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ABSTRACT
Over the past few decades, numerous wide (> 103 au) binaries in the Galactic field and halo
have been discovered. Their existence cannot be explained by the process of star formation or
by dynamical interactions in the field, and their origin has long been a mystery. We explain the
origin of these wide binaries by formation during the dissolution phase of young star clusters:
an initially unbound pair of stars may form a binary when their distance in phase-space is
small. UsingN-body simulations, we find that the resulting wide binary fraction in the semi-
major axis range 103 au < a < 0.1 pc for individual clusters is 1− 30%, depending on the
initial conditions. The existence of numerous wide binaries in the field is consistent with ob-
servational evidence that most clusters start out with a large degree of substructure. The wide
binary fraction decreases strongly with increasing cluster mass, and the semi-major axis of the
newly formed binaries is determined by the initial cluster size. The resulting eccentricity dis-
tribution is thermal, and the mass ratio distribution is consistent with gravitationally-focused
random pairing. As a large fraction of the stars form in primordial binaries, we predict that
a large number of the observed “wide binaries” are in fact triple or quadruple systems. By
integrating over the initial cluster mass distribution, wepredict a binary fraction of a few per
cent in the semi-major axis range 103 au< a < 0.1 pc in the Galactic field, which is smaller
than the observed wide binary fraction. However, this discrepancy may be solved when we
consider a broad range of cluster morphologies.

Key words: Binaries: general – star clusters – methods:N-body simulations

1 INTRODUCTION

A significant fraction of stars in the Galactic field are in bi-
nary and multiple systems (e.g, Duquennoy & Mayor 1991;
Fischer & Marcy 1992; Mason et al. 1998; Shatsky & Tokovinin
2002; Goodwin & Kroupa 2005; Kobulnicky & Fryer 2007;
Kouwenhoven et al. 2005, 2007; Lada 2006; Zinnecker & Yorke
2007; Goodwin et al. 2007). It is also thought that the majority of
stars are born in star clusters (Lada & Lada 2003). Thereforethe
majority of binaries1 in the field population presumably originate
from clustered star formation.

⋆ E-mail: kouwenhoven@kiaa.pku.edu.cn; s.goodwin@sheffield.ac.uk;
r.parker@sheffield.ac.uk; mbd@astro.lu.se, danielm@astro.lu.se,
pavel@astro.uni-bonn.de
† Peter and Patricia Gruber Foundation Fellow
1 For brevity we will use ‘binaries’ to mean ‘multiples’ of anymultiplic-
ity for the remainder of this paper, only drawing a distinction where it is
necessary.

It is well known that binaries are dynamically processed in
star clusters with wider and less bound systems tending to bede-
stroyed by encounters (Heggie 1975; Hills 1975). Therefore, the
field binary population is dynamically processed with respect to
the birth population of binaries (Kroupa 1995; Parker et al.2009).
The origin of most field binaries can be understood as a mixture of
differently processed initial populations (Goodwin 2009).

However, a significant number of very wide (a > 103 au) bi-
naries have been observed in the field (see§ 2). As such wide bi-
naries are extremely sensitive to destruction they have been used
to constrain the properties of the Milky Way. Wide binaries in the
Galactic disc and halo have been used to place limits on the density
of MACHOs and other unseen material (e.g,. Bahcall et al. 1985;
Quinn et al. 2009), to constrain the formation history of theGalaxy
(e.g., Allen et al. 2007), and to test the dark matter hypothesis (e.g.,
Hernandez & Lee 2008). But the extreme sensitivity to destruction
makes the survival (and even formation) of such binaries in aclus-
ter something of a mystery.

http://arxiv.org/abs/1001.3969v1
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Many very wide binaries have separations comparable to the
average interstellar separation in clusters (typically a few 103 au),
and the very widest binaries have separations of order the size of a
young cluster core (typically a few 104 au). Given this, it is difficult
to see how they could even form, let alone survive, in a cluster (see,
e,g., Scally et al. 1999; Parker et al. 2009). Even in an isolated star
forming region the typical size of a star forming core is only104 au
(Ward-Thompson et al. 2007) which presumably sets the very max-
imum size of a (primordial) binary system.

It is possible that a wide binary forms via dynamical interac-
tions in the Galactic field (the capture mechanism). A prerequisite
for this mechanism to work is that a significant amount of kinetic
energy is dissipated. This energy dissipation can occur dueto tidal
friction and due to three-body interaction. Tidal frictionoccurs in
the rare event of two stars nearly colliding in a close encounter. In
the vast majority of the cases this results in a merger or a fly-by,
and only in a small number of cases does this lead to the formation
of a binary system. However, all binaries resulting from capture by
tidal friction are very tight, with orbital period of several days.

Another possible mechanism is three-body interactions. Inthis
case the third star acts as the energy sink, and is generally ejected
with high velocity. However, the stellar density in the fieldis low, of
order 0.1 M⊙ pc−3, so that three-body encounters are rare, and cap-
ture by dynamical friction rarely occurs. Goodman & Hut (1993)
find that the creation ratėNB for binaries per unit volume can be
approximated by

ṄB = 0.75
G5M5n3

σ9
v

, (1)

whereM is the typical mass of a star in the field,n the number den-
sity of stars,σv the velocity dispersion, andG the gravitational con-
stant. In the solar neighbourhoodM ≈ 0.3 M⊙, n ≈ 0.03pc−3 and
σv ≈ 50 km s−1. For the field therefore,̇NB ≈ 4× 10−21 pc−3 Gyr−1.
This shows that the formation of binaries in the field is extremely
rare. Note that in dense star clusters the stellar density ishigh
and the velocity dispersion modest, such that the number of bi-
naries formed via three-body interactions (Eq. 1) may be substan-
tial. However,widebinaries, which have semi-major axes compa-
rable to the size of these clusters, are not formed, as they simply
do not fit in these star clusters. Furthermore,N-body simulations
by Kroupa & Burkert (2001) have shown that the observed broad
period distribution of binaries in the field cannot be produced by
dynamically modifying a tighter period distribution in a star clus-
ter.

A third possibility for the origin of wide binaries is formation
during cluster dissolution, which is the mechanism we propose in
this paper. In an evolving star cluster, stars that are initially un-
bound, may become bound to each other as the cluster expands,
i.e., if the gravitational influence of the other cluster members de-
creases2. In order to form a binary pair in this way, (i) the two stars
need to be sufficiently close together, (ii) the two stars need to have
a sufficiently small velocity difference, and (iii) the newly formed
binary should not be destroyed by gravitational interaction with the
remaining cluster stars or field stars.

Throughout this paper we refer to binaries with 103 au< a <
0.1 pc as thewide binary population. The paper is organised as

2 Interestingly, Levison et al. (2009) have independently proposed that
large populations of comets may be captured by stars during cluster dis-
solution, by a mechanism which is similar to that discussed in this paper for
wide binary formation (see also Eggers et al. 1997).
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Figure 1. The observed semi-major axis distribution,f (a), of the
wide binary population (in arbitrary units). The curves indicate the
Duquennoy & Mayor (1991) distribution (assuming a mass of 1 M⊙ for
each binary), and the results from Close et al. (1990), Lépine & Bongiorno
(2007) (for both the Galactic disk and halo), Chanamé & Gould (2004), and
Poveda et al. (2007).
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Figure 2. The cumulative distributions in period and semi-major axisfor
solar-type stars in the solar neighbourhood, for the Duquennoy & Mayor
(1991) log-normal period distribution. The total mass of each binary is as-
sumed to beMT = 1 M⊙. The dotted lines indicate the median semi-major
axis, anda = 103 au.

follows. In § 2 we briefly discuss surveys of wide binary systems
and the corresponding observational techniques. In§ 3 we explain
our technique and assumptions. In§ 4 we provide analytical and
Monte Carlo estimates for the resulting wide binary population,
and in§ 5 we present estimates based onN-body simulations of
evolving star clusters. Finally, in§ 6 we present and discuss our
conclusions.

2 OBSERVATIONS OF WIDE BINARIES

Observations have indicated that binaries as wide as 1 pc exist in the
halo, while in the Galactic disc the widest binaries have separations
of order 0.1 pc (e.g., Close et al. 1990; Chanamé & Gould 2004).
Wider binaries are rare, although some authors claim evidence for
binary and higher-order multiple systems wider than 0.1 pc (e.g.,
Scholz et al. 2008; Caballero 2009; Mamajek et al. 2009).

Statistical properties of a wide binary population are of-
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ten recovered using the angular two-point correlation function
(e.g., Bahcall & Soneira 1981; Garnavich 1988; Gould et al. 1995;
Longhitano & Binggeli 2010). The most prominent disadvantages
of this method are the inability to identity individual widebina-
ries and the need for a good model for the stellar population that is
studied.

Individual wide binary candidates are often identified by their
common proper motion on the sky (e.g., Wasserman & Weinberg
1991; Chanamé & Gould 2004; Lépine & Bongiorno 2007;
Makarov et al. 2008, and numerous others). Many wide binaries
were found by Hipparcos (ESA 1997) as well; see also Söderhjelm
(2007). Their nature can then be further constrained by mea-
suring the parallax and radial velocity (e.g., Latham et al.1984;
Hartigan et al. 1994; Quinn et al. 2009).

The most well-known survey for binarity is arguably that of
Duquennoy & Mayor (1991), who carried out a large binarity study
for solar-type stars in the solar neighbourhood. They founda log-
normal period distributionf (P) with a mean〈log P〉 = 4.8 and a
standard deviationσlogP = 2.3, whereP is the orbital period in
days, in the range 1. P . 1010 days. Note that the latter value
roughly corresponds to an orbital period of 30 Myr. In this log-
normal period distribution,∼ 15% of the binaries have a semi-
major axis wider than 103 au (see Fig. 2).

Several observational studies suggest a semi-major axis distri-
bution of the formf (a) ∝ a−1, which corresponds to a flat distri-
bution in loga, also known as̈Opik’s law (Öpik 1924; van Albada
1968; Vereshchagin et al. 1988; Allen et al. 2000; Poveda & Allen
2004). In particular, Poveda et al. (2007) find binaries in the field
follow Öpik’s law in the separation range 100. a . 3000 au, and
suggest that a population of very young binaries followsÖpik’s law
up toa ≈ 45 000 au (0.2 pc).

Many other authors have also found significant wide bi-
nary populations, notably Close et al. (1990), Lépine & Bongiorno
(2007), and Chanamé & Gould (2004). We summarise the wide bi-
nary separation distribution from various authors in Fig. 1.

The reliability of the observed properties of wide binary pop-
ulations remains an issue. It is difficult to confidently establish
whether the two components of a candidate wide binary are truly
bound, or whether it is merely a chance superposition. Due tothe
long orbital periods of wide binaries, up to millions of years, it
is impossible to accurately derive orbital properties and therefore
confirm the bound state of the candidate wide binary. It should be
noted that due to the lack of detailed orbital information, the quoted
separations of wide binaries are usually the instantaneousangular
separation. The true separations may thus be significantly larger
than the observed,projectedseparations. On the other hand, an es-
timate for the semi-major axis distribution of an ensemble of binary
systems canstatisticallybe obtained from the projected separation
(e.g., Leinert et al. 1993).

On the other hand, it is extremely difficult to identify binaries
with distant and faint stellar or substellar companions, due to con-
fusion with foreground and background stars (e.g., Chandrasekhar
1944). The wide binary fraction as identified in the observational
papers may therefore be alower limit, rather than anupper limit.

Although the exact form of the semi-major axis distribution
for very wide binaries is not yet known (see Fig. 1), two features
appear to be clear: (i) the binary fraction in the separationrange
103 au < a < 0.1 pc is roughly 15%, and (ii) a sharp drop-off in
the separation range 0.1−0.2 pc is present, likely due to dynamical
destruction of the most weakly bound binary systems.

Model Structure R (pc) N Q

P1v Plummer 0.1 6 R6 1 10 1/2
P1e Plummer 0.1 6 R6 1 10 3/2
P2v Plummer 0.1 106 N 6 1000 1/2
P2e Plummer 0.1 106 N 6 1000 3/2

F1v Fractal,α = 1.5 0.1 6 R6 1 10 1/2
F1e Fractal,α = 1.5 0.1 6 R6 1 10 3/2
F2v Fractal,α = 1.5 0.1 106 N 6 1000 1/2
F2e Fractal,α = 1.5 0.1 106 N 6 1000 3/2

Table 1. Properties of the models used in this paper. The quantityR de-
scribes the virial radii of models P1 and P2, while it describes the radius of
the sphere that includes the fractal structure for models F1and F2.

2.1 Stability of very wide binaries

Whether a wide binary in the Galactic field is stable or not,
depends primarily on its semi-major axisa. Using a Monte
Carlo approach, Weinberg et al. (1987) show that binaries with
a = 0.1 pc are able to survive in the Galactic disk for∼ 10 Gyr,
roughly the age of the Galaxy, but they do not find a sharp
cut-off in the semi-major axis distribution. On the other hand,
a sharp drop-off is observed for binaries ata ≈ 0.2 pc due to
interactions with other stars, molecular clouds, and the Galac-
tic tidal field (e.g,. Bahcall & Soneira 1981; Retterer & King
1982; Mallada & Fernandez 2001; Jiang & Tremaine 2009).
Gould & Eastman (2006) explain the slope-change at∼ 3000 au
in the separation distribution of Lépine & Bongiorno (2007) as
the result of dynamical interactions in the Galactic field. Very
low-mass binary systems are more weakly bound than their
solar-mass analogues; their typical separation is therefore expected
to be considerably smaller (e.g., Burgasser et al. 2003, seealso
Kraus & Hillenbrand 2009b), although several very low mass
binaries with separations up to∼ 0.1 pc have been detected (e.g.,
Radigan et al. 2009, and references therein).

3 METHOD AND ASSUMPTIONS

Given the apparent difficulty of forming extremely wide binaries in
star clusters, and the even greater difficulty in keeping them bound
we suggest that these extremely wide binaries form during the dis-
solution of a cluster into the field.

Many young star clusters do not survive for more than a
few Myr (Lada & Lada 2003; Fall et al. 2005; Mengel et al. 2005;
Bastian et al. 2005). Their rapid destruction is probably due to the
expulsion of the residual gas left-over after star formation, which
dramatically changes the cluster potential (Goodwin & Bastian
2006; Goodwin 2009, and references therein). Stars that areun-
bound in a cluster potential may become bound to each other af-
ter dissolution as the local density decreases, thus forming an ex-
tremely wide binary.

In this section we describe the cluster models used in the re-
mainder of this paper. We use two approaches to investigate the
formation of wide binaries during cluster dissolution: Monte Carlo
simulations (§ 4.2) andN-body simulations (§ 5). In § 3.1 we ex-
plain our choices for the models used in our analysis, in§ 3.2 we
define the quantities we use to describe binarity, and in§ 3.3 we
describe the algorithms we use to ensure the stability of thenewly
formed wide binaries.
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3.1 Model setup

We simulate star clusters using theSTARLAB package
(Portegies Zwart et al. 2001). We drawN single stars from
the Kroupa (2001) mass function,fM(M), in the mass range
0.1 6 M 6 50 M⊙. The lower-limit corresponds to the hydrogen-
burning limit. The upper limit is (somewhat arbitrarily) set to
50 M⊙.

We perform simulations with varyingN, ranging from small
stellar systems (or sub-clumps) withN = 10 to open cluster-sized
systems (N = 1000). We additionally perform simulations of clus-
ters with different radii (0.1−1 pc), to identify the relation between
the initial cluster size and the properties of the newly formed wide
binary population. We study two sets of dynamical models: Plum-
mer models and substructured (fractal) models, which we describe
below. The properties for the subsets of models are listed inTable 1.

(i) Plummer models. The Plummer sphere is often used in star
cluster simulations. In this model, each star is given a certain posi-
tion and velocity according to the Plummer model (Plummer 1911)
with a certain virial radiusRV . The models are assigned virial radii
of RV = 0.1 − 1 pc, which are typical for young clusters. Plum-
mer models are isotropic, and the stellar velocities followroughly
a Maxwellian distribution (Fig. 3).

(ii) Fractal models. Young star clusters show a signif-
icant fraction of substructure (e.g., Larson 1995; Elmegreen
2000; Testi et al. 2000; Lada & Lada 2003; Gutermuth et al. 2005;
Allen et al. 2007). We set the fractal dimensionα to 1.5 (fractal).
For comparison, a valueα = 3 corresponds to a homogeneous
sphere with radiusR. Each star is assigned a velocity, as described
in Goodwin & Whitworth (2004), such that nearby stars have sim-
ilar velocities. As in the Plummer models, each cluster is assigned
a radius in the rangeR = 0.1− 1 pc. Note, however, the difference
between the definition ofR for the two sets of models.

The virial ratio Q ≡ −EK/EP of a star cluster is defined as
the ratio between its kinetic energyEK and potential energyEP.
Clusters withQ = 1/2 are in virial equilibrium, and those with
Q < 1/2 and Q > 1/2 are contracting and expanding, respec-
tively. We study both clusters in virial equilibrium (Q = 1/2),
as well as clusters withQ = 3/2. The latter value forQ is ex-
pected for young clusters with an effective star forming efficiency
of 33% (Goodwin & Bastian 2006). We perform the simulations
until the clusters are completely dissolved, which is typically of
the order of 20− 50 Myr, the timescale at which the majority
of low-mass star clusters are destroyed (see, e.g., Tutukov1978;
Boutloukos & Lamers 2003; Bastian et al. 2005; Fall et al. 2005,
and numerous others).

3.2 Binarity and multiplicity

At first, we will consider star clusters that initially consist of sin-
gle stars only, while later (§ 5.3) we will also include primordial
binaries. We do not study the evolution of star clusters withpri-
mordial higher-order (N > 3) multiple systems. However, these
higher-order systems do form in our star cluster simulations. In this
case, the following three useful quantities describing themultiplic-
ity of a stellar population can be used:

B = (B+ T + . . . )/(S + B+ T + . . . ) (2)

N = (2B+ 3T + . . . )/(S + 2B+ 3T + . . . ) (3)

C = (B+ 2T + . . . )/(S + B+ T + . . . ) (4)

(see, e.g., Reipurth & Zinnecker 1993; Kouwenhoven et al. 2005).
Here,S, B, andT denote the number of single stars, binaries, and

triples in the system. The quantityB is the multiplicity fraction
(commonly known as the “binary fraction”).N is the non-single
star fraction, as 1− N is the fraction of stars that are single. Fi-
nally,C is the companion star fraction, which describes the average
number of companions per system, where “system” can refer toa
single star or multiple system. The number of systems is given by
S+B+T+ . . . , while S+2B+3T+ . . . denotes the total number of
individual stars. Clusters thatonly contain single stars and binary
systems haveB = C.

3.3 Detection and stability of wide binary and multiple
systems

After each simulation, potential binary and multiple systems are
identified as those pairs with negative energy (see also Parker et al.
2009). A multiple (N > 3) system can only survive for a consid-
erable amount of time if (i) the system is internally stable,and (ii)
if the outer orbit is stable against perturbations and tidalforces in
the Galactic field. To ensure internal stability of each level in the
hierarchy of the multiple system, we impose the Valtonen stability
criterionaout/ain > Qst, whereain andaout are the semi-major axes
of the inner and outer orbits. Valtonen et al. (2008) find that

Qst ≈ 3

(

1+
Mout

Min

)2/3

(1− e)−1/6
(

7
4 −

1
2 cosi − cos2 i

)1/3
, (5)

whereMin is the (total) mass of the inner component,Mout the mass
of the outer component,i the relative inclination of the orbits, ande
the eccentricity of the outer orbit. For a typical system consisting of
equal-mass stars, a circular outer orbit (e= 0) and a prograde outer
orbit i = 0, the above expression reduces toQst ≈ 3.7. Systems
with aout/ain > Qst are internally stable for at least 104 revolutions
of the outer component. For wide binaries, with orbital periods of
∼ 500 000 years (aout ≈ 104 au), this corresponds to aninternally
stable period of at least 2 Gyr.

Wide orbits may additionally be unstable against the tidal
forces in the Galactic field and interactions with other single stars
and binaries. We therefore additionally impose a maximum semi-
major axis of 0.1 pc on the outermost orbit of a binary or multiple,
motivated by the observed wide binary population (see§ 2). The
stability of wider binaries is difficult to assess. As several binaries
wider than 0.1 pc are known, our predictions may slightly underes-
timate the wide binary fraction. The properties of the wide binary
populations described in this paper therefore pertain to binaries in
the separation range 103 au < a < 0.1 pc. Note that these binary
systems fall well in the category “extremely wide binaries”in the
Zinnecker (1984) classification of orbital separations.

4 ANALYTIC AND NUMERICAL ESTIMATES

Before proceeding to theN-body simulations in§ 5, it is useful
to first obtain some analytical approximations for the prevalence
of wide binaries that form during cluster dissolution as well as
their orbital characteristics. To this end, we first obtain rough esti-
mates using an analytical approach (§ 4.1), and subsequently using
a Monte Carlo approach (§ 4.2).

4.1 Binary formation in Maxwellian velocity space

Wide binaries may form during the dissociation of a cluster if the
relative velocity between two stars is sufficiently small that they be-
come bound once the perturbing cluster potential is removed. Here
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Figure 3. The distribution of velocities and relative speeds for Plummer
model with N = 1000, a Kroupa IMF,Q = 1/2 and a virial radius of
RV = 0.1 pc.Left: The cluster members in the (vx, vy)-diagram, where, as
an example, the encircled pair of stars represent a potential binary system.
Right: the distribution of relative speeds (high-resolution histogram) closely
follows the Maxwellian distribution (solid curve).
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Figure 4. The number of close neighbours to each star (corresponding to the
number of (potential) binaries formedper starwhenNneigh≪ 1) as a func-
tion of N, vcrit for Plummer models withRV = 0.1 pc. Results are shown
for models withQ = 1/2 (solid curves) andQ = 3/2 (dashed curves). From
bottom to top, both sets of curves represent the results forvcrit = 0.10, 0.15,
0.20, 0.25, and 0.30 km s−1.

we assume that a wide binary will form if the relative velocity is
smaller than or roughly equal to the orbital velocity of a star in
a wide binary system. For two stars with massesM1 and M2 in a
circular binary orbit with semi-major axisa, the velocities of the
individual stars are given by

v1 = M2

√

G
a(M1 + M2)

and v2 = v1q−1 , (6)

whereG is the gravitational constant andq ≡ M2/M1 is the mass
ratio of the binary system. When adopting, for simplicity,q = 1,
the above expression reduces to:

vorb ≈ 30 km s−1

(

M1 + M2

M⊙

)−1/2 ( a
au

)−1/2

, (7)

wherevorb is the velocity of either of the components. In order to be
able to form a binary with semi-major axisa, we require velocity
differences to be smaller than the critical velocity

v . 2vorb ≡ vcrit (8)

For our choice of the IMF, the total mass of a binary system is of
order 1 M⊙. Binaries witha = 3.6 × 105, 9× 104 and 4× 104 au
thus typically require velocity differences ofv . vcrit = 0.1, 0.2 and
0.3 km s−1, respectively.

If the velocity distribution of the stars in a given star cluster
follows a Maxwell-Boltzmann distribution, then so does also the
distribution of relative speeds between the stars. We definethe rel-
ative velocity,V = vi − v j , with components (Vx,Vy,Vz) and mag-
nitudeV = |V|. The distribution over relative speeds is then given
by:

fV(V) dV =
1

2
√
πσ3

exp

(

− V2

4σ2

)

V2dV (9)

(Binney & Tremaine 1987, p. 485), whereσ is the one-dimensional
velocity dispersion. In the Plummer modelσ is given by:

σ2
Q=1/2(r) =

16GMcl

18πRV













1+

(

16r
3πRV

)2










−1/2

(10)

(Heggie & Hut 2003) for a cluster in virial equilibrium (i.e.Q =
1/2). Here,Mcl is the total mass of the cluster, andr the distance to
the cluster centre. We can re-write Eq. (10) in units more suitable
for the clusters considered in this paper. First, we setMcl = N〈m〉,
whereN is the number of stars in the cluster and〈m〉 is their average
mass. Using the Kroupa (2001) IMF,〈m〉 = 0.55 M⊙. Evaluating
the velocity dispersion at the (intrinsic) half-mass radius,r = Rhm ≈
0.769RV of the cluster, we find:

σQ=1/2 = 0.64×
(

0.1 pc
RV

)1/2( N
100 stars

)1/2

km s−1 . (11)

The kinetic energy for a star cluster withQ = 3/2 is three times that
of a cluster withQ = 1/2, and therefore the corresponding velocity
dispersion is

σQ=3/2 =
√

3σQ=1/2 . (12)

As an example, Fig. 3 shows the distribution of velocities (vx, vy)
for a Plummer model withN = 1000 stars, a virial radiusRV =

0.1 pc, andQ = 1/2. The distribution of relative speeds between
random pairs of stars in the cluster is shown in the right-hand panel.
The latter distribution is well approximated by Eq. (9) withσ =
1.9 km s−1, the velocity dispersion at the half-mass radius is given
by Eq. (11).

To find the relative fractionFb of pairs in a given star clus-
ter which has a relative speed such that they may become bound
when the cluster disperses, we integrate Eq. (9) betweenv = 0 and
v = vcrit, wherevcrit is the critical velocity difference (Eq. 8), below
which we assume that two stars may become bound after cluster
dissolution:

Fb =

∫ vcrit

0
P(V)dV

∫ ∞
0

P(V)dV
=

∫ vcrit

0
exp

(

− V2

4σ2

)

V2dV
∫ ∞

0
exp

(

− V2

4σ2

)

V2dV
, (13)

where we normalised the fraction to unity by dividing by the inte-
gral of Eq. (9) between 0 and∞. To find the number of pairs with
relative speed less thanvcrit we multiply Fb by N − 1. Hence:

Nneigh= (N − 1)Fb . (14)

If Nneigh is smaller than unity one might expect that the binary frac-
tion is proportional toNneigh. In situations whereNneigh is larger (i.e.,
larger than unity) and hence many stars are close to each other in
velocity space, we might expect to have some competition between
the stars to stay bound.

As an example we show in Fig. 4 howNneigh varies with the
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Figure 5. Monte-Carlo predictions for the dependence of the median semi-
major axisa of the escapingwide (103 au < a < 0.1 pc) binaries (left)
andwidebinary fractionB (right) on the number of stars in a cluster (top)
and its initial radiusR (bottom). Results are shown forQ = 1/2 (solid
curves) andQ = 3/2 (dashed curves). The thin and thick curves correspond
to the Plummer and fractal models, respectively. The diagonal dotted line
indicatesa = R. The other properties of the modelled clusters are listed in
Table 1.

number of stars,N, in clusters withQ = 1/2 andQ = 3/2. We show
results in the velocity rangevcrit = 0.1− 0.3 km s−1. Depending on
their masses and mass ratios, these velocities correspond to binary
systems with semi-major axes from∼ 0.1 pc down to∼ 104 au.
Velocities of 1.9 km s−1 (not shown in Fig. 4) roughly correspond
to binary systems witha = 103 au.

The values ofNneigh in Fig. 4 are rather high, as compared to
widebinary fractions derived in§ 4.2 and 5, mainly becauseNneigh

also contains companion stars outside the separation range103 au−
0.1 pc considered throughout this paper. In addition, we believe that
the predicted values will drop further due to the inefficiency of the
process. For example, it is not likely (but also not impossible) that
two stars with nearly the same velocity will form a wide binary
system, if there are other stars in between them. Furthermore, we
have only considered the relative velocities, while we haveignored
the relative positions between the stars. However, this analysis does
provide a strong upper limit on the (wide) binary fractions we might
expect after cluster dissolution.

4.2 Upper limits from a Monte-Carlo approach

In the previous section we obtained rough estimates for the number
of newly formed binaries using a Maxwellian velocity distribution.
However, we were unable to recover the distributions of orbital
properties, such as the semi-major axis distribution, and we were
not able to take into account the mass spectrum of stars in theclus-
ter. We therefore use a somewhat more sophisticated Monte Carlo
approach, to obtain estimates for these properties as a function of
cluster size, structure, number of stars, and virial ratio,for the mod-
els listed in Table 1. Estimates of these properties are obtained us-
ing an ensemble of initial condition snapshots of each model.

We identify the potential binaries in each star cluster as fol-
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Figure 6. Same as Fig. 5, but showing the results of theN-body simulations.

lows. For each star with massM1 we determine its nearest neigh-
bour. More precisely, we determine the “most bound” neighbour,
i.e., the neighbour with massM2 for which the internal binding en-
ergy

Eb =
1
2

M1M2

M1 + M2
v2 − GM1M2

r
(15)

is most negative. Here,r is the distance between the two stars,v
their velocity difference, andG the gravitational constant. Subse-
quently, we select those pairs of stars that are each other’smutual
nearest neighbours, and assume that they will form a binary sys-
tem with a semi-major axis of approximatelyr. Note that not all
of these bound pairs may actually form a binary system, as their
velocities are perturbed by neighbouring stars. We also ignore the
possible presence of triple systems and higher-order systems that
may form. The results, shown in Fig. 5, should therefore be con-
sidered as a first-order approximation. We will discuss thisfigure
in detail in § 5, where we will compare the results with those of
N-body simulations (shown in Fig. 6).

Based on a simple Monte Carlo approach, we find that the
wide binary fraction decreases with increasing stellar density, and
mildly decreases with increasing virial ratio. However, several sim-
plifications have been made, and therefore these results have to be
interpreted with care. In particular, we have ignored the interaction
of each star with all other stars; we have ignored two-body interac-
tions as well as the tidal field of the cluster. In the following section
we perform a more accurate analysis to obtain the abundance and
properties of wide binaries formed during cluster dissolution, by
performingN-body simulations. We will discuss all properties in
detail, and compare these to the results obtained using the analyti-
cal and Monte-Carlo approaches.

5 RESULTS FROM N-BODY SIMULATIONS

The previous two sections have shown that wide binary formation
during cluster dissolution may well be possible. In particular, small
dense clusters seem the most likely to form wide binaries.
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Figure 9. The mass ratio distribution for binary and multiple systemswith
a > 103 au resulting from the models in Figs. 7 and 8. The solid and dashed
curves indicate the mass ratio distributions for binaries with M1 > 1.5 M⊙
andM1 < 1.5 M⊙, respectively.

In this section we useN-body simulations of evolving star
clusters to study how the properties of the newly formed binaries
and multiple systems depend on the initial properties of theclus-
ters. In§ 5.1 we describe the orbital properties and multiplicity
fractions of wide binaries resulting from a typical star cluster. In
§ 5.2 we show how the results depend on the initial sizeR and the
number of starsN in clusters consisting of initially single stars, for
the models listed in Table 1. In§ 5.3 we study how the results are
affected by the presence of primordial binaries.

5.1 Properties of the newly formed binary population

We performN-body simulations of Plummer and fractal clusters
consisting ofN = 1000 stars with radiiR = 0.1 pc (the virial ra-
dius for the Plummer models, or the total radius of fractal mod-
els), with initial virial ratiosQ = 1/2 andQ = 3/2 (i.e., models
P2v, P2e, F2v and F2e in Table 1). Fifty realisations of each model
are performed to improve the statistics. The resulting distributions
over mass, mass ratio, and semi-major axis for the resultingbinary
population are shown in Figs. 7 (Plummer models) and 8 (fractal
models).

The left-hand panels in Figs. 7 and 8 show the separation
distribution f (a) of the resulting binary population. Note that bina-
ries of all separations are included in these figures, irrespective of
whether they are actually able to survive in the Galactic field or not.
The figures illustrate that the separation distribution of the newly
formed binaries is bimodal, and consists of a small-separation dy-
namical peakand a large-separationdissolution peak. The tighter
binaries in thedynamical peakare formed during dynamical en-
counters in the cluster, and most of them remain mutually bound
during the further evolution of the cluster. The wide binaries in the
dissolution peak, on the other hand, are formed during the dissolu-
tion phase of star clusters.

The two sets of models with a Plummer density distribution
result in a smalldynamical peak, indicating that dynamical inter-
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Figure 10. The eccentricity distributionf (e) for binary and multiple sys-
tems witha > 103 au resulting from the models in Figs. 7 and 8. The his-
tograms indicatef (e), while the curves show the corresponding cumulative
distributions. The filled circles represent the cumulativethermal eccentric-
ity distribution f (e) = 2e.

actions during the lifetime of the cluster generally do not result in
the formation of close binaries. This is not surprising, as all stars in
the Plummer models are initially given random velocities. Due to
the immediate expansion of the Plummer model withQ = 3/2, the
dynamical peakis completely absent in this case.

For the models with a fractal density distribution in Fig. 8,
there are numerous binaries in the dynamical peak. The fact that
thedynamical peakis stronger for models F2v/F2e than for models
P2v/P2e is due to both the initial positions and the initial veloc-
ities being correlated in the fractal models. Although the average
distance between two random stars is similar for both models, the
average distance betweennearest neighboursin the fractal mod-
els is smaller (as they are clumpy). As nearby stars in the clumpy
structure also have similar velocities, frequent dynamical interac-
tions occur, resulting in a strongdynamical peak.

For our choice of initial conditions, binaries in thedynami-
cal peakhave separations in the range 1− 103 au, with a median
value near 50− 100 au. The median value is set by the typical dis-
tance between stars in the most densely populated regions ofthe
cluster during the formation of these binary systems. Interestingly,
this also corresponds to the observed peak in the Taurus-Auriga bi-
nary separation distribution (e.g., Leinert et al. 1993; Kroupa et al.
1999).

Binaries in thedissolution peakhave a semi-major axis in the
separation range 103 au−5 pc. The widest binaries in thedissolution
peakwill immediately break up in the Galactic field, hence our
choice to study the wide binary population in the separationrange
103 au− 0.1 pc throughout this paper. The median separation of
binaries in thedissolution peakoccurs ata ≈ 0.1 − 0.2 pc. As we
will see later (§ 5.2.2), this value is set by the initial size of the
cluster.

For practical purposes, we consider three ranges in semi-
major axis: close binaries witha < 103 au, wide binaries with
103 au< a < 0.1 pc, and extremely wide binaries witha > 0.1 pc.
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Figure 7. The semi-major axis distribution (left), the correlation between mass ratioq and semi-major axisa (middle) and between primary mass and mass
ratio (right). The histograms in the semi-major axis distribution are normalized such that the maximum value equals unity. The properties of the orbits of
binary systems and higher-order multiple systems are indicated with the dots and triangles, respectively. For each multiple system withn stellar components,
we have included alln− 1 orbits. Results are shown for 50 Plummer models withN = 1000 andR = 0.1 pc, and virial ratios ofQ = 1/2 (top) andQ = 3/2
(bottom). The vertical dashed lines indicatea = 103 au anda = 0.1 pc, respectively. The dashed curve in the right-hand panelindicates the minimum mass
ratio qmin(M1) = Mmin/M1.

Table 2. The specific binary fractionB for the models shown in Figs. 7
and 8, in which the three ranges in semi-major axis are divided with the
vertical dotted lines.

Model B B B
Separation range < 103 au 103 au− 0.1 pc > 0.1 pc

P2v (N = 1000) 0.2% 0.3% 0.8%
P2e (N = 1000) 0.1% 1.4% 2.8%
F2v (N = 1000) 3.3% 1.8% 2.6%
F2e (N = 1000) 2.2% 0.6% 1.1%

The limits are indicated with the vertical dotted lines in the figures.
Most close binaries that are found in star clusters are formed via
the “normal” star formation process, with the small number seen in
these simulations formed by dynamical interactions. The wide and
extremely wide binaries are formed during the cluster dissolution
phase. Note however, that the vast majority of the extremelywide
binaries are unstable in the Galactic field, and are ionised quickly
after their formation.

For the models in Figs. 7 and 8, the specific binary fraction
(i.e., the fraction of binary systems in a certain semi-major axis
range) of the three types of binaries are listed in Table 2. The high-
est wide binary fractions of a few per cent (in the separationrange
103 au− 0.1 pc) are obtained for Plummer models withQ = 3/2,
and fractal models withQ = 1/2.

The middle and right-hand panels of Figs. 7 and 8 show
the correlations between semi-major axis, mass ratio, and primary
mass, for the binary and multiple (higher-order) systems ineach
of the models. The panels indicate the presence of a large num-
ber of newly formed multiple systems. These higher-order systems
are stable in isolation, but a large fraction will not be ableto sur-
vive in the Galactic field, where tidal forces will rapidly remove the
outer component from the system. Figs. 7 and 8 therefore overes-
timate the fraction of higher-order multiple systems. Note, in par-
ticular, the high prevalence of multiple systems in thedynamical
peak. Many outer components of these systems fall in thedissolu-
tion peak. These systems are therefore wide higher-order systems.

For the Plummer models, thedynamical peakconsists of sys-
tems with high masses and high mass ratios. This is a well-known
signature of mass segregation: the highest-mass stars sinkto the
cluster centre, where they form close binaries (e.g. Heggie& Hut
2003). During the dissolution phase of the clusters, these close,
massive binaries act like single stars when forming a “wide bi-
nary”, which is in fact a wide triple or higher-order multiple system.
The effect of mass segregation is less visible for the fractal models,
where dynamical interactions in the subclumps play a greater role.
However, Fig. 8 still clearly shows that most massive systems are
mostly close (a < 103 au) and often higher-order. In addition to
the triple and higher-order systems formed during the dissolution
process, several higher-order systems may form via dynamical in-
teractions (van den Berk et al. 2007).
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Figure 8. Same as Fig. 7, but now for fractal models withN = 1000 andR = 0.1 pc , and virial ratios ofQ = 1/2 (top) andQ = 3/2 (bottom); in each case
fifty realisations have been simulated.

The correlations between the primary mass and mass ratio dis-
tributions for the binary and multiple systems are similar to those
expected from random pairing of individual stars. To first order ap-
proximation, the masses of the two stars,M1 andM2, in each binary
are uncorrelated; one would therefore expect something similar to
random pairing (e.g., Kouwenhoven et al. 2009), where the aver-
age mass ratio decreases with increasing binary system mass. The
resulting mass ratio distributions for binary and multiplesystems
with a > 103 au (i.e., those in thedissolution peak) are shown in
Fig. 9, which illustrates the dependence of the mass ratio distribu-
tion on mass.

Based on the analysis of a sample of 798 common proper mo-
tion pairs, Trimble (1987) also come to the conclusion that the very
wide binary population in the field is consistent with randompair-
ing, and Valtonen (1997) come to the same conclusion from their
simulations of three-body encounters. However, the wide binary
population does not result from random pairing alone, as thein-
teraction between two stars depends on their mutual gravitational
attraction, and the probability of two stars forming a binary is thus
proportional to the productM1M2. In other words, gravitational fo-
cusing (e.g., Gaburov et al. 2008) plays an important role.

Measurements of the eccentricity distribution of wide binaries
are currently unavailable, due to the large orbital periodsand in-
completeness. If we suspect that the vast majority of wide binaries
probably have formed dynamically, and as dynamical interactions
are common among the widest binaries (with respect to closer-in
binaries), the best guess is perhaps the thermal eccentricity distri-
bution f (e) = 2e (0 6 e < 1) (Heggie 1975, see also Kroupa 2008
for a derivation), which results from energy equipartition. The ec-
centricity distributions resulting for binaries in thedissolution peak

(a > 103 au) are shown in Fig. 10. As expected, the thermal eccen-
tricity distribution is a good approximation for the newly formed
binary population.

If wide binaries form during the dissolution process of a star
cluster, then the orbital and spin angular momenta of the compo-
nents should be randomly aligned. On the other hand, if the two
components formed together in some way it might be that the or-
bital and spin angular momenta of the components will be corre-
lated (as seen for example in the observations of∼ 100-au Ae/Be
binaries by Baines et al. 2006). Therefore, observations ofthe rela-
tive alignments of orbital and spin angular momenta could provide
constraints on the possible formation mechanisms of very wide bi-
naries.

Finally, the age difference (between primary and companion
star) for a population of wide binaries could provide a clue to
their origin (see, e.g., Kraus & Hillenbrand 2009a). For a star clus-
ter with a certain age spread, one might expect the components
of the resulting wide binary population to exhibit a similarage
difference. This age difference is measurable, but only for young
(. 10 Myr) binary systems. On the other hand, this age difference
may be smaller than expected from random pairing, if an initial
correlation between position and velocity exists.

5.2 Dependence on cluster properties

In this section we describe how the properties of the wide binary
population depend on the initial conditions we assign to a star clus-
ter, in particular its sizeR, number of starsN, virial ratio Q, and
morphology (Plummer sphere or fractal structure). We adoptthe
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cluster properties listed in Table 1. We compare the resultsthat we
derived earlier using Monte Carlo simulations (Fig. 5), with the re-
sults ofN-body simulations, shown in Fig. 6.

5.2.1 Dependence on the initial cluster mass

The top panels of Fig. 6 show the median semi-major axisamed and
the binary fractionB of wide binaries(103 au < a < 0.1 pc) as a
function of the number of starsN in a cluster. For both the Plummer
models and the fractal models,amed does not vary significantly with
N and the virial ratioQ. The reason for this is that all these models
have an identical sizeR. Since R is the most important size scale
imposed on the modelled star clusters, it determines the size scaling
(i.e., semi-major axis distribution) of the newly formed binaries.

The dependence ofB on N andQ is qualitatively the same as
the analytical predictions shown in Fig. 4 and the Monte Carlo ap-
proximation shown in Fig. 5 . The wide binary fractionB decreases
with increasingN because the stars are further apart in velocity
space (cf. Fig. 3), i.e., the velocity dispersion is larger,and hence
two neighbouring stars are less likely to form a bound system.

For theN-body simulations we find that the fractal model with
Q = 1/2 provides the highest wide binary fractions, although the
difference between models is fairly small (especially when com-
pared to the difference with increasingN). Models withQ = 3/2
generally result in a smaller wide binary fraction than those with
Q = 1/2, due to the larger distance between the stars in velocity
space (see Eqs. 11 and 12). The curves for the fractal models in
Figs. 5 and Fig. 6 are almost the same, indicating that the Monte
Carlo approach provides a good estimate of the wide binary popu-
lation. For the Plummer models, the Monte Carlo approach predicts
a binary fraction that is too high, which is due to the fact that the
positions and velocities of stars in the Plummer models as weini-
tialise them are uncorrelated.

5.2.2 Dependence on the initial cluster size

The bottom panels of Fig 6 shows the dependence ofamed andB
on the initial sizeRof the clusters. Again, these values are only for
widebinaries with 103 au < a < 0.1 pc. Note the different defini-
tions of R: for the Plummer modelsR represents the virial radius,
while for the fractal modelsR represents the radius of the sphere
enclosing the whole system. Note again the similarity between the
Monte Carlo approximation shown in Fig. 5 and theN-body mod-
els.

As discussed above, the initial cluster sizeR determines the
length scale in each model, and therefore the size scaling ofthe
semi-major axis distribution of the newly formed binaries.For ex-
ample, changing the initial size of the clusters shown in Figs. 7
and 8 would simply result in the semi-major axis distribution in the
left-hand panels being shifted to smaller or larger values of a.

This direct dependence off (a) on R is not seen directly in
Fig. 5 because we only show the results for wide binaries in the
separation range 103 au< a < 0.1 pc, and becausef (a) is bimodal.
However, theR-dependent median semi-major axis and binary frac-
tion can be explained by thedynamical peakanddissolution peak
shifting through the range 103 au< a < 0.1 pc whilst varyingR.

The highestB is found when either thedynamical peak, or the
dissolution peak, is centred in the separation range 103 au < a <
0.1 pc. For our choice of the initial conditions, this peak occurs at
R = 0.025 pc for the Plummer models, when thedissolution peak
is centred in the range 103 au− 0.1 pc. The peak inB occurs atR≈
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Figure 11. The effect of primordial binarity on the formation of wide bi-
naries, for Plummer models withN = 10 andR = 0.1 pc. The solid and
dashed curves in each panel indicate the results forQ = 1/2 andQ = 3/2,
respectively.Top: the effect of a variable primordial binary fractionB0. The
bottom horizontal dotted line indicatesa = 18.2 au, the median semi-major
axis for primordial binaries.Bottom:the effect of the semi-major axisa0 for
models with a primordial binary frequencyB0 = 50% in which each binary
has a semi-major axisa = a0. The dash-dotted lines indicatea = 18.2 au,
the median semi-major axis of binary systems in the Galacticfield. The ver-
tical dotted line indicatesa = 103 au, beyond which all primordial binaries
are classified as wide binaries.

0.15 pc for the fractal models withQ = 1/2 and atR ≈ 0.6 pc for
fractal models withQ = 3/2, when thedynamical peakis centred
in the range 103 au− 0.1 pc.

Given our set of initial conditions, compact clusters result in a
wide binary fraction of 8−12%, irrespective of virial ratio and mor-
phology. For more extended clusters, those with a Plummer struc-
ture and those with a higher virial ratio result in a smaller binary
fraction. The difference between the Plummer and fractal models
can be explained by (i) the difference in the definition ofR for the
two sets of models, and (ii) by the differentintrinsic separation dis-
tribution (see the left-hand panels in Figs. 7 and 8).

The cluster sizeR determines the length scale of the system,
and therefore determines the typical semi-major axis of thenewly
formed wide binaries. Other, less important length scales in the sys-
tem are the mean distance between two stars, which depends onthe
parametersR, N, and the stellar density distribution (see§ 5.2.1),
as well as the typical semi-major axis of primordial binary systems
(see§ 5.3).

5.3 Effects of primordial binarity

In the analysis above we have considered star clusters that initially
consist of single stars only. The results for star clusters with a non-
zero primordial binary fraction are very similar to the results de-
scribed above, with the difference that the components of the wide
“binary” are now in many cases primordial binaries. In otherwords,
the majority of the wide “binaries” that formed in the simulations
described in the previous sections, actually describe the outer orbits
of wide triple and quadruple systems.

We predict the properties of these wide triple and quadruple
systems by performingN-body simulations of the Plummer models
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listed in Table 1, but now we include a non-zero primordial binary
fraction. We perform the simulations with primordial binary frac-
tionsB0 ranging from 0% to 100%. We adopt the Kroupa (1995)
birth period distribution. This distribution is derived from a detailed
analysis of observed stellar populations, and has the form

fP(P) = 2.5
(

logP− log Pmin
)

45+
(

log P− log Pmin
)2

(16)

for Pmin 6 P 6 Pmax, where logPmin = 1, logPmax = 8.43, andP
is the period in days. We adopt a thermal eccentricity distribution
f (e) = 2e(0 6 e< 1). We adopt a flat mass ratio distributionf (q) =
1 with 0< q ≡ M2/M1 < 1 (i.e., we apply pairing function PCP-I;
see Kouwenhoven et al. 2009). Subsequently, we generate an initial
population from this birth population, by applying eigenevolution
as described in Kroupa (1995). All binaries are assigned random
orientations and orbital phases at the beginning of the simulations.

Due to the inclusion of binary components, the total mass of
each cluster increases slightly (up to a maximum of 50% for a pri-
mordial binary fraction of 100%), although the number of “sys-
tems”,N = S+ B remains constant. Strictly speaking, it is thus not
appropriate to directly compare clusters with and without binaries,
as we have changed more than one parameter: binarityand clus-
ter mass (see, e.g., Kouwenhoven & de Grijs 2008). However, as
the increase in cluster mass due to adding the companions is rather
small, we will ignore this issue.

The results for clusters with a varying primordial binary frac-
tion B0 is shown in the top panels of Fig. 11. For small binary
fractions, the results are very similar to those of clusterswithout
primordial binaries. The properties of the resulting wide binary
population depend mildly onQ. An increasingQ results in, on av-
erage, wider binaries, hence in a larger fraction of binaries with
a > 0.1 pc, and therefore in a slightly smaller wide binary frac-
tion. Note thatB decreases slightly with increasingB0. A larger
primordial binary fraction results in a smaller wide binaryfraction,
possibly because of the destruction of newly formed wide binaries
by primordial binaries (which have a significantly larger collisional
cross-section than single stars).

Whether or not primordial binarity affects the formation of
wide binaries depends not only on the primordial binary fraction,
but also on the properties of these binaries: the semi-majoraxis (or
period) distribution, the eccentricity distribution and the mass ratio
distribution. The most important of these is the semi-majoraxis
distribution f (a), as it determines the internal binding energy of a
binary and the cross-section for gravitational interactions between
binaries and other binaries or single stars. In order to extract the
dependence onf (a), we simulate clusters in which all binaries have
a single value fora = a0. We varya0 in each cluster, and determine
the number of newly-formed binaries. In all simulations we adopt a
primordial binary fraction of 50%, a flat mass ratio distribution and
a thermal eccentricity distribution.

The results of these simulations are shown in the bottom pan-
els of Fig. 11. For models witha0 < 103 au, most primordial bina-
ries survive, while additional wide binary, triple, and quadruple sys-
tems are formed. In fact, the resulting wide binary fractionis practi-
cally independent of the primordial binary fractionB0. For models
with a0 > 103 au, all primordial binary systems are classified as
wide binaries. For these models we therefore haveB ≈ B0 and a
median semi-major axis equal toa0, which results in the glitches at
a = 103 au in Fig. 11.

The wide orbits are part of systems with 2, 3, and 4 compo-
nents. They are formed by randomly pairing single stars and pri-
mordial binary systems together. The number of multiple systems

of each degree can thus be estimated by simply calculating the
probability of randomly drawing a single-single, single-binary, and
binary-binary pair. When assuming a primordial binary fractionB0,
the multiplicity distribution of the resulting wide population can be
estimated as follows:

Wide binary fraction= B(1− B0)
2 (17)

Wide triple fraction= 2BB0(1− B0) (18)

Wide quadruple fraction= BB2
0 , (19)

where we have made the assumption that none of the primordial
binary systems has broken up.

All models shown in Fig. 11 result in wide binary fractions
B ≈ 8% that are more or less independent ofB0 anda0. The value
of B is therefore primarily determined by the initial values of the
number of systemN in the cluster, and its initial sizeR.

If we assume that the wide orbits in the bottom panels of
Fig. 11 (whereB0 = 50%) are formed of randomly paired com-
ponents (i.e., single stars or primordial binaries), we cancalculate
the fraction of higher-order multiple systems among theB = 8%
wide binaries. Among these, we predict that 25%, 50%, and 25%,
are binary, triple, and quadruple systems, respectively. In this exam-
ple, we thus expect 75% of the “wide binaries” to be higher-order
multiple systems. Due to the random process, the outer orbits of
these systems are expected to be uncorrelated with the innerorbits
or stellar spin axes.

The ratios between wide binary, triple, and quadruple systems
are therefore indicative ofB0. A survey for higher-order multiplic-
ity among “wide binary systems” can thus be used to constrain
the primordial binary fraction. Given the fact that the majority of
stars do form in binary systems, we predict a very high fraction of
higher-order multiple systems among wide “binary” systems; see
Fig. 12. Our proposed mechanism could explain the existenceof
the observed wide multiple systems (Mamajek et al. 2009), and our
predictions are strongly supported by the surveys of Makarov et al.
(2008) and Faherty et al. (2010), who find that a high fractionof the
common proper motion pairs in their survey contain inner binary or
triple systems, which is significantly higher than in populations of
other types of binaries.

6 SUMMARY AND DISCUSSION

Observations have shown that∼ 15% of binaries are wide (a >
103 au). These wide binaries are difficult to explain as being the
result of star formation as it is difficult to see how wide binaries
can form (especially those> 104 au), and they would be rapidly
destroyed in clustered star forming environments. Whilst 10 – 30%
of stars do appear to form in an ‘isolated’ environment in which
such binaries could possibly survive, in order to explain the fraction
of wide binaries, almost all stars forming in isolated environments
would have to form wide binaries. Further, such wide binaries can-
not be formed later in any significant numbers by dynamical inter-
actions in the Galactic field.

In this paper we study the possibility of wide binary formation
during the dissolution phase of star clusters, in particular, during the
rapid expansion of clusters after gas expulsion. We study this pos-
sibility using (1) an analytical approach in an idealised situation,
(2) a Monte Carlo approach, and (3) detailedN-body simulations.
Our main conclusions are as follows:

(i) The wide binary fractionB among the dissolved stellar popu-
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Figure 12. Given the fact that most star form in binary systems, it is ex-
pected that the majority of the wide “binary” systems are in fact part of a
triple or quadruple system.

lation ranges between 1% and 30%, depending on the cluster prop-
erties.

(ii) More massive star clusters result in a smaller wideB than
low-mass clusters. Clusters with a spherical, smooth stellar density
distribution form fewer wide binaries than substructured clusters of
the same size and mass. This is due to the fact that the averagedis-
tance between nearest neighbours is smaller for substructured clus-
ters. Expanding (post-gas expulsion) star clusters produce a larger
B than those starting out of equilibrium.

(iii) The typical semi-major axisa of the newly formed bina-
ries is similar to the initial sizeR of the star cluster from which
they were born. The resulting semi-major axis distributionis gen-
erally bimodal, consisting of adynamical peakwith binary systems
formed by dynamical interactions, and adissolution peakwith bi-
nary systems formed during the cluster dissolution phase.

(iv) The formation of wide binaries during the star cluster disso-
lution phase is a random process, resulting in the followingorbital
properties. The eccentricity distribution of the wide binaries is ap-
proximately thermal:f (e) ≈ 2e for 0 6 e < 1. The mass ratio dis-
tribution of the wide binaries is the result of gravitationally-focused
random pairing. In a wide binary, the orbital and spin angular mo-
menta are uncorrelated.

(v) Star clusters with a non-zero primordial binary population
form wide triple and quadruple systems, i.e., the components of a
newly-formed wide “binary” can themselves be close primordial
binaries, rather than single stars. The ratio of triple to quadruple
systems among very wide orbits is therefore indicative of the pri-
mordial binary fractionB0. Given thatB0 is large, we predict a
high frequency of triple and quadruple systems among the known
wide “binary” systems, which is supported by existing surveys for
higher-order multiplicity among wide binary systems.

Throughout this paper we have made predictions of the prop-
erties of the wide binary population resulting from the dissolution
of individual clusters. In order to compare our results withobser-
vations, we should therefore take into account the fact thatthe field
star population is made up of the stars resulting from an ensemble
of clusters of different sizes and masses. The initial cluster mass

distribution may be approximated byf (M) ∝ M−γ with γ ≈ 2 (see,
e.g., Zhang & Fall 1999; Ashman & Zepf 2001; Bik et al. 2003;
Hunter et al. 2003). Given the number of starsN = Mcl/〈m〉,
where〈m〉 is the average mass of a star, this distribution is equiv-
alent to f (N) ∝ N−γ. Oey et al. (2004) suggest that the above ex-
pression can be extrapolated down toNmin = 1. The upper limit
for the initial cluster mass distribution isMmax ≈ 106 M⊙ (e.g.,
de Grijs & Parmentier 2007, and references therein). The resulting
binary fractionB f for the ensemble of stars (i.e., the field star pop-
ulation) is then given by:

B f =

∫ Nmax

Nmin
B(Ncl)N f(Ncl)dNcl

∫ Nmax

Nmin
f (Ncl)NdNcl

, (20)

whereB(Ncl) is the cluster mass dependent wide binary fraction.
The numerator in the above expression is proportional to thenum-
ber of binaries, and the denominator is proportional to the to-
tal number of stars in the ensemble of clusters. In addition,the
size and dissolution time of a star cluster, and therefore the wide
binary fraction, may also depend on its Galactic location (e.g.,
Baumgardt & Makino 2003). An inspection of Fig. 6 shows that an
extrapolation toN ≈ 106 results in a wide binary fraction of several
per cent; smaller than the observed 15%, irrespective of thechoices
for R, Q, and the morphology of the cluster. Although we predict
rather small values, our back-of-the-envelope calculation does re-
sult in the right order of magnitude for the wide binary fraction in
the Galactic field. It is clear, however, that a deeper investigation
is required to accurately recover the properties of the widebinary
population in the field. In particular, a wider range of star cluster
morphologies has to be considered, by varying the fractal dimen-
sion and position-velocity correlations of individual star clusters.

Our proposed formation mechanism for very wide binaries
predicts at least several common proper motion pairs in and around
dissolving star clusters and moving groups. For example, the mech-
anism may well explain the presence of the three common proper
motion pairs in the moving groups studied by Clarke et al. (2009).
The future prospects in wide binary research are bright: an enor-
mous number of wide binaries are expected to be found with
the GAIA mission3 (Perryman et al. 2001; Turon et al. 2005) and
LAMOST 4 (Chu 1998; Stone 2008). These datasets should help
determine the true fraction of wide binaries and their orbital pa-
rameters.
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Chanamé J., Gould A., 2004, ApJ, 601, 289
Chandrasekhar S., 1944, ApJ, 99, 54
Chu Y., 1998, Highlights of Astronomy, 11, 493
Clarke J. R. A., Pinfield D. J., Gálvez-Ortiz M. C., Jenkins J. S.,
Burningham B., Deacon N. R., Jones H. R. A., Pokorny R. S.,
Barnes J. R., Day-Jones A. C., 2009, MNRAS, p. 1923

Close L. M., Richer H. B., Crabtree D. R., 1990, AJ, 100, 1968
de Grijs R., Parmentier G., 2007, Chinese Journal of Astronomy
and Astrophysics, 7, 155

Duquennoy A., Mayor M., 1991, A&A, 248, 485
Eggers S., Keller H. U., Kroupa P., Markiewicz W. J., 1997,
Planet. Space Sci., 45, 1099

Elmegreen B. G., 2000, ApJ, 530, 277
ESA 1997, VizieR Online Data Catalog, 1239
Faherty J. K., Burgasser A. J., West A. A., Bochanski J. J., Cruz
K. L., Shara M. M., Walter F. M., 2010, AJ, 139, 176

Fall S. M., Chandar R., Whitmore B. C., 2005, ApJ, 631, L133
Fischer D. A., Marcy G. W., 1992, ApJ, 396, 178
Gaburov E., Gualandris A., Portegies Zwart S., 2008, MNRAS,
384, 376

Garnavich P. M., 1988, ApJ, 335, L47
Goodman J., Hut P., 1993, ApJ, 403, 271
Goodwin S. P., 2009, ArXiv:0911.0795
Goodwin S. P., Bastian N., 2006, MNRAS, 373, 752
Goodwin S. P., Kroupa P., 2005, A&A, 439, 565
Goodwin S. P., Kroupa P., Goodman A., Burkert A., 2007, in
Reipurth B., Jewitt D., Keil K., eds, Protostars and PlanetsV

The Fragmentation of Cores and the Initial Binary Population.
pp 133–147

Goodwin S. P., Whitworth A. P., 2004, A&A, 413, 929
Gould A., Bahcall J. N., Maoz D., Yanny B., 1995, ApJ, 441, 200
Gould A., Eastman J., 2006, astro-ph/0610799
Gutermuth R. A., Megeath S. T., Pipher J. L., Williams J. P., Allen
L. E., Myers P. C., Raines S. N., 2005, ApJ, 632, 397

Hartigan P., Strom K. M., Strom S. E., 1994, ApJ, 427, 961
Heggie D., Hut P., 2003, The Gravitational Million-Body Prob-
lem: A Multidisciplinary Approach to Star Cluster Dynamics.
Cambridge University Press, 2003

Heggie D. C., 1975, MNRAS, 173, 729
Hernandez X., Lee W. H., 2008, MNRAS, 387, 1727
Hills J. G., 1975, AJ, 80, 809
Hunter D. A., Elmegreen B. G., Dupuy T. J., Mortonson M., 2003,
AJ, 126, 1836

Jiang Y., Tremaine S., 2009, MNRAS, p. 1640
Kobulnicky H. A., Fryer C. L., 2007, ApJ, 670, 747
Kouwenhoven M. B. N., Brown A. G. A., Goodwin S. P., Porte-
gies Zwart S. F., Kaper L., 2009, A&A, 493, 979

Kouwenhoven M. B. N., Brown A. G. A., Portegies Zwart S. F.,
Kaper L., 2007, A&A, 474, 77

Kouwenhoven M. B. N., Brown A. G. A., Zinnecker H., Kaper L.,
Portegies Zwart S. F., 2005, A&A, 430, 137

Kouwenhoven M. B. N., de Grijs R., 2008, A&A, 480, 103
Kraus A. L., Hillenbrand L. A., 2009a, ApJ, 704, 531
Kraus A. L., Hillenbrand L. A., 2009b, ApJ, 703, 1511
Kroupa P., 1995, MNRAS, 277, 1507
Kroupa P., 2001, MNRAS, 322, 231
Kroupa P., 2008, in S. J. Aarseth, C. A. Tout, & R. A. Mardling
ed., Lecture Notes in Physics, Berlin Springer Verlag Vol. 760 of
Lecture Notes in Physics, Berlin Springer Verlag, Initial Condi-
tions for Star Clusters. p. 181

Kroupa P., Burkert A., 2001, ApJ, 555, 945
Kroupa P., Petr M. G., McCaughrean M. J., 1999, New Astron-
omy, 4, 495

Lada C. J., 2006, ApJ, 640, L63
Lada C. J., Lada E. A., 2003, ARA&A, 41, 57
Larson R. B., 1995, MNRAS, 272, 213
Latham D. W., Schechter P., Tonry J., Bahcall J. N., Soneira R. M.,
1984, ApJ, 281, L41

Leinert C., Zinnecker H., Weitzel N., Christou J., Ridgway S. T.,
Jameson R., Haas M., Lenzen R., 1993, A&A, 278, 129
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