number of elements fetched from the memory to the cache are L
D . For example, for the system

used here L = 64 bytes and D = 8 bytes and thus L
D = 8. Assuming a minimal number of cache-

lines for accommodating the six different read streams (and one write stream) in Equation (1) and

disregarding the loop invariant terms, namely, ω and h2 (square of mesh spacing), the cache-misses

for update/packing/unpacking of dependent planes (SP ) can be summarized in Table I. The total
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Table I. PREDICTED CACHE-MISSES: Cache read/write/update misses for the dependent X, Y and Z-plane

PLANE READ MISSES WRITE MISSES TOTAL

Pack Update RHS Unpack Update

Z-plane PxPy 5PxPy PxPy PxPy PxPy 9PxPy

X-plane
PyPz

8

5PyPz

8

PyPz

8

PyPz

8

PyPz

8

9PyPz

8

Y-plane
PxPz

8

5PxPz

8

PxPz

8

PxPz

8

PxPz

8

9PxPz

8

cache-misses of the Independent Computation (SI ) kernel can be calculated as :

SI = (Px − 2)(Py − 2)(Pz − 2)(
5

8
+

1

8
+

1

8
) (2)

where the 5

8
, 1

8
and 1

8
terms give the read misses in updating, write misses in updating and right

hand side term read misses, respectively. The total cache misses (S = SI + SP ) for the Independent

Computation and dependent planes are :

S = γ(Px − 2)(Py − 2)(Pz − 2) + αPxPy + βPz(Px + Py) (3)

where γ = 7

8
, α = 9 and β = 9

8
(see Table I) and are dependent on the computational kernel and

the length of the cache-line.

We now consider a Multigrid V-cycle with L+ 1 levels, where the level k = 0 denotes the

coarsest grid and k = L the finest grid. We assume the following: (i) the costliest operation is

smoothing; (ii) the cost of grid transfer operators is proportional to the smooths; and (iii) the cost

of a solve on the coarsest level may be neglected compared to the fine grid smoothing cost.

Let the cache-misses at level k be denoted by Sk where Sk = S at level k = L as in Equation (3).

The sum of cache-misses at all levels (ST ) is bounded above by S∞, where

ST =

L∑

k=0

Sk < S∞ =

∞∑

k=0

Sk (4)

Summing two separate infinite geometric series with common ratios 1

8
and 1

4
yields the expression

for S∞ as shown in Equation (5) below :

S∞ =
8γ

7
(Px − 2)(Py − 2)(Pz − 2) +

4

3
(αPxPy + βPz(Px + Py)) (5)

By considering ∂S∞

∂Px
= ∂S∞

∂Py
= 0 to minimize the total cache-misses with respect to sub-domain

dimensions, we obtain Px = Py for optimality (condition one) but this does not yield any

information regarding Pz . Since we can generate all Dx, Dy and Dz such that P = DxDyDz

because Px, Py and Pz are dependent on N and Dx, Dy, Dz , we exhaustively find that Dz = 1
minimizes S∞. Thus, cache misses are minimized by maintaining a balance between the X/Y

dimensions of the sub-domain and maintaining an unaltered unit stride dimension (theoretically).

Further, the communication minimizing condition to minimize the surface area of planes implies

Px = Py = Pz (condition two). Taking the intersection of the cache-misses and communication

volume minimization conditions yields a strong (common) condition : Px = Py. Further, when

SI >> SP in Equation (3), S is minimized with Px = Py = Pz = N

P
1

3

. These two limits i.e.

cache-miss dominated and communication volume dominated imply that 1 ≤ Dzoptimal
≤ P

1

3

(assuming P is a perfect cube).
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4.2. Pruning the Topology Search Space

Out of all the topologies which are possible, a small set can be examined keeping in mind the

balance between the X and Y sub-domain i.e. Px and Py dimensions and the minimization of Dz .

Thus, if P is a perfect square then Dz = 1 and Dx = Dy =
√
P else we find min(|Dx −Dy|)

such that DxDy = P . To alleviate the effect of process placement we introduce a factor ρ that

represents the deviation from the balanced pair of (Dx, Dy) i.e. assuming P = 64 and ρ = 1,

we start with Dx = 8, Dy = 8 and Dz = 1 and then consider (8× 21)× ( 8

21
)× 1 = 16× 4× 1

and ( 8

21
)× (8× 21)× 1 = 4× 16× 1. For ρ = 2, we would also consider (8× 22)× ( 8

22
)× 1 =

32× 2× 1 and ( 8

22
)× (8× 22)× 1 = 2× 32× 1. In practice our experiments show that ρ = 1 is

sufficient for obtaining optimal topologies. Assuming P to be a perfect cube and a power of two,

the maximum number of candidates for optimal topologies is (2ρ + 1) log2 P
1

3 . Thus, with ρ = 1
and P = 64, theoretically we only have 6 candidates for optimal topologies.

4.3. Factors affecting sub-domain dimensions

To place the above model in its true context, we now discuss all of the factors influencing selection

of sub-domain dimensions (assuming the data streams at no point are too large to fit into the cache).

We discuss their impact in isolation and with respect to other factors. The discussion primarily

brings out the need for a fine balance between multiple factors for optimizing the domain partitions

and sheds light on their interplay. That is, that the problem of domain partitioning is much more

subtle than just minimizing the communication.

Independent Compute (IC): This represents the sub-domain zone that does not need data from

other processes for updating the mesh points. To update the solution at all mesh points contained in

a plane, three planes i.e. the plane under consideration and the two planes above and below it are

needed for a 7-pt stencil. The smaller the total size of these 3 planes, the more is the probability that

they would fit into the Last Level Cache (LLC)/Cache-hierarchy. We define the quantity Working

Plane Set Size (WPSS) as 3× (Py + 2)× (Pz + 2) ≈ 3PyPz elements. The Independent Compute

(IC) tries to minimize the WPSS by minimizing Py but not Pz as the latter adversely affects the

Vectorization and prefetch efficiency. Thus, it is preferable to decrease Py rather than reducing Pz

to decrease the overall WPSS. But when Py is decreased (or Dy is increased as Py = N
Dy

) to some

value << Px, it violates the cache-minimizing condition (Px = Py) which in turn leads to much

higher communication and update times for the Y-plane that contains PxPz elements. Ideally, the

MPI implementation should hide the entire communication cost behind the cost of executing the

IC kernel. Practically, this is never the case as the computation and packing/unpacking of planes

is carried out by the same thread or process (assuming no separate core for communication exists)

that may result in switching between the two tasks : computation and packing/unpacking. This

switching may also lead to an increased cache-contention and conflict misses as different data

streams from computation and packing/unpacking are brought into the cache. Thus, decreasing Py

optimizes the execution time for the Independent Compute (IC) but increases the transmission times

of the Y-plane. Further, when Py << Px, both the communication volume and cache-minimization

conditions are violated.

Communication Volume (V): Minimizing communication implies Px = Py = Pz . For simplicity

of discussion we assume the number of processes P is a perfect cube and thus for a domain of size

N3 this implies that the Cartesian process dimensions Dx = Dy = Dz = N

P
1

3

. Since the default

MPI Dims create() returns Dsx ≥ Dsy ≥ Dsz , the worst case growth rate of the Z-plane size

becomes P
1

3 - leading to an increase in its communication and update time. Our model shows that

1 ≤ Dzoptimal ≤ Dsz and hence minimizing only the communication volume is insufficient.

Prefetch: For any topology, updating the Independent Computation (IC) kernel involves multiple

contiguous data streams and thus prefetch reduces the latency. Since prefetch usually exploits

spatial locality and assumes streaming fetches, maximizing Pz should increase the utilization of
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the prefetched cache lines. The L1d cache has two hardware prefetchers in the Intel Sandy Bridge

architecture (see Section 5). The first one, the Data Cache Unit (DCU) prefetcher, prefetches data

in an ascending order from the address which has recently been loaded. Thus, assuming an address

A has been loaded i.e. a cache-line is populated by double elements from A to A+7, the DCU

prefetches the data from A+8 to A+15 in another cache line. The second prefetcher, the Instruction

Pointer (IP)-based stride prefetcher, detects the stride in different load instructions and prefetches

a cache line from the current address which is the sum of the current address and a stride. A stride

of upto 2KB can be detected (or equivalently 256 double elements) [44]. The two prefetchers

that bring data into the L3 cache are called the Streamer and the Spatial Prefetcher. The data may

not always be brought into the L2 cache due to pending read/write misses. The Spatial Prefetcher

fetches an additional 64 bytes into the unified L2 cache when a cache-line is brought into the

L2. The Streamer monitors cache misses from the L1d, hardware prefetch requests from the L1d,

L1i Instruction cache requests and can maintain upto 32 streams of ascending/descending data

[44]. Thus, efficient prefetching demands maximizing the value of Pz . This condition violates the

volume minimizing condition and increases the WPSS. With an increase in the WPSS, there is a

danger that the three planes required for the update of a single plane may not fit into the Last Level

Cache.

Least Recently Used (LRU) Eviction: This cache eviction policy replaces the cache-lines which

have not been used recently. The distance between the mesh point ui,j,k and ui,j+1,k (see Equation

(1)) is Pz + 2 and typically for a large enough Pz , they will belong to a different cache-line. Thus,

larger the value of Pz , greater the clock cycles elapsed between re-accessing/re-using the mesh

point ui,j+1,k to update vi,j+1,k. This translates to having a higher probability for the eviction of

this cache-line before it is re-used when Pz increases. This factor is different from all the other

factors in the sense that it requires minimization of Pz to achieve maximum efficiency.

Planes Cache Misses: To minimize the cache-misses in packing/unpacking/updating planes our

model indicates that Px = Py and 1 ≤ Dzoptimal ≤ Dsz . This indicates a partition which is close to

a 2-D partition. As discussed above, when Pz is large, the Least Recently Used (LRU) policy used

to evict cache-lines negatively affects the re-use of a cache-line. Further, increasing Pz increases

the product 3PyPz (WPSS), possibly causing the combined size of 3 planes required to update a

plane to become larger than the cache capacity. It is to be noted that the Effective WPSS (EWPSS)

evaluates to 5PyPz as it involves 3 planes of the array u and one plane each from the arrays v and

f (see Equation (1) Section 4.1). Further, when Pz ≥ 256 double elements, the IP-based stride

prefetcher of the L1d cache is rendered ineffective. Thus, when packing/unpacking/updating a

Z-plane for a sub-domain that has Pz ≥ 256, neither the DCU nor the IP-based stream prefetcher

are effective - resulting in increased cache-misses.

Cache Line Utilization: We define this to mean the number of data elements used in a cache

line which is fetched. Thus, 0 ≤ Cache Line Utilization (CLU) ≤ 1. As an example consider the

packing of an X-plane which has contiguous data (except for the near-to-boundary data points next

to ghost/halo/boundary region). Consider a cache-line which fetches data elements far-away from

the boundary. All the elements in this cache line will be used and hence the CLU = 1. But for a

cache-line which has been prefetched/loaded containing the two ghost points, the CLU = 6

8
= 0.75.

Thus, theoretically if Pz −→∞, almost all cache-lines will have a CLU = 1 while packing the

X-plane. Same is the case with the Independent Compute and packing/unpacking the Y-planes.

The worst CLU is seen with the Z-plane. Assuming Pz > 8 = L, where L denotes the cache-line

length, the minimum CLU = 0 and the maximum CLU = 1

8
= 0.125 for packing the Z-plane. Thus,

whereas increasing Pz increases the CLU for the IC and X/Y planes, it decreases it for the Z-plane.

Even when the data completely fits into the cache hierarchy, accessing elements from a different

cache-line incurs a penalty as compared to accessing the data from the same cache-line.
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Figure 6. Factors affecting selection of sub-domain dimensions

Vectorization: is a combination of loop unrolling and packed SIMD instructions - 256 bit AVX

instructions in case of Intel Sandy Bridge architecture. These work on streaming data and thus,

maximizing Pz is a step in this direction. With Independent Compute (IC), the ghost data acts as

bubbles in the data stream i.e. the ghost points are fetched as part of a cache line but are not used

in the IC. Smaller the value of Pz and larger the value of Py, greater will be the number of such

junctions where ghost data forms a part of the cache line fetched. Thus, Vectorization demands a

maximal Pz which again is in direct contradiction with the LRU policy discussed above and also

deviates from the condition required for minimizing the communication volume.

The essence of our discussion on the multiple factors influencing sub-domain dimensions is

summarized in Figure 6. The cache-misses minimization condition, particularly maximizing Pz , as

derived in our model in Section 4.1 is re-enforced by many factors, namely, Independent Compute,

Vectorization, Prefetch, Cache Line Utilization, Plane Cache Misses but is opposed by the LRU

Eviction policy and the Communication Volume minimization condition. The Independent Compute

opposes the equalization condition imposed on Py by the Communication Volume and the Plane

Cache Misses condition but minimizing Py i.e. maximizing Dy may increase the communication

costs as |Dx −Dy| increases. The least constrained sub-domain dimension is the X-dimension i.e.

Px which needs to satisfy the condition Px = Py as dictated by the Communication Volume and

Plane Cache Misses conditions. We further emphasize that the major benefit in deviating from a

cubic sub-domain shape can be attributed to the decreasing Z-plane packing/unpacking/updating

cache-miss costs. At the same time, the increasing cost of communication volume cannot be

neglected when the unit-stride dimension (i.e. Pz) grows - even though the performance can

increase due to the Vectorization, Prefetch and Cache Line Utilization (CLU) factors. Table II shows

the trade-off between increasing communication volume and decreasing cache-misses of the Z-

plane. As the unit-stride dimension increases, the Z-plane cache-misses decrease at the expense of

increasing communication volume. Thus, the decrease in cost due to the Z-plane cache-misses (most

significant), improved Vectorization, Prefetch, and Cache Line Utilization must outweigh the cost of

increased communication volume along with the extra cache-misses due to the LRU cache-eviction

policy.

5. EXPERIMENTAL TESTBED

Our first experimental testbed is the ARC2 (Advanced Research Computing) facility at the

University of Leeds. It is a CentOS 6 Linux based computing facility with a total of 3040 cores.

Each compute node consists of 2 Intel Xeon E5-2670 Sandy Bridge processors and there are a total

of 380 nodes housed in 190 blades. Each processor has 8 physical cores (base frequency 2.6GHz

and Turbo 3.2GHz) with hyperthreading and Turbo boost turned off. Each socket has 16GB of
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Table II. TRADE-OFF: Theoretical Communication Volume Vs Predicted Z-plane Cache-Misses

SUB-DOMAIN DIMS. Z-PLANE COMMUNICATION

Px Py Pz Size Cache-misses n = 64 Volume n = 64

n n n n2 9n2 36864 6n2 24576

n√
2

n√
2

2n
n2

2

9n2

2
18432 6.65n2 27266

n√
4

n√
4

4n
n2

4

9n2

4
9216 8.5n2 34816

n√
8

n√
8

8n
n2

8

9n2

8
4608 11.56n2 47364

main memory (UMA - Uniform Memory Access), making a total of 32GB per node. Two sockets

per compute node create a NUMA region (Non-Uniform Memory Access). Due to 256-bit AVX

(Advanced Vector Instructions) each processor delivers 2.6× 256

8×4
= 166.4 SP GFLOPS (332.8

GFLOPS per node) and 88.2 DP GFLOPS (166.4 GFLOPS) per processor. Each processor has two

bidirectional QPI (Quick Path Interconnect) links of 16GB/sec capacity [45].

Each core has three levels of cache memory. The L1 instruction cache (L1i) contains a micro-(µ)

Decoded Instruction cache (DIcache) which provides decoded instructions at a lower latency.

Both the L1i and L1d are 32KB. The L2 cache is an exclusive but unified cache (both data and

instructions) of size 256KB. The L3 cache is a shared cache of size 20MB per processor (i.e. 8

cores). Further, the L3 cache is an inclusive cache in the sense that it contains the data contained in

the L1 and L2 level cache. All the caches have a cache-line size of 64 bytes, associativity of 8 and

use the write-back mechanism. The hierarchy of compute/network elements is as follows : each

node is contained in a blade, there are 16 blades in a shelf and 4 shelves are contained in a rack. We

use the Intel compiler suite Intel 16.0.2 and OpenMPI 1.6.5 for all our experiments on ARC2.

Our second test platform is the recently added (February 2017) High Performance cluster ARC3

at the University of Leeds. It has a total of 4056 cores of Intel Xeon Broadwell E5-2650v4 processors

(12 cores per processor or CPU, 2 processors per node, 24 cores and 128 GB RAM per node in 8

modules of 16 GB each at 2.4GHz) and a total of 22 Tb of RAM. The interconnect is a Mellanox

FDR Infiniband operating at 56 Gbits/sec with 2:1 blocking. The Operating system is CentOS 7 with

support for AVX2 instructions. Each core delivers 35.2 SP GFLOPS making it a total of 422.4 SP

GFLOPS per processor/CPU. The cache memory characteristics per core are exactly the same as that

in ARC2 mentioned above. We use the Intel 17.0.1 and GNU 6.3.0 compilers for our experiments

on ARC3 in conjunction with OpenMPI 2.0.2 and Mvapich2/2.2.

6. EXPERIMENTAL RESULTS

We first carry out a set of performance evaluations using various topologies on a single node,

followed by multiple nodes. Our sequence of experiments is as follows : (i) Evaluate and analyze

the Independent Compute (IC) for increasing grid sizes and process numbers for characterizing

the shared L3 cache behaviour on ARC2 (ii) Optimize the IC using established techniques in

order to see if different partitions can yield the same performance on ARC2 (iii) Evaluate and

analyze plane communication times for increasing grid sizes with two different intra-node process

placement policies on ARC2 (iv) Validate the inferences from our model by combining the IC and

plane communication times on ARC2 (v) Evaluate a light-weight, dynamic, tiling heuristic against

exhaustive tiling and compiler switches for on-node Parallel Geometric Multigrid on ARC2 and

ARC3 (vi) Present performance results for multiple nodes on ARC2 and ARC3 (vii) Observe the

relationship between the frequency and size of Z-planes passing through a hierarchy of networking
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Figure 7. Weak Scaling Independent Compute (IC) for P=1,2,4,8 and 16 processes with 64
3

16
, 128

3

16
, 256

3

16

and 512
3

16
cells per core (with no communication) to measure impact of shared Last Level Cache per-socket

contention on execution times on ARC2

elements and optimal partitions on ARC2 (viii) Present Weak Scaling and Strong Scaling results for

ARC2 and ARC3.

6.1. Single Node

With the growing number of cores in a single node, it becomes important to characterize the

intra-node behaviour of the application. Further, in a shared cluster, the traffic generated by

multiple user applications does not affect the on-node communication latencies. A single node of

our cluster ARC2 consists of 8 cores per-socket with a total of 2 sockets. The default scheduling

policy is --bind-to-core --bysocket which maximizes the bandwidth per core (the first
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process is assigned to core 0 in socket 0, the second process is allocated to core 0 in socket 1,

the third process is allocated core 1 in socket 0 and so on). With OpenMPI 1.6.5, mpiexec

--report-bindings displays the default binding in the standard error file. As the number of

processes increase, the contention for the LLC (20 MB/socket) and main memory (16 GB/socket)

per socket increases. To study this behaviour, we Weak Scale a problem of given size but with no

communication. Thus, the problem size per process remains constant as we increase the number

of processes. The average execution time of n processes should ideally remain constant as each

core executes a same-sized but completely independent problem. In particular, each core updates

the Independent Computation (IC) zone of a sub-domain using a 7-pt stencil. This is equivalent to

performing smoothing operations on the IC at the finest grid level only.

Figure 7 shows the maximum execution times of the Independent Compute kernel on any process,

with each core (or process) having a sub-domain of size 64
3

16
(Figure 7a), 128

3

16
(Figure 7b), 256

3

16

(Figure 7c) and 512
3

16
(Figure 7d), respectively. If we run a single process on a 643 domain within

a 16-core node, then that process handles a sub-domain of size 64
3

16
. If we run 8 processes on

the 16-core node, then each process handles a sub-domain of the same size i.e. 64
3

16
. Similar is

the case for other domains i.e. 1283, 2563 and 5123. Further, the shape of the sub-domain varies

with the different topologies obtainable with P = 16. For example, with a topology of 16× 1× 1
(and domain 643), a sub-domain having dimensions Px × Py × Pz = 4× 64× 64 is produced,

whereas the topology 4× 4× 1 produces a sub-domain having shape 16× 16× 64. Since there is

no communication between processes and each core operates independently on given equal sized

sub-domains, the time for the Independent Compute should ideally be equal for all processes,

irrespective of the number of cores (or processes) we utilize. However, in practice, this is not true

as increasing the process count leads to an increase in the contention for shared resources such

as the Last Level Cache and main memory per-socket. The following discussion elaborates how

with an increasing process count, the contention for the above-mentioned shared resources leads

to a deterioration of performance within a node, even when the processes operate on independent

sub-domains.

With a Working Set Size (WSS) of approximately 384 KB i.e. 3 arrays of type double with

16384 elements (= 64
3

16
) each, the total WSS remains less than the shared Last Level Cache (LLC)

per core i.e. 2.5 MB/core. It can be seen from Figure 7a that the characteristics of the curve

indicate the unchanging behaviour of the topologies as the process count is increased from one

to sixteen. Further, the heavy overlapping indicates that the execution times are approximately

equal even when the LLC and shared memory contention increases with an increasing process

count. This is expected as the size(WSS-per-process) < size(LLC-per-core). An anomaly is that

the execution time of a single process is more than that of two and four processes. A plausible

reason could be that CentOS and OpenMPI 1.6.5 do not pin the single process [46] to a single core.

But since we never run a single process per-node in the actual application, we do not investigate

this any further. Figure 7b shows the same experiment but with a domain size of 1283 and 131072
cells/core creating a WSS of ≈ 3MB per core. With a per socket shared LLC of 20 MB and with

8 processes per node (i.e. 4 per socket due to the binding --bind-to-core --bysocket

configuration), the combined WSS of 4 processes is small enough to fit into the per socket LLC.

Thus, Figure 7b shows no sudden jumps in the execution times upto 8 processes. But with 16

processes, the cumulative WSS of 48 MB exceeds the LLC and the penalty of accessing the

main memory can be clearly seen in the baseline implementation running 16 processes. Figures

7c and 7d show the Weak Scaling of Independent Computation kernel with no communication

for domains of sizes 2563 and 5123, respectively. In both the cases the WSS per process exceeds

the shared LLC per core. The change in the shape of the curve from eight to sixteen processes

in Figure 7c shows that the execution timings need not necessarily remain fixed with respect to

each other i.e. the execution pattern of topologies in going from a smaller process count to a

higher process count may not follow similar curves. A similar change can be seen in Figure 7d

for the plot of 4, 8 and 16 processes. It is to be noted that even with the baseline implementation,
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Figure 8. Baseline/naive implementation, Compiler optimized run-times with -O3 -xHOST -ip
-ansi-alias -fno-alias, Heuristic square tile for X/Y dimensions (based on Rivera and Tseng

[28] square tiles), Exhaustive Tiling for domain of size 5123 and 16 processes on ARC2, default
MPI Dims create() = 4× 2× 2

there are many topologies at each domain size which outperform the sub-domain created by

the standard topology i.e. the topology returned by MPI Dims create() (henceforth referred

to as MDC or the standard topology). From the results it can be seen that process topologies

which have a higher value of Dy outperform other topologies in executing the Independent

Computation kernel (IC) with growing data size as predicted in Section 4.3 (see Independent

Compute (IC)). The only exception to this is the execution times of a 128
3

16
sub-domain with 16

processes (see Figure 7b). In this case, the topologies having Dx > Dy outperform other topologies.

The performance of the topologies can be enhanced by using techniques such as optimal

compiler switches, cache tiling, Vectorization with appropriate alignment and exclusive SIMD

directives. We compare the execution times of various topologies with a domain size of 5123 with

various optimizations. The objective is to optimize the bulk of computation i.e. the Independent

Computation kernel of the sub-domain. The results are presented in Figure 8 where the tiled code

generally performs better than the code exploiting optimal compiler switches. We create a light-

weight, run-time, space tiling heuristic based on the size of the LLC per core and a working set

(WSS) of three equal sized arrays. Following the work of Rivera and Tseng [28], we assume that

square tiles should be used in the X and Y direction i.e. CX = CY . Thus, for a single 3-D array

having CX = CY = k and an un-cut unit-stride dimension Pz + 2, the number of elements should

equate to :

k2 × (Pz + 2) =
2.5

3
× 1024× 1024

8

yielding

k =

⌈√
104857.6

(Pz + 2)

⌉

Although with exhaustive tiling we are able to find tile sizes CX and CY (with CX 6= CY for

majority of the topologies) which outperform the heuristic that we create, the tile iteration space

becomes huge and thus becomes a time consuming process. The task of optimizing stencils depends

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe



OPTIMAL DOMAIN PARTITIONING IN GEOMETRIC MULTIGRID 17

heavily upon the hardware parameters like cache sizes, cache line size, prefetch policies, stencil

order, data size, and the algorithm employed etc. [47]. The range of relative error between the

execution times found using the heuristic and the optimal tile size is ≈ 4− 10%. An observation is

that most process topologies outperform the MDC topology in the cases of exhaustive and heuristic

tiling. Specifically, the compiler optimized version of 1× 16× 1 outperforms the Independent

Computational kernel created by the standard topology by ≈ 25.2% (see Figure 8a). Vectorization

and a 32-byte alignment for the Intel Xeon Sandy Bridge processor on ARC2 produced negligible

effects.

To understand the difference in the run-times of the baseline version of the different sub-domains,

we group the various process topologies on the basis of the Working Planes Set Size (WPSS).

The WPSS for a 7-pt stencil is the number of elements in the three planes which are required

to update a single plane. Thus, the total elements (double type) contained in three planes are

3× (Py + 2)× (Pz + 2) ≈ 3× Py × Pz . We cluster the topologies having the same WPSS into a

single group (see Figure 8b). To compare the execution times of the IC kernel of two topologies

T1 and T2, their WPSS is computed. The WPSS of both T1 and T2 may or may not fit into the
LLC−per−core

3
, where the denominator indicates that the LLC is assumed to be equally divided

between three arrays namely, the write array (v), the read array (u) and the array representing the

source (or RHS) term (f ) (see Equation (1) in Section 4). We can distinguish between at least three

cases :

1. WPSS(T1) 6= WPSS(T2) and both > LLC−per−core
3

: In this case, more weight is given to the

WPSS as compared to the Vectorization factor (i.e. the length of Pz - the larger the better).

2. WPSS(T1) = WPSS(T2) and WPSS > LLC−per−core
3

: The topology with a higher value of Pz

outperforms the other.

3. WPSS < LLC−per−core
3

: Here the demarcation between the performance of topologies

becomes blurred and needs more investigation.

The topology 16× 1× 1 in Figure 8a deviates from the first rule above and outperforms

topologies 8× 2× 1 and 8× 1× 2 despite having a larger WPSS. Empirically, it is very difficult

to exactly determine the working set brought into the different cache levels but still the rules

formulated above provide a substantially accurate insight into the relative baseline performance of

various topologies.

Figures 9a, 9b, 9c and 9d show the individual maximum time for sending and receiving X/Y/Z

planes to/from neighbouring processes within an SMP (Symmetric Multiprocessor) of ARC2 for

P = 16 and increasing plane sizes. The communication times of topologies 16× 1× 1, 1× 16× 1
and 1× 1× 16 form the basis of the following observations :

1. For the same sized X, Y and Z planes, the Z-plane takes the maximum amount of time (as

indicated in Table I). For example, topologies 16× 1× 1, 1× 16× 1 and 1× 1× 16 all pass

equal-sized inter-socket X, Y and Z planes. At N = 64, 128, same sized Z-planes take about

3x the time as compared to the X/Y planes. At N = 256, 512, they take 9x and 12x the time,

respectively. Our predictions in Table I show that the Z-plane communication is 8x more

expensive than its siblings.

2. At N = 64, 128 the same sized X-planes on an average take a factor of 1.2 more time than

the Y-planes but at N = 256, 512 the Y-planes take a factor of 1.03 more time than the X-

planes. Our predictions show that same sized X and Y-planes should take the same amount of

time (see Table I in Section 4).

3. When the surface area of planes is quadrupled, the communication times of inter-socket X

planes increases by factors of 3.3-4.5, the inter-socket Y-planes by 4-4.68 whereas the

factor is between 3.73-15 for the inter-socket Z-planes. These ranges of times for the X/Y

planes are expected but the 15x jump in timings from N = 128 to N = 256 for the Z-plane

is much greater than the expected theoretical 4 times increase.
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Figure 9. Maximum average time to send and receive X/Y/Z planes separately within a 16-core node for
topologies (--bind-to-core -bysocket) using Intel 16.0.2 and OpenMPI 1.6.5 on ARC2, default

MPI Dims create() = 4× 2× 2

We consider the topology 1× 1× 16 to understand the abnormal increase in the communication

timings of the Z-plane. The topology 1× 1× 16 produces Pz = 8 for N = 128 and Pz = 16 for

N = 256. The distance between any two adjacent mesh points in the Z-plane (Zadj = Pz + 2)

then becomes 10 and 18, respectively. The L1 streaming hardware prefetcher (DCU - Data

Cache Unit) fetches only one extra cache-line with ascending addresses. Thus, effectively two

cache lines or 64+64

8
= 16 double elements are fetched. With Zadj = 10, although only one

mesh point is utilized per cache-line, there is no cache-miss to access the second line due to the

prefetch mechanism, however with Zadj = 18, a cache-miss occurs at every second access. As an

approximation for Zadj = 10 there is a cache-miss after accessing every 5 or 6 elements and for

Zadj = 18 a cache-miss on accessing every element even with prefetching. As discussed in Section

4.3, this illustrates how prefetching affects the communication times for a particular choice of

sub-domain dimensions.

In summary, the majority of timings for various topologies can be explained and compared

on the basis of the following : (i) Size of the plane being passed (ii) Number of planes being

exchanged (iii) Region of movement of plane i.e. intra-socket or inter-socket and (iv) Cache-misses

during packing/unpacking of plane (depends on whether it is an X/Y/Z plane). The timings in

Figures 9a, 9b, 9c and 9d do not exactly reflect the actual timings in the real scenario as the

X/Y/Z planes in these simulations are being passed and received separately i.e. a single type of
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Figure 10. Relative plane communication and Independent computation times for N = 64 and N = 128
with P = 16 ((--bind-to-core -bysocket)) using Intel 16.0.2 and OpenMPI 1.6.5 on ARC2, plane

update execution times are not shown, default MPI Dims create() = 4× 2× 2

plane (either X or Y or Z) is being handled separately. In a real application, all types of planes

are passed simultaneously depending on the implementation. Thus, the latter should produce an

increased number of simultaneous send/receive requests per process and hence deteriorate the total

communication timings further.

Another intra-node process binding scheme, namely --bind-to-core --bycore, fills up

a single socket with increasing ranks instead of a round-robin policy of utilizing sockets. The key

idea is to reduce the cost of communication by increasing the possibility of neighbouring ranks

residing on the same socket. For the topologies 16× 1× 1, 1× 16× 1 and 1× 1× 16 and with

increasing plane sizes, the communication time of X planes increases by a factor 4-6, for Y planes

by 3.5-5 and Z planes by 3.5-12. The abnormal jump by a factor of 12 for Z-planes occurs

when the planes size increases from 128× 128 to 256× 256 elements. Thus, with Zadj changing

from 10 to 18, the L1 Streaming hardware prefetcher (Data Cache Unit) is unable to prefetch the

cache-line which contains the next mesh point, resulting in a miss for every mesh point when

Zadj = 18. For equal sized X/Y/Z planes, the communication of the Z plane is a factor 6-15 more

expensive than X/Y planes when the binding policy is --bind-to-core --bycore.

Figures 10a and 10b show the relative/combined times for the Independent Compute (IC) and

communication of planes. At N = 64 and P = 16 (16-core node), the communication costs in

almost every topology exceeds the IC cost, clearly indicating that the communication cannot be

completely hidden within computation at coarser levels of a multigrid solver. We would expect the

communication to remain completely hidden within computation at finer grid levels as shown by

the larger computation times in Figure 10b but this overlap is completely governed by the OpenMPI

implementation and the underlying hardware. These two figures further show that a topology which

has the least IC computation time may not yield the optimal partition as it may have a higher

communication time as compared to other topologies. For example the topology 1× 16× 1 has the

least IC execution time at N = 643, P = 16 as can be seen in Figure 10a but its total execution

time (disregarding overlap) is more than a topology like 4× 4× 1 or 4× 2× 2. This observation

lends support to our model as the latter topologies have a much more balanced Dx and Dy. Figure

11a shows the Baseline (Base), aggressively Compiler Optimized (CO) (-O3 -xHOST -ip

-ansi-alias -fno-alias) and a Heuristically Tiled (HT) version of Parallel Geometric

Multigrid for the largest problem that we could fit into a 16-core node of ARC2 i.e. approximately

8 million cells/core (or 0.13 billion dof). It can be noted that a topology like 4× 4× 1 outperforms

the standard topology 4× 2× 2 in all three versions even though the former sends/receives a
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(a) Topology Run-times for P = 16, N =
512, Levels = 6, Coarsest iterations = 100, 5
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(b) Topology Run-times for P = 24, N =
576, Levels = 5, Coarsest iterations = 400, 5
V(3,3) cycles, Intel 17.0.1, OpenMPI 2.0.2,
ARC3, default MPI Dims create() =
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Figure 11. Intranode execution times of Parallel Geometric Multigrid using Baseline (Base), aggressive
Compiler Optimization (CO) and Heuristically Tiled (HT) versions on ARC2 and ARC3

maximum of 4 inter-socket Y-planes per process that are two times larger than the Y-planes of

the latter topology, which sends/receives only intra-socket Y-planes. The reason for this is that the

cost of packing/unpacking the Z-plane for 4× 4× 1 is zero whereas the standard topology has to

pack/unpack/communicate the high cost Z-plane (see the magnified section of Figure 9d). Figure

11b shows the execution time of Parallel Geometric Multigrid on a single node of the ARC3 cluster

using the Intel 17.0.1 compiler and OpenMPI 2.0.2 with approximately 8 million cells/core (or 0.19

billion dof). A significant difference between OpenMPI 1.6.5 and OpenMPI 2.0.2 implementation

is the change of the shared memory module (-sm module) to the -vader module, the latter

offering performance benefits over the former. With 24 cores, the Heuristically Tiled version

of 6× 4× 1 and 4× 6× 1 outperform the MPI Dims create() topology of 4× 3× 2. The

WPSS of 4× 6× 1 is less than that of 6× 4× 1 and thus is the major factor in contributing to the

improved performance of the former within a single node (as process placement effects within a

single node can be ruled out). It may be noted that although having a large Pz offers an enhanced

opportunity for Vectorization, it decreases the probability of the data remaining in the cache before

that data is accessed again due to the Least Recently Used (LRU) eviction policy (see Figure 6).

The intranode execution trends of topologies on ARC2 and ARC3 show that our predictions and

the behaviour of topologies are consistent across different hardware.

Figures 11b, 12a, 12b and 12c show the effect of different combinations of compilers and MPI

implementations using a combination of Intel 17.0.1 + OpenMPI 2.0.2 (henceforth called I17O2),

GNU 6.3.0 + OpenMPI 2.0.2 (henceforth called G6O2), Intel 17.0.1 + Mvapich2/2.2 (henceforth

called I17M2) and GNU 6.3.0 + Mvapich2/2.2 (henceforth called G6M2), respectively, on a

domain of size 5763 on a single node of ARC3. For each of these, three variations in the form of

Base version for Intel 17.0.1 (-O2) and GNU 6.3.0 (-O2), aggressive CO for Intel 17.0.1 (-O3

-xHOST -ip -ansi-alias -fno-alias) and GNU 6.3.0 (-O3 -march=native)

and HT were tested. Since Heuristic Tiling alone provided negligible benefits without aggressive

compiler based optimization with GNU 6.3.0, it was coupled with the latter (i.e. HT+CO - see

Figure 12a and 12c). The curves in I17O2, I17M2, G6O2, and G6M2 are a characteristic of

the compiler which is used. The experiments with the Intel 17.0.1 compiler, irrespective of the

MPI implementation version, showed negligible difference between the Base version and the CO

version while showing the best timings with HT alone. The optimal timings were obtained with

a combination of HT+CO with GNU 6.3.0. Overall, the optimal execution timings were obtained

with topologies Dx ×Dy ×Dz = 4× 6× 1 and Dx ×Dy ×Dz = 6× 4× 1 - the topologies
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(b) Intel compiler 17.0.1 and Mvapich2/2.2
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(c) GNU 6.3.0 and Mvapich2/2.2
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Figure 12. Topology Run-times for P = 24, N = 576, Levels = 5, Coarsest iterations = 400, 5 V(3,3) cycles
and the minimum run times for various combinations of compilers and MPI implementations on ARC3,

default MPI Dims create() = 4× 3× 2

which are predicted with our model. For every version (Base, CO, HT, HT+CO) of I17O2, I17M2,

G6O2, and G6M2, one of the predicted topologies i.e. either 4× 6× 1 or 6× 4× 1, outperformed

the default MPI Dims Create() (MDC) topology of 4× 3× 2. The performance gains for the

versions using Mvapich2/2.2 i.e. I17M2 (1.70%) and G6M2 (1.71%) were smaller as compared

to versions using OpenMPI 2.0.2 i.e. I17O2 (3.79%) and G6O2 (6.53%) - possibly suggesting

the performance sensitivity of topologies on the efficiency of communication routines in the MPI

implementations. Interestingly, the optimal run-time of the OpenMPI versions (I17O2 and G6O2)

had a performance gain of approximately 4.36% over the best execution timing of the Mvapich2/2.2

versions (I17M2 and G6M2). Figure 12d shows the minimum timings for I17O2, I17M2, G6O2

and G6M2. The curves for I17O2 and G6O2 almost overlap i.e. have negligible differences and

hence are shown as a single curve. The similarity in the shape of curves in Figure 12d shows the

software independence of our model. This behaviour is ideally expected as our high level abstract

model is derived using only the data layout, as elaborated in Section 4, and is independent of any

particular software or hardware characteristics.

6.2. Multiple Nodes

Figure 13a shows the total run-time of parallel geometric multigrid for various topologies which

are feasible when the global fine grid size is 512× 512× 512 (0.13 billion dof) and the global

coarsest grid is 16× 16× 16 i.e. 6 levels for P = 64 on ARC2. As predicted by our model, there

are cache-minimizing topologies which outperform the standard topology 4× 4× 4 returned by

MPI Dims create() with P = 64. Figure 13b and Figure 13c show the corresponding fine grid
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Figure 13. Execution times of Geometric Multigrid for P = 64, Fine Grid = 5123, Levels = 6, Global

Coarsest Grid = 163, ν1 = ν2 = 3, Fixed Coarsest iterations = 100, Vcycles = 5, Intel 16.0.2, OpenMPI
1.6.5, ARC2, default MPI Dims create() = 4× 4× 4

smooth times and coarsest grid run-times, respectively. The performance improvement of the best

performing topology 8× 8× 1 over 4× 4× 4 in the total run-time is 8.5% whereas in the fine grid

smooth time is 9.7%. As the fine grid smoothing time is the major contributor to the total running

time, Figure 13a and Figure 13b bear a striking resemblance. The coarsest grid run-times are very

small in comparison and appear to be irregular at this level. The cache misses at the coarsest level

will have a lesser effect on the running time as compared to the communication time due to process

placement and message latency as the local work-set of three arrays used in Jacobi updates is 5.1
KB (including the halo cells) for 4× 4× 4 and 6.75 KB for 8× 8× 1, which can easily fit into the

L1d cache. The latter topology passes a maximum of four planes as opposed to a maximum of six

by the former. Assuming perfect cache hits (as local-work set fits into L1d cache), it is the message

latency which becomes the primary factor in the 8× 8× 1’s superior performance over 4× 4× 4 at

the coarsest level. Our implementation uses persistent point-to-point communication at the coarsest

level as the number of halo exchanges at the coarsest level >> (ν1 + ν2) and thus we can expect

to see a benefit in not destroying the MPI send and receive handles every time data is communicated.
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Figure 14. P = 64, Fine Grid = 5123, Levels = 6, Global Coarsest Grid = 163, ν1 = ν2 = 3, Fixed Coarsest
iterations = 100, Vcycles = 5, Intel 16.0.2, OpenMPI 1.6.5, ARC2, default MPI Dims create() =

4× 4× 4

Figure 14a shows the number of intra-node Z-planes being passed for each topology for P = 64
on ARC2 at the fine grid level when the topologies are arranged in the ascending order of their total

run-times. The number of intra-node/inter-node X/Y/Z planes at all levels for a particular topology

are equal except for at the coarsest grid. The communication volume decreases by one-fourth

in going from a finer level to the next coarser level. Further, we only count the total number of

Z-planes which are sent, as it includes the number of Z-planes which will be received. It can be

seen from Figure 14a that as the number of Z-planes increase, so does the size of the communicated

Z-plane. The number of planes however should not be related directly to the time being taken by

a topology as these planes are exchanged simultaneously. The majority of the high performing

topologies in this case again are the ones which pass a smaller sized Z-plane or do not pass a

Z-plane at all.

For P = 64, the maximum time taken by any process to communicate X/Y/Z planes was

measured on ARC2. It can be seen from Figure 14b that whenever the time taken by X-planes is

greater than the time taken by Y-planes, the X plane was larger than the Y plane or the X plane

was passed between racks and thus the switch hop latency contributed to the total time. Further,

whenever equal sized X/Y and Z planes were passed, irrespective of whether it was an intra-node

or inter-node plane, the Z-plane communication time exceeded its siblings. The exceptional case

was with the topology of 4× 4× 4, where an equal sized Y-plane (intra-node) took more time than

the X-plane (inter-node). More research is needed to determine the reason for this deviation from

the normal.

We can differentiate between various plane categories depending on the hierarchy of network

they interact through. Table III divides the X/Y/Z planes into 4 categories each depending on their

region of movement. The cheapest communication is intra-node communication and the costliest

communication is inter-rack communication. Considering the case of extreme topologies with

P = 64 processes or cores i.e. 1× 1× 64, 1× 64× 1 and 64× 1× 1, we recorded the exchange of

planes on ARC2 as listed in Table IV. It can be seen from Table IV that exactly the same number

and size of planes are passed in a particular category. The corresponding running times at the fine

grid level and coarsest grid level (global coarsest grid = 643) is shown in Table V where it can be
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Table III. PLANE TYPES: Categories of planes based on network elements that they pass through, namely,
node/shelf/rack

CATEGORY DESCRIPTION

C0 Intra-node X-plane
C1 Inter-node Intra-shelf Intra-rack X-plane
C2 Inter-node Inter-shelf Intra-rack X-plane
C3 Inter-rack X-plane

C4 Intra-node Y-plane
C5 Inter-node Intra-shelf Intra-rack Y-plane
C6 Inter-node Inter-shelf Intra-rack Y-plane
C7 Inter-rack Y-plane

C8 Intra-node Z-plane
C9 Inter-node Intra-shelf Intra-rack Z-plane

C10 Inter-node Inter-shelf Intra-rack Z-plane
C11 Inter-rack Z-plane

Table IV. PLANE FREQUENCY: Number of X/Y/Z Intranode/Intra-shelf/Intra-rack planes for 1-D topologies
on ARC2

TOPOLOGY C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

1x1x64 0 0 0 0 0 0 0 0 120 0 4 2
1x64x1 0 0 0 0 120 0 4 2 0 0 0 0
64x1x1 120 0 4 2 0 0 0 0 0 0 0 0

Table V. EXTREME TOPOLOGIES: run-times for N = 5123, P = 64, GCG = 643, Coarsest iterations = 100,
Vcycles = 5, ν1 = ν2 = 3, ω = 1, FG (Fine Grid), CG (Coarsest Grid), Intel 16.0.2, OpenMPI 1.6.5, ARC2

TOPOLOGY LEVEL FG SMOOTH-TIME CG RUN-TIME

1x1x64 4 1.08 sec 0.028 sec
1x64x1 4 0.39 sec 0.010 sec
64x1x1 4 0.36 sec 0.008 sec

seen that the time taken by the X and Y partition is almost equal but the Z partition is outperformed

by a factor of ≈ 3 and 3.5 at the fine grid level and coarsest levels, respectively. This shows that in

addition to process placement (which is the same for all partitions in this case), cache-misses play

a very important factor in the packing/unpacking/update times of these planes. The Cache Line

Utilization (CLU) factor for the Z-plane is 0.125 at the fine grid level where Pz = 8 for 1× 1× 64,

whereas it is one for the X/Y planes. Thus, even when the DCU and IP-based stride prefetcher in

the L1d cache are able to hide the latency by prefetching the needed lines, a penalty must be paid

as the Z-plane elements reside in different cache lines.

Figure 15a shows the total run-times for topologies with P = 512 and a fine grid of size 10243

i.e. ≈ 1 billion degrees of freedom. The standard topology of 8× 8× 8 is outperformed by several

topologies which have Dz ≤ 8. The highest performing topology outperforms the standard by 8%,

whereas in Figure 15b which shows the fine grid smoothing times, it outperforms the standard by

41%. There is clearly a loss of efficiency when comparing the total overall run-times and the fine

grid smooth times. Further investigation is needed to ascertain the exact cause. Although all the

topologies were examined on the same set of cores, a possibility of increased congestion in the

network due to other user jobs cannot be ruled out as the allocated partition by the job scheduler

on our test machine ARC2 is not independent. Thus, our reproducible single node experiments are

crucial to testing the validity of our model.
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Figure 15. Total run-time and Fine Grid smooth-times for P = 512, Fine Grid = 10243, Levels = 6, Global

Coarsest Grid = 323, ν1 = ν2 = 3, Fixed Coarsest iterations = 800, Vcycles = 5, Intel 16.0.2, OpenMPI
1.6.5, ARC2, default MPI Dims create() = 8× 8× 8

To elaborate on the trend of topology execution times, Figure 16a and Figure 16b show the

multiple node scenario with P = 96 and P = 576 on ARC3. The Baseline (Base) versions of

the predicted topologies 12× 8× 1 and 8× 12× 1 in Figure 16b are both outperformed by the

MPI Dims create() topology (MDC) of 6× 6× 4 by 23.93% but the aggressive CO version of

8× 12× 1 outperforms the MDC by 6.89%. The Baseline version suggests that as Pz increases to

large values (768 in this case), the LRU policy (see Figure 6 ) results in the eviction of data in the

cache when Dz = 1, as a much larger number of cache lines are accessed before the data is utilized

again. For example, with N = 768 and Dz = 1, Pz = 768 and approximately 768

8
= 96 cache lines

must be accessed before the data point at ui,j+1,k is accessed again after utilizing it to update vi,j,k.

With Heuristic Tiling and explicit Vectorization (HT+Vec), the compiler is forced to vectorize as

opposed to issuing only a request for Vectorization at optimization levels -O2 and -O3 - the effect

of which is evident with the best execution timings being obtained under a combination of Heuristic

Tiling and Vectorization. With P = 576, the optimal value of Dz shifts to a value of two and again

shows that for extremely large domain sizes, an upward shift in the minimal base value of Dz might

be needed to avoid mispredictions.

Table VI summarizes the Weak Scaling results by comparing the average performance gain of

highest performing topologies with respect to the MDC on up to 1024 cores. Our experiment shows

that we are always able to find a topology with a Dz < Dsz , where Dsz is the Z-dimension returned

by MDC, that outperforms the standard topology. With P = 1024 and P = 512, the Z-planes in

the MDC topology are still communicated within a node and the cache-minimizing topologies

send/receive larger X/Y planes to/from different racks. Despite inter-rack latencies and larger X/Y

planes with cache-minimizing topologies, the cost of sending large-sized Z-planes contributes to the

higher execution times of the standard topology. As our test facility does not have 4096 cores, we

only weak scale up to 1024 cores with ≈ 1 million cells/cores. As opposed to the smaller problem

size chosen on ARC2, where tiling and Vectorization yield negligible benefits, we choose a larger

problem on ARC3 for Weak Scaling i.e. 18 million cells/core (≈ 29 billion dof). We separately

report the Weak Scaling results for the Base, CO, HT and HT+Vec versions as Heuristic Tiling has

a significant effect at this problem size (see Table VII). Our HT+Vec scheme decreases the overall

run-time of the standard topology by 18.45% but also decreases the gain that cache-minimizing

topologies have over the standard topology to approximately 4%. Nonetheless, it is important to

note the large gain of approximately 19% in the CO versions.
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Figure 16. Baseline (Base), Compiler Optimized (CO), Heuristically Tiled (HT) and HT + Explicit
Vectorization (Vec) total run-time of topologies with Intel 17.0.1, OpenMPI 2.0.2 on ARC3

Table VI. WEAK SCALING ON ARC2: Highest performing Vs standard topology percentage performance
gain, Intel 16.0.2, OpenMPI 1.6.5

CORES (Cells/core) TOTAL RUN-TIME FINE GRID SMOOTH

64 (≈2 million) 11.1% 14.4%

512 (≈2 million) 17.3% 36.4 %

1024 (≈1 million) 9.6% 8.8%

Table VII. WEAK SCALING ON ARC3: Highest performing Vs standard topology percentage performance
gain, TR (Total Run-time), FG (Fine Grid), Base (Baseline), CO (Compiler Optimized), HT (Heuristically
Tiled), Vec (explicit Vectorization), Intel 17.0.1, OpenMPI 2.0.2, Coarsest iterations = 200, ≈ 18 million

cells/core, Global Coarsest Grid = 483

Base (%) CO (%) HT (%) HT+Vec (%)

CORES TR FG TR FG TR FG TR FG

24 18.56 25.24 18.94 25.81 5.06 2.81 4.10 4.43

192 19.03 25.81 19.51 27.79 4.49 3.81 3.74 3.96

1536 16.71 20.79 18.86 19.75 4.49 1.49 3.76 0.68

Table VIII shows that Strong Scaling cache minimizing topologies in Parallel Geometric

Multigrid on ARC2 still leads to performance gains up to P = 256. The maximum value of EPWSS

(Effective Plane Working Set Size) = WPSS + PyPz + PyPz (for arrays u, v and f in Equation (1)

Section 4, respectively) is ≈ 2.5 MB at P = 128 but reduces to ≈ 1.25 MB at P = 256. Since the

actual inclusive L3 cache/core is 2.22 MB, similar behaviour of the cache minimizing and standard

topology is expected due to the EPWSS completely fitting in the shared Last Level Cache (L3).

The Strong Scaling results for ARC3, as shown in Table IX, again show that even with a shrinking

problem size per core, the cache-minimizing topologies can outperform the communication volume

minimizing topology and thus are also suitable for Strong Scaling till the cores reach a number at

which the EPWSS completely fits in the LLC.
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Table VIII. STRONG SCALING ON ARC2 : % performance gain of Cache Minimizing Topology over
Standard Topology for Baseline, Compiler Optimized and Heuristically Tiled versions, N=512, 20 V(3,3)

cycles, Coarsest iterations = 100, Levels = 6, Intel 16.0.2, OpenMPI 1.6.5

CORES BASELINE COMPILER OPT. HEURISTIC TILE

16 15.00% 16.14% 6.16%

32 3.88% 4.04% 8.96%

64 12.69% 12.24% 13.30%

128 7.98% 7.29% 7.85%

256 0.82% -0.82% 5.50%

Table IX. STRONG SCALING ON ARC3 : % performance gain of Cache Minimizing Topology over Standard
Topology for Baseline, Compiler Optimized and Heuristically Tiled with Explicit Vectorization versions,

N=768, 5 V(3,3) cycles, Coarsest iterations = 400, Levels = 6, Intel 17.0.1, OpenMPI 2.0.2

CORES BASELINE COMPILER OPT. HEURISTIC TILE + VECTORIZATION

48 9.75% 10.10% 8.58%

96 9.05% 9.48% 8.44%

192 14.06% 13.17% 7.62%

384 7.46% 9.09% 6.25%

7. MODEL ACCURACY

We define the accuracy of our model as the fraction of predicted topologies which outperform the

default MPI Dims create() (MDC) topology. Formally, let np be the total number of predicted

topologies for P cores and Dz < Dsz , where Dsz is the Z-process dimension of the MDC topology

and Dz that of the predicted topology. Let tp be the execution time of the predicted topology and

tMDC that of the MDC topology. If ñp is the number of predicted topologies for which tp < tMDC ,

then the accuracy of the model is
ñp

np
× 100 with P processor cores.

Table X shows the accuracy of the model with respect to the hardware clusters ARC2 and ARC3

for various core counts, domain sizes, compilers and MPI implementations. It should be noted that

not all the predicted topologies are able to reach a pre-defined Multigrid level with a particular

domain size and thus such predicted topologies are not counted towards calculating the accuracy.

For example, with P = 768 only two predicted topologies were experimentally valid (see Table X).

Further, it is the predicted topologies with a large |Dx −Dy| that are outperformed by the MDC

topology and constitute the False Positives (FP). For example, the predicted topology of 24× 6× 4
with P = 576, N = 15363, (see Table X) is outperformed by the default MDC 12× 8× 6 by a

thin margin of 0.30% due to a very high |Dx −Dy| = 18. We do not count the False Negatives

(FN) towards calculating the accuracy. In addition to predicting high performing cache-minimizing

topologies, we are also able to successfully prune out inefficient topologies with a high degree of

accuracy (True Negative accuracy shown in Table X). Further, the False Negative topologies i.e.

topologies whose performance our model predicts to be worse than the MDC performance but

which experimentally outperform the MDC, are the ones which are closer in performance to that of

the default MPI Dims create() topology. As an example, for P = 96, N = 7683, using GNU

6.3.0 and Mvapich2 on ARC3, the False Negative topology of 24× 2× 2 outperforms the MDC by

0.88% only. To convert the False Negatives to True Positives, the value of Dz can be incremented

like Dz ← Dz + 1 instead of Dz ← 2×Dz but this also increases the probability of obtaining

more False Positives. In this work, increasing Dz as Dz ← 2×Dz was found to be sufficient for

obtaining accurate results.
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Table X. MODEL ACCURACY: P = number of cores, N = Domain size, np = Number of predicted topologies,
ñp = Predicted topologies for which tp < tMDC , MDC = MPI Dims create() topology, Accuracy

(True +) =
ñp

np
× 100

ARC2

ACCURACY

P N np ñp MDC COMPILER MPI True + True -

16 5123 3 3 4× 2× 2 Intel 16.0.2 OpenMPI 1.6.5 100% 77.78%

64 5123 7 7 4× 4× 4 Intel 16.0.2 OpenMPI 1.6.5 100% 90.90%

512 10243 9 8 8× 8× 8 Intel 16.0.2 OpenMPI 1.6.5 88.89% 93.34%

ARC3

24 5763 4 4 4× 3× 2 Intel 17.0.1 OpenMPI 2.0.2 100% 100%

24 5763 4 4 4× 3× 2 GNU 6.3.0 OpenMPI 2.0.2 100% 100%

24 5763 4 3 4× 3× 2 Intel 17.0.1 Mvapich2/2.2 75% 100%

24 5763 4 3 4× 3× 2 GNU 6.3.0 Mvapich2/2.2 75% 100%

48 7683 10 10 4× 4× 3 Intel 17.0.1 OpenMPI 2.0.2 100% 76%

96 7683 12 12 6× 4× 4 Intel 17.0.1 OpenMPI 2.0.2 100% 88.89%

96 7683 12 10 6× 4× 4 GNU 6.3.0 Mvapich2/2.2 83.34% 97.14%

192 7683 6 6 8× 6× 4 Intel 17.0.1 OpenMPI 2.0.2 100% 82.60%

384 7683 6 5 8× 8× 6 Intel 17.0.1 OpenMPI 2.0.2 83.34% 100%

576 15363 6 4 12× 8× 6 Intel 17.0.1 OpenMPI 2.0.2 66.67% 100%

768 15363 2 2 12× 8× 8 Intel 17.0.1 OpenMPI 2.0.2 100% 100%

1536 30723 6 4 16× 12× 8 Intel 17.0.1 OpenMPI 2.0.2 66.67% 100%

8. CONCLUSION

Traditionally, domain partitioning has been a function of only load-balance and communication

volume. Thus, the orthodox approach aims to achieve maximal load balance and minimize

communication volume. We challenge this approach and introduce a third dimension to the

problem of domain partitioning : Cache-misses at the sub-domain level. Thus, instead of only

optimizing cache-misses through spatial and temporal methods after the domain partitioning, we

analyze the cache-misses at the sub-domain level before performing domain partitioning and use

them to predict optimal domain partitions in parallel Geometric Multigrid (GMG). To this effect,

we develop a high level quasi-cache-aware model which assumes that the interpolation/restriction

is proportional to the smoothing time but dominated by the latter. The model estimates the

cache-misses for the update of the Independent Compute and the update/packing/unpacking of

the dependent planes. Though we develop our model using a 7-pt stencil, the methodology can

be applied to a 19-pt or 27-pt stencil. Our numerical tests show the same qualitative results with

appropriate quantitative differences. Upon subsequent minimization with respect to sub-domain

dimensions, the two most important factors needed to obtain optimal domain partitions that emerge

out of the model are : (i) The balance between the X and Y sub-domain dimensions and ; (ii)

Maintaining a Cartesian process-dimension 1 ≤ Dzoptimal ≤ Dsz , where Dsz is the Z-dimension

returned by the default MPI Dims create() function.

We emphasize and elaborate the factors affecting sub-domain dimensions namely, Independent

Compute, Plane cache-misses, Prefetch, Vectorization, Communication Volume, and the

LRU eviction policy. We lay stress on maintaining a balance between the cost of growing

communication volume when maximizing the unit stride dimension and the growing cost of

packing/unpacking/updating the Z-plane when the communication volume is minimized. Our

experiments on single and multiple nodes expand on the three most important factors : Independent

Compute, dependent plane and communication volume. The single node experiments further
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show that, even without communication, Weak Scaling a problem on a SMP does not keep the

time constant due to the rising contention for the shared Last Level Cache. Topologies efficiently

executing the Independent Compute are not optimal when communication is added and thus

optimality requires a balance between compute cache-misses and the overhead of communication.

Further, we develop a light-weight run-time heuristic for tiling, functioning at all but the coarsest

level of GMG, which is close to optimal for high performing topologies, given that exhaustive

tiling leads to a combinatorial explosion of the tiling space. The experiments for process placement

within a node i.e. --bind-to-core --bysocket and --bind-to-core --bycore

yield similar results for plane communication costs.

Our results on Weak Scaling parallel GMG up to 1536 cores show that the standard partition

returned by the default MPI Dims create() communication volume minimizing function is

outperformed by our predicted cache-minimizing partitions. Further, the cache-misses due to the

large Working Set Size (WSS) at the finer grid levels contributes maximally to the total execution

time. The reducing performance difference between the communication minimizing and cache-

minimizing topologies, as shown by Strong Scaling results at higher core counts, demonstrates

the efficacy of our predicted optimal topologies. Most importantly for all our experiments we

are able to find optimal topologies which outperform the partitioning imposed by the default

MPI Dims create() function, thus demonstrating that only minimizing the communication

volume is insufficient for obtaining optimal domain partitions for parallel GMG. We conclude that

due to the advances in the hardware and software ecosystem, it has become necessary to fine-tune

the domain partitions, based on the cache-misses of the application-specific computational kernels

and packing/unpacking/updating costs of communicated planes, to maximize the performance of

parallel GMG.
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