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We present a novel qualitative, dynamic length sliding window method which

enables a mobile robot to temporally segment activities taking place in live

RGB-D video. We demonstrate how activities can be learned from observations

by encoding qualitative spatio-temporal relationships between entities in the

scene. We also show how a Nearest Neighbour model can recognise activities

taking place even if they temporally co-occur. Our system is validated on a

challenging dataset of daily living activities.

1. Introduction

Despite many years of research, Human activity recognition remains a

challenging and ongoing area of research.? One particular challenge is the

important problem of temporal segmentation which is especially difficult in

video streams where multiple activities temporally co-occur or overlap. A

variety of applications rely on learning activity models and temporal seg-

mentation of video into human activities, such as: human robot interaction,

smart surveillance systems, and semantic video database indexing. Advances

in computer vision mean that a person’s joints and many objects can be

detected and tracked with a reasonable level of accuracy, enhancing the

semantic information available to an activity recognition system.

In this work, we present an online activity recognition system that uses a

novel, dynamic length temporal window in order to temporally segment an

extended video which contains (possibly temporally overlapping) performed

activities. Further, we learn activity models from generalising over multiple

observations and encoding qualitative spatial relations between pairwise

objects in the scene. This allows the system to detect a number of activities
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at once, which can temporally co-occur or overlap, or even be performed by

multiple people in the scene at the same time.

Our objective in this work is to characterise movements of people and

objects in a scene into semantically meaningful activities. For this purpose,

we use RGB-D data and an object-centric abstraction method. Our input

data is the positions of the human skeletal joints and of the objects in view.

Figure 1 is an example of a daily living activity which displays minimum

bounding rectangles (MBR) for the detected objects, and overlaid the

skeletal joints (as red points and green lines) onto the RGB image. The

images show one example of the “making cereal” activity and are taken

from the Cornell Activities for Daily Living Dataset discussed in §6.?

Fig. 1. Skeleton tracks and object detections on RGB images of “making cereal”.

In this work we use a qualitative framework which allows us to abstract

the exact metric positions of these joints and objects into a qualitative space.

Abstracting into a qualitative space allows us to easily compare multiple

observations, and draw conclusions even if they differ slightly in quantitative

space. For example, the exact metric coordinates of a hand when it reaches

for a mug is not important. A qualitative approach allows us to consider

the spatial relationship between the mug and the hand, and represent this

as a “moving towards” qualitative relation. This can then be compared to

scene when a second person’s hand also “moves towards” a mug, and we

can consider them to be performing the action “reaching for a mug”. We

introduce the qualitative representations used in this work in §3.

§6 presents a validation against a daily living activities dataset. The

results (how much our predicted temporal segmentation overlaps with the

ground truth, along with a classification analysis) demonstrate the effective-

ness of our qualitative representation and sliding window methodology.
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2. Related Work

Due to the availability of cheap depth sensors, activity recognition systems

are increasingly using data from RGB-D cameras to analyse and predict

what a person is doing in a scene. Human activity recognition from 3D data

has been reviewed in detail,1 with a focus on data abstraction methods.

Temporal segmentation has also been researched previously, e.g. in

tracking ballistic movements to form “units of human movement planning”?

where a Bayesian framework is used to temporally segment videos containing

actions into atomic movements. Although it works well for rapid and efficient

movements, it has difficulty with hesitations, or slow, laboured movements.

In the literature, qualitative representations have been used to abstract

visual data to capture and reason with higher level semantics, e.g.2 The

current state of the art work3 on our chosen dataset uses a mixture of

qualitative and quantitative features. However, this is processed entirely

offline with no attempt at temporal segmentation.

Similarly to this work, a maximum entropy Markov model? has been used

to detect activities, where sub-activity models have been learned in advance.

However, this is also performed offline, and no temporal segmentation of

live data is performed. Moreover, sub-activities are constrained to specific

locations, which we do not need to do in our approach. Finally, popular

approaches are often based on STIP features;4 however the low level pixel

values can easily be distorted by motion-blur or lighting variations.

3. Qualitative Spatial Representations

Many different qualitative spatial representations (QSRs) have been devel-

oped covering different aspects of space.5 We use an open source software

library, QSRLib,6 to calculate the QSR values from the MBRs and joint

positions. We focus on the distance relationship between objects and de-

tected skeleton joints, and therefore use the Qualitative Distance Calculus

(QDC) as our qualitative spatial representation, with three relations: Touch,

Near and Infinite. In QDC representations, the thresholds between relations

usually need to be manually set. Here, we learn the threshold values from

labelled observations from the specific dataset. This allows our system to

employ relations automatically tuned to the semantics of the domain.? For

example, if we hand selected the distance threshold for the spatial relation

Near and Far suitable for describing the interaction between a hand and

a mug, the same threshold is unlikely to be useful to abstract visual data

containing an aeroplane and an airport terminal, as semantics for Near and
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Far would need to be different.

3.1. Combining Qualitative Temporal & Spatial Knowledge

Our implemented system must consider a continuous stream of video input

data, and just as spatial positions may not repeat exactly over repeated

instances of the same action, so also there may be temporal variations.

We thus employ a qualitative temporal representation, the Interval algebra

(IA)7 which consists of 13 relationships (e.g. meets, before between pairs of

intervals. We encode all the qualitative spatial and temporal information into

a graphical structure2,8 called a Qualitative Spatial Temporal Activity Graph

(QSTAG). Layer 1 of a QSTAG consists of the spatial entities observed and

tracked in the video. Layer 2 nodes are episodes which are the maximal

intervals of time over which some QSR relation holds between a pair of

layer 1 objects. Layer 3 nodes specify the qualitative temporal relation

between episodes. Figure 2 (bottom left) illustrates a QSTAG for a pair of

objects (hand, mug). Figure 2 (top) shows the timeline and the QSRs which

hold, and the episode boundaries. The episodes thus compress a sequence

of frames with the same QSR.

Fig. 2. Example of a time-line of QSRs, a QSTAG representation and a single graphlet

4. Learning Qualitative Models

Our aim is to learn and detect activities which may vary in complexity and

length. For training purposes, we assume the video is segmented and labelled

with the corresponding activity to be learned (potentially these segments

could overlap). For each labelled activity we generate a QSTAG, and then
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learn an activity model consisting of a histogram of unique sub-graphs called

graphlets.2,8 The unique graphlets are mined from the QSTAG and can

be thought of as small QSTAGs themselves; here we restrict these to one

change of qualitative relation between a pair of objects, e.g. a hand initially

touching an object and then distancing itself from the object, becoming

near. An example graphlet is shown in Figure 2 (lower right), and these can

be thought of as characterising primitive actions.

Given a set of detected objects and skeletal joints O in the scene, and a

qualitative calculus with q relations, then there are

(|O| ∗
(|O| − 1)

2
) ∗ (|q| ∗ (|q| − 1)),

possible unique graphlets (given there is always two object nodes, two spatial

nodes and a IA temporal node of meets). We ignore the Infinite spatial

relation from QDC to reduce the total number of graphlets, so that |q| = 2

rather than 3. This gives us a fixed length attribute vector (in practice we

only use the graphlets actually observed in the training data) and a single

training instance is represented as a histogram over this feature vector. The

set of all training instance histograms can then be used to classify new

instances via a Nearest Neighbour Search (NNS).

5. Temporal Segmentation and Activity Detection

Temporal segmentation is a challenging task as every new frame yields a

possible start or end for a candidate activity (and therefore all frames must

be checked). We exploit the qualitative segmentation of time in a QSTAG

to simplify the search. Once our activity models have been trained as above,

our system is able to detect activities in real time using a dynamic length

temporal sliding window over the k most recent episode boundaries (for

a user defined k). Call this sliding window w. These episodes naturally

vary in absolute frame-length, but this is abstracted away in the QSTAG

representation. For each contiguous sub-sequence s of episodes in w (there

are in general (k2 + k)/2 possible such subsequences, including w itself), we

classify s using NNS over the set of training instances (which may possibly

yield no classification for some s if there is no activity “near enough” (see next

section). Figure 2 is an example time-line representation of three episodes

(six video frames). Every interval between episode start/end points becomes

a candidate for the start of an activity. Hence, our system will classify six

candidate temporal windows for activities, assuming the “current time” is

set as just after the end of the third episode in Figure 2. Since the temporal
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windows can overlap, multiple activities can potentially be recognised even

when co-occurring. Notice that the search space induced by our qualitative,

episodic, representation of time is more coarse and hence more efficient

to search than a typical frame-by-frame windowing segmentation; in the

example above, there are six candidates since we consider every subsequence

of length 1, 2 or 3 here (but this is still far fewer than considering all

subsequences of actual frames).

6. Experiments

We test our system on a benchmark activities dataset which includes skeletal

joint tracks and objects.? The dataset consists of four human participants,

each performing 10 daily living activities thrice, totalling 120 different videos.

We provide two separate analyses on this dataset.

Our first analysis is designed to highlight our system’s ability to run

online, over periods of time much longer than an individual activity and per-

form effective temporal segmentation of multiple activities. For this purpose

we stitch all the videos from each participant together, into four long streams

of video (each approximately 12,000 frames and 10 minutes in duration).

We perform four-fold cross-validation (cv) where three participants are used

to train our activity models, and the fourth (unseen) participant’s video

stream is analysed in an online setting. We perform a supervised Nearest

Neighbour Search (NNS), with a variable radius applied to each training

vector (based upon the Frobenius norm of two vectors). Applying this radius

allows our system to recognise multiple activities co-occurring and similarly

recognise that nothing is occurring. There are two ways we might recognise

simultaneous activities: (1) if the exact same subsequence of episodes is

within 2 activity radii, or (2) if two overlapping episode subsequences both

have activities within radius.

Figure 3 shows the temporal segmentation of the activity videos for

participant 3. The x-axis is a time-line over the combined video for the

participant and each colour represents a different activity; vertical overlaps

of the same colour represent the correctly classified frames. In this dataset

as it happens there are no simultaneous activities but the method has

the potential to detect them. Empirical recognition results, over all four

participants, are presented in Table 1 and show an average 0.88 F1 score

over all 48340 frames.

Note if the test video (represented as a histogram of graphlets) has no

neighbour within the variable radius threshold, our system classifies nothing

is happening. However, the ground truth for this dataset suggests that the
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activities start immediately after one another, which is not accurate as there

is a period of no movement at the beginning of each video; hence our results

maybe “more accurate” than the ground truth. Finally, we only tested on

the activity classes that had all the objects tracked.

Fig. 3. Online temporal segmentation of participant 1’s videos combined back to back.

test participant frames precision recall F1

P 1 11185 0.9699 0.7715 0.8594

P 2 12730 1.0 0.8552 0.9219

P 3 10283 1.0 0.8048 0.8918

P 4 14142 0.9191 0.8198 0.8667

Avg: 0.9723 0.8128 0.8849

In our second analysis, we perform a classification task over each video

individually. We used four-fold cv (where each participant’s videos are a

fold). Each video from the test participant is then classified (using the same

supervised NNS with a variable radius) into a predicted activity class.

Out of 72 videos with object detections, 63 were correctly classified

leading to an average of 87.5% accuracy. It can be seen that our system

performs very well, especially given the challenges in the dataset, such as;

the variations in the activities being performed between participants (intra-

class variation); the similarity of different classes (between-class similarity);

the testing methodology (on an unseen participant); and finally, the input

skeleton joint and objects tracks, which are less than perfect.

7. Conclusion

In this paper, we presented a novel qualitative, dynamic length sliding

window (suitable for deployment on a mobile robot) to learn and temporally

segment observed activities. Qualitative spatial relations between observed
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entities are abstracted into a relational graph. An activity model is then

built by representing training instances of activites as histograms over

graphlets which occur in the training instances. A dynamic qualitative

temporal window is used to reduce the search space during recognition which

allows the system to understand complex scenes. The system therefore has

the potential to recognise multiple activities temporally co-occurring with

different scales of complexity; or multiple people performing those activities.

Planned future work includes obtaining data to learn a hierarchy of

activities, and then representing these higher level activities as QSTAGs

over lower level activities rather than QSR episodes. This would enable the

representation and detection of complex levels of the daily living activity-

hierarchy such as multiple people performing activities, or activities such

as preparing a meal consisting of a temporally overlapping instances of our

current activity models.
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