
ARCHITECT: Arbitrary-precision
Constant-hardware Iterative Compute

He Li, James J. Davis, John Wickerson and George A. Constantinides
Department of Electrical and Electronic Engineering

Imperial College London, London, SW7 2AZ, United Kingdom
{h.li16, james.davis, j.wickerson, g.constantinides}@imperial.ac.uk

Abstract—Many algorithms feature an iterative loop that
converges to the result of interest. The numerical operations in
such algorithms are generally implemented using finite-precision
arithmetic, either fixed or floating point, most of which operate
least-significant digit first. This results in a fundamental problem:
if, after some time, the result has not converged, is this because
we have not run the algorithm for enough iterations or because
the arithmetic in some iterations was insufficiently precise? There
is no easy way to answer this question, so users will often over-
budget precision in the hope that the answer will always be
to run for a few more iterations. We propose a fundamentally
new approach: armed with the appropriate arithmetic able
to generate results from most-significant digit first, we show
that fixed compute-area hardware can be used to calculate an
arbitrary number of algorithmic iterations to arbitrary precision,
with both precision and iteration index increasing in lockstep.
Thus, datapaths constructed following our principles demonstrate
efficiency over their traditional arithmetic equivalents where the
latter’s precisions are either under- or over-budgeted for the com-
putation of a result to a particular accuracy. For the execution of
100 iterations of the Jacobi method, we obtain a 1.60× increase
in frequency and 15.7× LUT and 50.2× flip-flop reductions over
a 2048-bit parallel-in, serial-out traditional arithmetic equivalent,
along with 46.2× LUT and 83.3× flip-flop decreases versus the
state-of-the-art online arithmetic implementation.

I. INTRODUCTION & MOTIVATION

In numerical analysis, an algorithm executing on the real
numbers, R, is often expressed as a conceptually infinite
iterative process that converges to a result. This is illustrated
in a general form by the equation

x(k+1) = f
(
x(k)

)
in which the computable real function f ∈

(
RN → RN

)
is

repeatedly applied to an initial approximation x(0) ∈ RN .
The true result, r, is obtained as k approaches infinity, i.e.

r = lim
k→∞

Π
(
x(k)

)
where the operator Π denotes projection of the variables
of interest since the result may be of lower dimensionality
than N . Examples of this template include classical iterative
methods such as Jacobi and successive over-relaxation, as
well as others including gradient descent methods, the key
algorithms in deep learning [1].

In practice, these calculations are often implemented using
finite-precision approximations such as that shown in Algo-
rithm 1, where FPP denotes some finite-precision datatype,
P is a measure of its precision (usually bit-width) and f̂

Algorithm 1 Generic finite-precision iterative algorithm.

Require: x̂(0) ∈ FPNP , f̂ ∈
(
FPNP → FPNP

)
1: for k = 0 to K − 1 do
2: x̂(k+1) ← f̂

(
x̂(k)

)
3: end for

Assert:
∥∥∥Π
(
x̂(K)

)
− r
∥∥∥ < η

is a finite-precision equivalent of f . The problem with this
implementation lies in the coupling of P and iteration limit
K. Generally, this algorithm will not be able to ensure that
its assertion passes, and when it fails we are left with no
knowledge as to whether K should be increased or if all
computations need to be thrown away and the algorithm
restarted with a higher P instead.

As a simple demonstration of this problem, suppose we wish
to solve the toy equation(

1 0.5
0.5 1

)(
x
x

)
=

(
1
1

)
for x using the Jacobi method [2]. This necessitates computing

x(k+1) = 1− 0.5x(k)

starting from x(0) = 0, which yields the sequence 0, 1, 0.5,
0.75, 0.625 and so on.

When performing this arithmetic using a standard approach
in either software or hardware, we must choose a single, fixed
precision for our calculations before beginning to iterate. Fig-
ure 1 (left) shows the order in which the digits are calculated
when the precision is fixed to four decimal places: iteration-by-
iteration, least-significant digit (LSD) first. Choosing the right
precision a priori is difficult. If it is too high, we waste time.
For instance, it is unnecessary to calculate x(4) to beyond three
decimal places because every further digit will be 0. However,
if the precision is too low, the sequence may never converge; if
all calculations were truncated at the decimal point, we would
instead obtain the sequence 0, 1, 0, 1, 0, etc.

Our proposal, illustrated in Figure 1 (right), avoids the need
to answer the aforementioned question entirely. The digits are
calculated in a diagonal pattern, sweeping through iterations
and decimal places simultaneously. From the pattern, we can
infer that the longer we compute, the more accurate our result
will be; the computation can terminate whenever the result
is accurate enough. This avoids the need to fix the precision

.

.

.

.

.

.

.

.

x(0):

x(1):

x(2):

x(3):

x(4):

x(5):

x(6):

x(7):

0 0 0 0 0

1 0 0 0 0

0 5 0 0 0

0 7 5 0 0

0 6 2 5 0

0 6 8 7 5

0 6 5 6 3

0 6 7 1 9

.

.

.

.

.

.

.

.

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 5 0 0 0 0 0 0

0 7 5 0 0 0 0 0

0 6 2 5 0 0 0 0

0 6 8 7 5 0 0 0

0 6 5 6 2 5 0 0

0 6 7 1 8 7 5 0

Fig. 1. Alternative digit-calculating strategies for the same result. Left:
iteration-by-iteration, LSD first. Right: our proposal, MSD first.

beforehand, but requires the ability to calculate from most-
significant digit (MSD) first, a facility provided through the
use of online arithmetic [3]. While general-purpose proces-
sors featuring traditional, LSD-first arithmetic units exhibit
inefficiency for the realisation of online arithmetic, FPGAs
represent ideal platforms for the implementation of such MSD-
first operations thanks to their completely flexible fabrics.

The proposed architecture, coined ARCHITECT, is the first
to allow the runtime adaption of both precision and iteration
count for iterative algorithms implemented in hardware. More
specifically, we make the following novel contributions:
• The first fixed compute-resource hardware architecture

for iterative calculation capable of producing arbitrary-
precision results after arbitrary numbers of iterations.

• An optimised mechanism for digit-vector storage based
on a Cantor pairing function to facilitate simultaneously
increasing precision and iteration count.

• Qualitative and quantitative performance and scalability
comparisons against traditional and state-of-the-art online
arithmetic FPGA implementations.

The designs presented and evaluated in this paper are
fixed point. ARCHITECT’s principles are, however, generic,
and could be employed for the construction of floating-point
operators supporting arbitrary-precision mantissas.

II. BACKGROUND

In scientific computing, machine learning, optimisation and
many other numerical application areas, methods of iterative
calculation are particularly popular and interest in their accel-
eration with FPGAs is growing [4]. Implementations relying
on traditional arithmetic—whether digit-serial or -parallel—
enforce compile-time determination of precision; for digit-
parallel designs this affects their area, while for digit-serial it is
one of the factors affecting algorithm runtime. Realtime tuning
of precision in iterative calculations was enabled through the
use of online arithmetic in recent work [5], however unrolling
was necessary in order to implement the algorithm’s loop;
area therefore scaled with the desired number of iterations.
As shown in Table I, ARCHITECT stands apart from these
alternatives by enabling the runtime selection of both factors
affecting result accuracy while keeping compute area constant.

TABLE I
COMPARISON OF ARITHMETIC PARADIGMS FOR ITERATIVE ALGORITHMS.

Name
Area scales with Runtime scales with

Prec. Iter. limit Prec. Iter. limit

Digit-parallel 4 8 8 4 unbounded
Digit-serial 8 8 4 bounded 4 unbounded

Zhao et al. [5] 8 4 4 unbounded 8

ARCHITECT 8 8 4 unbounded 4 unbounded

TABLE II
COMPARISON OF ARBITRARY-PRECISION ARITHMETIC TECHNIQUES.

Name Level Precision set
per calc.

Iteration limit set
per calc.

MPFR [9] Software Before During
FloPoCo [10], etc. Hardware Before During

Mixed-precision [12] Hardware Before During
Zhao et al. [5] Hardware During Before

ARCHITECT Hardware During During

A. Arbitrary-precision Arithmetic
Calculations requiring very high precision are of increas-

ing prevalence; in many cases, double- or even quadruple-
precision floating point are insufficient [6]. Simulations of
supernovae and electromagnetic scattering necessitate hun-
dreds of digits, while thousands are now used for ordinary
differential equations [7]. Poisson equation and Riemann zeta
function computations frequently operate to tens or hundreds
of thousands of digit precisions [8].

Many software libraries have been developed for arbitrary-
precision arithmetic. The de facto standard is MPFR, which
guarantees correct rounding to any requested number of
bits [9]. Arbitrary-precision operations implemented on FP-
GAs have seen increasing attention in recent years; they pro-
vide flexibilities not available on other platforms, allowing for
the implementation of bespoke designs with many precision
and performance tradeoffs. Libraries including FloPoCo [10]
and VFLOAT [11], alongside proprietary vendor tools, fa-
cilitate the creation of custom-precision arithmetic IP cores.
Although they provide the designer with many options to suit
particular frequency, latency and resource usage requirements,
precision is determined at compile-time and therefore remains
fixed during operation. Sun et al. proposed an FPGA-based
mixed-precision linear solver: as many operations as possible
are performed in low precision before switching to a slower,
higher-precision mode for the later iterations [12]. Zhao et
al.’s work enables arbitrary-precision computation but, as
mentioned previously, requires compile-time determination of
iteration count [5]. Table II presents a side-by-side comparison
of these techniques and their features with ARCHITECT, the
only entry supporting the determination of precision and
iteration count after each calculation has commenced.

B. Online Arithmetic
Online arithmetic operators achieve left-to-right (MSD-first)

computation through the use of redundancy in their number

x+in x
−
in y

+
in y−in

z+out z
−
out

Full adder
s c

Full adder
s c

> >

>

> >

x+0 x−0 y+0 y−0 x+1 x−1 y+1 y−1
. . . x+P−1x

−
P−1y

+
P−1 y

−
P−1 c

+
in c−in

c+out c
−
out z+0 z−0 z+1

. . . z−P−2 z+P−1z
−
P−1

Full adder
s c

Full adder
s c

Full adder
s c

Full adder
s c

Full adder
s c

Full adder
s c

Fig. 2. Radix-2 online adders. Left: serial. Right: parallel.

representation [3]. With the radix-2 signed-digit representa-
tion we employ, the ith digit of a number x, xi, lies in
{−1, 0, 1} [13]. In hardware, each xi corresponds to a pair
of bits, x+i and x−i , selected such that xi = x+i − x

−
i .

1) Online Addition: A classic online adder makes use of
full adders and registers to add digits of inputs x and y
presented serially as xin and yin, as shown in Figure 2 (left),
from most to least significant [3]. Digits of z start to appear at
serial output zout after two clock cycles; this is the online delay
of the adder, denoted δOA. Duplication of the serial adder P
times and removal of its registers leads to the creation of a P -
digit parallel online adder devoid of online delay, as shown in
Figure 2 (right) [3]. Crucially, while carry digits are presented
at the least-significant end of the adder and generated at the
most, there is no carry chain; the critical path lies across two
full adders [14]. This indicates the adder’s suitability for the
construction of more complex online operators and that its
maximum frequency is independent of precision [5].

2) Online Multiplication: Algorithm 2 illustrates classic
radix-2 online multiplication: a process that operates in serial-
in, serial-out fashion [3]. Digit vectors x and y are assembled
from digits of inputs x and y over time from most-significant
first; ‖ represents concatenation performed such that

x(j) =

j∑
i=0

xi2
−i−1, y(j) =

j∑
i=0

yi2
−i−1

during cycle j. Digit-selection function sel [5], which can be
implemented with a four-digit multiplexer, serves to determine
the digits of output z. This is defined to be

sel(v) =


1 if v ≥ 1/2

0 if − 1/2 ≤ v ≤ 1/4

−1 otherwise

zj is produced at cycle j+ 3 since δOM = 3. A P -digit online
addition lies at the heart of the algorithm; due to its fixed
width, hardware that implements Algorithm 2 can multiply to
a precision of at most P , which must be fixed in advance.

III. PROPOSED ARCHITECTURE

Using classic online operators as a starting point, we now
describe the construction of constant compute-resource hard-
ware capable of performing iterative computation to increasing
precision over time. We call this concept ARCHITECT.

Algorithm 2 Radix-2 online multiplication.
Inputs: serially presented digits x, y

1: x,y,w ← 0
2: for j = 0 to P + 2 do
3: y ← y ‖ yj
4: v ← 2w + 2−3(xyj + yxj)
5: zj−3 ← sel(v)
6: w ← v − zj−3
7: x← x ‖ xj
8: end for

Output: serially generated digits z

...

...

u = 0 1 2 …… U-1 0 1 2 …… U-1 … 0 1 … ≤U-1 u ϵ [0, U)

c = 0 1 ... n-1 c ϵ [0, n)

i = 0 1 2 ……………………………………………... p-1 i ϵ [0, p)

Fig. 3. Indexing of digits and chunks within a p-digit number. i indexes all
digits, while those of each of its n chunks, indexed c, are indexed with u.

A. Digit-vector Storage

Classic online operators make use of registers to store digit
vectors. When implementing Algorithm 2 in hardware, for
example, P -digit registers are needed for x and y. To compute
to an arbitrary precision p instead, however, this is unsuitable;
we must use RAM for digit-vector storage to avoid both under-
and over-budgeting register resources. We break p into two
dimensions: one fixed, U , that determines the RAM width, and
a second variable, n = dp/Ue, representing the number of these
‘chunks’ that constitute each p-digit number. When performing
iterative calculations, independent digit vectors exist for each
step, thus their indexing requires three separate variables:
iteration k, chunk c ∈ [0, n) and chunk digit u ∈ [0, U). The
relationships between c, n, u, U and overall digit index i are
shown visually for a single p-digit number in Figure 3.

Since ARCHITECT requires iteration index k and precision
p to both vary non-monotonically as time progresses, it is
necessary to uniquely encode a one-to-one mapping from two-
dimensional iteration and chunk index pair (k, c) into one-
dimensional time. We use a Cantor pairing function (CPF), a
bijection from N2 onto N, for this purpose, defined to be

cpf(k, c) =
(k + c) (k + c+ 1)

2
+ c

The function’s bijectivity means that it is injective and sur-
jective, both crucial properties for ARCHITECT. Unlike clas-
sic row- or column-major indexing, CPFs’ injectivity allows
both dimensions to grow without bound while providing a
unique result for every (k, c). The operation of our CPF is
demonstrated visually in Figure 4; what is conceptually a
three-dimensional array indexed as (k, c, u) becomes a two-
dimensional array indexed by (cpf(k, c), u) instead, thereby
suiting the ‘flat’ nature of RAM. Its surjectivity ensures that
every cpf(k, c) is produced by some (k, c), thus enabling the
most efficient use of the available memory.

x[1][0]

1
0

1

2

1 2 30 ...

x[2][0]

x[3][0]

x[4][0]

RAM

depth

x[cpf(0,0)]

3

x[cpf(1,0)]

x[cpf(0,1)]

x[cpf(2,0)]

x[cpf(0,2)]

RAM width

U-1U-2

x[0][0]

0

0

1

2

3

4

..
.

c

U

k

..
.

2

3

x[5][0]5

..
. ..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
. x[cpf(1,1)]4

5

..
.

..
.

..
.

..
.

..
.

..
.

..
.

x[0][0]

x[0][1]

x[0][2]

x[0][3]

..
.

x[cpf(3,0)]6

Fig. 4. Operation of our Cantor pairing function, showing the transformation
of a three-dimensional array growing with both iteration and chunk indices k
and c (left) to a structure growing only in a single dimension (right).

Algorithm 3 Loop body of arbitrary-precision radix-2 online
multiplication, performed p times for p-digit precision.
Inputs: digit xin, digit yin, iteration index k, number of chunks

n, chunk digit index u
1: y[cpf(k, n− 1)][u]← yin
2: for c = n− 1 to 0 do
3: v[cpf(k, c)]← 2w[cpf(k, c)]+

2−3(x[cpf(k, c)]yin + y[cpf(k, c)]xin)
4: if c > 0 then
5: w[cpf(k, c)]← v[cpf(k, c)]
6: end if
7: end for
8: zout ← sel(v[cpf(k, 0)])
9: w[cpf(k, 0)]← v[cpf(k, 0)]− zout

10: x[cpf(k, n− 1)][u]← xin
Output: digit zout

We are now in a position to rewrite the body of Algo-
rithm 2 such that it can compute results to arbitrary precision.
These transformed steps are shown in Algorithm 3. Most
importantly, a new loop has been introduced; this iterates
over the n pairs of p-digit numbers’ chunks, most-significant
first, to facilitate arbitrary-precision multiplication with a U -
digit adder. Digit vectors x, y, v and w are now indexed in
two dimensions, corresponding to standard RAM addressing
denoted as [word][digit]. Where a digit index is not given, all
U digits of that word are accessed simultaneously.

B. Digit Computation Scheduling
Given a generic online delay δ made up of latencies from

a pipeline (or replicated pipelines operating in parallel) of
one or more operators implementing the body of an iterative
algorithm, restrictions are imposed on the order in which digits
are calculated across iterations. δ impacts us in two ways:
• As exemplified in Algorithm 2, calculation of the first

output digit requires the prior input of the first δ+1 input
digits. Thereafter, each subsequent output digit requires
one additional input digit in order to be computed.

• The ith output digit is generated δ cycles after the ith input
digit is presented.

In general, digits within the same iteration can be calculated
indefinitely, while those lying across iterations must be se-

• • • • • • •

• • • • •

• • •

•

i

k

δ + 1 δ δ

Fig. 5. Digit pattern for generic iterative computation using online operators,
prioritising iteration count over precision.

quenced such that they obey these δ-imposed limitations. The
scheduling of output digit z(k)i generation must therefore obey

t
(
z
(k)
i+1

)
> t
(
z
(k)
i

)
, t

(
z
(k+1)
i

)
> t
(
z
(k)
i+δ

)
for all iteration indices k ≥ 0 and digit indices i ≥ 0, where
t is the time at which a generation event occurs.

While we have the choice of whether to prioritise iteration
count or precision within these bounds, in this paper we
always advance iteration index k as soon as possible. Thus, an
appropriate mapping from the current to next digit respecting
the aforementioned dependences is depicted in Figure 5. The
figure reveals two distinct groupings of digits: we call the
blocks of δ+1 MSDs of each iteration group 1, while the sets
of δ digits that follow each belong to group 2. δ + 1 digits
make up each group 1 since output digit generation always
lags input presentation by δ cycles; the computation of the
(k + 1)

th iteration’s first digit requires the prior generation of
the kth iteration’s first δ+1 digits, themselves necessitating the
kth iteration’s first 2δ + 1 input digits to compute. Following
the calculation of the group 1 digits within each iteration,
group 2s are processed ‘downwards’ and ‘leftwards,’ with
slope dependent on δ and control snapping back to the first
iteration once digit position i = 0 has been reached.

Given a particular (k, n, u), we can compute the subsequent
(k′, n′, u′) to realise this pattern with the finite-state machine
(FSM) depicted in Figure 6, whose functionality is as follows.
• Group 1 control: Manages the propagation and storage of
δ+1 digits at the start of each new iteration. Since RAM
width U is always greater than δ, a limitation we impose,
the number of chunks n = 1 in group 1, thus digits can
always be computed in successive clock cycles.

• Group 2 control: For δ digits’ propagation and storage.
• Iterative addition: When p ≤ U , ARCHITECT is able to

perform p-digit additions in single clock cycles. However,
when p > U , once each U -digit chunk has been com-
puted, normal computation in group 2 must be halted
for n − 1 cycles to calculate one digit of the iterative
algorithm’s output [5]. Note that this loop cannot be
unrolled since p is variable.

C. Required, Resultant and Maximum Iterations & Precision
In order to reach a result of required accuracy defined by

its iteration index and precision (Kreq, Preq), we must compute

Group 1

Group 2Iterative
addition

Start

p > δ + 1
n = 1 ∧ p ≤ 2δ + 1

c = 0 ∧ p 6= 2δ + 1

n > 1

c = 0 ∧ p = 2δ + 1

Fig. 6. ARCHITECT FSM for digit computation scheduling. Termination
occurs either on demand or when the allocated RAM has been exhausted.

0 p

k

PresPreq Pmax

Kres

Kreq

Kmax

Accuracy

target

Fig. 7. Relationships of (Kreq, Preq), Kres, Pres, Kmax and Pmax.

for at least Kreq iterations and to at least Preq-digit precision.
As shown in Figure 7, we define the number of iterations
resulting from computation to accuracy target (Kreq, Preq) as
Kres and the precision of the first iteration’s result—always
the most precise—as Pres. Kres is bounded to no more than
Kmax, while Pres is similarly bounded by Pmax, both of which
are determined by the size of the allocated memory.

From the pattern shown in Figure 5, we can deduce that the
precision of the result in the kth iteration, p(k), is given by

p(k) =


δ
(⌈

Preq−1
δ

⌉
+Kreq − 1− k

)
+ 1 if k < Kreq − 1

Preq if k = Kreq − 1

δ (Kres − 1− k) + 1 otherwise

where Kres can be derived from (Kreq, Preq) as

Kres =

{⌈
Preq−1
δ

⌉
− 1 +Kreq if Preq > 1

Kreq if Preq = 1

and Pres = p(0), thus

Pres = δ

(⌈
Preq − 1

δ

⌉
+Kreq − 1

)
+ 1

For each arbitrary-precision digit vector to be stored, Kmax
and Pmax are fixed by RAM depth D (in U -digit words).
Analysis of our pairing function’s results allow us to derive

Pmax = U
(

1 +
⌊
3/2
(√

1 + 8/9D − 1
)⌋)

Kmax =

{
Pmax/U + 1 if D ≥ (Pmax/U + 1) Pmax/2U
Pmax/U otherwise

× ×

+ +

RAM

−a01
a00

b0
a00

−a10
a11

b1
a11

22

22

22

2 2

x0(k, n, u)

x1(k, n, u)

x0(k′, n′, u′) x1(k′, n′, u′)

Fig. 8. Jacobi method datapath, highlighting digit-vector storage.

IV. BENCHMARK: JACOBI METHOD

In order to evaluate ARCHITECT, we implemented a widely
used iterative algorithm, the Jacobi method, in hardware
following the aforementioned principles. The Jacobi method
seeks to solve the system of N linear equations Ax = b. If A
is decomposed into diagonal and remainder components such
that A = D + R, x can be computed as

x(k+1) = D−1
(
b−Rx(k)

)
or, expressed in element-wise fashion, as

x
(k+1)
i =

1

aii

bi − ∑
i6=j∈[0,N)

aijx
(k)
j

 ∀i ∈ [0, N)

where k is the iteration index. Since D’s only non-zero
elements lie along its diagonal, D−1 is trivial to calculate.
Note that x(k+1) relies only upon the previously calculated
value of x; the calculation can therefore be parallelised by
computing each x

(k+1)
i independently. A convergence crite-

rion, ‖Ax− b‖ < η, is used in order to determine whether or
not the solution has been found to great enough accuracy.

Such a system is guaranteed to be soluble when A is strictly
diagonally dominant, i.e. if the condition |aii| >

∑
j 6=i |aij |

holds for all i. Although strict diagonal dominance is not a
necessity in every case, we assume this condition to always
be satisfied in this paper for simplicity.

A metric used to quantify the sensitivity of a particular
linear system to error is the condition number of A [15], where

κ(A) = ‖A‖
∥∥A−1∥∥

Perturbations in x(k), caused by rounding, lead to errors in
x(k+1) whose magnitude is dependent, in part, on κ(A); a high
condition number indicates that A is sensitive and therefore ill
conditioned [16]. We can expect to need at least β additional
digits of precision in order to compute a system with κ(A) =
2β than would be required if κ(A) were 1 [2].

Without loss of generality, the datapath developed to solve
systems with dimensionality N = 2 is depicted in Fig-
ure 8, featuring ARCHITECT numerical operators described
in Section III. Jacobi solvers with N > 2 could have
been built with additional multipliers and adders, but this is
not the emphasis—demonstrating arbitrary-accuracy iterative
calculation—of this work. Note that runtime division is unnec-
essary since A and b are constants and simple rearrangement
transforms subtraction into addition.

A. Computation Time
Given a particular accuracy target (Kreq, Preq), and hence a

certain Kres and Pres, we can calculate the number of clock
cycles required to compute the desired result. This total time
T can be broken down into the following three components
such that T = T1 + T2 + T3.
• Digit generation in groups 1 and 2: The latency for a

single output digit’s computation via iterative addition
increases with the number of chunks within the given
iteration, n(k). Across all iterations performed, this is

T1 =

Kres−1∑
k=0

n(k)

(
p(k) −

U
(
n(k) − 1

)
2

)
where n(k) =

⌈
p(k)
/U
⌉
.

• Initial online delay: We must wait δ clock cycles before
each iteration’s result begins to appear, thus the delay
across all iterations is simply

T2 = δKres

where δ is the combined online delay of all operators
within the datapath. For our Jacobi benchmark, δ = 5.

• Serial online adder: Our datapath includes a serial online
adder with δOA = 2. When switching between iterations,
the adder requires two cycles to recalculate the preceding
iteration’s residuals in order to produce a new digit [3].
Therefore, the online delay ensures that the calculated
digit aligns with its truncated digit vector. For this,

T3 = K2
res −Kres + 2Kreq − 2

V. EVALUATION

Experiments were performed to investigate how ARCHI-
TECT scales and performs versus competing arithmetic im-
plementations, both traditional (LSB-first) and online, using
the Jacobi method as a case study. A Xilinx Virtex UltraScale
FPGA (XCVU190-FLGB2104-3-E) was targetted, with com-
pilation performed using Vivado 16.4. The correctness of re-
sults obtained in hardware was verified via comparison against
those produced by a golden model executed in software.

The closest work to ARCHITECT is that presented by Zhao
et al. [5], which we compare against directly. For comparison
against traditional arithmetic, we chose to implement parallel-
in, serial-out (PISO) operators. PISO sits at the midpoint
between fully serial (SISO) and parallel (PIPO) in terms of
area and performance [17]. With increase in precision P—
which, for traditional arithmetic, can solve problems for which
Preq ≤ P—PISO suffers less from area growth and operating
frequency fmax degradation than PIPO [18] while also being
dramatically faster than SISO [19]. While we focus exclusively
on hardware implementations here, the limitations revealed for
PISO apply equally to software libraries since precision must
be chosen prior to the iterative algorithm’s commencement.

A. Qualitative Performance Comparison
To evaluate performance, we considered systems in which

Am =

(
1 1− 2−m

1− 2−m 1

)
, b =

(
b0
b1

)
, x(0) = 0

with b0 and b1 randomly selected from a uniform distribution
in the range [0, 1). As m increases, condition number κ(Am)
also increases, suggesting that higher precision Preq will be
required to generate a result of great enough accuracy. We
set accuracy bound η = 2−6 and experimentally determined
that the most ill-conditioned matrix requiring Preq = 32, a
commonly encountered traditional arithmetic data width, to
solve the associated system was that with m = 25, so we
limited our experiments to m ∈ [0, 25]. We postulate that
ARCHITECT should ‘win,’ i.e. compute the required result in
less time, versus PISO either when the latter’s precision P is
high and Am is well conditioned or when P is too low for an
ill-conditioned Am to allow convergence at all. Note that, for
ARCHITECT, we used RAM size (U,D) =

(
64, 210

)
and that

reported latencies used frequencies taken from Section V-C.
The changes in κ(Am) and Preq by m are shown in

Figure 9 (left and mid-left, respectively). We can see that
κ(Am) increases exponentially with m, while Preq scales
approximately linearly. Figure 9’s mid-right plot captures the
latency ratio between ARCHITECT and 32-bit PISO necessary
to compute results for matrices with low m. Here, PISO
can be said to have over-budgeted precision; P > Preq and,
therefore, results take longer to compute than had a smaller
P been chosen in advance. In region A, for the most well-
conditioned matrices, ARCHITECT takes less time to reach
the target (Kreq, Preq), while in region B the opposite is true:
the lower-indexed iterations’ results are computed to greater
accuracy than those with PISO, taking more time. Had a lower
choice of P been made for PISO, ARCHITECT would have
been at a disadvantage for the more well-conditioned matrices,
but it would also have been able to compute the results of
systems featuring ill-conditioned matrices that PISO could
not. As shown in Figure 9 (right) with P = 8, ARCHITECT
can extend into region C, where PISO’s precision is under
budgeted; here, even if PISO ran indefinitely it would never be
able to converge to an accurate enough solution. We conclude,
therefore, that ARCHITECT requires less time than PISO to
generate results either when Preq is small and convergence is
fast or when Preq is too large for PISO to ever converge.

B. Area & Frequency Scalability

Our implementational results are presented in Figure 10,
including area, maximum operating frequency fmax and the
corresponding limits on iteration count Kmax and precision
Pmax. Each of the three plots features D, the RAM depth
used for storage of each digit vector, on the x-axis. LUT
and flip-flop (FF) usage are not shown since the numbers are
insignificant compared to BRAM—from 0.0771% to 0.344%
for LUTs and 0.0198% to 0.0392% for FFs for the smallest
(D = 210) and largest (D = 218) designs implemented.
Memory usage grows with D, as expected; the higher Kres
and Pres one wishes to be able to reach, the more RAM must
be instantiated. The small increases in non-RAM resources
noted can be attributed to the additional control logic and
multiplexing required to address larger memories. With 56.4%
of BRAMs allocated on our target FPGA, we were able to
reach Kmax = 724 and Pmax = 5784. The fmax plot shows that

0 5 10 15 20 25

m

101

102

103

104

105

106

107

108
κ

(A
m

)

0 5 10 15 20 25

m

0

5

10

15

20

25

30

35

P
re

q
 (

di
gi

ts
)

0 0.2 0.4 0.6 0.8 1

m

0

1

2

3

La
te

nc
y

ra
tio

A

 B

Ratio = ARCHITECT / PISO (P
req

 = 32)

0 0.5 1 1.5 2 2.5 3

m

0

5

10

15

20

25

La
te

nc
y

ra
tio

 B C

Ratio = ARCHITECT / PISO (P
req

 = 8)

Fig. 9. Qualitative comparison between ARCHITECT and traditional arithmetic (PISO). Across a collection of matrices, higher m leads to larger κ(Am), for
which results with greater precision Preq are required to solve the linear system Amx = b.

210 211 212 213 214 215 216 217 218

D (words)

100

101

B
R

A
M

 u
sa

ge
 (

%
)

210 211 212 213 214 215 216 217 218

D (words)

0

50

100

150

200

f m
ax

 (
M

H
z)

210 211 212 213 214 215 216 217 218

D (words)

102

103

104

K
m

ax
 &

 P
m

ax

K
max

 P
max

Fig. 10. Resource usage and performance of ARCHITECT Jacobi benchmark
versus RAM depth D. Area is reported in terms of BRAMs only; LUT and
FF usage were below 1% for all design points.

our implementations are able to run at between 180 MHz, for
the smallest D tested, to just below 100 MHz for the largest.

ARCHITECT gives its users the freedom to trade off area and
computation time directly by varying RAM width U . When
U is changed, so are the widths of the parallel online adders
used in the datapath; while a design with narrower adders
is just as able to compute a particular result as one capable
of performing wider additions, it will also consume more
clock cycles in return for demanding lower resource usage.
A comparison between U = 8 and U = 64 with the same D,
in this case 210, is shown in Table III to exemplify this.

C. Quantitative Area & Frequency Comparison

In order to compare the resource usage and fmax of ARCHI-
TECT against its competitors, we now assume that we wish

TABLE III
AREA-SPEED TRADEOFF VIA SELECTION OF U .

Metric U = 8 U = 64

LUTs 828 (0.0771%) 2475 (0.231%)
FFs 408 (0.0198%) 936 (0.0436%)

BRAMs 16 (0.423%) 58 (1.54%)
fmax (MHz) 180 175

Iterative addition latency (cycles)
⌈
p(k)/8

⌉ ⌈
p(k)/64

⌉

to compute a result to an accuracy target of (Kreq, Preq) =(
100, 211

)
using the Jacobi method. Thus, at its 100th iteration,

we wish to obtain a result with 2048-digit precision. Using
U = 8, for ARCHITECT, the resultant iteration count Kres =
509 and precision Pres = 2546 and, to successfully perform
computation to (Kreq, Preq), we must ensure that Kmax ≥ Kres
and Pmax ≥ Pres. We can determine that, by setting RAM depth
D = 217, we are able to reach Kmax = 512 and Pmax = 4088,
which satisfies these requirements.

Figure 11 presents a side-by-side comparison of the ar-
chitectures implemented following the principles presented
herein and those using PISO operators as well as the online
implementation published by Zhao et al. [5]. Most strikingly,
the latter demonstrates area inefficiency, with resource usage
scaling linearly with iteration count Kreq; ARCHITECT con-
sumes 46.2× fewer LUTs and 83.3× fewer FFs than Zhao
et al.’s proposal requires in order to execute 100 iterations
of the Jacobi method. fmax is comparable between the two
since the underlying arithmetic is largely equivalent, although
ARCHITECT’s is slightly superior. For PISO, we can see that,
while its fmax is initially much higher—up to 322 MHz for
Preq = 24—than ARCHITECT’s, it falls as Preq increases;
the crossover occurs at Preq ≈ 800. With high precision
requirements, such as 210- and 211-digits, ARCHITECT is able
to outperform its PISO counterpart in terms of fmax by factors
of 1.17 and 1.60, respectively. Corresponding decreases in
LUT and FF usage were also found; when computing to
Preq = 210, ARCHITECT consumes 6.87× and 25.3× fewer of
each than PISO, while for 211 these factors increase to 15.7

25 26 27 28 29 210 211

P
req

 (digits)

100

101

102

LU
T

 u
sa

ge
 (

%
)

Zhao et al. [5]
PISO
ARCHITECT

25 26 27 28 29 210 211

P
req

 (digits)

100

101

F
F

 u
sa

ge
 (

%
)

Zhao et al. [5]
PISO
ARCHITECT

25 26 27 28 29 210 211

P
req

 (digits)

0

100

200

300

400

f m
ax

 (
M

H
z)

Zhao et al. [5]
PISO
ARCHITECT

Fig. 11. Resource usage and performance comparison of competing Jacobi
designs versus required precision Preq.

and 50.2. Since the proposed design is able to calculate to any
(Kreq, Preq) up to

(
100, 211

)
, its area and fmax are constant.

VI. CONCLUSION & FUTURE WORK

In this paper, we proposed the first hardware architecture
capable of executing an iterative algorithm to produce results
of arbitrary accuracy by combining increasing iteration count
with precision while utilising constant compute resources.
We named this technique ARCHITECT, for Arbitrary-precision
Constant-hardware Iterative Compute. ARCHITECT employs
online arithmetic to generate its results MSD first and a Cantor
pairing function within its digit-storage mechanism to facilitate
the simultaneous growth of iteration count and precision.

We evaluated ARCHITECT using the Jacobi method in order
to establish its accuracy, scalability and suitability in numerical
analysis. This benchmark showcased the key advantage of
our approach: removing the burden of having to determine
and fix the precisions of arithmetic operators in advance. By
doing so, we showed that datapaths constructed from arbitrary-
precision ARCHITECT operators are superior to their traditional
arithmetic equivalents in scenarios where either the latter’s
precisions are overly high for the problems being solved or
too low for results to converge at all. A single ARCHITECT
datapath, meanwhile, is able to compute results to any accu-
racy, with the only limit being imposed by the available RAM.
Finally, our experiments showed that ARCHITECT is capable of
achieving a 1.60× operating frequency boost and 15.7× LUT
and 50.2× FF reductions over 2048-bit parallel-in serial-out
arithmetic, along with 46.2× LUT and 83.3× FF decreases
versus the state-of-the-art online arithmetic implementation,
when executing 100 Jacobi iterations.

In the future, we will develop more efficient computation
patterns, focussing on the avoidance of the recomputation of

‘don’t change’ digits in algorithms’ later iterations while also
leaving ‘don’t care’ digits in earlier iterations uncomputed.
We will extend our benchmarking to cover additional iterative
algorithms. Finally, we envisage that the arbitrary-precision
computation enabled by ARCHITECT can be combined with
high-level synthesis to enable faster hardware specialisation.

ACKNOWLEDGEMENTS

This work was supported by the EPSRC (grant num-
bers EP/P010040/1 and EP/K034448/1), Imagination Tech-
nologies and the Royal Academy of Engineering. Sup-
porting data for this paper are available online at
https://doi.org/10.5281/zenodo.998249.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature, vol. 521,
no. 7553, 2015.

[2] E. Cheney and D. Kincaid, Numerical Mathematics and Computing.
Nelson Education, 2012.

[3] M. D. Ercegovac and T. Lang, Digital Arithmetic. Elsevier, 2004.
[4] M. Benzi, T. M. Evans, S. P. Hamilton, M. L. Pasini, and S. R.

Slattery, “Analysis of Monte Carlo-accelerated Iterative Methods for
Sparse Linear Systems,” Numerical Linear Algebra with Applications,
vol. 24, no. 3, 2017.

[5] Y. Zhao, J. Wickerson, and G. A. Constantinides, “An Efficient Imple-
mentation of Online Arithmetic,” in International Conference on Field-
programmable Technology, 2016.

[6] G. Constantinides, A. Kinsman, and N. Nicolici, “Numerical Data
Representations for FPGA-based Scientific Computing,” IEEE Design
& Test of Computers, vol. 28, no. 4, 2011.

[7] D. H. Bailey, R. Barrio, and J. M. Borwein, “High-precision Compu-
tation: Mathematical Physics and Dynamics,” Applied Mathematics and
Computation, vol. 218, no. 20, 2012.

[8] D. H. Bailey and J. M. Borwein, “High-precision Arithmetic in Mathe-
matical Physics,” Mathematics, vol. 3, no. 2, 2015.

[9] MPFR, “The GNU MPFR Library,” http://www.mpfr.org, 2017.
[10] F. de Dinechin and B. Pasca, “Designing Custom Arithmetic Data Paths

with FloPoCo,” IEEE Design & Test of Computers, vol. 28, no. 4, 2011.
[11] X. Fang and M. Leeser, “Open-source Variable-precision Floating-

point Library for Major Commercial FPGAs,” ACM Transactions on
Reconfigurable Technology and Systems, vol. 9, no. 3, 2016.

[12] J. Sun, G. D. Peterson, and O. O. Storaasli, “High-performance Mixed-
precision Linear Solver for FPGAs,” IEEE Transactions on Computers,
vol. 57, no. 12, 2008.

[13] B. Parhami, “On the Implementation of Arithmetic Support Functions
for Generalized Signed-digit Number Systems,” IEEE Transactions on
Computers, vol. 42, no. 3, 1993.

[14] K. Shi, D. Boland, and G. A. Constantinides, “Efficient FPGA Imple-
mentation of Digit Parallel Online Arithmetic Operators,” in Interna-
tional Conference on Field-programmable Technology, 2014.

[15] E. K. Miller, “A Computational Study of the Effect of Matrix Size and
Type, Condition Number, Coefficient Accuracy and Computation Preci-
sion on Matrix-solution Accuracy,” in IEEE Antennas and Propagation
Society International Symposium, vol. 2, 1995.

[16] A. H.-D. Cheng, “Multiquadric and its Shape Parameter—A Numerical
Investigation of Error Estimate, Condition Number, and Round-off
Error by Arbitrary Precision Computation,” Engineering Analysis with
Boundary Elements, vol. 36, no. 2, 2012.

[17] K. Javeed, X. Wang, and M. Scott, “Serial and Parallel Interleaved
Modular Multipliers on FPGA Platform,” in International Conference
on Field Programmable Logic and Applications, 2015.

[18] M. R. Meher, C. C. Jong, and C. H. Chang, “A High Bit Rate
Serial-Serial Multiplier With On-the-fly Accumulation by Asynchronous
Counters,” IEEE Transactions on Very Large Scale Integration Systems,
vol. 19, no. 10, 2011.

[19] A. Landy and G. Stitt, “Revisiting Serial Arithmetic: A Performance
and Tradeoff Analysis for Parallel Applications on Modern FPGAs,” in
IEEE Symposium on Field-programmable Custom Computing Machines,
2015.

