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Abstract 6 

The representative elementary volume (REV) is a fundamental property of a material, but no direct measurements exist 7 

for cementitious materials. In this paper, the REV of cement pastes with supplementary cementitious materials (GGBS, 8 

PFA, SF) was determined by analysing the three-dimensional pore structure (> 0.2 µm) using laser scanning confocal 9 

microscopy (LSCM). The effect of axial distortion inherent to LSCM on 3D pore structure was also investigated. A 10 

range of 3D pore parameters was measured using skeletonisation, maximal ball and random walker algorithms. Results 11 

show that axial distortion has insignificant effects on most parameters except Euler connectivity, average pore and 12 

throat volumes and directional diffusion tortuosities. Most pore parameters become independent of sampling volume at 13 

 603 µm3 except diffusion tortuosities and formation factor. The REV for porosity calculated based on a statistical 14 

approach at eight realisations and 5% relative error was found to be  1003 µm3.  15 
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 17 

1 Introduction 18 

Representative elementary volume (REV), also known as representative volume element (RVE), is an important 19 

parameter for understanding and modelling the properties of multi-scale composite materials such as cement-based 20 

materials. The REV is the smallest volume over which a measurement or simulation can be carried out to produce a 21 

result that is representative of the macroscopic property. This is important because it is often difficult/impractical to 22 

experimentally capture or computationally generate composite materials at full length scales. Several definitions of 23 

REV exist, but there are two common requirements [1]: (1) the REV must be of the right size to contain sufficient 24 

microstructural features to depict the macroscopic property representatively, and (2) the REV is determined for a 25 

specified property and it is essentially independent of the sampling position within the material. Bear [2] presented the 26 

concept of REV graphically as shown in Figure 1. The fluctuations in the property of interest (e.g. porosity) reduce with 27 

increasing sampling volume and the volume at which fluctuations become insignificant is taken as the REV. For an 28 

inhomogeneous medium however, the property may gradually change again as the sampling volume increases further. 29 

The REV depends on the length scale of the features of interest. Cement-based materials contain features ranging from 30 

nanoscale gel pores and hydrates to microscale capillary pores and millimetre-sized air voids and aggregate particles. 31 

Determining the REV at the concrete scale is relatively straightforward because one could simply carry out 32 

measurements on samples of varying sizes. However, it is much more challenging to do this at the scale of capillary 33 

pores. Yet, this is important because of its relevance to mass transport processes. The REV at the capillary pore scale is 34 

generally considered to be 1003 µm3. However, this value was derived from numerical modelling of computer generated 35 

3D pore structures [3-5]. For example, Zhang et al. [4] adopted a numerical-statistical approach to determine the REV 36 

based on finite element simulated diffusion of tritiated water through 3D models of cement pastes (w/c 0.30 to 0.60) 37 

generated with HYMOSTRUC3D. Later, Ukrainczyk and Koenders [5] found that the REV of computer generated 3D 38 

pore structures is highly dependent on the employed numerical resolution, boundary conditions, initial particle size 39 

distribution of anhydrous cement particles and degree of hydration.  40 

To the best of our knowledge, the REV for cementitious materials has never been measured experimentally at the 41 

capillary pore scale. This could be partly due to lack of suitable experimental techniques to characterise the 3D 42 

characteristics of pore structure at sufficiently high resolution. Recently, a new 3D imaging approach which combines 43 

laser scanning confocal microscopy (LSCM) with serial sectioning [6] has enabled 3D reconstruction of pore structure 44 

at submicron spatial resolution. The method involves stitching of sequential confocal stacks based on phase correlation 45 
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and so is able to image large volumes without resolution loss. Therefore, the method not only lends itself well for 3D 46 

pore characterisation, but also opens up possibilities for determining the REV of cement-based materials.  47 

A number of issues need to be addressed to achieve this. For example, accurate segmentation of the pore structure from 48 

LSCM images is a prerequisite for successful analyses, but this is particularly challenging due to the complex 49 

boundaries between pores and solid hydration products. Uneven brightness that may occur along the depth of the 50 

reconstructed image further complicates the segmentation process. Fredrich [7] segmented the pore structure of Berea 51 

stone from 3D LSCM images using the local minima between solid and pore peaks in the image histogram as a 52 

threshold. Oh and Lindquist [8] have further developed a kriging-based method that determines the threshold based on 53 

minimum variance estimation within a pre-assigned threshold range, which also lies between the solid and pore peaks. 54 

However, the determination is not straightforward and is usually user-specified. Both methods are not applicable to this 55 

study because LSCM images of cement-based materials do not exhibit bimodal distribution in the histogram. Other 56 

approaches such as iterative k-means clustering  also requires an a priori threshold to be estimated [9].  57 

Furthermore, the process for quantitative analysis of the 3D pore structure based on images reconstructed by such a 58 

method has not been established to date. It is also well recognised that 3D LSCM images suffer from distortion in the 59 

optical (axial) axis because of two main reasons [10, 11]. First, the resolution is inherently anisotropic along the optical 60 

axis due to the elongation of point spread function (PSF). Second, mismatch of refractive indices between the 61 

immersion medium and the sample or within the sample itself can lead to severe spherical aberrations. Such distortions 62 

can produce misleading results when volumetric measurements are made. In biological imaging, the axial distortion 63 

caused by refractive index mismatch can be corrected empirically by inserting fluorescent microspheres of known 64 

geometries into the specimen to measure the elongation [12, 13]. However, this approach is unsuitable for hardened 65 

cement-based materials. While it may be possible to place ‘micro-standards’ in the fresh mix, they will either end up in 66 

the pore space or be engulfed by hydration products and therefore cannot be distinguished in hardened cement paste. 67 

Depending on the size of the standards, the resulting microstructure may also be altered owing to the formation of new 68 

interfaces. Moreover, these standards are required in large quantities and dispersed within the system to ensure a 69 

homogeneous correction. 70 

The main aim of this paper is to: (1) study the effects of axial distortion in LSCM images on 3D pore parameters, and 71 

(2) estimate the REV for different pore parameters and cementitious systems. A method for pore segmentation and 72 

protocol for charactering the 3D pore structure was first developed. Then, the methods were validated on measurements 73 

of ideal 3D model structures. Finally, the methods were applied to quantify over twenty 3D pore structure of real 74 

cementitious samples in order to study the effects of axial distortion and to determine the REV. A range of blended 75 

cement pastes containing CEM I, silica fume, pulverised fuel ash and ground granulated blastfurnace slag cured to 7 76 

and 90 days were tested.  77 

 78 

2 Experimental 79 

2.1 Materials and sample preparation 80 

Four cement pastes containing CEM I and CEM I blended with silica fume (SF), pulverised fuel ash (PFA) or ground 81 

granulated blastfurnace slag (GGBS) were prepared and cured for 7 and 90 days to produce samples with a range of 82 

microstructure. Mix proportions are shown in Table 1. The oxide compositions and properties of the cementitious 83 

materials are given in Table 2. The Bogue composition of CEM I was 53.1% C3S, 19.1% C2S, 10.8% C3A and 7.2% 84 

C4AF. The fineness and specific gravity of the CEM I were 291 m2/kg and 3.06 respectively. 85 

All wet-mixing was done in a Hobart mixer for 4 min. PFA and GGBS were dry-mixed with CEM I for 1 min before 86 

water was added. For the mix with SF, a polycarboxylate-based superplasticiser was added to the water at 0.4 wt. % 87 

binder and pre-mixed with SF for 1 min to disperse agglomerated particles. All mixes were cast in steel moulds of 100 88 

mm diameter × 25 mm height and compacted in two layers using a vibrating table. Immediately after casting, the 89 

samples were covered with plastic sheets and wet hessian to prevent loss of moisture, and left to harden at 20oC. After 90 

24 hours, the samples were demoulded and cured in a fog room at 100% RH and 20oC for 7 and 90 days.  91 

For each mix and curing age, four replicate discs were prepared; one for LSCM imaging and three for mass transport 92 

measurements, the latter will be reported in a separate publication. A slight amount of bleeding was observed after 93 

casting therefore two additional disc samples were prepared per mix to measure bleed water. The bleed water on the 94 

sample surface was collected by pipette and measured periodically in accordance with BS EN 480-4:2005 [14]. The 95 

corrected free w/b ratios for each mix are given in Table 1. 96 

 97 

2.2 Samples for microscopy 98 

After curing, a block (40×20×8 mm3) was extracted from the centre of each disc (Figure 2) using a diamond saw 99 

(Logitech GTS1) for imaging. The blocks were then placed in sealed environmental chambers containing saturated 100 
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potassium dichromate (K2Cr2O7) for conditioning at 55% RH, 20oC. The chambers were equipped with motorised fans 101 

to generate circulating air and soda lime to minimise carbonation. The blocks were conditioned until mass loss was no 102 

more than 0.01%/day. This typically took around 90 days.  103 

Following conditioning, the blocks were fully impregnated with fluorescein-doped epoxy following the method 104 

described in Wong and Buenfeld [15]. The epoxy (Struers EpoFix, refractive index 1.578) was doped with fluorescein 105 

(C.I. Solvent Yellow 43) at 0.05 wt. %, then mixed with hardener at 25:3 mass ratio and thinned with toluene at 5% wt. 106 

Earlier work [6] found that a 0.05 wt. % dye concentration produced maximum fluorescence intensity under the 107 

imaging conditions described in Section 2.3.   108 

The blocks were placed under vacuum (-1 bar) for an hour to remove air and then submerged in fluorescein-doped 109 

epoxy without breaking the vacuum. Vacuum was then released to force the epoxy into the blocks. Immediately after 110 

that, the blocks were pressurised with compressed air at 2.5 bars for 2 hours to complete the impregnation. Finally, the 111 

blocks were ground and polished using successively finer abrasive grit sizes of 30, 18, 14, 9, 6, 3, 1 and 0.25 µm until a 112 

flat and highly reflective surface was achieved.  113 

 114 

2.3 LSCM and 3D pore reconstruction 115 

3D images of the pore structure were reconstructed using the method described in Yio et al. [6]. This combines 116 

fluorescence LSCM with serial sectioning to produce a series of overlapping 3D confocal Z-stacks, which are then 117 

aligned and stitched based on phase correlation. A Leica TCS SP5 microscope equipped with HCX PL APO 40× (NA 118 

1.25) oil immersion objective was used for imaging. The pinhole aperture size was set at 0.3 Airy unit. A 488 nm argon 119 

laser at 15% intensity was applied to induce fluorescence. At these settings, the theoretical spatial XY and Z resolutions 120 

were 0.156 and 0.534 µm respectively. These were calculated according to the Rayleigh criterion (Pawley, 1995) from 121 

the numerical aperture (NA) of the objective lens, refractive index of immersion oil (1.518), laser excitation wavelength 122 

and pinhole aperture (see [6] for details). 123 

The emission band was set to range from 500 to 600 nm to ensure that all emitted fluorescence was captured. A zoom 124 

factor of 1.8× was applied to give a field of view of 215 × 215 µm2 and images were digitised to 2048 × 2048 pixels. 125 

The final voxel size was 0.105 × 0.105 × 0.1 µm3. Based on the Nyquist theorem, the smallest pore that can be resolved 126 

in the XY and Z direction is  0.242 µm (2.3× voxel width) and  0.534 µm (2.3× voxel depth) respectively. A 2× line 127 

averaging, 400 Hz scan speed and a 3D median-filter with 1 × 1 × 2 voxel radii were applied to ensure good signal-to-128 

noise ratio. 129 

Two spots  5 mm apart (namely A and B) near the centre of each block were imaged (Figure 2). Serial sectioning was 130 

done by grinding with 15 µm diamond on a Struers LaboPol-5 machine at low applied force (7N) and rotation (50 rpm). 131 

Depending on the sample mix and age, grinding time was varied between 1 to 4 s per direction to remove an average of 132 

1.83 to 3.57 µm thick material per step. The sample was imaged after each grinding step to capture a 3D Z-stack of  10 133 

µm thick. Well-focused images with high signal-to-noise ratio from each stack were selected, aligned using image 134 

registration with StackReg [16] and stitched using Pairwise stitching [17]. The process of sectioning, imaging, 135 

alignment and stitching was repeated until the total thickness of the reconstructed image ranged from 108 to 150 µm 136 

(see Table 3). This required stitching of 40 to 62 stacks. The average overlapping regions between stacks ranged from 137 

34.3 to 47.9% and the average correlation coefficients (R) ranged from 0.87 to 0.93, indicating good accuracy of the 138 

reconstruction process for all samples. The final area of the reconstructed image ( 190 × 190 µm2) was smaller than 139 

the field of view (215 × 215 µm2) due to the loss of a small region around the edges during alignment (Table 3). Full 140 

details of the image acquisition process are given in Yio et al. [6]. 141 

 142 

2.4 Pore segmentation 143 

A typical LSCM image of hardened cement paste (P0.45 7d) and its brightness histogram are shown in Figure 3. The 144 

same area imaged with backscattered electron (BSE) microscopy is also shown. Similar features can be seen in both 145 

images, giving confidence in the LSCM technique. However, slight differences are inevitable due to the fact that the 146 

images were not captured at the exact same plane. The LSCM image was obtained slightly beneath the sample surface 147 

for even and optimum brightness, while the BSE image is of the sample surface.  148 

Note that bright green pixels in the LSCM image are pores while dark pixels are solids. Unreacted cement grains (AH) 149 

are dense, thick and non-porous, so they do not fluoresce and appear black. However, hydration products such as 150 

calcium silicate hydrates (C-S-H) are less dense and have an amorphous nano-porous structure. The C-S-H may appear 151 

brighter due to a slight detectable subsurface fluorescence occurring within the optical section (Z-stack). Pores 152 

approaching the resolution limit or smaller than the voxel size will also show intermediate brightness levels due to 153 

diffraction and mixing of signals from several phases. As such, the brightness histogram of LSCM shows a peak 154 
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representing solids, with a broad shoulder at the higher end of the grey scale with no distinct peak for pores due to 155 

overlapping grey levels between some phases.  156 

All these create uncertainties when selecting the threshold to segment pores from solids. Realistically, a perfect 157 

segmentation is not possible, but an objective and repeatable approach applied to all samples is needed. Due to the lack 158 

of a local minimum in the histogram, simple thresholding based on peaks and valleys, or the overflow method [18, 19] 159 

do not work well. Various approaches commonly applied to fluorescent images were tested (e.g. Otsu’s method [20], 160 

IsoData [21], maximum entropy [22] and triangle method [23]). It was found that the moment-preserving method by 161 

Tsai [24] was able to yield the most satisfactory results, based on visual comparison between the original and 162 

segmented LSCM and backscattered electron images. The method is deterministic and does not require iterations. It 163 

computes the threshold by retaining the first three moments of the original image in the binarised image. The first 164 

moment is the mean grey value whereas the second and the third moments describe the variance and skewness of the 165 

image histogram respectively [25]. It is also worth noting that this method has been applied successfully to 3D 166 

fluorescence LSCM images of a silica monolith’s skeleton [26] with pores of similar sizes to cement paste. A brief 167 

description of the method is given in Appendix I. 168 

Prior to segmentation, contrast limited adaptive histogram equalisation (CLAHE) [27] was applied to each image slice 169 

to enhance the contrast of very fine pores. A block of 23 pixels (10× the resolvable pore size) was used to define the 170 

local region for histogram equalisation. The number of histogram bins used was 256 and the maximum slope to restrict 171 

maximum contrast change was set to 1.5. All operations were slice-wise and performed using Fiji (v.1.51d) [28]. 172 

Following pore segmentation, 3D morphological dilation and erosion with a kernel diameter of 3 voxels was applied to 173 

the entire image to fill in small holes, remove noise and smooth edges of the pore structure. Given that the segmentation 174 

process was slice-wise, a second 3D median filter with radii of 1 × 1 × 2 was applied to eliminate discontinuities along 175 

edges of the segmented pores in the axial direction. 176 

 177 

2.5 Quantitative 3D pore structure analysis 178 

Over twenty 3D pore parameters, summarised in Table 4, were measured. These include: a) global parameters such as 179 

porosity, specific surface area and pore size distribution; and b) topological parameters that describe connectivity and 180 

degree of convolution (e.g. tortuosity). Three methods were used. The first was BoneJ [29] that consists of a set of 181 

commands including medial-axis skeletonisation [30] which finds the skeleton running through the entire pore 182 

structure. The second method was the modified maximal ball algorithm [31] which extracts the pore network by fitting 183 

spheres of variable sizes into the pore space and ranking them accordingly to determine the largest spheres which form 184 

the largest pores connected by smaller spheres which form the pore throats. The third method consisted of two 185 

Mathematica® programmes [32] which run cluster labelling to detect connected pore voxels and random walk 186 

simulations. Details of these can be found in their respective references. 187 

The skeleton tortuosity determined using the medial axis-thinning algorithm is a direct measure of the crookedness of 188 

the pore structure. It is calculated as [33]:  189 

          Eq. (1) 190 

Where i is the index of skeleton branch, j is the total number of skeleton branches, Le and La are the actual and 191 

Euclidean lengths of each skeleton branch respectively. Another measure of the pore geometrical complexity is the 192 

diffusion tortuosity, which is based on the ease of self-diffusion of random walkers defined as follows: 193 

    as t and τt → ∞    Eq. (2) 194 

Where Df and D(t) are the self-diffusivity (m2/s) of random walkers in free space and pore space as a function of time (t) 195 

respectively, a1 is the dimension of a cubic voxel (m) and r(τt)2 is the mean square displacement of the walkers as a 196 

function of a unit time (τt). By assigning a value of 1 to a1, the mean square displacement becomes dimensionless and so 197 

is the diffusion tortuosity. Unless otherwise stated, a total of 20,000 random walkers and 1×107 time steps (τt) were used 198 

in the simulations so that the walkers experienced the full tortuosity of the pore structure. The time derivatives of the 199 

mean square displacements were calculated from the fitted slope of the mean square displacement vs. lattice walk time 200 

curve. The slopes were fitted for τt > 2×106 and τt > 4×106 for 7 and 90-day samples respectively. This was to avoid 201 
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unrestricted diffusion of the walkers during the early stages of simulation where most walkers rarely collided with the 202 

pore walls. By breaking down the scalar mean square displacements into the X, Y and Z axes, directional diffusion 203 

tortuosities can also be calculated. 204 

Another relevant parameter is the formation factor (F), which is calculated based on the Nernst-Einstein relationship as 205 

[34-36]: 206 

        Eq. (3) 207 

Where σ0 and σ are the electrical conductivities (S/m) of pore solution and saturated material respectively, D0 and D are 208 

the free and intrinsic diffusivities (m2/s) of the bulk system respectively, Φp is the accessible porosity and τD is the 209 

scalar diffusion tortuosity. There is no general consensus as to whether or not the diffusion tortuosity should be squared. 210 

Indeed, several versions of the above relationship exist where tortuosity is unsquared or square rooted, as summarised 211 

by [37]. However, it was observed that Eq. 3 gave better predictions of transport properties (to be published).  212 

Two workstations were used to run the algorithms: one is equipped with an Intel® Xeon™ CPU E5-1650 0 at 3.2 GHz 213 

processor with 32 GB RAM running on 64-bit Windows 7 Enterprise and the other is equipped with an Intel® Core™ 214 

i7-4770 CPU at 3.4 GHz processor with 16 GB RAM running on 64-bit Windows 8 Home. 215 

 216 

2.6 Axial distortion  217 

A systematic analysis was performed to investigate the effect of axial elongation in 3D LSCM images on the measured 218 

pore parameters (Table 4). A sub-volume with an area of 100 µm2 was cropped from the main 3D images of P0.45 7d. 219 

The voxel depth was first factored by 1.05 to correct for the mismatch of refractive indices between the immersion oil 220 

and epoxy in the pore structure [6]. Following that, the sub-volume was segmented using the method described in 221 

Section 2.4. A compression factor of 0.25, 0.50, 0.75 and 1.00 was then applied to the voxel depth to create a series of 222 

compressed image volumes with total thicknesses of 35, 70, 105 and 140 µm respectively. These image volumes were 223 

further re-sliced prior to 3D median filtering to yield isotropic voxels of 0.105 µm3 for analysis with the methods 224 

presented in Section 2.5. All other samples were analysed for the extreme compression factor of 0.25 and 1.00.  225 

Having completed the above, a suitable correction factor for elongation across all samples was determined using 226 

spherical PFA particles in P0.45 PFA 7d and 90d as benchmarks. The principle is analogous to that of microspheres but 227 

in this case, the exact sizes of PFA particles are unknown. PFA particles are intrinsically perfect spheres and hence their 228 

aspect ratios in the XY and Z directions are approximately equal to 1. This enabled a correction factor to be determined 229 

by measuring the aspect ratios of many PFA particles as a function of reducing voxel depth without knowing their exact 230 

sizes. 231 

In total, 80 PFA particles were randomly selected per sample (40 for each curing age) for measurements. The voxel 232 

depth was gradually compressed at intervals of 0.05. At each compression factor, the aspect ratios of all 80 particles 233 

were measured in the orthogonal views (XZ and YZ planes). Due to complexity of the microstructure, it was difficult to 234 

use a tracing tool to delineate particle boundaries for measurement. Instead, the ‘Oval selections’ tool in Fiji was used 235 

to fit ellipses to the PFA particles and the aspect ratios were recorded. The compression factor that gave the average 236 

aspect ratio closest to 1 was adopted as the correction factor.  237 

  238 

2.7 Determination of representative elementary volume (REV) 239 

The REV for different cementitious systems were determined using a statistical approach. Four sub-volumes of 1003 240 

µm3 were cropped from the imaged spots and segmented. Following that, smaller sampling volumes of 203, 403, 603 and 241 

803 µm3 were extracted from their centres (Figure 4). Thus, a total of 20 sampling volumes (10 each for spots A and B) 242 

were analysed per sample. The 1003 µm3 sampling volumes were selected diagonally to each other and so they overlap 243 

slightly (no more than 7%). In some cases, the total thickness of the image volume was less than 100 µm after being 244 

corrected for axial distortion (see Table 3 & Section 3.4). The voxel depth was also resliced to give isotropic voxels 245 

(0.1053 µm3). A total of 160 sub-volumes were analysed for the entire study. 246 

The statistical approach enables the REV to be defined for a given property, number of realisations (or number of image 247 

volumes analysed, n) and a chosen accuracy of the estimate (indicated by relative error, ɛ). For example, the REV (m3) 248 

based on porosity can be calculated using Eq. (4) and Eq. (5) [38, 39]: 249 

        Eq. (4) 250 
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Where ФT is the ‘true’ total porosity (taken as the mean porosity of the main image volume from spots A and B  190 × 251 

190 × 100 µm3) and A3 is related to the variance of the porosities (Dp
2(VI)) measured from n realisations for each 252 

volume size (VI, m3), and was determined by fitting Eq. (5) to measured data: 253 

       Eq. (5) 254 

 255 

3 Results 256 

3.1 Pore segmentation 257 

Figure 5 shows example images (XY plane) of a relatively porous (P0.45 PFA 7d) and relatively dense (P0.45 SF 90d) 258 

system segmented using the proposed method described in Section 2.4. Generally, both systems are well-segmented. 259 

Features with defined boundaries such as the PFA and anhydrous cement (AH) particles are visible. Pores as small as  260 

0.2 µm are also segmented as shown by arrows in Figure 5c and d. This demonstrates the ability of the applied 261 

methodology (Section 2.4) to segment very fine features. Several hollow shell pores or ‘Hadley’ grains are also visible 262 

[40]. However, low contrast features such as the shells of some ‘Hadley’ grains (marked by red boxes in Figure 5a and 263 

b) and some pores nestled in solids (marked by red boxes in Figure 5c and d) may not be adequately segmented. 264 

Figure 6 shows the pore structure of P0.45 PFA 7d and P0.45 SF 90d in three-dimensional views. A small volume of 265 

interest (303 µm3) was cropped from Figure 5 as an example to highlight the pore topology. Note that although the 266 

segmentation was performed slice-wise in the XY plane, pore edges in the Z plane appear smooth with no apparent 267 

discontinuities. A compression factor of 0.725 was applied to these images (see Sections 3.2 and 3.3). The largest 268 

connected pore and its corresponding skeleton determined by mapped-labelling and medial axis thinning algorithms 269 

show that P0.45 PFA 7d is more percolated than P0.45 SF 90d.  The pore networks extracted by the maximal ball 270 

algorithm also indicate that the pores and throats of P0.45 PFA 7d are much larger than those of P0.45 SF 90d, 271 

consistent with our expectation.  272 

 273 

3.2 Validation on ideal 3D pore structures 274 

The algorithms described in Section 2.5 and Table 4 were tested on nine 3D pore models constructed from spheres and 275 

cylinders of known sizes to represent pores and throats respectively. This is essentially to check that the algorithms are 276 

correct before applying them to actual 3D pore images for determining REV. The ideal pore models were generated 277 

using 3D Draw Shape and Line [41] in Fiji. 3D dilation and erosion were applied as in Section 2.4. Three pore 278 

configurations were considered: (i) pores attached, (ii) pores linked by short throats and (iii) pores linked by long 279 

throats. Details of the nine pore models are given in Table 5 and Figure 7. The measured total volume, surface area, 280 

pore and throat sizes, throat length, skeleton length and distance between pore to pore centres were compared with 281 

theoretical values in Figure 8. Note that the theoretical values were calculated by assuming that the sphere and throat 282 

surfaces were smooth and continuous. Overall, there is a good agreement between measured and calculated values.  283 

All three methods (BoneJ, cluster labelling and maximal ball) gave the same total pore volumes, but slightly higher than 284 

theoretical values by 5.07% on average. This is due to the fact that the pore models are voxelised rather than having 285 

continuous smooth surfaces assumed in calculations. The measured total surface areas were on average higher than 286 

calculated values by 1.62% with BoneJ (marching cube algorithm) and 50.8% with cluster labelling. This is because 287 

triangular isosurface meshes used in BoneJ gave a better representation of curved surfaces compared to discretised 288 

voxels assumed in cluster labelling. The average pore sizes were slightly underestimated (-2.07%) by the maximal ball 289 

algorithm because the upper-limit radius of maximal ball is defined as the Euclidean distance from the centre voxel to 290 

the nearest grain voxel [31]. However, the average throat radius and throat lengths were overestimated slightly (8.28% 291 

and 15.9% respectively) because the throats in “pores attached” models (a, b, c) were enlarged during erosion/dilation 292 

due to close proximity between spheres (2 voxels). The total pore centre-to-centre lengths were accurately measured by 293 

maximal ball (1.52% mean error) while the total skeleton length obtained by medial axis thinning (BoneJ) had a slightly 294 

larger mean error of 5.21%. This was because the skeletonised branches were not straight within the spheres. 295 

Nevertheless, the topologies of all pore structures were well-preserved in the skeleton image as seen in Figure 7.  296 

 297 

3.3 Effect of axial distortion 298 

Figure 9 shows the XZ plane of a sampling volume of P0.45 7d subjected to different axial compression factors. In can 299 

be seen that the pores appear stretched in the vertical direction when no axial compression was applied (1.00) and 300 

appear compressed when the applied factor was 0.25. Visually, an axial compression between 0.50 to 0.75 give the least 301 

distorted image. A more detailed quantitative assessment of this will be given in Section 3.4.  302 
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Figure 10 shows the effect of axial compression on measured pore parameters (Table 4). Note that the results are 303 

normalised to that of no compression. It can be seen that many pore parameters are insensitive to axial compression. 304 

These include total porosity, accessible (largest connected) porosity, percolation connectivity and skeleton tortuosity. 305 

Other parameters such as specific surface, shape factor, coordination number, pore and throat radii showed only a slight 306 

fluctuation. These parameters remain relatively constant because the pore and total sample volumes changed at equal 307 

proportion with axial compression. Similarly, the lengths and Euclidean distances of pore skeleton branches reduced at 308 

the same magnitude with increasing compression.  309 

As expected, the average pore size, skeleton branch length, volumes and lengths of pores and throats decreased with 310 

increasing compression. This is because of the reduced dimension (shortened pore length) in the Z direction. Euler 311 

connectivity increased with compression because the contribution of the pore structure to the Euler characteristic of the 312 

entire image increased (see Table 4 and Odgaard and Gundersen, 1993 for details). The directional diffusion tortuosities 313 

were also significantly affected by compression (Figure 10c). This is because directional diffusion tortuosities were 314 

calculated as (1/3) / fitted slope of random walks in the X, Y and Z directions. Compression causes the cumulative 315 

mean square displacement of walkers (after a given simulation time) to reduce in the Z direction and increase in the XY 316 

direction. This led to increased Z tortuosity and reduced XY tortuosity.  317 

Figure 10d presents the fitted slopes to mean square displacement vs. lattice walk time curves for calculating directional 318 

diffusion tortuosities. The larger the fitted slope, the lower the diffusion tortuosity. It is clear from the figure that with 319 

no compression, the contribution from the Z direction outweighs those from the XY directions, indicating an elongation 320 

of the pore structure in the original image. Axial compression decreases the contribution from Z direction and increases 321 

those from XY. Given that scalar diffusion tortuosity is equal to the sum contributions from all three directions, it 322 

remained relatively stable with increasing compression (Figure 10c). Similarly, the formation factor is insensitive to 323 

compression because it is calculated from scalar diffusion tortuosity and accessible porosity (Eq. 3). 324 

The effect of axial distortion on all other samples was investigated for compression factors of 0.25 and 1.00. The 325 

porosities of these samples ranged from 14.2% to 26.4%. The results, summarised in Appendix II, are consistent with 326 

the findings from P0.45 7d above that many pore parameters are relatively insensitive to axial distortion. The 327 

parameters most affected are Euler connectivity, pore and throat volumes, and directional tortuosities.  328 

 329 

3.4 Proposed correction factor for axial distortion 330 

Figure 11 shows the XY and XZ planes of a PFA particle from P0.45 PFA 90d subjected to axial compression. The 331 

uncompressed XY plane clearly shows that the particle is a perfect sphere of diameter   3.7 µm. However, in the XZ 332 

plane, the particle appears prolate and changes progressively to spherical then oblate when the axial compression factor 333 

increased to 0.5. The optimum compression factor that restored the particle to a sphere was approximately 0.7 (marked 334 

by a red box).  335 

Figure 12a shows the average aspect ratios of 80 PFA particles from P0.45 PFA at 7 and 90 days measured as a 336 

function of increasing axial compression. The error bars represent the 95% confidence interval of the average based on 337 

Student’s t distribution. The particle diameters determined from the minor axis of fitted ellipse without axial 338 

compression ranged from 9 to 276 μm, thus a wide range of feature size was sampled. Note that this range of particle 339 

sizes are relatively large in comparison to the Z-resolution or the PSF. Thus, very fine features close to the Z resolution 340 

or PSF would remain elongated. The results show that the smallest aspect ratio was achieved with axial compression  341 

0.75 to 0.80 at 7 days, and  0.65 to 0.70 at 90 days. This suggests that the axial distortion was slightly more severe at 342 

90 days. Taking all data into consideration, the optimum compression was between 0.70 and 0.75 (Figure 12a).  343 

Another approach to estimate the optimum correction factor was to measure the amount of compression required to give 344 

the smallest aspect ratio for every PFA particle. The results are presented as a frequency distribution histogram in 345 

Figure 12b. A spread of values is observed for both ages, indicating heterogeneity of the axial distortion. Nevertheless, 346 

the histograms show a peak at compression factors of 0.70 and 0.75, where most particles (55% for 7-day and 60% for 347 

90-day) were restored to spheres. Given that the optimum compression factors are so close, it is proposed that an 348 

average value of 0.725 is adopted as the correction factor for all samples. 349 

 350 

3.5 Representative elementary volume 351 

The effect of increasing sampling volume on the measured pore parameters (Table 4) is shown in Figures 13 to 15. The 352 

total time steps (τt) used for random walk simulations were 2, 4, 6, 8 and 10 × 106
 for sampling volumes of 203, 403, 603, 353 

803 and 1003 μm3
 respectively while the total number of random walkers was kept at 20,000. Each data point is an 354 

average of four measurements (two from each imaging spot A & B) and normalised to that of the 1003 μm3, acting as a 355 

benchmark. The error bars mark the maximum and minimum values. Note that the scale used on the Y-axes varies 356 

between plots and the X-axis represents the linear dimension of the image cube (= volume1/3). 357 
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The results show large scatter for all pore parameters when measurements were made on small image volumes (203 to 358 

403 μm3). There is also huge variability in the measured values and in some cases, the largest percolated pore structure 359 

was found to span the image volume in one or two directions only, instead of all three (X, Y and Z) directions. 360 

However, the degree of scatter for all pore parameters reduced significantly with increasing sampling volume. Most 361 

parameters became relatively constant (within ± 10% of the benchmark values) at 603 μm3 except for the scalar 362 

diffusion tortuosity and formation factor (Figure 15).  363 

The REV for porosity was calculated for all systems using Eq. (4) for a range of relative errors (ε = 1.0, 2.5, 5.0, 7.5 and 364 

10.0%). The ‘true’ porosity ФT was taken as the mean total porosity of the main image volume ( 190×190×100 μm3) of 365 

spots A and B. The integral range A3 was determined from Eq. (5) by curve fitting the variance of measured porosities 366 

to image volume as shown in Figure 16a. The best fit R2 values for all curves were > 0.93, except for P0.45 GGBS 90d 367 

whose variances were relatively small and showed poor linearity with image volume. Overall, A3 increased with 368 

increase in porosity variance. As such, A3 is an indicator of pore structure heterogeneity. This can also be seen in Figure 369 

16b showing a positive correlation between A3 and length of REV for all systems (n = 8 and ε = 5.0%). 370 

The calculated REVs are presented in Figure 17. As expected, the size of the REV decreases with increasing number of 371 

realisations and relative error. This is because the measured pore parameters become more statistically representative if 372 

a greater number of images is analysed and if the tolerable error in the measurement is higher. There is no discernible 373 

effect of curing age on the REV. For a single realisation (n = 1) and relative error of 1%, the REVs ranged from 3543 374 

μm3 (P0.45 GGBS 7d) to 6263 μm3 (P0.45 SF 90d), excluding P0.45 GGBS 90d whose A3 value was uncertain. 375 

However, as n increased to 8 and ε increased to 5%, nearly all REVs fell below 1003 μm3
 except for P0.45 PFA 90d 376 

(1013 µm3), P0.45 SF 7d (1073 µm3) and P0.45 SF 90d (1073 µm3). To achieve a REV of 1003 μm3
 and maintaining the 377 

relative error at 1%, the number of realisations required ranged from 44 (P0.45 GGBS 7d) to 248 (P0.45 SF 90d), 378 

excluding P0.45 GGBS 90d. However, the requirement for such a high number of image volumes is not currently 379 

practical for 3D imaging.  380 

 381 

4 Discussion 382 

The proposed pore segmentation method may produce slight under- or over-segmentation with very low contrast 383 

features. The CLAHE operation enhances the local contrast of these features, but noise may also be enhanced and this is 384 

an inevitable side effect. The segmentation process may be affected by artefacts such as scratches and fall-out particles 385 

which occur during the sectioning process. Nevertheless, such artefacts are localised on the polished surface and will 386 

not affect overall results. This is because surface artefacts are removed once the Z-stacks are overlapped to reconstruct 387 

the 3D image. Finally, it should be recognised that a perfect segmentation method does not exist, but the approach 388 

proposed in this paper provides an objective means to pore segmentation. 389 

Given that only pores connected to the sample surface and interconnected within the sample can be filled with 390 

fluorescein epoxy, the largest remaining pore following mapped-labelling or cluster labelling processes is effectively 391 

interconnected. Hence, no further segmentation such as watershed is needed to split the pore into sub-clusters. Clearly, 392 

pores which are smaller than the spatial resolutions of LSCM ( 0.2 µm in XY and  0.5 µm in Z direction) may not be 393 

resolved properly. However, these pore sizes are already much finer than those resolvable by conventional X-ray µCT. 394 

It has recently been shown by [42] that the critical pore entry diameter measured with mercury intrusion porosimetry 395 

(MIP) for 28-day white cement pastes cured underwater occurred at a few tens of nanometres. Such pores are obviously 396 

much smaller than the pores considered in this study. However, the very different appearance of pore structure obtained 397 

from MIP and other imaging techniques such as LSCM may not be as inconsistent as it seems. As evident from LSCM 398 

(Figure 3), large pores may in fact be interconnected through much smaller pores within the C-S-H, termed as 399 

‘interhydrate’ pores [43]. These are probably within regions of hydrates that exhibit intermediate brightness levels in 400 

the LSCM images. However, it should be emphasised that direct comparison between MIP and LSCM is not 401 

straightforward, as these techniques are different in terms of working principle, sample preparation (pre-drying 402 

techniques) and data interpretation.  403 

Different cementitious systems tend to exhibit slightly different levels of axial distortion in LSCM images. Therefore, 404 

the proposed axial correction factor of 0.725 is an approximation. Ideally, a specific correction factor for each system 405 

should be determined. As mentioned in the Introduction, it is impractical to use micro-standards for this purpose. An 406 

alternative approach is to use random walker to find the optimal compression factor that gives equal directional 407 

diffusion tortuosities by trial-and-error. However, such a method is retrospective and is valid only if the pore structure is 408 

perfectly isotropic. Moreover, the axial distortion within a system is spatially variable depending on local porosity, 409 

phase density and refractive index. Nevertheless, as shown in Section 3.3, the major pore parameters such as porosity, 410 

specific surface, average pore and throat sizes, percolation connectivity and scalar diffusion tortuosity are not 411 

significantly affected by axial distortion, and therefore knowing the exact correction factor is not critical. The measured 412 

REV is not influenced by the choice of correction factor.  413 
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The determination of REV relied on averaging of four replicates and the results show this is adequate (small error bars). 414 

The obtained REVs based on the change in measured pore properties with increasing image volume for CEM I systems 415 

were between 603 to 1003 µm3. These are generally in line with those determined from computer-generated 3D pore 416 

structure of pastes, e.g. Garboczi and Bentz [3] and Zhang et al. [4], with pre-defined water/cement ratio and cement 417 

particle size distribution and composition. Determination of REV from such models is also based on a statistical 418 

approach, where the fluctuations in the property of interest are quantified for a number of sampling volumes with 419 

increasing volume size until the property reaches a desired accuracy. Nevertheless, the sampling volumes are 420 

individually generated in modelling whereas those from experiments (e.g. Rolland du Roscoat et al. [39] and Mendoza 421 

et al. [44]) are usually sampled within the main domain at increasing length due to impracticalities with obtaining large 422 

number of datasets, as was the case in this study.  423 

One may argue that the observed convergence in the measured property (Figs. 13, 14 &15) was down to the 424 

increasingly large occupation of the sampling volumes within the entire domain. It should, however, be noted that the 425 

occupation of the sampling volumes (203, 403, 603 and 803 µm3) within the 1003 µm3 image volume was only 51.2% at 426 

most. To further support our findings, the average porosity measured from each sampling volume is normalised to the 427 

porosity measured from the main image volume ( 190×190×100 µm3). Figure 18 plots the normalised porosity against 428 

the size ratio of sampling volume to main image volume. Results show that the porosities become relatively constant 429 

and fall within ±0.1 when the sampling volume is at only  6 to 30% of the main image volume. This corresponds to a 430 

sampling volume of 603 to 1003 µm3, which confirms the findings from Section 3.5. 431 

Given that a range of binder type, curing age and pore structure was covered in this study, the findings obtained should 432 

be relevant to other systems. However, it is important to note that these results were obtained from cement pastes, based 433 

on measurements made at two locations separated by a 5 mm distance. The REVs determined are likely a lower limit 434 

(see Figure 1) [2] since larger scale spatial variation may exist, but not be accounted for. Concretes and mortars are 435 

inherently even more heterogeneous than cement pastes because of the presence of aggregate particles, interfacial 436 

transition zone (ITZ) and defects such as microcracking and segregation. Therefore, pore structure variation occurs over 437 

larger length scales and the REV of these materials will be greater than for cement pastes. However, as explained in the 438 

Introduction, determining the REV at concrete scale is less complicated because one can simply conduct tests on 439 

samples of varying sizes. For example, 3D numerical modelling of mortars and concretes containing different aggregate 440 

particle shapes with ITZ show that a numerical sample size of at least 2.5× the largest aggregate particle is needed to 441 

obtain representative simulations of diffusivity [45]. Experimental studies also showed that concrete samples with 442 

thickness of 10× the largest aggregate size is needed to obtain consistent permeability measurements due to drying-443 

induced microcracking [46]. 444 

 445 

5 Conclusions 446 

In the present work, the three-dimensional pore structure of a range of cementitious systems containing CEM I blended 447 

with silica fume, pulverised fuel ash or ground granulated blastfurnace slag cured to 7 and 90 days was imaged with an 448 

approach combining laser scanning confocal microscopy with serial sectioning and image reconstruction. The 3D pore 449 

structure (> 0.2 µm) was quantified to investigate the effects of axial distortion and to estimate the representative 450 

elementary volume (REV) of these systems. A total of 160 three-dimensional images were analysed. For each image, 451 

over twenty 3D pore parameters including total porosity, specific surface area, connectivity, skeleton tortuosity, 452 

diffusion tortuosity, formation factor, pore/throat radius, length, volume, shape factor and coordination number were 453 

quantified using BoneJ, maximal ball, cluster labelling and random walker algorithms. The main findings are 454 

summarised as follows: 455 

a. The transition of brightness from the solid to the pore phases in LSCM images of cement-based materials spans 456 

across the entire grey scale due to the varying brightness of the solid phase. This complicates pore segmentation. 457 

The proposed pore segmentation method which combines the Moments method with CLAHE to enhance the local 458 

contrast of microstructures is able to segment pores as small as  0.2 µm with good accuracy. 459 

b. Different cementitious systems tend to exhibit slightly different extents of axial distortion in LSCM images. 460 

Nevertheless, the axial distortion was found to have very minor effects on most of the measured pore parameters 461 

including total porosity, specific surface area, percolation connectivity, average pore and throat radii, and scalar 462 

diffusion tortuosity. A generic correction factor of 0.725 was proposed based on the measured aspect ratios of 80 463 

PFA particles as a function of increasing axial compression.  464 

c. Size of REV depends on the number of volumes sampled and averaged, the target % relative error and degree of 465 

variability (heterogeneity) of the pore structure. Based on the average results of four replicates, most pore 466 

parameters were found to be independent of the image volume size at 603 µm3 except for diffusion tortuosity and 467 

formation factor. The REVs for porosity calculated based on eight realisations and a relative error of 5% for 468 
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different systems were all found to be ≤ 1003 µm3 except for P0.45 PFA 90d (1013 µm3), P0.45 SF 7d (1073 µm3) 469 

and P0.45 SF 90d (1073 µm3). 470 
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Appendix I 572 

 573 

The Moments method proposed by Tsai [24] considers the grey-level image as a blurred version of the binarised image. 574 

It computes the threshold of an image by retaining the first three moments of the original image in the binarised image. 575 

The first three moments of an image are calculated as:  576 

  with i = 1, 2, 3    Eq. (I.1) 577 

Where N is the total number of pixels in the image, Nj is the total number of pixels with grey value zj, and pj = Nj / N. 578 

For bi-level thresholding, the pixels of the image are grouped into two classes, below- and above-threshold pixels. The 579 

moments of the binarised image mi’ are expressed as:   580 

        Eq. (I.2) 581 

Where p0 and p1 are the fractions and zo and z1 are the replacement grey values representative of the below- and above-582 

threshold pixels respectively. By keeping the moments unchanged, mi = mi
’ and by solving Eq. (I.2) for mi, p0 and p1, z0

i 583 

and z1
i can be determined. The threshold is taken as the grey value which corresponds to the p0-tile of the histogram.   584 
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Appendix II 

 

Table II.1: Effect of axial compression (at 0.25) on measured pore parameters for all samples. Results are normalised to that of no compression.  

Sample ID 
Age 

(days) 

BoneJ Maximal ball 

Total 

porosity 

Accessible 

porosity 

Percolation 

connectivity 

Euler 

connectivity 

Mesh 

specific 

surface 

area 

Skeleton 

tortuosity 

Avg. 

pore 

size 

Avg. 

pore 

shape 

factor 

Avg. pore 

connection 

number 

Avg. 

pore 

volume 

Avg. 

pore 

radius 

Avg. 

throat 

shape 

factor 

Avg. 

throat 

length 

Avg. 

throat 

radius 

Avg. 

throat 

volume 

P0.45 
7 1.00 1.00 1.00 2.05 1.26 1.00 0.79 0.91 1.00 0.50 1.02 1.00 0.78 0.96 0.46 

90 0.99 0.99 1.00 2.45 1.33 1.01 0.75 0.96 0.97 0.40 0.86 1.00 0.74 0.81 0.39 

P0.45 SF 
7 0.99 0.99 1.00 2.19 1.26 1.01 0.80 0.93 0.96 0.48 0.92 1.00 0.74 0.86 0.48 

90 0.99 0.98 0.99 2.22 1.25 1.02 0.83 0.91 0.87 0.41 0.91 1.00 0.67 0.85 0.43 

P0.45 PFA 
7 1.00 1.00 1.00 2.86 1.43 1.01 0.65 0.95 1.10 0.41 0.87 1.00 0.83 0.81 0.41 

90 0.99 0.99 1.00 2.07 1.30 1.01 0.77 0.93 0.91 0.44 0.94 1.01 0.76 0.91 0.44 

P0.45 GGBS 
7 1.00 0.99 1.00 1.91 1.29 1.01 0.74 0.92 0.98 0.48 1.02 1.00 0.81 0.96 0.50 

90 0.99 0.99 0.99 2.09 1.28 1.01 0.78 0.95 0.92 0.42 0.90 1.00 0.75 0.85 0.41 

Average 0.99 0.99 1.00 2.23 1.30 1.01 0.76 0.93 0.97 0.44 0.93 1.00 0.76 0.88 0.44 

 

Sample ID 
Age 

(days) 

Cluster labelling and random walker 

Voxel Sp 

A 

Voxel Sp 

B 

Diffusion 

tortuosity 

X 

Diffusion 

tortuosity 

Y 

Diffusion 

tortuosity 

Z 

Scalar 

diffusion 

tortuosity 

Formation 

factor 

P0.45 
7 1.28 1.29 0.52 0.49 2.97 1.12 1.13 

90 1.35 1.36 0.54 0.66 3.94 1.13 1.14 

P0.45 SF 
7 1.29 1.30 0.56 0.57 3.24 1.23 1.24 

90 1.29 1.30 0.58 0.49 3.66 1.54 1.56 

P0.45 PFA 
7 1.44 1.44 0.60 0.58 3.24 1.12 1.13 

90 1.33 1.33 0.75 0.48 10.97 1.10 1.11 

P0.45 GGBS 
7 1.31 1.32 0.48 0.47 3.25 1.18 1.19 

90 1.31 1.32 0.58 0.65 3.92 1.67 1.70 

Average 1.32 1.33 0.58 0.55 4.40 1.26 1.27 
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Representative elementary volume (REV) of cementitious materials from three-

dimensional pore structure analysis  

M.H.N. Yio, H.S. Wong* and N.R. Buenfeld 

Concrete Durability Group, Department of Civil and Environmental Engineering, Imperial College London, SW7 2AZ, 

UK 

 

Table 1: Mix proportions. 

Sample ID 
CEM I 

(kg/m3) 

SCM (wt.% 

total binder) 

SF 

(kg/m3) 

PFA 

(kg/m3) 

GGBS 

(kg/m3) 

Water 

(kg/m3) 

Total 

w/b 

Free 

w/b* 

P0.45 1290 - - - - 581 0.45 0.426 

P0.45 SF 1158 9 115 - - 573 0.45 0.445 

P0.45 PFA 965 23 - 288 - 564 0.45 0.434 

P0.45 GGBS 505 60 - - 758 568 0.45 0.415 

* After correcting for water lost to bleeding 

 

 

Table 2: Oxide compositions and properties of cementitious materials used. 

Binder 
Oxide composition (wt.%) LOI 

(%) 

Laser 

granulometry 

d50 (µm) CaO SiO2 Al2O3 Fe2O3 MgO Na2O(eq) K2O SO3 Cl- 

CEM I 63.4 20.8 5.4 2.4 1.5 0.3 0.7 2.9 <0.1 2.10 N/A 

SF 0.2 98.6 0.3 0.0 0.1 0.2 - 0.1 - N/A 0.25 

PFA 0.1 72.2 24.3 0.4 0.1 0.3 - 0.1 - N/A 7.00 

GGBS 40.8 36.5 11.6 1.4 7.5 0.5 - 2.1 - -0.99 8.00 

 

 

Table 3: Details of the 3D pore reconstruction. 

Sample ID 
XY field of view (µm2) 

Total number 

of stacks 

Total 

reconstructed 

thickness (µm) 

Average 

overlapping 

region (%) 

Average R 

A B A B A B A B A B 

P0.45 7d 190 × 190 161 × 186 52 62 117 137 42.0 42.1 0.93 0.93 

P0.45 90d 190 × 190 190 × 190 44 40 143 130 37.4 38.4 0.92 0.93 

P0.45 SF 7d 190 × 190 190 × 136 43 40 142 141 35.1 35.6 0.88 0.88 

P0.45 SF 90d 190 × 190 188 × 188 47 47 144 148 39.0 39.4 0.90 0.90 

P0.45 PFA 7d 190 × 190 190 × 190 62 56 146 138 43.1 42.9 0.89 0.89 

P0.45 PFA 90d 190 × 190 190 × 190 43 42 147 150 34.3 36.2 0.89 0.90 

P0.45 GGBS 7d 190 × 190 187 × 187 59 58 108 140 47.9 39.3 0.92 0.92 

P0.45 GGBS 90d 190 × 129 180 × 180 43 44 141 145 37.8 37.9 0.88 0.87 

 

                                                           

* Corresponding author. Tel: +44 (0)20 7594 5956. 

 E-mail: hong.wong@imperial.ac.uk 
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Table 4: Quantification of 3D pore parameters using different methods. 

Method Software Algorithm Parameters 

BoneJ 

(Doube et 

al., 2010) 

Fiji  

(v.1.51d)  

Voxel 

counting 

Total segmented porosity (Ф) = total volume of pore / total volume 

of image × 100% 

Mapped 

labelling 

 Accessible porosity (Фp) = volume of largest percolated pore in 

X, Y and Z / total volume of image × 100% 

 Percolation connectivity (Х) = accessible porosity / total porosity 

Euler 

characteristic 

Euler connectivity = 1 – Δχ, where Δχ represents the contribution 

from largest connected pore (Odgaard and Gundersen, 1993) 

Marching 

cube 

Mesh specific surface area (Sp) = surface area of pore mesh / 

volume of largest connected pore (m-1) 

3D medial 

surface axis 

thinning 

Skeleton tortuosity of largest connected pore (τs) (see Eq. (1) in 

text) 

Thickness 

computing 

Volume-weighted average pore size (thickness) of largest 

connected pore (m) 

Modified 

maximal ball 

(Dong and 

Blunt, 2009) 

Windows 

Command 

Prompt 

Modified 

maximal ball 

 Total segmented porosity (Ф) as in BoneJ; 

 Pore and throat radii: inscribed radii of the largest spheres in 

pores and throats respectively (m); 

 Throat length: see Figure 5 in Dong and Blunt (2009)  (m); 

 Pore connection (coordination) number: number of pores linked 

to each pore defined;   

 Pore and throat volume: number of voxels associated with each 

pore or throat block defined (m3);   

 Pore and throat shape factor = volume*length / surface area2 of 

each pore or throat block defined 

Mathematica 

programmes 

(Nakashima 

and Kamiya, 

2007) 

Mathematica® 

(v.10.4) 

(Wolfram 

Research, 

Champaign, 

Illinois) 

 

Cluster 

labelling 

 Total segmented porosity (Ф), accessible porosity (Фp) and 

percolation connectivity (Х) as in BoneJ; 

 Voxel specific surface area (Sp) = surface area of voxels of 

largest connected pore without (A) and with (B) considering 

pore faces on the edges / volume of largest connected pore (m-1) 

Random 

walker 

 Scalar (τD) and directional (τd) diffusion tortuosity of largest 

connected pore (see Eq. (2) in text); 

 Formation factor (F) of largest connected pore = τD
2 / Φp 
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Table 5: Details of 3D pore models used for validation. 

Pore 

configurations 
Model 

Number 

of pore 

Number 

of throat 

Pore 

radius 

(voxel) 

Pore centre to pore 

centre length 

(voxel) 

Throat 

radius 

(voxel) 

Pore attached 

a 3 3 

32 66 

8 

b 4 6 

c 8 12 

Pore linked by 

short throats 

d 3 3 

24 84 e 4 6 

f 8 12 

Pore linked by 

long throats 

g 3 3 

16 104 h 4 6 

i 8 12 

 

 

 

Figure 1: Change in property of interest (e.g. porosity) as a function of sample volume to define REV (after Bear 

[2]).  

 

Figure 2: Preparation of epoxy impregnated block for 3D LSCM from cast cylindrical sample (not to scale).  
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(a) LSCM 

 

 

(b) BSE 

Figure 3: Comparison between LSCM and BSE images of hardened cement paste impregnated with fluorescein-

doped epoxy captured at the same area. Sample is P0.45 7d.  
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Figure 4: Cropping of sampling volumes from the main 3D image for REV analysis: (a) XY plane of the main 3D 

image; and (b) 3D views of cropped sampling volumes. Diagram not to scale. 
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Figure 5: Example pore segmentation demonstrated on (a, b) P0.45 PFA 7d; and (c, d) P0.45 SF 90d. 
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 Original Segmented Largest connected pore Skeleton Pore network extracted by 
maximal ball algorithm 

Figure 6: Example 3D views of the pore structure of (a) P0.45 PFA 7d; and (b) P0.45 SF 90d. All image volumes are 303 µm3. Images were generated using Fiji except for the pore 

networks, which were visualised using Rhinoceros 5 (Robert McNeel & Associates, Seattle).  In the pore networks, green cylinders represent pore throats while red spheres 

represent ‘ancestor’ pores. 
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Figure 7: 3D pore models and their respective skeletons computed by the medial-axis thinning algorithm for validation. 

 

(a) 

 

(b) 

Figure 8: Comparison between measured pore parameters and theoretical values for the 3D pore models shown 

in Fig. 7. Measurements were made using (a) BoneJ (BJ) and cluster labelling (CL); (b) maximal ball algorithms. 

 

 

 

 

 

    

(a) 0.25 (b) 0.50 (c) 0.75 
(d) 1.00 (no 

compression) 

Figure 9: Applying axial compression to correct optical distortion in the Z axis of LSCM images. Sample is P0.45 7d. 
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(a) BoneJ (b) Maximal ball 

   

(c) Cluster labelling & random walker (d) Fitted slopes for diffusion tortuosity 

Figure 10: Effect of axial compression on pore parameters quantified with (a) BoneJ; (b) maximal ball; and (c) cluster 

labelling and random walker algorithms. Sample is P0.45 7d. (d) Contributions from X, Y and Z directions to the scalar 

diffusion tortuosity.  
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CF: - 0.5 0.6 0.7 0.8 0.9 1.0 

AR: 1.00 1.36 1.16 1.04 1.13 1.28 1.48 

Figure 11: Determining the optimal compression factor (CF) for correcting axial distortion in the Z axis based on aspect 

ratio (AR) of spherical PFA particles. The compression factor giving the lowest aspect ratio is ~ 0.7. Scale bar is 5 μm. 

Sample is P0.45 PFA 90d.   

 

  
(a) (b) 

Figure 12: Results of 80 PFA particles from P0.45 PFA 7d and 90d: (a) average aspect ratio vs. axial compression factor; 

and (b) frequency histogram of axial compression factors giving the minimum aspect ratio of each PFA particle. 
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(a) Total segmented porosity 

 
(b) Percolation connectivity 

 
(c) Mesh specific surface area 

 
(d) Average pore size (thickness) 

              

Figure 13: Change in (a) total porosity; (b) percolation connectivity; (c) mesh specific surface area; and (d) average pore 

size as a function of image volume size for all samples. Each data point is an average of four measurements and 

normalised to the value at 1003 μm3. Error bars show max/min values. Horizontal dashed lines mark the 0.9 to 1.0 

boundaries. 
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(a) Average pore connection number 

 

(b) Average pore radius 

 

(c) Average pore volume 

 

(d) Average throat volume 

 
(e) Average throat length 

 
(f) Voxel specific surface area A 

Figure 14: Change in (a) average pore connection number; (b) average pore radius; (c) average pore volume; (d) average 

throat volume; (e) average throat radius; and (f) voxel specific surface area as a function of image volume size for all 

samples. Each data point is an average of four measurements and normalised to that at 1003 μm3. Error bars show 

max/min values. Horizontal dashed lines mark the 0.9 to 1.0 boundaries. 
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 (a) Scalar diffusion tortuosity - R 

 

(b) Formation factor 

Figure 15: Change in (a) scalar diffusion tortuosity; and (b) formation factor as a function of image volume size for all 

samples. Each data point is an average of four measurements and normalised to that at 1003 μm3. Error bars show max/ 

min values. Horizontal dashed lines mark the 0.9 to 1.0 boundaries. 

 

 

(a) 

 

(b) 

Figure 16: a) Determination of A3 by curve fitting Eq. (5) to the variances of measured porosities as a function of image 

volume. Note that Eq. (5) has been rearranged so that the fitted slope gives A3. b) Relation between A3 and length of REV 

(n = 8; ε = 5%). 
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(a) n = 1 

 

(b) n = 8 

Figure 17: REV for porosity (Eq. 4) as a function of relative error  for (a) n = 1, and (b) n = 8, where n is the number of 

realisations (number of image volumes analysed). Horizontal dashed lines mark the REV of 1003 μm3. 

 

  

(a) 7 d (b) 90 d 

Figure 18: Total porosity measured from sampling volumes (203, 403, 603, 803 and 1003 µm3) normalised to that measured 

from the main image volumes (190×190×100 µm3) plotted against ratio of sampling volume to the main image volume. 

Each data point is an average of four measurements. Error bars show the maximum and minimum values. Horizontal 

dashed lines mark the range from 0.9 to 1.0. 
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