
This is a repository copy of Standard Steady State Genetic Algorithms Can Hillclimb
Faster than Mutation-only Evolutionary Algorithms.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/120316/

Version: Published Version

Article:

Corus, D. and Oliveto, P.S. (2017) Standard Steady State Genetic Algorithms Can
Hillclimb Faster than Mutation-only Evolutionary Algorithms. IEEE Transactions on
Evolutionary Computation. ISSN 1089-778X

https://doi.org/10.1109/TEVC.2017.2745715

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by White Rose Research Online

https://core.ac.uk/display/96765589?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2745715, IEEE

Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 1

Standard Steady State Genetic Algorithms Can

Hillclimb Faster than Mutation-only Evolutionary

Algorithms
Dogan Corus, Member, IEEE, and Pietro S. Oliveto, Senior Member, IEEE,

Abstract—Explaining to what extent the real power of genetic
algorithms lies in the ability of crossover to recombine individuals
into higher quality solutions is an important problem in evolu-
tionary computation. In this paper we show how the interplay
between mutation and crossover can make genetic algorithms
hillclimb faster than their mutation-only counterparts. We devise
a Markov Chain framework that allows to rigorously prove an
upper bound on the runtime of standard steady state genetic algo-
rithms to hillclimb the ONEMAX function. The bound establishes
that the steady-state genetic algorithms are 25% faster than all
standard bit mutation-only evolutionary algorithms with static
mutation rate up to lower order terms for moderate population
sizes. The analysis also suggests that larger populations may be
faster than populations of size 2. We present a lower bound for a
greedy (2+1) GA that matches the upper bound for populations
larger than 2, rigorously proving that 2 individuals cannot
outperform larger population sizes under greedy selection and
greedy crossover up to lower order terms. In complementary
experiments the best population size is greater than 2 and the
greedy genetic algorithms are faster than standard ones, further
suggesting that the derived lower bound also holds for the
standard steady state (2+1) GA.

I. INTRODUCTION

Genetic algorithms (GAs) rely on a population of individ-

uals that simultaneously explore the search space. The main

distinguishing features of GAs from other randomised search

heuristics is their use of a population and crossover to generate

new solutions. Rather than slightly modifying the current best

solution as in more traditional heuristics, the idea behind GAs

is that new solutions are generated by recombining individuals

of the current population (i.e., crossover). Such individuals

are selected to reproduce probabilistically according to their

fitness (i.e., reproduction). Occasionally, random mutations

may slightly modify the offspring produced by crossover. The

original motivation behind these mutations is to avoid that

some genetic material may be lost forever, thus allowing to

avoid premature convergence [19], [17]. For these reasons the

GA community traditionally regards crossover as the main

search operator while mutation is considered a “background

operator” [17], [1], [20] or a “secondary mechanism of genetic

adaptation” [19].

Explaining when and why GAs are effective has proved

to be a non-trivial task. Schema theory and its resulting

D. Corus and P. S. Oliveto are with the Rigorous Research
team, Algorithms group, Department of Computer Science,
University of Sheffield, Regent Court, 211 Portobello, S1 4DP,
Sheffield, UK. e-mail: {d.corus,p.oliveto}@sheffield.ac.uk., webpage:
www.dcs.shef.ac.uk/people/P.Oliveto/rig/ .

building block hypothesis [19] were devised to explain such

working principles. However, these theories did not allow

to rigorously characterise the behaviour and performance of

GAs. The hypothesis was disputed when a class of functions

(i.e., Royal Road), thought to be ideal for GAs, was designed

and experiments revealed that the simple (1+1) EA was more

efficient [28], [21].

Runtime analysis approaches have provided rigorous proofs

that crossover may indeed speed up the evolutionary process of

GAs in ideal conditions (i.e., if sufficient diversity is available

in the population). The JUMP function was introduced by

Jansen and Wegener as a first example where crossover consid-

erably improves the expected runtime compared to mutation-

only Evolutionary Algorithms (EAs) [23]. The proof required

an unrealistically small crossover probability to allow mutation

alone to create the necessary population diversity for the

crossover operator to then escape the local optimum. Dang et

al. recently showed that the sufficient diversity, and even faster

upper bounds on the runtime for not too large jump gaps, can

be achieved also for realistic crossover probabilities by using

diversity mechanisms [6]. Further examples that show the

effectiveness of crossover have been given for both artificially

constructed functions and standard combinatorial optimisation

problems (see the next section for an overview).

Excellent hillclimbing performance of crossover based

GAs has been also proved. B. Doerr et al. proposed a

(1+(λ,λ)) GA which optimises the ONEMAX function in

Θ(n
√

log log log(n)/ log log(n)) fitness evaluations (i.e., run-

time) [8], [9]. Since the unbiased unary black box complexity

of ONEMAX is Ω(n log n) [25], the algorithm is asymptoti-

cally faster than any unbiased mutation-only EA. Furthermore,

the algorithm runs in linear time when the population size

is self-adapted throughout the run [7]. Through this work,

though, it is hard to derive conclusions on the working

principles of standard GAs because these are very different

compared to the (1+(λ,λ)) GA in several aspects. In particular,

the (1+(λ,λ)) GA was especially designed to use crossover as

a repair mechanism that follows the creation of new solutions

via high mutation rates. This makes the algorithm work in a

considerably different way compared to traditional GAs.

More traditional GAs have been analysed by Sudholt

[40]. Concerning ONEMAX, he shows how (µ+λ) GAs are

twice as fast as their standard bit mutation-only counter-

parts. As a consequence, he showed an upper bound of

(e/2)n log n(1 + o(1)) function evaluations for a (2+1) GA

versus the en log n(1 − o(1)) function evaluations required

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2745715, IEEE

Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 2

by any standard bit mutation-only EA [39], [42]. This bound

further reduces to 1.19n lnn ± O(n log log n) if the optimal

mutation rate is used (i.e., (1 +
√
5)/2 · 1/n ≈ 1.618/n).

However, the analysis requires that diversity is artificially

enforced in the population by breaking ties always preferring

genotypically different individuals. This mechanism ensures

that once diversity is created on a given fitness level, it will

never be lost unless a better fitness level is reached, giving

ample opportunities for crossover to exploit this diversity.

Recently, it has been shown that it is not necessary to

enforce diversity for standard steady state GAs to outperform

standard bit mutation-only EAs [5]. In particular, the JUMP

function was used as an example to show how the interplay

between crossover and mutation may be sufficient for the

emergence of the necessary diversity to escape from local

optima more quickly. Essentially, a runtime of O(nk−1) may

be achieved for any sublinear jump length k > 2 versus the

Θ(nk) required by standard bit mutation-only EAs.

In this paper, we show that this interplay between mutation

and crossover may also speed-up the hillclimbing capabilities

of steady state GAs without the need of enforcing diversity

artificially. In particular, we consider a standard steady state

(µ+1) GA [36], [17], [35] and prove an upper bound on the

runtime to hillclimb the ONEMAX function of (3/4)en log n+
O(n) for any µ ≥ 3 and µ = o(log n/ log logn) when

the standard 1/n mutation rate is used. Apart from show-

ing that standard (µ+1) GAs are faster than their standard

bit mutation-only counterparts up to population sizes µ =
o(log n/ log logn), the framework provides two other inter-

esting insights. Firstly, it delivers better runtime bounds for

mutation rates that are higher than the standard 1/n rate.

The best upper bound of 0.72en log n+O(n) is achieved for

c/n with c = 1
2

(√
13− 1

)

≈ 1.3. Secondly, the framework

provides a larger upper bound, up to lower order terms,

for the (2+1) GA compared to that of any µ ≥ 3 and

µ = o(log n/ log logn). The reason for the larger constant

in the leading term of the runtime is that, for populations of

size 2, there is always a constant probability that any selected

individual takes over the population in the next generation.

This is not the case for population sizes larger than 2.

To shed light on the exact runtime for population size

µ = 2 we present a lower bound analysis for a greedy

genetic algorithm, which we call (2+1)S GA, that always

selects individuals of highest fitness for crossover and always

successfully recombines them if their Hamming distance is

greater than 2. This algorithm is similar to the one analysed

by Sudholt [40] to allow the derivation of a lower bound, with

the exception that we do not enforce any diversity artificially

and that our crossover operator is slightly less greedy (i.e.,

in [40] crossover always recombines correctly individuals

also when the Hamming distance is exactly 2). Our analysis

delivers a matching lower bound for all mutation rates c/n,

where c is a constant, for the greedy (2+1)S GA (thus also

(3/4)en log n+O(n) and 0.72en log n+O(n) respectively for

mutation rates 1/n and 1.3/n). This result rigorously proves

that, under greedy selection and semi-greedy crossover, the

(2+1) GA cannot outperform any (µ+1) GA with µ ≥ 3 and

µ = o(log n/ log log n).

We present some experimental investigations to shed light

on the questions that emerge from the theoretical work. In the

experiments we consider the commonly used parent selection

that chooses uniformly at random from the population with

replacement (i.e., our theoretical upper bounds hold for a

larger variety of parent selection operators). We first compare

the performance of the standard steady state GAs against the

fastest standard bit mutation-only EA with fixed mutation

rate (i.e., the (1+1) EA [39], [42]) and the GAs that have

been proved to outperform it. The experiments show that the

speedups over the (1+1) EA occur already for small problem

sizes n and that population sizes larger than 2 are faster than

the standard (2+1) GA. Furthermore, the greedy (2+ 1)S GA

indeed appears to be faster than the standard (2+1) GA1,

further suggesting that the theoretical lower bound also holds

for the latter algorithm. Finally, experiments confirm that

larger mutation rates than 1/n are more efficient. In particular,

better runtimes are achieved for mutation rates that are even

larger than the ones that minimise our theoretical upper bound

(i.e., c/n with 1.5≤ c ≤ 1.6 versus the c =1.3 we have derived

mathematically; interestingly this experimental rate is similar

to the optimal mutation rate for OneMax of the algorithm

analysed in [40]). These theoretical and experimental results

seem to be in line with those recently presented for the

same steady state GAs for the JUMP function [5], [6]: higher

mutation rates than 1/n are also more effective on JUMP.

The rest of the paper is structured as follows. In the next

section we briefly review previous related works that consider

algorithms using crossover operators. In Section III we give

precise definitions of the steady state (µ+1) GA and of the

ONEMAX function. In Section IV we present the Markov

Chain framework that we will use for the analysis of steady

state elitist GAs. In Section V we apply the framework to

analyse the (µ+1) GA and present the upper bound on the

runtime for any 3 ≤ µ = o(log n/ log log n) and mutation rate

c/n for any constant c. In Section VI we present the matching

lower bound on the runtime of the greedy (2+1)S GA. In

Section VII we present our experimental findings. In the

Conclusion we present a discussion and open questions for

future work. Separate supplementary files contain an appendix

of omitted proofs due to space constraints and a complete

version of the paper including all the proofs.

II. RELATED WORK

The first rigorous groundbreaking proof that crossover can

considerably improve the performance of EAs was given by

Jansen and Wegener for the (µ+1) GA with an unrealistically

low crossover probability [23]. A series of following works

on the analysis of the JUMP function have made the algorithm

characteristics increasingly realistic [6], [24]. Today it has been

rigorously proved that the standard steady state (µ+1) GA

with realistic parameter settings does not require artificial

diversity enforcement to outperform its standard bit mutation-

only counterpart to escape the plateau of local optima of the

JUMP function [5].

1We thank an anonymous reviewer for pointing out that this is not obvious.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2745715, IEEE

Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 3

Proofs that crossover may make a difference between poly-

nomial and exponential time for escaping local optima have

also been available for some time [37], [21]. The authors

devised example functions where, if sufficient diversity was

enforced by some mechanism, then crossover could efficiently

combine different individuals into an optimal solution. Muta-

tion, on the other hand required a long time because of the

great Hamming distance between the local and global optima.

The authors chose to call the artificially designed functions

Real Royal Road functions because the Royal Road functions

devised to support the building block hypothesis had failed

to do so [29]. The Real Royal Road functions, though, had

no resemblance with the schemata structures required by the

building block hypothesis.

The utility of crossover has also been proved for less artifi-

cial problems such as coloring problems inspired by the Ising

model from physics [38], computing input-output sequences in

finite state machines [26], shortest path problems [14], vertex

cover [30] and multi-objective optimization problems [33].

The above works show that crossover allows to escape from

local optima that have large basins of attraction for the muta-

tion operator. Hence, they establish the usefulness of crossover

as an operator to enchance the exploration capabilities of the

algorithm.

The interplay between crossover and mutation may produce

a speed-up also in the exploitation phase, for instance when

the algorithm is hillclimbing. Research in this direction has

recently appeared. The design of the (1+(λ, λ)) GA was

theoretically driven to beat the Ω(n lnn) lower bound of all

unary unbiased black box algorithms. Since the dynamics of

the algorithm differ considerably from those of standard GAs,

it is difficult to achieve more general conclusions about the

performance of GAs from the analysis of the (1+(λ, λ)) GA.

From this point of view the work of Sudholt is more revealing

when he shows that any standard (µ + λ) GA outperforms

its standard bit mutation-only counterpart for hillclimbing the

ONEMAX function [40]. The only caveat is that the selection

stage enforces diversity artificially, similarly to how Jansen

and Wegener had enforced diversity for the Real Royal Road

function analysis. In this paper we rigorously prove that it

is not necessary to enforce diversity artificially for standard-

steady state GAs to outperform their standard bit mutation-

only counterpart.

III. PRELIMINARIES

We will analyse the runtime (i.e., the expected number of

fitness function evaluations before an optimal search point is

found) of a steady state genetic algorithm with population size

µ and offspring size 1 (Algorithm 1). In steady state GAs the

entire population is not changed at once, but rather a part

of it. In this paper we consider the most common option of

creating one new solution per generation [36], [35]. Rather

than restricting the algorithm to the most commonly used

uniform selection of two parents, we allow more flexibility to

the choice of which parent selection mechanism is used. This

approach was also followed by Sudholt for the analysis of the

(µ+1) GA with diversity [40]. In each generation the algorithm

Algorithm 1: (µ+1) GA [36], [17], [35], [5]

1 P ← µ individuals, uniformly at random from {0, 1}n;

2 repeat

3 Select x, y ∈ P with replacement using an operator

abiding (1);

4 z ← Uniform crossover with probability 1/2 (x, y);
5 Flip each bit in z with probability c/n;

6 P ← P ∪ {z};
7 Choose one element from P with lowest fitness and

remove it from P , breaking ties at random;
8 until termination condition satisfied;

picks two parents from its population with replacement using

a selection operator that satisfies the following condition.

∀x, y : f(x) ≥ f(y) =⇒ Pr(select x) ≥ Pr(select y). (1)

The condition allows to use most of the popular parent

selection mechanisms with replacement such as fitness pro-

portional selection, rank selection or the one commonly used

in steady state GAs, i.e., uniform selection [17]. Afterwards,

uniform crossover between the selected parents (i.e., each bit

of the offspring is chosen from each parent with probability

1/2) provides an offspring to which standard bit mutation (i.e.,

each bit is flipped with with probability c/n) is applied. The

best µ among the µ+ 1 solutions are carried over to the next

generation and ties are broken uniformly at random.

In the paper we use the standard convention for nam-

ing steady state algorithms: the (µ+1) EA differs from the

(µ+1) GA by only selecting one individual per generation for

reproduction and applying standard bit mutation to it (i.e., no

crossover). Otherwise the two algorithms are identical.

We will analyse Algorithm 1 for the well-studied ONEMAX

function that is defined on bitstrings x ∈ {0, 1}n of length n
and returns the number of 1-bits in the string: ONEMAX(x) =
∑n

i=1 xi. Here xi is the ith bit of the solution x ∈ {0, 1}n.

The ONEMAX benchmark function is very useful to assess the

hillclimbing capabilities of a search heuristic. It displays the

characteristic function optimisation property that finding im-

proving solutions becomes harder as the algorithm approaches

the optimum. The problem is the same as that of identifying

the hidden solution of the Mastermind game where we assume

for simplicity that the target string is the one of all 1-bits. Any

other target string z ∈ {0, 1}n may also be used without loss

of generality. If a bitstring is used, then ONEMAX is equivalent

to Mastermind with two colours [16]. This can be generalised

to many colours if alphabets of greater size are used [12], [11].

IV. MARKOV CHAIN FRAMEWORK

The recent analysis of the (µ+1) GA for the JUMP function

shows that the interplay between crossover and mutation may

create the diversity required for crossover to decrease the

expected time to jump towards the optimum [5]. At the

heart of the proof is the analysis of a random walk on the

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2745715, IEEE

Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 4

Fig. 1. Markov Chain for fitness level i.

S1,i S2,i S3,i

1− pm − pd

pd

1− pc − pr

pr

pc

pm

number of diverse individuals on the local optima of the

function. The analysis delivers improved asymptotic expected

runtimes of the (µ+1) GA over mutation-only EAs only for

population sizes µ = ω(1). This happens because, for larger

population sizes, it takes more time to lose diversity once

created, hence crossover has more time to exploit it. For

ONEMAX the technique delivers worse asymptotic bounds

for population sizes µ = ω(1) and an O(n lnn) bound for

constant population size. Hence, the techniques of [5] cannot

be directly applied to show a speed-up of the (µ+1) GA

over mutation-only EAs and a careful analysis of the leading

constant in the runtime is necessary. In this section we present

the Markov chain framework that we will use to obtain the

upper bounds on the runtime of the elitist steady state GAs.

We will afterwards discuss how this approach builds upon and

generalises Sudholt’s approach in [40].

The ONEMAX function has n + 1 distinct fitness values.

We divide the search space into the following canonical fitness

levels [22], [32]:

Li = {x ∈ {0, 1}n|ONEMAX(x) = i}.
We say that a population is in fitness level i if and only if its

best solution is in level Li.

We use a Markov chain (MC) for each fitness level i to

represent the different states the population may be in before

reaching the next fitness level. The MC depicted in Fig. 1

distinguishes between states where the population has no

diversity (i.e., all individuals have the same genotype), hence

crossover is ineffective, and states where diversity is available

to be exploited by the crossover operator. The MC has one

absorbing state and two transient states. The first transient state

S1,i is adopted if the whole population consists of copies of the

same individual at level i (i.e., all the individuals have the same

genotype). The second state S2,i is reached if the population

consists of µ individuals in fitness level i and at least two

individuals x and y are not identical. The second transient

state S2,i differs from the state S1,i in having diversity which

can be exploited by the crossover operator. S1,i and S2,i are

mutually accessible from each other since the diversity can be

introduced at state S1,i via mutation with some probability pd
and can be lost at state S2,i with some relapse probability pr
when copies of a solution take over the population.

The absorbing state S3,i is reached when a solution at a bet-

ter fitness level is found, an event that happens with probability

pm when the population is at state S1,i and with probability pc
when the population is at state S2,i. We pessimistically assume

that in S2,i there is always only one single individual with a

different genotype (i.e., with more than one distinct individual,

pc would be higher and pr would be zero). Formally when

S3,i is reached the population is no longer in level i because

a better fitness level has been found. However, we will bound

the expected time to reach the absorbing state for the next

level only when the whole population has reached it (or a

higher level). We do this because we assume that initially all

the population is in level i when calculating the transition

probabilities in the MC for each level i. This implies that

bounding the expected times to reach the absorbing states of

each fitness level is not sufficient to achieve an upper bound

on the total expected runtime. When S3,i is reached for the

first time, the population only has one individual at the next

fitness level or in a higher one. Only when all the individuals

have reached level i+1 (i.e., either in state S1,i+1 or S2,i+1)

may we use the MC to bound the runtime to overcome level

i+ 1. Then the MC can be applied, once per fitness level, to

bound the total runtime until the optimum is reached.

The main distinguishing aspect between the analysis pre-

sented herein and that of Sudholt [40] is that we take into

account the possibility to transition back and forth (i.e., resp.

with probability pd and pr) between states S1,i and S2,i as

in standard steady state GAs (see Fig. 1). By enforcing that

different genotypes on the same fitness level are kept in the

population, the genetic algorithm considered in [40] has a

good probability of exploiting this diversity to recombine the

different individuals. In particular, once the diversity is created

it will never be lost, giving many opportunities for crossover

to take advantage of it. A crucial aspect is that the probability

of increasing the number of ones via crossover is much higher

than the probability of doing so via mutation once many 1-

bits have been collected. Hence, by enforcing that once State

S2,i is reached it cannot be left until a higher fitness level

is found, Sudholt could prove that the resulting algorithm is

faster compared to only using standard bit mutation. In the

standard steady state GA, instead, once the diversity is created

it may subsequently be lost before crossover successfully

recombines the diverse individuals. This behaviour is modelled

in the MC by considering the relapse probability pr. Hence,

the algorithm spends less time in state S2,i compared to the

GA with diversity enforcement. Nevertheless, it will still spend

some optimisation time in state S2,i where it will have a higher

probability of improving its fitness by exploiting the diversity

via crossover than when in state S1,i (i.e., no diversity) where

it has to rely on mutation only. For this reason the algorithm

will not be as fast for ONEMAX as the GA with enforced

diversity but will still be faster than standard bit mutation-

only EAs.

An interesting consequence of the possibility of losing

diversity, is that populations of size greater than 2 can be

beneficial. In particular the diversity (i.e., State S2,i) may

be completely lost in the next step when there is only one

diverse individual left in the population. When this is the case,

the relapse probability pr decreases with the population size

µ because the probability of selecting the diverse individual

for removal is 1/µ. Furthermore, for population size µ = 2
there is a positive probability that diversity is lost in every

generation by either of the two individuals taking over, while

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2745715, IEEE

Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 5

for larger population sizes this is not the case. As a result our

MC framework analysis will deliver a better upper bound for

µ > 2 compared to the bound for µ = 2. This interesting

insight into the utility of larger populations could not be seen

in the analysis of [40] because there, once the diversity is

achieved, it cannot be lost.

We first concentrate on the expected absorbing time of the

MC. Afterwards we will calculate the takeover time before

we can transition from one MC to the next. Since it is not

easy to derive the exact transition probabilities, a runtime

analysis is considerably simplified by using bounds on these

probabilities. The main result of this section is stated in the

following theorem that shows that we can use lower bounds

on the transition probabilities moving in the direction of the

absorbing state (i.e., pm, pd and pc) and an upper bound

on the probability of moving in the opposite direction to no

diversity (i.e., pr) to derive an upper bound on the expected

absorbing time of the Markov chain. In particular, we define a

Markov chain M ′ that uses the bounds on the exact transition

probabilities and show that its expected absorbing time is

greater than the absorbing time of the original chain. Hereafter,

we drop the level index i for brevity and use E[T1] and E[T2]
instead of E[T1,i] and E[T2,i] (Similarly, S1 will denote state

S1,i).

Theorem 1. Consider two Markov chains M and M ′ with

the topology in Figure 1 where the transition probabilities for

M are pc, pm, pd , pr and the transition probabilities for M ′

are p′c, p′m, p′d and p′r. Let the expected absorbing time for M
be E[T] and the expected absorbing time of M ′ starting from

state S1 be E[T ′
1] respectively. If

• pm < pc • p′d ≤ pd • p′r ≥ pr

• p′c ≤ pc • p′m ≤ pm

Then E[T] ≤ E[T ′
1] ≤

p′

c
+p′

r

p′

c
p′

d
+p′

c
p′

m
+p′

m
p′

r

+ 1
p′

c

.

We first concentrate on the second inequality in the state-

ment of the theorem which will follow immediately from the

next lemma. It allows us to obtain the expected absorbing time

of the MC if the exact values for the transition probabilities

are known. In particular, the lemma establishes the expected

times E[T1] and E[T2] to reach the absorbing state, starting

from the states S1 and S2 respectively.

Lemma 2. The expected times E[T1] and E[T2] to reach the

absorbing state, starting from state S1 and S2 respectively are

as follows:

E[T1] =
pc + pr + pd

pcpd + pcpm + pmpr
≤ pc + pr

pcpd + pcpm + pmpr
+

1

pc

E[T2] =
pm + pr + pd

pcpd + pcpm + pmpr
.

Before we prove the first inequality in the statement of

Theorem 1, we will derive some helper propositions. We first

show that as long as the transition probability of reaching the

absorbing state from the state S2 (with diversity) is greater

than that of reaching the absorbing state from the state with

no diversity S1 (i.e., pm < pc), then the expected absorbing

time from state S1 is at least as large as the expected time

unconditional of the starting point. This will allow us to

achieve a correct upper bound on the runtime by just bounding

the absorbing time from state S1. In particular, it allows us

to pessimistically assume that the algorithm starts each new

fitness level in state S1 (i.e., there is no diversity in the

population).

Proposition 3. Consider a Markov chain with the topology

given in Figure 1. Let E[T1] and E[T2] be the expected

absorbing times starting from state S1 and S2 respectively.

If pm < pc, then E[T1] > E[T2] and E[T], the unconditional

expected absorbing time, satisfies E[T] ≤ E[T1].

In the following proposition we show that if we overes-

timate the probability of losing diversity and underestimate

the probability of increasing it, then we achieve an upper

bound on the expected absorbing time as long as pm < pc.

Afterwards, in Proposition 5 we show that an upper bound on

the absorbing time is also achieved if the probabilities pc and

pm are underestimated.

Proposition 4. Consider two Markov chains M and M ′ with

the topology in Figure 1 where the transition probabilities

for M are pc, pm, pd, pr and the transition probabilities for

M ′ are pc, pm, p′d and p′r. Let the expected absorbing times

starting from state S1 for M and M ′ be E[T1] and E[T ′
1]

respectively. If p′d ≤ pd, p′r ≥ pr and pm < pc, then E[T1] ≤
E[T ′

1].

Proposition 5. Consider two Markov chains M and M ′ with

the topology in Figure 1 where the transition probabilities

for M are pc, pm, pd, pr and the transition probabilities for

M ′ are p′c, p′m, pd and pr. Let the expected absorbing times

starting from state S1 for M and M ′ be E[T1] and E[T ′
1]

respectively. If p′c ≤ pc and p′m ≤ pm, then E[T1] ≤ E[T ′
1].

The propositions use that by lower bounding pd and upper

bounding pr we overestimate the expected number of genera-

tions the population is in state S1 compared to the time spent

in state S2. Hence, if pc > pm we can safely use a lower

bound for pd and an upper bound for pr and still obtain a valid

upper bound on the runtime E[T1]. This is rigorously shown

by combining together the results of the previous propositions

to prove the main result i.e., Theorem 1.

Proof of Theorem 1. Consider a third Markov chain M∗

whose transition probabilities are pc, pm, p′r, p′d. Let the

absorbing time of M starting from state S1 be E[T1]. In

order to prove the above statement we will prove the following

sequence of inequalities:

E[T] ≤ E[T1] ≤ E[T ∗
1] ≤ E[T ′

1].

According to Proposition 3, E[T] ≤ E[T1] since pc > pm.

According to Proposition 4 E[T1] ≤ E[T ∗
1] since p′d ≤ pd,

p′r ≥ pr and pc > pm. Finally, according to Proposition 5,

p′c ≤ pc and p′m ≤ pm implies E[T ∗
1] ≤ E[T ′

1] and our proof

is completed by using Lemma 2 to show that the last inequality

of the statement holds.

The algorithm may skip some levels or a new fitness level

may be found before the whole population has reached the

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2745715, IEEE

Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 6

current fitness level. Hence, by summing up the expected

runtimes to leave each of the n + 1 levels and the expected

times for the whole population to takeover each level, we

obtain an upper bound on the expected runtime. The next

lemma establishes an upper bound on the expected time it

takes to move from the absorbing state of the previous Markov

chain (S3,i) to any transient state (S1,i+1 or S2,i+1) of the next

Markov chain. The lemma uses standard takeover arguments

originally introduced in the first analysis of the (µ+1) EA for

ONEMAX [41]. To achieve a tight upper bound Witt had to

carefully wait for only a fraction of the population to take over

a level before the next level was discovered. In our case, the

calculation of the transition probabilities of the MC is actually

simplified if we wait for the whole population to take over each

level. Hence in our analysis the takeover time calculations are

more similar to the first analysis of the (µ+1) EA with and

without diversity mechanisms to takeover the local optimum

of TWOMAX [18].

Lemma 6. Let the best individual of the current population

be in level i and all individuals be in level at least i−1. Then,

the expected time for the whole population to be in level at

least i is O(µ logµ).

The lemma shows that, once a new fitness level is discov-

ered for the first time, it takes at most O(µ logµ) generations

until the whole population consists of individuals from the

newly discovered fitness level or higher. While the absorption

time of the Markov chain might decrease with the population

size, for too large population sizes, the upper bound on the

expected total take over time will dominate the runtime. As

a result the MC framework will deliver larger upper bounds

on the runtime unless the expected time until the population

takes over the fitness levels is asymptotically smaller than the

expected absorption time of all MCs. For this reason, our

results will require population sizes of µ = o(log n/ log logn),
to allow all fitness levels to be taken over in expected

o(n log n) time such that the latter time does not affect the

leading constant of the total expected runtime.

V. UPPER BOUND

In this section we use the Markov Chain framework devised

in Section IV to prove that the (µ+1) GA is faster than any

standard bit mutation-only (µ+ λ) EA.

In order to satisfy the requirements of Theorem 1, we first

show in Lemma 7 that pc > pm if the population is at one of

the final n/(4c(1+ ec)) fitness levels. The lemma also shows

that it is easy for the algorithm to reach such a fitness level.

Afterwards we bound the transition probabilities of the MC

in Lemma 8. We conclude the section by stating and proving

the main result, essentially by applying Theorem 1 with the

transition probabilities calculated in Lemma 8.

Lemma 7. For the (µ+1) GA with mutation rate c/n for any

constant c, if the population is in any fitness level i > n −
n/(4c(1+ec)), then pc is always larger than pm. The expected

time for the (µ+1) GA to sample a solution in fitness level

n− n/(4c(1 + ec)) for the first time is O(nµ logµ).

Proof. We consider the probability pc. If two individuals on

the same fitness level with non-zero Hamming distance 2d are

selected as parents with probability p′, then the probability

that the crossover operator yields an improved solution is at

least (see proof of Theorem 4 in [40]):

Pr(X > d) =
1

2
(1− Pr(X = d))

=
1

2

(

1− 2−2d

(

2d

d

))

≥ 1/4, (2)

where X is a binomial random variable with parameters 2d
and 1/2 which represents the number of bit positions where

the parents differ and which are set to 1 in the offspring. With

probability (1 − c/n)n no bits are flipped and the absorbing

state is reached. If any individual is selected twice as parent,

then the improvement can only be achieved by mutation (i.e.,

with probability pm) since crossover is ineffective. So pc >
p′(1/4)(1− c/n)n + (1− p′)pm, hence if pm < p′(1/4)(1−
c/n)n+(1−p′)pm it follows that pm < pc. The condition can

be simplified to pm < (1/4)(1− c/n)n with simple algebraic

manipulation. For large enough n, (1 − c/n)n ≥ 1/(1 + ec)
and the condition reduces to pm < 1/(4(1 + ec)).

Since pm < (n− i)c/n is an upper bound on the transition

probability (i.e., at least one of the zero bits has to flip to

increase the ONEMAX value), the condition is satisfied for

i ≥ n−n/(4c(1+ ec)). For any level i ≤ n−n/(4c(1+ ec)),
after the take over of the level occurs in O(µ logµ) expected

time, the probability of improving is at least Ω(1) due to the

linear number of 0-bits that can be flipped. Hence, we can

upper bound the total number of generations necessary to reach

fitness level i = n− n/(4c(1 + ec)) by O(nµ logµ).

The lemma has shown that pc > pm holds after a linear

number of fitness levels have been traversed. Now, we bound

the transition probabilities of the Markov chain.

Lemma 8. Let µ ≥ 3. Then the transition probabilities pd,

pc, pr and pm are bounded as follows:

pd ≥
µ

(µ+ 1)

i(n− i)c2

n2(ec +O(1/n)) , pc ≥
µ− 1

2µ2(ec +O(1/n)) ,

pr ≤
(µ− 1)

(

2µ− 1 +O(1/n)
)

2ecµ2(µ+ 1)
, pm ≥

c(n− i)

n(ec +O(1/n)) .

Proof. We first bound the probability pd of transitioning from

the state S1,i to the state S2,i. In order to introduce a new

solution at level i with different genotype, it is sufficient that

the mutation operator simultaneously flips one of the n − i
0-bits and one of the i 1-bits while not flipping any other

bit. We point out that in S1,i, all individuals are identical,

hence crossover is ineffective. Moreover, when the diverse

solution is created, it should stay in the population, which

occurs with probability µ/(µ+1) since one of the µ copies of

the majority individual should be removed by selection instead

of the offspring. So pd can be lower bounded as follows:

pd ≥
µ

(µ+ 1)

ic

n

(n− i)c

n

(

1− c

n

)n−2

.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2745715, IEEE

Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 7

Using the inequality (1− 1/x)x−1 ≥ 1/e ≥ (1− 1/x)x , we

now bound
(

1− c
n

)n−2
as follows:

(

1− c

n

)n−2

≥
(

1− c

n

)n−1

≥
(

1− c

n

)n

=

(

(

1− c

n

)(n/c)−1 (

1− c

n

)

)c

≥
(

1

e

(

1− c

n

)

)c

≥ 1

ec

(

1− c2

n

)

,

where in the last step we used the Bernoulli’s inequality. We

can further absorb the c2/n in an asymptotic O(1/n) term as

follows:
(

1− c

n

)n−2

≥ e−c −O(1/n) = 1

ec +O(1/n) . (3)

The bound for pd is then,

pd ≥
µ

(µ+ 1)

i(n− i)c2

n2
(

ec +O(1/n)
) .

We now consider pc. To transition from state S2,i to

S3,i (i.e., pc) it is sufficient that two genotypically different

individuals are selected as parents (i.e., with probability at

least 2(µ − 1)/µ2), that crossover provides a better solution

(i.e., with probability at least 1/4 according to Eq. (2))

and that mutation does not flip any bits (i.e., probability

(1 − c/n)n ≥ 1/
(

ec + O(1/n)
)

according to Eq. (3)).

Therefore, the probability is

pc ≥ 2
µ− 1

µ2

1

4

(

1− c

n

)n

≥ µ− 1

2µ2(ec +O(1/n))
For calculating pr we pessimistically assume that the Ham-

ming distance between the individuals in the population is 2

and that there is always only one individual with a different

genotype. A population in state S2,i which has diversity, goes

back to state S1,i when:

1) A majority individual is selected twice as parent (i.e.,

probability (µ− 1)2/µ2), mutation does not flip any bit

(i.e., probability (1−c/n)n) and the minority individual

is discarded (i.e., probability 1/(µ+ 1)).
2) Two different individuals are selected as parents,

crossover chooses either from the majority individual

in both bit locations where they differ (i,e., prob. 1/4)

and mutation does not flip any bit (i.e., probability

(1 − c/n)n ≤ 1/ec) or mutation must flip at least one

specific bit (i.e., probability O(1/n)). Finally, the minor-

ity individual is discarded (i.e., probability 1/(µ+ 1)).
3) A minority individual is chosen twice as parent and the

mutation operator flips at least two specific bit positions

(i.e., with probability O(1/n2)) and finally the minority

individual is discarded (i.e., probability 1/(µ+ 1)).

Hence, the probability of losing diversity is:

pr ≤
1

µ+ 1

[

(µ− 1)2

µ2

(

1− c

n

)n

+ 2
1

µ

µ− 1

µ

(

1

4

(

1− c

n

)n

+O(1/n)
)

+O(1/n2)

]

≤ 2(µ− 1)2 + (µ− 1) + 4ec(µ− 1)O(1/n)
2ecµ2(µ+ 1)

+
O(1/n2)

µ+ 1

=
(µ− 1)[2(µ− 1) + 1 + 4ecO(1/n)] + 2ecµ2O(1/n2)

2ecµ2(µ+ 1)

=
(µ− 1)[2(µ− 1) + 1 +O(1/n)] +O(1/n2)

2ecµ2(µ+ 1)

≤ (µ− 1)(2µ− 1 +O(1/n))
2ecµ2(µ+ 1)

.

In the last inequality we absorbed the O(1/n2) term into the

O(1/n) term.

The transition probability pm from state S1,i to state S3,i

is the probability of improvement by mutation only, because

crossover is ineffective at state S1,i. The number of 1-bits in

the offspring increases if the mutation operator flips one of

the (n− i) 0-bits (i.e., with probability c(n− i)/n) and does

not flip any other bit (i.e., with probability (1 − c/n)n−1 ≥
(

ec +O(1/n)
)−1

according to Eq. (3)). Therefore, the lower

bound on the probability pm is:

pm ≥
c(n− i)

n
(

ec +O(1/n)
) .

We are finally ready to state our main result.

Theorem 9. The expected runtime of the (µ+1) GA with µ ≥ 3
and mutation rate c/n for any constant c on ONEMAX is:

E[T] ≤ 3ecn log n

c(3 + c)
+O(nµ logµ).

For µ = o(log n/ log log n), the bound reduces to:

E[T] ≤ 3

c(3 + c)
ecn log n (1 + o(1)) .

Proof. We use Theorem 1 to bound E[Ti], the expected time

until the (µ+1) GA creates an offspring at fitness level i+1 or

above given that all individuals in its initial population are at

level i. The bounds on the transition probabilities established

in Lemma 8 will be set as the exact transition probabilities

of another Markov chain, M ′, with absorbing time larger than

E[Ti] (by Theorem 1). Since Theorem 1 requires that pc > pm
and Lemma 7 establishes that pc > pm holds for all fitness

levels i > n − n/4c(1 + ec), we will only analyse E[Ti] for

n − 1 ≥ i > n − n/
(

4c(1 + ec)
)

. Recall that, by Lemma 7,

level n− n/
(

4c(1 + ec)
)

is reached in expected O(nµ logµ)
time.

Consider the expected absorbing time E[T ′
i], of the Markov

chain M ′ with transition probabilities:

p′d :=
µ

(µ+ 1)

i(n− i)c2

n2(ec +O(1/n)) , p′c :=
µ− 1

2µ2(ec +O(1/n)) ,

p′r :=
(µ− 1)

(

2µ− 1 +O(1/n)
)

2ecµ2(µ+ 1)
, p′m :=

c(n− i)

n(ec +O(1/n)) .

According to Theorem 1:

E[Ti] ≤ E[T ′
i,1] ≤

p′c + p′r
p′cp

′
d + p′cp

′
m + p′mp′r

+
1

p′c
. (4)

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2745715, IEEE

Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 8

We simplify the numerator and the denominator of the first

term separately. The numerator is

p′c + p′r =
µ− 1

2µ2(ec +O(1/n)) +
(µ− 1)

(

2µ− 1 +O(1/n)
)

2ecµ2(µ+ 1)

≤ µ− 1

2µ2ec

(

1 +
2µ− 1 +O(1/n)

µ+ 1

)

≤ (µ− 1)[3µ+O(1/n)]
2µ2ec(µ+ 1)

. (5)

We can also rearrange the denominator D = p′cp
′
d + p′cp

′
m +

p′mp′r as follows:

D = p′c(p
′
d + p′m) + p′mp′r

=
(µ− 1)

(

µi(n−i)c2

(µ+1)n2(ec+O(1/n)) +
c(n−i)

n(ec+O(1/n))

)

2µ2 (ec +O(1/n))

+
c(n− i)(µ− 1)

(

2µ− 1 +O(1/n)
)

n (ec +O(1/n)) 2ecµ2(µ+ 1)

≥
(µ− 1)

(

µi(n−i)c2

(µ+1)n2 + c(n−i)
n

)

2µ2 (e2c +O(1/n))

+
c(n− i)(µ− 1)

(

2µ− 1 +O(1/n)
)

n (e2c +O(1/n)) 2µ2(µ+ 1)

≥ c(n− i)(µ− 1)

2µ2 (e2c +O(1/n)) ·
(

µic

(µ+ 1)n2
+

1

n
+

2µ− 1 +O(1/n)
n(µ+ 1)

)

≥ c(n− i)(µ− 1)

2µ2 (e2c +O(1/n)) ·
(

µic+ (µ+ 1)n+ n
(

2µ− 1 +O(1/n)
)

(µ+ 1)n2

)

≥
c(n− i)(µ− 1)

(

µic+ n

[

3µ+O(1/n)
])

2µ2 (e2c +O(1/n)) (µ+ 1)n2
.

(6)

Note that the term in square brackets is the same in both

the numerator (i.e., Eq. (5)) and the denominator (i.e., Eq. (6))

including the small order terms in O(1/n) (i.e., they are

identical). Let A = [3µ+ c′/n], where c′ > 0 is the smallest

constant that satisfies the O(1/n) in the upper bound on pr
in Lemma 8. We can now put the numerator and denominator

together and simplify the expression :

(p′c + p′r)/
(

p′c(p
′
d + p′m) + p′mp′r

)

≤ (µ− 1)A

2µ2ec(µ+ 1)
· 2µ

2
(

e2c +O(1/n)
)

(µ+ 1)n2

c(n− i)(µ− 1)(µic+ nA)

≤ A
(

e2c +O(1/n)
)

n2

ecc(n− i)(µic+ nA)
.

By using that
e2c+O(1/n)

ec ≤ ec +O(1/n), we get:

≤ A (ec +O(1/n))n2

c(n− i)(µic+ nA)

≤ ec
An2

c(n− i)(µic+ nA)
+O(1/n) An2

c(n− i)(µic+ nA)
.

The facts, n − i ≥ 1, A = Ω(1), and µ, i, c > 0 imply

that, nA + µic = Ω(n) and An2

c(n−i)(µic+nA) = O(n). When

multiplied by the O(1/n) term, we get:

≤ ecn

c(n− i)

An

(µic+ nA)
+O(1).

By adding and subtracting µic to the numerator of An
(µic+nA) ,

we obtain:

≤ ecn

c(n− i)

(

1− µic

µic+ nA

)

+O(1).

Note that the multiplier outside the brackets, (ecn)/(c(n−
i)), is in the order of O

(

n/(n− i)
)

. We now add and subtract

µnc to the numerator of − µic
µic+nA to create a positive additive

term in the order of O
(

µ(n− i)/n
)

.

=
ecn

c(n− i)

(

1− µnc

µic+ nA
+

µ(n− i)c

µic+ nA

)

+O(1)

=
ecn

c(n− i)

(

1− µnc

µic+ nA

)

+
ecn

c(n− i)

µ(n− i)c

µic+ nA

+O(1) = ecn

c(n− i)

(

1− µnc

µic+ nA

)

+O(µ).

Since p′c = Ω(1/µ), we can similarly absorb 1/p′c into the

O(µ) term. After the addition of the remaining term 1/p′c from

Eq.(4), we obtain a valid upper bound on E[Ti]:

E[Ti] ≤
p′c + p′r

p′cp
′
d + p′cp

′
m + p′mp′r

+
1

p′c

≤ ecn

c(n− i)

(

1− µnc

µic+ nA

)

+O(µ).

In order to bound the negative term, we will rearrange its

denominator (i.e., nA+ µic):

n
[

3µ+ c′/n] + µ = 3µn+ c′ + µic

= 3µn+ c′ − (n− i)µc+ µnc < µn(3 + c) + c′,

where the second equality is obtained by adding and subtract-

ing µnc. Altogether,

E[Ti] ≤
ecn

c(n− i)

(

1− µnc

µn(3 + c) + c′

)

+O(µ)

=
ecn

c(n− i)

(

1−
µnc+ c′ c

3+c − c′ c
3+c

µn(3 + c) + c′

)

+O(µ)

=
ecn

c(n− i)

(

1− c

3 + c
+

c′ c
3+c

µn(3 + c) + c′

)

+O(µ)

=
ecn

c(n− i)

(

1− c

3 + c
+O(1/n)

)

+O(µ)

=
ecn

c(n− i)

3

3 + c
+O(µ).

If we add the expected time to take over each fitness level

from Lemma 6 and sum over all fitness levels the upper bound

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2745715, IEEE

Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 9

on the runtime is:
n
∑

i=n−n/(4c(1+ec))

(

ecn

c(n− i)

3

3 + c
+O(µ) +O(µ logµ)

)

≤
n
∑

i=0

(

ecn

c(n− i)

3

3 + c
+O(µ logµ)

)

≤ 3ecn log n

c(3 + c)
+O(nµ logµ) ≤ 3ecn log n

c(3 + c)
(1 + o(1)) ,

where in the last inequality we use µ = o(log n/ log log n) to

prove the second statement of the theorem.

The second statement of the theorem provides an upper

bound of (3/4)en log n for the standard mutation rate 1/n
(i.e., c = 1) and µ = o(log n/ log log n). The upper bound is

minimised for c = 1
2

(√
13− 1

)

. Hence, the best upper bound

is delivered for a mutation rate of about 1.3/n. The resulting

leading term of the upper bound is:

E[T] ≤ 6e
1

2 (
√
13−1)n log n

(√
13− 1

) (

1
2

(√
13− 1

)

+ 3
) ≈ 1.97n log n.

We point out that Theorem 9 holds for any µ ≥ 3. Our

framework provides a higher upper bound when µ = 2
compared to larger values of µ. The main difference lies in

the probability pr as shown in the following lemma.

Lemma 10. The transition probabilities pm, pr, pc and pd
for the (2+1) GA, with mutation rate c/n and c constant, are

bounded as follows:

pd ≥
2

3

i(n− i)c2

n2(ec +O(1/n)) , pc ≥
1

8(ec +O(1/n)) ,

pr ≤
5

24ec
+O(1/n), pm ≥

c(n− i)

(ec +O(1/n))n.

The upper bound on pr from Lemma 8 is 1/(8ec), which is

smaller than the bound we have just found. This is due to the

assumptions in the lemma that there can be only one genotype

in the population at a given time which can take over the

population in the next iteration. However, when µ = 2, either

individual can take over the population in the next iteration.

This larger upper bound on pr for µ = 2 leads to a larger

upper bound on the runtime of E[T] ≤ 4
c+4

ecn logn
c (1+o(1))

for the (2+1) GA. The calculations are omitted as they are

the same as those of the proof of Theorem 9 where pr ≥
5/(24ec) +O(1/n) is used and µ is set to 2.

VI. LOWER BOUND

In the previous section we provided a higher upper bound

for the (2+1) GA compared to the (µ+1) GA with population

size greater than 2 and µ = o(log n/ log logn). To rigorously

prove that the (2+1) GA is indeed slower, we require a lower

bound on the runtime of the algorithm that is higher than the

upper bound provided in the previous section for the (µ+ 1)
GA (µ ≥ 3).

Since providing lower bounds on the runtime is a noto-

riously hard task, we will follow a strategy previously used

by Sudholt [40] and analyse a version of the (µ+1) GA with

Algorithm 2: (2 + 1)S GA

1 P ← µ individuals, uniformly at random from {0, 1}n;

2 repeat

3 Choose x, y ∈ P uniformly at random among P ∗, the

individuals with the current best fitness f∗;

4 z ← Uniform crossover with probability 1/2 (x, y);
5 Flip each bit in z with probability c/n;

6 If f(z) = f∗ and max
w∈P∗

(HD(w, z)) > 2 then

z ← z ∨ argmax
w∈P∗

(HD(w, z)) ;

7 P ← P ∪ {z};
8 Choose one element from P with lowest fitness and

remove it from P , breaking ties at random;
9 until termination condition satisfied;

greedy parent selection and greedy crossover (i.e., Algorithm

2) in the sense that:

1) Parents are selected uniformly at random only among

the solutions from the highest fitness level (greedy

selection).

2) If the offspring has the same fitness as its parents and its

Hamming distance to any individual with equal fitness

in the population is larger than 2, then the algorithm

automatically performs an OR operation between the

offspring and the individual with the largest Hamming

distance and fitness, breaking ties arbitrarily, and adds

the resulting offspring to the population i.e., we pes-

simistically allow it to skip as many fitness levels as

possible (semi-greedy crossover).

The greedy selection allows us to ignore the improvements

that occur via crossover between solutions from different

fitness levels. Thus, the crossover is only beneficial when there

are at least two different genotypes in the population at the

highest fitness level discovered so far. The difference with the

algorithm analysed by Sudholt [40] is that the (2 + 1)S GA

we consider does not use any diversity mechanism and it

does not automatically crossover correctly when the Hamming

distance between parents is exactly 2. As a result, there still is

a non-zero probability of losing diversity before a successful

crossover occurs. The crossover operator of the (2+1)S GA is

less greedy than the one analysed in [40] (i.e., there crossover

is automatically successful also when the Hamming distance

between the parents is 2). We point out that the upper bounds

on the runtime derived in the previous section also hold for

the greedy (2 + 1)S GA.

The Markov chain structure of Figure 1 is still representative

of the states that the algorithm can be in. When there is no

diversity in the population, either an improvement via mutation

occurs or diversity is introduced into the population by the

mutation operator. When diversity is present, both crossover

and mutation can reach a higher fitness level while there is

also a probability that the population will lose diversity by

replicating one of the existing genotypes. With a population

size of two the diversity can be lost by creating a copy of

either solution and removing the other one from the population

during environmental selection (i.e., Line 8 in Algorithm 2).

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2745715, IEEE

Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 10

Fig. 2. Average runtime over 1000 independent runs versus problem size n.

	0

	20000

	40000

	60000

	80000

	100000

	120000

	140000

	160000

	180000

	200000

	256 	512 	1024 	2048 	4096 	8192

A
v
e
ra
g
e
	r
u
n
ti
m
e

Problem	size	(n)

(1+1)	EA
(2+1)	GA
(5+1)	GA

Sudholt	(2+1)	GA opt

Sudholt	(2+1)	GA 1/n

Sudholt	greedy	selection	+	very	greedy	XO	opt 	[9]

Self-adjusting	1+(λ,	λ)[9]

With population sizes greater than two, the loss of diversity

can only occur when the majority genotype (i.e., the genotype

with most copies in the population) is replicated. Building

upon this we will show that the asymptotic performance of

(2 + 1)S GA for ONEMAX cannot be better than that of the

(µ+1) GAs for µ > 2.

Like in [40] for our analysis we will apply the fitness level

method for lower bounds proposed by Sudholt [39]. Due to

the greedy crossover and the greedy parent selection used in

[40], the population could be represented by the trajectory of a

single individual. If an offspring with lower fitness was added

to the population, then the greedy parent selection never chose

it. If instead, a solution with equally high fitness and different

genotype was created, then the algorithm immediately reduced

the population to a single individual that is the best possible

outcome from crossing over the two genotypes. The main

difference between the following analysis and that of [40] is

that we want to take into account the possibility that the gained

diversity may be lost before crossover exploits it. To this end,

when individuals of equal fitness and Hamming distance 2 are

created, crossover only exploits this successfully (i.e., goes

to the next fitness level) with the conditional probability that

crossover is successful before the diversity is lost. Otherwise,

the diversity is lost. Only when individuals of Hamming

distance larger than 2 are created, we allow crossover to

immediately provide the best possible outcome as in [40].

Now, we can state the main result of this section.

Theorem 11. The expected runtime of the (2 + 1)S GA with

mutation probability p = c/n for any constant c on ONEMAX

is no less than:

3ec

c

(

3 + max
1≤k≤n

((np)
k

(k!)2)

)n log n−O(n log log n).

Note that for c ≤ 4, max
1≤k≤n

((np)
k

(k!)2) ≤ pn = c. Since E[T] ≥
en log n for c ≥ 3, for the purpose of finding the mutation rate

that minimises the lower bound, we can reduce the statement

Fig. 3. Comparison between standard selection, greedy selection and greedy
selection + greedy crossover GAs. The runtime is averaged over 1000
independent runs.

	0

	20000

	40000

	60000

	80000

	100000

	120000

	140000

	160000

	64 	128 	256 	512 	1024 	2048 	4096 	8192

A
v
e
ra
g
e
	r
u
n
ti
m
e

Problem	size	(n)

(2+1)	GA
Greedy	selection	(2+1)	GA

(2+1)S	GA
Sudholt	(2+1)	GA 1/n

Sudholt	greedy	selection(2+1)	GA 1/n

Sudholt	greedy	selection	+	greedy	XO	(2+1)	GA 1/n

of the theorem to:

3ecn log n

c(3 + c)
−O(n log logn).

The theorem provides a lower bound of (3/4)en log n −
O(n log log n) for the standard mutation rate 1/n (i.e., c = 1).

The lower bound is minimised for c = 1
2

(√
13− 1

)

. Hence,

the smallest lower bound is delivered for a mutation rate of

about 1.3/n. The resulting lower bound is:

E[T] ≥ 6e
1

2 (
√
13−1)n log n

(√
13− 1

) (

1
2

(√
13− 1

)

+ 3
) −O(n log logn)

≈1.97n log n−O(n log log n).

Since the lower bound for the (2 + 1)S GA matches the

upper bound for the (µ+1) GA with µ > 2, the theorem

proves that, under greedy selection and semi-greedy crossover,

populations of size 2 cannot be faster than larger population

sizes up to µ = o(log n/ log logn). In the following section

we give experimental evidence that the greedy algorithms

are faster than the standard (2+1) GA, thus suggesting that

the same conclusions hold also for the standard non-greedy

algorithms.

VII. EXPERIMENTS

The theoretical results presented in the previous sections

pose some new interesting questions. On one hand, the

theory suggests that population sizes greater than 2 benefit

the (µ+1) GA for hillclimbing the ONEMAX function. On

the other hand, the best runtime bounds are obtained for a

mutation rate of approximately 1.3/n, suggesting that higher

mutation rates than the standard 1/n rate may improve the

performance of the (µ+1) GA. In this section we present the

outcome of some experimental investigations to shed further

light on these questions. In particular, we will investigate the

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2745715, IEEE

Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 11

Fig. 4. Average runtime gain of the (µ+1) GA versus the (2+1) GA for
different population sizes, errorbars show the standard deviation normalised
by the average runtime for µ = 2.

	0.7

	0.8

	0.9

	1

	1.1

	1.2

	1.3

	2 	4 	6 	8 	10 	12 	14 	16

A
v
g
.	
ru
n
ti
m
e
/A
v
g
.	
ru
n
ti
m
e
	o
f	
(1
+
1
)E
A
	

Population	size

n=256
n=1024

n=4096
n=16384

effects of the population size and mutation rate on the runtime

of the steady-state GA for ONEMAX and compare its runtime

against other GAs that have been proved to be faster than

mutation-only EAs in the literature.

We start with an overview of the performance of the

algorithms. In Fig. 2, we plot the average runtime over 1000

independent runs of the (µ+1) GA with µ = 2 and µ = 5
(with uniform parent selection and standard 1/n mutation

rate) for exponentially increasing problem sizes and compare

it against the fastest standard bit mutation-only EA with static

mutation rate (i.e., the (1+1) EA with 1/n mutation rate).

While the algorithm using µ = 5 outperforms the µ = 2
version, they are both faster than the (1+1) EA already for

small problem sizes. We also compare the algorithms against

the (2+1) GA investigated by Sudholt [40] where diversity

is enforced by the environmental selection always preferring

distinct individuals of equal fitness - the same GA variant

that was first proposed and analysed in [23]. We run the

algorithm both with standard mutation rate 1/n and with

the optimal mutation rate (1 +
√
5)/(2n). Obviously, when

diversity is enforced, the algorithms are faster. Finally, we also

compare the algorithms against the (1+(λ,λ)) GA with self-

adjusting population sizes and Sudholt’s (2+1) GA as they

were compared previously in [10]. Note that in [10] (Fig.

8 therein) Sudholt’s algorithm was implemented with a very

greedy parent selection operator that always prefers distinct

individuals on the highest fitness level for reproduction.

In order to decompose the effects of the greedy parent selec-

tion, greedy crossover and the use of diversity, we conducted

further experiments shown in Figure 3. Here, we see that it

is indeed the enforced diversity that creates the fundamental

performance difference. Moreover, the results show that the

greedy selection/greedy crossover GA is slightly faster than the

greedy parent selection GA and that greedy parent selection

is slightly faster than standard selection. Overall, the figure

suggests that the lower bound presented in Theorem 11 is

also valid for the standard (2+1) GA with uniform parent

selection (i.e., no greediness). In Figure 3, it can be noted

that the performance difference between the GA with greedy

crossover and greedy parent selection analysed in [40] and

the (2+1) GA with enforced diversity and without greedy

crossover is more pronounced than the performance difference

between the standard (2+1) GA analysed in Section V and the

(2 + 1)S GA which was analysed in Section VI. The reason

behind the difference in discrepancies is that the (2+1)S GA

does not implement the greedy crossover operator when the

Hamming distance is 2. We speculate that cases where the

Hamming distance is just enough for the crossover to exploit

it occur much more frequently than the cases where a larger

Hamming distance is present. As a result, the performance of

the (2 + 1)S GA does not deviate much from the standard

algorithm. Table I (see supplementary material) presents the

mean and standard deviation of the runtimes of the algorithms

depicted in Figure 2 and Figure 3 over 1000 independent runs.

Now we investigate the effects of the population size on

the (µ+1) GA. We perform 1000 independent runs of the

(µ+1) GA with uniform parent selection and standard mutation

rate 1/n for increasing population sizes up to µ = 16. In

Fig. 4 we present average runtimes divided by the runtime of

the (2 + 1) GA and in Fig. 5 normalised against the runtime

of the (1+1) EA. In both figures, we see that the runtime

improves for µ larger than 2 and after reaching its lowest

value increases again with the population size. It is not clear

whether there is a constant optimal static value for µ around 4

or 5. The experiments, however, do not rule out the possibility

that the optimal static population size increases slowly with

the problem size (i.e., µ = 3 for n = 256, µ = 4 for n = 4096
and µ = 5 for n = 16384). On the other hand, we clearly see

that as the problem size increases we get a larger improvement

on the runtime. This indicates that the harder is the problem,

more useful are the populations. In particular, in Figure 5 we

see that the theoretical asymptotic gain of 25% with respect

to the runtime of the (1+1) EA is approached more and more

closely as n increases. For the considered problem sizes, the

(µ+1) GA is faster than the (1+1) EA for all tested values of

µ. However, to see the runtime improvement of the (µ+1) GA

against the (2+1) GA for µ > 15 the experiments (Fig. 4)

suggest that greater problem sizes would need to be used.

Finally, we investigate the effect of the mutation rate on

the runtime. Based on our previous experiments we set the

population size to the best seen value of µ = 5 and perform

1000 independent runs for each c value ranging from 0.9
to 1.9. In Figure 6, we see that even though the mutation

rate c ≈ 1.3 minimises the upper bound we proved on the

runtime, setting a larger mutation rate of 1.6 further decreases

the runtime.

VIII. CONCLUSION

The question of whether genetic algorithms can hillclimb

faster than mutation-only algorithms is a long standing one.

On one hand, in his pioneering book, Rechenberg had given

preliminary experimental evidence that crossover may speed

up the runtime of population based EAs for generalised

ONEMAX [34]. On the other hand, further experiments sug-

gested that genetic algorithms were slower hillclimbers than

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2745715, IEEE

Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 12

Fig. 5. Average runtime gain of the (µ+1) GA versus the (1+1) EA for
different population sizes, errorbars show the standard deviation normalised
by the average runtime of the (1+1) EA.

	0.6

	0.7

	0.8

	0.9

	1

	1.1

	1.2

	1.3

	1.4

	2 	4 	6 	8 	10 	12 	14 	16

A
v
g
.	
ru
n
ti
m
e
/A
v
g
.	
ru
n
ti
m
e
	o
f	
(1
+
1
)E
A
	

Population	size

n=256
n=1024

n=4096
n=16384

Fig. 6. Average runtime gain of the (5+1) GA for various mutation rates
versus the standard 1/n mutation rate, errorbars show the standard deviation
normalised by the average runtime for 1/n mutation rate.

	0.7

	0.8

	0.9

	1

	1.1

	1.2

	1.3

	1 	1.2 	1.4 	1.6 	1.8

A
v
g
.	
ru
n
ti
m
e
/(
A
v
g
.	
ru
n
ti
m
e
	f
o
r	
c
=
1
)	

Mutation	rate	(c)

n=256
n=1024

n=4096
n=16384

the (1+1) EA [21], [29]. In recent years it has been rigorously

shown that crossover and mutation can outperform algorithms

using only mutation. Firstly, a new theory-driven GA called

(1+(λ,λ)) GA has been shown to be asymptotically faster

for hillclimbing the ONEMAX function than any unbiased

mutation-only EA [10]. Secondly, it has been shown how

standard (µ+λ) GAs are twice as fast as their standard bit

mutation-only counterparts for ONEMAX as long as diversity

is enforced through environmental selection [40].

In this paper we have rigorously proven that standard

steady-state GAs with µ ≥ 3 and µ = o(log n/ log logn) are

at least 25% faster than all unbiased standard bit mutation-

based EAs with static mutation rate for ONEMAX even if no

diversity is enforced. The Markov Chain framework we used to

achieve the upper bounds on the runtimes should be general

enough to allow future analyses of more complicated GAs,

for instance with greater offspring population sizes or more

sophisticated crossover operators. A limitation of the approach

is that it applies to classes of problems that have plateaus of

equal fitness. Hence, for functions where each genotype has a

different fitness value our approach would not apply. An open

question is whether the limitation is inherent to our framework

or whether it is crossover that would not help steady-state EAs

at all on such fitness landscapes.

Our results also explain that populations are useful not

only in the exploration phase of the optimization, but also

to improve exploitation during the hillclimbing phases. In

particular, larger population sizes increase the probability of

creating and maintaining diversity in the population. This

diversity can then be exploited by the crossover operator.

Recent results had already shown how the interplay between

mutation and crossover may allow the emergence of diversity,

which in turn allows to escape plateaus of local optima

more efficiently compared to relying on mutation alone [5].

Our work sheds further light on the picture by showing that

populations, crossover and mutation together, not only may

escape optima more efficiently, but may be more effective also

in the exploitation phase.

Another additional insight gained from the analysis is that

the standard mutation rate 1/n may not be optimal for the

(µ+1) GA on ONEMAX. This result is also in line with, and

nicely complements, other recent findings concerning steady

state GAs. For escaping plateaus of local optima it has been

recently shown that increasing the mutation rate above the

standard 1/n rate leads to smaller upper bounds on escaping

times [5]. However, when jumping large low-fitness valleys,

mutation rates of about 2.6/n seem to be optimal static

rates (see the experiment section in [3], [4]). For ONEMAX

lower mutation rates seem to be optimal static rates, but still

considerably larger than the standard 1/n rate.

New interesting questions for further work have spawned.

Concerning population sizes an open problem is to rigorously

prove whether the optimal size grows with the problem size

and at what rate. Also determining the optimal mutation rate

remains an open problem. While our theoretical analysis deliv-

ers the best upper bound on the runtime with a mutation rate

of about 1.3/n, experiments suggest a larger optimal mutation

rate. Interestingly, this experimental rate is very similar to

the optimal mutation rate (i.e., approximately 1.618/n) of the

(µ+1) GA with enforced diversity proven in [40]. The benefits

of higher than standard mutation rates in elitist algorithms is

a topic that is gaining increasing interest [31], [2], [15].

Further improvements may be achieved by dynamically

adapting the population size and mutation rate during the

run. Advantages, in this sense, have been shown for the

(1+(λ,λ)) GA by adapting the population size [7] and for

single individual algorithms by adapting the mutation rate [13],

[27]. Generalising the results to larger classes of hillclimbing

problems is intriguing. In particular, proving whether speed

ups of the (µ+1) GA compared to the (1+1) EA are also

achieved for royal road functions would give a definitive

answer to a long standing question [29]. Analyses for larger

problem classes such as linear functions and classical combi-

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2745715, IEEE

Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 13

natorial optimisation problems would lead to further insights.

Yet another natural question is how the (µ+1) GA hillclimbing

capabilities compare to (µ+λ) GAs and generational GAs.

Acknowledgement

The research leading to these results has received funding

from the EPSRC under grant no. EP/M004252/1.

REFERENCES

[1] T. Bäck, Evolutionary Algorithms in Theory and Practice. Oxford
University Press, 1996.

[2] D. Corus, P. S. Oliveto, and D. Yazdani, “On the runtime analysis of
the opt-ia artificial immune system,” in Proceedings of the Genetic and

Evolutionary Computation Conference (GECCO 2017). ACM, 2017,
pp. 83–90.

[3] D.-C. Dang, T. Friedrich, T. Kötzing, M. S. Krejca, P. K. Lehre, P. S.
Oliveto, D. Sudholt, and A. M. Sutton, “Escaping Local Optima using
Crossover with Emergent or Reinforced Diversity,” ArXiv, Aug. 2016.

[4] ——, “Escaping local optima using crossover with emergent diversity,”
IEEE Transactions on Evolutionary Computation, pp. –, 2017, in Press.

[5] D. Dang, T. Friedrich, T. Kötzing, M. S. Krejca, P. K. Lehre, P. S.
Oliveto, D. Sudholt, and A. M. Sutton, “Emergence of diversity and its
benefits for crossover in genetic algorithms,” in International Conference

on Parallel Problem Solving from Nature (PPSN XIV), 2016, pp. 890–
900.

[6] D. Dang, T. Friedrich, T. Kötzing, M. S. Krejca, P. K. Lehre, P. S.
Oliveto, D. Sudholt, and A. M. Sutton, “Escaping local optima with
diversity mechanisms and crossover,” in Proceedings of the Genetic and

Evolutionary Computation Conference (GECCO 2016). ACM, 2016,
pp. 645–652.

[7] B. Doerr and C. Doerr, “Optimal parameter choices through self-
adjustment: Applying the 1/5-th rule in discrete settings,” in Proceedings

of the Genetic and Evolutionary Computation Conference (GECCO

2015). ACM, 2015, pp. 1335–1342.

[8] ——, “A tight runtime analysis of the (1+(λ, λ)) genetic algorithm on
onemax,” in Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO 2015). ACM, 2015, pp. 1423–1430.

[9] B. Doerr, C. Doerr, and F. Ebel, “From black-box complexity to
designing new genetic algorithms,” Theoretical Computer Science, vol.
567, pp. 87 – 104, 2015.

[10] ——, “From black-box complexity to designing new genetic algo-
rithms,” Theoretical Computer Science, vol. 567, pp. 87–104, 2015.

[11] B. Doerr, C. Doerr, and T. Kötzing, “The right mutation strength for
multi-valued decision variables,” in Proceedings of the Genetic and

Evolutionary Computation Conference (GECCO 2016). ACM, 2016,
pp. 1115–1122.

[12] B. Doerr, C. Doerr, R. Spöhel, and T. Henning, “Playing mastermind
with many colors,” Journal of the ACM, vol. 63, no. 5, pp. 42:1–42:23,
2016.

[13] B. Doerr, C. Doerr, and J. Yang, “k-bit mutation with self-adjusting
k outperforms standard bit mutation,” in International Conference on

Parallel Problem Solving from Nature (PPSN XIV). Springer, 2016,
pp. 824–834.

[14] B. Doerr, E. Happ, and C. Klein, “Crossover can provably be useful in
evolutionary computation,” Theoretical Computer Science, vol. 425, pp.
17–33, 2012.

[15] B. Doerr, H. P. Le, R. Makhmara, and T. D. Nguyen, “Fast genetic al-
gorithms,” in Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO 2017). ACM, 2017, pp. 777–784.

[16] B. Doerr and C. Winzen, “Playing mastermind with constant-size
memory,” Theory of Computing Systems, vol. 55, no. 4, pp. 658–684,
2014.

[17] A. E. Eiben and J. E. Smith, Introduction to evolutionary computing.
Springer, 2003.

[18] T. Friedrich, P. S. Oliveto, D. Sudholt, and C. Witt, “Analysis of
diversity-preserving mechanisms for global exploration,” Evolutionary

Computation, vol. 17, no. 4, pp. 455–476, 2009.

[19] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-

chine Learning. Addison-Wesley, 1989.

[20] J. H. Holland, Adaptation in Natural and Artificial Systems. University
Michigan Press, 1975.

[21] T. Jansen and I. Wegener, “Real royal road functions — where crossover
provably is essential,” Discrete Applied Mathematics, vol. 149, no. 1-3,
pp. 111–125, 2005.

[22] T. Jansen, Analyzing evolutionary algorithms: The computer science

perspective. Springer, 2013.
[23] T. Jansen and I. Wegener, “The analysis of evolutionary algorithms-a

proof that crossover really can help,” Algorithmica, vol. 34, no. 1, pp.
47–66, 2002.

[24] T. Kötzing, D. Sudholt, and M. Theile, “How crossover helps in Pseudo-
Boolean optimization,” in Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO 2011). ACM Press, 2011, pp. 989–
996.

[25] P. K. Lehre and C. Witt, “Black-box search by unbiased variation,”
Algorithmica, vol. 64, no. 4, pp. 623–642, 2012.

[26] P. K. Lehre and X. Yao, “Crossover can be constructive when computing
unique input–output sequences,” Soft Computing, vol. 15, no. 9, pp.
1675–1687, 2011.

[27] A. Lissovoi, P. S. Oliveto, and J. A. Warwicker, “On the runtime analysis
of generalised selection hyper-heuristics for pseudo-boolean optimisa-
tion,” in Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO 2017). ACM, 2017, pp. 849–856.
[28] M. Mitchell, J. Holland, and S. Forrest, “Relative building-block fitness

and the building block hypothesis,” in Foundations of Genetic Algo-

rithms (FOGA ’93), vol. 2, 1993, pp. 109–126.
[29] ——, “When will a genetic algorithm outperform hill climbing?” in

Neural Information Processing Systems (NIPS 6). Morgan Kaufmann,
1994, pp. 51–58.

[30] F. Neumann, P. S. Oliveto, G. Rudolph, and D. Sudholt, “On the effec-
tiveness of crossover for migration in parallel evolutionary algorithms,”
in Proceedings of the Genetic and Evolutionary Computation Conference

(GECCO 2011). ACM Press, 2011, pp. 1587–1594.
[31] P. S. Oliveto, P. K. Lehre, and F. Neumann, “Theoretical analysis of

rank-based mutation-combining exploration and exploitation,” in IEEE

Congress on Evolutionary Computation (CEC 2009). ACM, 2017, pp.
1455–1462.

[32] P. S. Oliveto and X. Yao, “Runtime analysis of evolutionary algorithms
for discrete optimization,” in Theory of Randomized Search Heuristics:

Foundations and Recent Developments, B. Doerr and A. Auger, Eds.
World Scientific, 2011, pp. 21–52.

[33] C. Qian, Y. Yu, and Z. Zhou, “An analysis on recombination in multi-
objective evolutionary optimization,” Artificial Intelligence, vol. 204, pp.
99 – 119, 2013.

[34] I. Rechenberg, Evolutionsstrategie: Optimierung technischer Systeme

nach Prinzipien der biologishen Evolution. Friedrich Frommann Verlag,
1973.

[35] J. E. Rowe, “Genetic algorithms,” in Handbook of computational Intelli-

gence, W. Pedrycz and J. Kacprzyk, Eds. Springer, 2011, pp. 825–844.
[36] J. Sarma and K. D. Jong, “Generation gap methods,” in Handbook of

evolutionary computation, T. Back, D. B. Fogel, and Z. Michalewicz,
Eds. IOP Publishing Ltd., 1997, ch. C 2.7.

[37] T. Storch and I. Wegener, “Real royal road functions for constant
population size,” Theoretical Computer Science, vol. 320, no. 1, pp.
123–134, 2004.

[38] D. Sudholt, “Crossover is provably essential for the ising model on
trees,” in Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO 2005). New York, New York, USA: ACM Press,
2005, pp. 1161–1167.

[39] ——, “A new method for lower bounds on the running time of evolu-
tionary algorithms,” IEEE Transactions on Evolutionary Computation,
vol. 17, no. 3, pp. 418–435, 2013.

[40] ——, “How crossover speeds up building-block assembly in genetic
algorithms,” Evolutionary Computation, vol. 25, no. 2, pp. 237–274,
2017.

[41] C. Witt, “Runtime analysis of the (µ+1) ea on simple pseudo-boolean
functions,” Evolutionary Computation, vol. 14, no. 1, pp. 65–86, 2006.

[42] ——, “Tight bounds on the optimization time of a randomized search
heuristic on linear functions,” Combinatorics, Probability & Computing,
vol. 22, no. 2, pp. 294–318, 2013.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2745715, IEEE

Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 14

Pietro S. Oliveto is a Senior Lecturer and an EPSRC
Early Career Fellow at the University of Sheffield,
UK. He received the Laurea degree in computer
science from the University of Catania, Italy in 2005
and the PhD degree from the University of Birming-
ham, UK in 2009. He has been EPSRC PhD+ Fellow
(2009-2010) and EPSRC Postdoctoral Fellow (2010-
2013) at Birmingham and Vice-Chancellor’s Fellow
at Sheffield (2013-2016).

His main research interest is the performance
analysis of bio-inspired computation techniques in-

cluding evolutionary algorithms, genetic programming, artificial immune
systems and hyperheuristics. He has won best paper awards at GECCO 2008,
ICARIS 2011 and GECCO 2014. He is part of the Steering Committee of the
annual workshop on Theory of Randomized Search Heuristics (ThRaSH),
Associate Editor of the IEEE Transactions on Evolutionary Computation,
Chair of the IEEE CIS Task Force on Theoretical Foundations of Bio-inspired
Computation and member of the EPSRC Peer Review College.

Dogan Corus is a Research Associate at the Uni-
versity of Sheffield, UK.

He received his B.S. and M.S. in industrial engi-
neering from Koc University, Istanbul, Turkey, and
his Ph. D. in computer science from the University
of Nottingham, UK.

His main research interest is the runtime analysis
of bio-inspired algorithms, in particular, population
based algorithms and genetic algorithms.

