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Abstract

Accurate and flexible models of fracture interaction are sought after in the fields of
mechanics and geology. Stress intensity factors (SIFs) quantify the energy concentrated
at the fracture tips, and are perturbed from their isolated values when two fractures are
close to one another. Using a three dimensional finite element fracture mechanics code to
simulate static fractures in tension and compression, interaction effects are examined. SIF
perturbations are characterised by introducing three interaction measures: the circumfer-
ential and maximum SIF perturbation provide the ‘magnitude’ of the effect of interaction,
and the amplification to shielding ratio quantifies the balance between increased and de-
creased SIFs along the tip. These measures are used to demonstrate the change in interac-
tion with fracture separation, and to find the separation at which interaction becomes neg-
ligible. Interaction maps are constructed by plotting the values of the interaction measures
for a static fracture as a second fracture is moved around it. These maps are presented for
several common fracture orientations in tension. They explore interaction by highlight-
ing regions in which growth is more likely to occur and where fractures will grow into
non-planar geometries. Interaction maps can be applied to fracture networks with multiple
discontinuities to analyse the effect of geometric variations on fracture interaction.

1 Introduction

Fracture interaction in brittle rocks is of great interest at a variety of scales. Frac-
tures alter the surrounding stress state of the medium, enhancing or reducing stress de-
pending on the mode of deformation, location and fracture orientation [Olson and Pollard,
1991]. Predicting the behaviour of a fracture system requires a thorough understanding
of the stress state within the material, and the current fracture geometries. This is not
straightforward to characterise in many settings, particularly for geological materials due
to their heterogeneity, anisotropy, and the uncertainty of subsurface characteristics relative
to exposed outcrops. At smaller scales, linkage of fractures has a large control on the hy-
draulic properties of rocks and reservoirs, with implications for hydrocarbon production
[Nelson, 2001] and radioactive waste disposal [Tsang et al., 2015]. At larger scales, inter-
actioln effects are a key control over the formation of geological structures [Delaney and
Pollard, 1981], rift evolution [Gawthorpe and Leeder, 2000] and fault slip during earth-
quakes [Zachariasen and Sieh, 1995; Green et al., 2015]. Determining when faults tran-
sition from soft to hard-linkage requires accurate observations and a detailed history of
displacement [Duffy et al., 2015].

When a fracture is present in a tensile stress field, it alters the stress in its local
area, in two ways [Price and Cosgrove, 1990; Rives et al., 1992; Kachanov, 1993]. First,
a fracture generates a shielding zone around its surface, also known as a stress shadow,
in which local stress is reduced. Second, at the tip of a fracture, an amplification zone is
generated, also known as the concentration zone, in which local stress is increased. When
another fracture enters these zones, this change in stress results in significant changes to
its behaviour. When the fractures are similar in size, they induce a reciprocal effect upon
one another. In full 3D space, this interaction is complex, and the change in stress varies
significantly over each fracture, particularly when fractures are overlapped. Interaction is
important because it may both enhance and preclude growth, and is a controlling mecha-
nism of the self-organisation of fracture patterns. In turn, self-organisation may influence
the ensuing mechanical and flow properties of the fracture pattern [Olson and Pollard,
1991; Olson, 2004].

Numerical simulations are instrumental in understanding fracture interaction. A vari-
ety of techniques have been utilised to numerically model fractured geological media [Jing
and Hudson, 2002], many of which include discrete fractures. Three main approaches can
be distinguished: stress-based, debonding-based, and SIF-based. Stress-based methods
usually rely on displacement fields generated by the finite element method (FEM) [Carter
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et al., 2000; Riahi et al., 2010; Rabczuk, 2013; Pouya, 2015]. They rely on measurements
of stresses local to the fracture tips, and therefore require significantly refined meshes.
Debonding-based methods are routinely used in conjunction with the distinct or discrete
element methods [Lisjak and Grasselli, 2014; Lei et al., 2017], and model rock mass inter-
action as agglomerate rock matrices made up of bonded particles, which mimic the devel-
opment of fractures by releasing element bonds when local stresses are exceeded. Debond-
ing methods follow the pre-existing discretisation, and require the definition of micro-scale
properties using calibration tests that are rock type and scale dependent.

Stress intensity factor (SIF) based fracture modelling has received great attention
in material design to predict failure [Stonesifer et al., 1993; Moussa, 2002; Busfield et al.,
2005; Kamaya, 2008a]. SIFs provide an effective method for analysing fracture propaga-
tion and interaction [Paris and Erdogan, 1963; Lam and Phua, 1991]. They are one of sev-
eral methods of fracture analysis, quantifying the energy released at a fracture tip during
crack growth [Irwin, 1956; Anderson and Anderson, 2005]. They can be used to evaluate
failure criteria for modelling fracture propagation [Paris and Erdogan, 1963; Brace, 1960;
Lawn, 1993]. They have become a key part of fitness-for-purpose analyses when consid-
ering the impact of interacting cracks on a material’s lifetime [Wiesner et al., 2000]. SIFs
have also been used in geological models to predict fracture behaviour [Renshaw and Pol-
lard, 1994; Olson, 2004; Philip et al., 2005; Paluszny and Zimmerman, 2013] but have not
been routinely adopted for investigating geological fracture interaction.

Kachanov [1987] presented an approximate method for calculating how the SIFs of
one fracture are affected by another fracture. The system is simplified by using a trans-
mission factor which depends on the fracture geometry and orientation of the stress field,
but not the magnitude of the stresses. The 3D formulation of this method incorporates
the idea that fracture interaction may amplify (increase) or shield (decrease) stress locally
depending on the geometry. Other early analytical approaches include that of Fabrikant
[1987], who used an iterative procedure to evaluate each fracture’s effect on one another.
More recently, work has expanded on these methods to improve accuracy or investigate
more complex systems of fractures. Laures and Kachanov [1991] extended this analysis
to 3D microcrack arrays using the same method as Kachanov [1987], focusing on cases
where one fracture interacts with a group of smaller fractures. They show that 3D interac-
tion effects are generally weaker than 2D interaction effects. Gross [1982] first introduced
the method of polynomial expansions of tractions on fractures, providing approximate
SIFs for multiple straight cracks. Benveniste et al. [1989] used a superposition scheme for
which Kachanov [1987]’s method is a special case. Zhan and Wang [2006] used a first-
order average traction method to study the same set of geometries as Kachanov [1987].

Numerical methods for calculating SIFs provide a convenient means to study SIF
alteration, because any arbitrary fracture geometry can be investigated. In 2D, Fu et al.
[2012] demonstrated amplification and shielding using the displacement correlation method
to find SIFs. Yan [2010] investigated the interaction of circular arc cracks in tension. Fan
et al. [2016] investigated the case of two fractures in compression using the FEM and
compared their numerical results to photoelastic and uniaxial compressive experiments.
Legrand and Lazarus [2015] used a finite perturbation method to study fracture interaction
in 2D. Along with SIF perturbations, they studied fracture growth and coalescence, eval-
uating growth using a fatigue law to govern fracture propagation. Kamaya [2008b] used
the FEM to study SIF variation along the tips of surface cracks, using the SIF perturbation
to accurately predict growth [Kamaya, 2008a]. Most of these studies investigate interac-
tion of static geometries and yield interaction relationships that depend either on distance
or on relative spatial and geometric arrangements, but are restricted to specific geometries
such as coplanar or stacked configurations. To aid in interpretation of fracture interaction
and growth, there is need for methods which can simulate interaction in full 3D space,
without constraining the size, orientation or number of fractures. A flexible numerical ap-
proach can be readily applied to any fracture geometry, subjected to arbitrary boundary
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conditions, while analytical and semi-analytical approaches may be constrained to specific
geometries and conditions.

With the development of advanced 3D FEM based models for studying fracture
propagation, SIF-based analysis can be applied to fracture interaction in order to under-
stand the importance of relative fracture spacing. In the present work, a fracture mechan-
ics based 3D FEM model, outlined by Paluszny and Zimmerman [2011, 2013], is used to
investigate fracture interaction. Advances in methods for FEM SIF computation provide
highly accurate results for closely interacting fractures, in particular, by solving for the in-
teraction integral using a disk-shaped domain integral method [Nejati et al., 2015a], with-
out requiring any special mesh structure around the fracture tips. The present work ex-
tends the analysis of fracture interaction by investigating changes in the SIFs for all modes
of fracture tip deformation, namely modes I, II, and III. Characterisation of interaction is
captured by three novel measures for quantifying the spatial distribution of fracture growth
energy. Interaction is quantified based on the perturbation of the SIFs by comparing inter-
acting fractures to undisturbed single fractures in the same stress field. The spatial varia-
tion of these interaction measures are proposed as ‘interaction maps’, or ‘stress intensity
factor variation maps’, used interchangeably in this manuscript. These maps provide a new
way to assess the extent and magnitude of fracture interaction.

2 Numerical method

The fracture modelling workflow is summarised in four steps: geometry, meshing,
deformation and SIF computation. In this work, propagation of fractures is not explored;
instead, the focus is on understanding how interaction between fractures enhances or sup-
presses growth as a function of spatial arrangement. The finite element based fracture
mechanics framework used herein is previously detailed by Paluszny and Zimmerman
[2013], and has been validated for both 2D and 3D geometries [Paluszny and Matthäi,
2009; Paluszny and Zimmerman, 2011]. The fracture geometry is stored independently
of the mesh, and so the mesh is merely an instrument which is used and disposed at each
step, created to satisfy both geometric and solution field constraints of the particular simu-
lation stage.

Fractures are represented as smooth surfaces growing in response to tension or com-
pression, governed by the mechanics of brittle failure. The volume is discretised using a
volumetric mesh. An initial fracture geometry is created inside a volumetric box repre-
senting the rock mass. Fractures can be assigned any surface shape, including non-planar
geometries. In this work, fractures are assumed to be disk shaped to simplify analysis,
but all methods proposed are also effective for fractures of any shape, provided the shape
can be meshed with a consistent refinement along its tip. At each step, an ‘ideal’ mesh is
constructed for the given geometry. The mesh is composed of two element types: isopara-
metric quadratic tetrahedra in the volume, and isoparametric quadratic triangles on the
fracture surface elements. Triangle and tetrahedral elements around the crack tip are taken
to be quarter point elements [Banks-Sills and Sherman, 1986], which capture the singu-
larity ensuing at the fracture tip by shifting the mid-side node one quarter towards the
fracture tip. These have been found to significantly improve the measured stress inten-
sity factor values in unstructured tetrahedral meshes [Nejati et al., 2015b]. In addition, the
created mesh is refined near the fracture tip to improve sampling of the displacement field.
This refinement is a function of the geometric discretisation of the fracture tip. Automatic
re-meshing enables many different fracture geometries to be tested without human interac-
tion.

The FEM approximates the deformation field numerically, as a function of stresses,
material properties and geometry, and ensuing stress and strains are derived assuming that
the matrix is homogeneous, isotropic, and linear elastic. Stress and strain are governed by

σ = D(ε − ε0) + σ0 (1)
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where σ is the Cauchy stress tensor, ε is the infinitesimal strain tensor, σ0 and ε0 are the
initial stress and strain, and D is a linear elastic stiffness matrix [Cook et al., 2007]. For a
static system,

∂σ + F = 0 (2)

where ∂ is the differential matrix operator, and F represents body forces exerted on the
object.

2.1 Stress intensity factor computation

After σ and ε are known throughout the volume at element nodes, SIFs are com-
puted at the tips of the fractures in the volume. SIFs quantify the concentrations of stress
around the fracture tips, and are decomposed into three modes corresponding to the modes
of crack tip deformation: KI for opening (mode I), KI I for in plane shear (mode II) and
KI I I for out-of-plane shearing (mode III). Analytical solutions for SIFs are only available
for a small number of fracture geometries, e.g. elliptical and penny shaped cracks [Kas-
sir and Sih, 1975; Rooke and Cartwright, 1976]. Complex geometries require numerical
schemes to compute SIFs at the tips. The values are approximated along the tips of the
fractures by sampling the surrounding stress field. This is challenging, due to high stress
gradients and singular fields at the tip.

This work evaluates SIFs for all three deformation modes using the I-integral, which
is an extension of the more famous J-integral for evaluating the total energy release rate
at the fracture tip [Rice, 1968; Cherepanov, 1979]. Using the I-integral is beneficial as
it can be decomposed into individual SIFs for mixed mode problems [Yau et al., 1980;
Nakamura and Parks, 1988]. The I-integral is widely considered one of the most accu-
rate methods for calculating SIFs in 3D [Walters et al., 2005; Banks-Sills, 2010; Bremberg
and Faleskog, 2015]. The method presents a number of challenges which make it diffi-
cult to perform on a standard FEM mesh near the crack tip, such as the challenge of in-
tegrating over an unstructured mesh, and conversion to a curvilinear coordinate system.
These challenges can be mostly overcome by re-sampling the crack tip region and using a
disk-shaped domain integral formulation of the I-integral, outlined in full by Nejati et al.
[2015a]. Integral methods have been shown to be valid when the domain includes material
changes or discontinuities [Yu et al., 2009], so the disk-shaped domain integral is suitable
for study of very close fractures.

This methodology is implemented as part of the Imperial College Geomechanics
Toolkit [Paluszny and Zimmerman, 2011] which is built upon the Complex Systems Mod-
elling Platform (CSMP++) API [Geiger et al., 2001], and is mainly oriented at computa-
tional rock mechanics and the simulation of fracture growth [Paluszny and Zimmerman,
2013; Salimzadeh et al., 2017]. The FEM inversion to calculate Equations 1 and 2 is per-
formed by the Fraunhofer SAMG solver [Stüben, 2001], and meshes are generated using a
commercial octree-based 3D package.

2.2 Validation of domain integral method

The analytical solutions for the SIFs along the tip of an inclined penny shaped frac-
ture under uniform tension are provided by Kassir and Sih [1975]:

Ka
I = 2σ

√
r/π sin2 β (3)

Ka
I I =

2σ
√

r/π
2 − ν sin2 β cos θ (4)

Ka
I I I =

2 (1 − ν)σ
√

r/π
2 − ν sin 2β cos θ (5)

where K is the stress intensity factor (SIF) with units Pa m1/2, I, I I and I I I are the crack
tip deformation modes, σ is the applied normal far-field stress, r is the fracture radius, θ
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is the angle around the fracture, β is the inclination of the fracture plane relative to the
load, and ν is the Poisson’s ratio of the medium. KI is constant around penny shaped
fractures of any inclination, and equal to 0 when the fracture is parallel to the direction
of stress. KI I and KI I I change sign on either side of the fracture (top and bottom for KI I

and sides for KI I I ). Figure 1 compares these analytical solutions to the results for a frac-
ture inclined at 45o to the extension direction. The material property values and far-field
loads used throughout this work are ν = 0.25, Young’s modulus E = 1 Pa m-1/2, and nor-
mal stress σ = 1 Pa. The results match the analytical solution very well. Small scatter is
found on all the modes as a result of the mesh discretisation.
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Figure 1. Analytical and numerical stress intensity factors around an isolated fracture. The fracture is in
tension, inclined 45o to the stress field. The analytical solution is calculated using Equations 3, 4 and 5. The
fracture has 80 tip nodes. The crack tip deformation modes are shown in schematic form to the right of their
respective curves.

The total error for all three modes e can be computed as shown by Nejati et al.
[2015a],

e =

∑I I I
i=I

∫
L f

��KA
i − KN

i

�� dl∑I I I
i=I

∫
L f

��KN
i

�� dl
(6)

where i is one of the three deformation modes (I, I I or I I I), L f is the fracture circum-
ference, KA

i is the analytical solution for the mode i SIF, KN
i is the numerical solution

for the mode i SIF, and dl is the distance between fracture tip nodes. Figure 2 shows the
variation in e against the number of tip nodes on the fracture, which is used to control
mesh refinement. The number of elements in the volume scales linearly with the number
of tip nodes. The disk-shaped domain integral method (‘disk’) is compared to the dis-
placement correlation (‘DC’) method, another SIF computation method which is more
common in the fracture mechanics literature [Shih et al., 1976; Branco et al., 2015]. The
results with and without quarter points demonstrate how quarter point elements improve
accuracy. The integration radius is set to half the tip length on the fracture, as this pro-
duces an accurate result at a good range of refinements. Fracture tip nodes are evenly
spaced, so the domain radius can be calculated from the fracture radius.
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Figure 2. Error in stress intensity factors as mesh size changes. The error, calculated using Equation 6
is shown for a fracture with the same geometry as Figure 1 for different numbers of fracture tip nodes. The
number of elements in the mesh (from 8561 to 69816) scales roughly linearly with the number of tip nodes
(from 8 to 160) when there is one fracture in the volume.

For higher density meshes, the disk-shaped domain integral technique is shown to be
more accurate: the smallest error of 0.9% is found at 120 tips. 80 tips was considered the
best balance between accuracy and computation time, with an error of 1%.

3 Stress intensity factor changes due to interaction

The manner in which a pair of fractures interacts is investigated by characterising
how SIFs change when two fractures are close. These changes depend on fracture prox-
imity, size, relative position and the type of stress applied, and have been widely observed
[Kachanov, 1987; Olson and Pollard, 1991; Kamaya, 2008b; Fan et al., 2016; Yan, 2010;
Legrand and Lazarus, 2015]. The key method of examining interaction, explored by other
authors [Kamaya, 2008b; Yu et al., 2009; Legrand and Lazarus, 2015], is to first calculate
the SIFs around a fracture that is interacting with others (K int

i ). Then, all but one of the
fractures from the domain are removed, and SIFs are calculated for that isolated fracture
(K iso

i ). In this way, the same geometry for one fracture is tested twice, and the changes
in the SIFs can be examined through the ratio between K int

i and K iso
i . The two different

fracture domains will have different meshes, but their tip nodes are in the same locations
for both calculations, and the mesh around each fracture has a similar structure. The frac-
ture spacing convention introduced by Kachanov and Laures [1989] is used in this work,
where the spacing is scaled by the fracture radius and reported in the form ∆/2r .

In this work, it is assumed that any difference between K int
i and K iso

i is due to in-
teraction effects. However, both K int

i and K iso
i will be subject to discretisation errors, cre-

ating additional small differences. By using a numerical result with the same local mesh
around the fracture, similar magnitude discretisation errors at are present each tip in both
K int
i and K iso

i . Therefore, the ratio K int
i and K iso

i calculated at each pair of tips factors
out these errors. Whilst replacing K iso

i with an analytical solution reduces the number of
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terms which contain numerical error, this would compound discretisation errors along with
SIF perturbations. Additionally, analytical solutions for isolated SIFs are only available for
specific geometries and boundary conditions, whereas fractures can be simulated numeri-
cally for any orientation.

3.1 Interaction compared to other methods

No exact analytical solution is available for the change in SIFs due to interaction.
Instead, results can be compared to the perturbations found through other semi-analytical
or numerical methods [Legrand and Lazarus, 2015]. The first method for comparison is
Kachanov and Laures [1989], whose results provide an approximate solution that closely
match other semi-analytical methods for calculating SIFs for interacting fractures [Fab-
rikant, 1987; Gross, 1982]. The second method utilises the results of Legrand and Lazarus
[2015], obtained using the finite perturbation method.

Figure 3 shows the SIF perturbation quantified through the ratio K int
i /KA

i , obtained
using these two methods, and the present method, for a fracture under tension when a
second coplanar fracture is nearby. The fractures are oriented perpendicular to the stress
field, and are shown for two separations, ∆/2r = 0.05, and ∆/2r = 0.00025. Both frac-
tures have 160 tip nodes. At θ = 0o, where the two fractures are closest together, K int

i is
higher than KA

i as a result of interaction. At the ∆/2r = 0.05 separation, K int
i /KA

i = 1.3,
and decreases as the angle increases around the fracture. At separation ∆/2r = 0.00025,
K int
i is significantly higher, and K int

i /KA
i = 3.2. K int

i decreases at a much faster rate with
angle at the close separation. At θ = 60o, both separations converge to similar values of
K int
i /KA

i . At 160
o, the far side of the fracture is almost unchanged by interaction, yielding

values very close to the isolated solution.

All three methods yield a very similar trend. The present simulation results match
those of Kachanov and Laures [1989] particularly well, except for the low separation case
where the fractures are very close (θ < 20o). In this region, the present simulation results
have higher K int

i /KA
i and match Legrand and Lazarus [2015]’s results closely. ∆/2r =

0.00025 is a particularly challenging case to discretise, because the region between the
fractures becomes very small relative to the fracture size. To place sufficient elements in
this region requires an unreasonably high mesh density. Discretised methods that rely on
sampling of this region produce scattered SIF values where the fractures are close, which
can be seen in Figure 3 for the ∆/2r = 0.00025 case. Similar scatter was reported by
Legrand and Lazarus [2015] for ∆/2r < 10-4.

Figure 4 shows an example mesh used in Figure 3 with 30 tips and ∆/2r = 0.05,
with two fractures in the model to demonstrate the way refinement is focused on the frac-
ture tip.

3.2 SIF perturbations for common geometries

Figure 5 shows K int
I /K iso

I for six fracture pairs in two geometries to demonstrate
how the magnitude and sign of the interaction changes as the fracture orientation changes.
The top row (a-c) shows coplanar interaction where mode I is amplified along the clos-
est part of the fracture. As the separation between fractures increases, K int

i /K iso
i is much

lower, becoming effectively equal to unity at ∆/2r = 1.50. The bottom row (d-f) show a
stacked configuration where mode I is uniformly shielded as a result of interaction. This
effect is diminished with increasing separation, but could be said to have a larger range
than the coplanar geometry, because, at ∆/2r = 1.50, mode I is still reduced, as observed
by other analyses of stacked cases [Kachanov, 1993]. In the stacked configuration, mode
II varies in a similar but opposite manner to mode I, where it is amplified rather than
shielded. Mode II is perturbed uniformly all the way around the fracture, because the frac-
ture tips are all the same distance from the interacting fracture.
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Figure 3. Comparison of stress intensity factor perturbations with other models. (a) SIF ratio between
the interacting and isolated fractures (Kint

i
/KA

i ). The fractures are perpendicular to the stress field and are
plotted for two separations (∆/2r = 0.05, and ∆/2r = 0.00025). Both fractures have 160 tip nodes. Results
by Kachanov and Laures [1989] and Legrand and Lazarus [2015] are provided for the same geometry. (b)
The same data from (a), but with the y-axis limits changed to (1.0-1.1). Lines have been placed to connect
Kachanov and Laures [1989]’s points for ease of visualisation.

Coplanar and stacked geometries are the ‘end member’ cases for fracture interac-
tion, where pure amplification and pure shielding take place, respectively. The transition
between these cases is the overlapped case, where part of the fracture is shielded and part
is amplified. As the fractures move from coplanar to stacked, the mode I SIF change be-
comes negative at the point where the fractures are overlapped, and positive where they
do not overlap. Mode II and III SIFs also change their perturbation behaviour across this
transition, giving rise to the changes in growth angle which are well known to occur as
fracture offset changes [Thomas and Pollard, 1993]. This behaviour, whilst intuitive for
many applications of fracture mechanics, can be quantified and better understood through
further analysis of SIF perturbations. Moreover, the relative orientation of the fractures
will further affect the manner in which interaction takes place (see Section 5).
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Figure 4. Example mesh around two fractures with separation ∆/2r = 0.05. Each fracture has 30 tip nodes.
Volumetric elements are cut by the visualisation plane, so some appear to be thin an elongated, whereas they
actually pertain to a well formed tetrahedral element.

4 Quantification of interaction

4.1 Measures of interaction

In this section, several measures are proposed to quantify and characterise interac-
tion. These ‘measures of interaction’ derive from simple relationships similar to K int

i /K iso
i .

Whilst the ratio K int
i /K iso

i is powerful on its own, it cannot be expanded to modes II and
III for tension, as these modes change sign around the fracture, e.g. Figure 1 . Therefore,
use of K iso

i in the denominator should be avoided, as it approaches zero for certain angles.
The same is true for mode I in certain fracture orientations or stress states. Additionally,
K int
i /K iso

i is also only measured on individual tips, with many values per fracture.

It would be useful to have a single quantity that captures how a fracture is changed
due to interaction. Summarising interaction with one value enables analysis using inter-
action variation maps, aiding understanding of past and potentially arising fracture ge-
ometries. For simulations containing hundreds and thousands of fractures, cheap and local
measures of interaction will aid the discretisation and level of detail required at different
locations of the mesh. The methods proposed herein for characterising interaction are ef-
fective for all deformation modes and boundary conditions.

Three such methods are proposed as follows. The first, ‘circumferential SIF pertur-
bation’, computes the total area between the K int

i and K iso
i curves, either as as sum of

all modes (C) or for one specific mode (Ci). The second, ‘maximum SIF perturbation’
(Mi), computes the maximum perturbation of Ki for the fracture. Both of these methods
are used to quantify the magnitude of the interaction. The third, ε , the ‘amplification to
shielding ratio’, quantifies whether the fracture is mostly amplified or shielded. Using ei-
ther C or Mi along with ε captures the change in the SIFs at its tips as a result of nearby
fractures.

4.1.1 Definition of circumferential SIF perturbation, C

Circumferential SIF perturbation is defined as the absolute area between the interact-
ing and isolated SIF curves, as a modification of Equation 6, as follows:

C =

∑I I I
i=I

∫
L f

��K iso
i − K int

i

�� dl∑I I I
i=I

∫
L f

��K iso
i

�� dl
(7)
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Figure 5. Change in mode I stress intensity factor resulting from close fracture interaction. (a), (b) and (c)
show the case where two fractures are coplanar, i.e. on the same x plane, with changing separation along the y
axis. At θ = 0, the two fractures are closest to one another, and KI is amplified. (d), (e) and (f) show a stacked
configuration, i.e. moving up the z axis. The change in the mode I SIF is represented using Kint

I
/Kiso

I
. The

dashed line in each graph shows the isolated result that would occur if the fractures were isolated, where
Kint
I
/Kiso

I
= 1.

where KA
i is replaced with the SIF for an isolated fracture, K iso

i . KN
i becomes the SIFs

for an interacting fracture, K int
i . This provides a value that represents how much more

concentrated stress has become at its tip as a result of other nearby fractures.

As C is a sum over the entire fracture, it is not directional, i.e. it does not identify
where the fracture may fail, but instead represents the total interaction a fracture under-
goes, which may be the result of more than one interacting fracture. C should also be
considered a non-local measure. Because the same tip node locations can be used to cal-
culate K iso

i and K int
i , additional errors caused by mesh discretisation can be minimized. C

can also be calculated for just one mode of deformation (i) rather than the total sum of all
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modes,

Ci =

∫
L f

��K iso
i − K int

i

�� dl∫
L f

��K iso
i

�� dl
, i = I, I I, I I I . (8)

This is useful for calculating how one individual mode is altered by interaction. The use
of absolute values for C in the denominator avoids asymptotes when the SIFs are very
close to 0.

4.1.2 Definition of maximum SIF perturbation, Mi

Maximum SIF perturbation is defined as the largest difference between the interact-
ing and isolated SIFs,

Mi = max
(��K int

i − K iso
i

��) , i = I, I I, I I I . (9)

This measure can be related to one specific location on the fracture tip at which the dif-
ference was largest. This makes Mi a local measure of fracture interaction. The maximum
SIF perturbation is unique between the three deformation modes, as the tip node with the
maximum MI is not necessarily the same as the tip node with maximum MI I or MI I I .
The magnitude of Mi is tied to σ. As the method relies on the value of one particular
tip, rather than averaging over a group of tips, it may be subject to greater discretisation
errors.

An illustration of the differences between C and Mi is shown in Figure 6(a). This
plots the mode I SIF as a function of the tip angle in the same manner as Figure 1. The
shaded region shows the area between the interacting and isolated curves (CI ), and MI is
shown as the maximum change. Both C and Mi use the absolute values of K int

i and K iso
i

in their calculations. Thus, they only provide information on the magnitude of interaction,
and not whether it is amplifying or shielding.
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Figure 6. Methods used to quantify fracture interaction by calculation of C, Mi , and ε . (a) shows C as the
area between the two numerically calculated SIF curves for the same coplanar geometry, one isolated and the
other interacting with other fractures. M is the maximum difference between the two curves. (b) shows the
SIFs for an overlapped fracture geometry, and the calculation of εi by comparing the area of the graph that is
amplified to the area that is shielded.
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4.1.3 Definition of the amplification to shielding ratio, εi

When measuring interaction, it is important to consider whether stress has been am-
plified or shielded. In the simple cases of coplanar interaction, stress is only amplified,
e.g. Figure 5(a-c). In cases where the fractures are stacked and at least partially overlap,
stress is shielded, e.g. Figure 5(d-f). The type of interaction, either shielding, amplifi-
cation, or a mixture of the two, is quantified by the amplification to shielding ratio (εi),
which is formulated as follows. Two lists of values, κai and κsi , are created from the differ-
ence between the interacting and isolated SIFs. κai , contains the values where the SIFs for
mode i have been increased, and 0 otherwise,

κai =

{
K int
i − K iso

i > 0, κai = K int
i − K iso

i

K int
i − K iso

i ≤ 0, κai = 0
(10)

and κsi contains values where the SIFs for mode i have been decreased, and 0 otherwise,

κsi =

{
K int
i − K iso

i > 0, κsi = 0
K int
i − K iso

i ≤ 0, κsi = K int
i − K iso

i .
(11)

These lists therefore contain information for the tips which have been only amplified (κai )
and only shielded (κsi ). The areas under the curves of κai and κsi are then calculated:

Ca
i =

∫
L f

|κai |dl, (12)

Cs
i =

∫
L f

|κsi |dl . (13)

The balance between amplification and shielding can be found by comparing these two
areas. Thus, εi is defined as

εi =
Ca
i − Cs

i

Ca
i + Cs

i

, i = I, I I, I I I . (14)

Therefore, εi equals 1 when mode i is purely amplified, and equals -1 when purely shielded.
When εi > 0, the SIFs at most of the tips of the fracture are amplified by the presence of
another fracture, and when εi < 0, most of the tips are shielded.

4.1.4 Comments on interaction measures

Numerical simulations inevitably produce different results when changes are made
in the domain, even if those changes are slight, due to discretisation and numerical er-
rors, as discussed in Section 3. This means that there will always be differences between
K iso
i and K int

i , even when the meshes are identical and fractures are very far apart. There-
fore, the measures of magnitude (C and M) do not converge to zero when fractures do
not interact, but do become very small. This is not a problem for analysis of C and Mi ,
because the size of this error is small compared to cases when interaction is significant.
However, scatter between the values of K iso

i and K int
i will result in εi being essentially

random. When analysing a set of εi values in space, a threshold should be used to ignore
the value of εi if either Ci or Mi suggests there is very little interaction. Conveniently, Ci

has the same magnitude regardless of the SIF magnitude because it compares the ratio of
two areas. A threshold of Ci = 0.005 is used in this work.

The proposed interactivity measures share some commonalities with the transmission
factor used as part of Kachanov [1987]’s analytical method. For coplanar fractures, the
transmission factor is increased by the presence of the other fracture. In 3D, the sign of
the transmission factor changes to correspond to cases of fracture interaction either ampli-
fying or shielding stress depending on the geometry. For fracture arrays, the transmission
factor concept is extended to an interaction matrix, containing transmission factors which
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describe the effect of each fracture on one another. The interaction measures suggested
here are similar, but are now separated into magnitude and sign of interaction, where C or
Mi can be used to show the magnitude of interaction, and εi describes the balance of am-
plification or shielding. These measures are also assigned one per fracture, rather than one
per fracture pair.

4.2 Variation of C and M with separation

Figure 7 shows how C and MI vary in the simple case of increasing fracture sep-
aration for three geometries. C is used rather than CI to highlight the effect of combin-
ing the three modes together. All graphs (a-c) use the same axes, with C on the left and
MI on the right. In all three geometries, C and MI demonstrate how interaction reduces
with separation. Both interaction measures show that shielding interaction when fractures
are stacked (c) has a larger range than coplanar geometries, (a) and (b). The separation at
which C falls below 0.005 is marked with a red dashed line, showing that shielding effects
have a much longer range than amplification effects.
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Figure 7. Variation of C and MI with fracture separation for three common geometries as a function of
increasing fracture separation. In order to highlight the effect of combining modes together in interaction
measures, C is compared to MI here. (a) Coplanar geometry, also examined in Figure 5(a-c). (b) Inclined
coplanar geometry. (c) Staked geometry, also examined in Figure 5(d-f). Fracture separation is measured in
terms of ∆/2r , where r is the fracture radius. The dashed red line marks the smallest ∆/2r where C < 0.005,
the threshold at which there is considered to be no significant interaction. This is reached at ∆/2r = 0.55 in
(a), ∆/2r = 0.95 in (b), and ∆/2r = 2.70 in (c).

For the same separation variation of two fractures, their interaction is shown to not
only depend on their spacing, but also on their relative positioning with respect to the far-
field stresses and their relative positioning with respect to one another. The difference in
the behaviour of C and MI in each case is of particular interest, especially when compar-
ing the two coplanar cases. In Figure 7(a), only mode I is changed by interaction, because
the fractures are perpendicular to the stress field and KI I and KI I I are zero. Figure 7(b)
has the same geometry, but is oriented at 45o to the stress, meaning modes II and III are
non-zero and are perturbed by the interaction. MI only relies on mode I, so is higher in
(a) where the interaction is confined to one mode, and smaller in (b), when the interaction
is shared by three modes. C is the sum of the SIF perturbation for all three modes, so has
a higher magnitude in (b) than in (a). Discretisation errors cause small amounts of scatter,
and are much higher in MI than C.
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In summary, C and Mi are both capable of capturing the decrease in interaction with
separation, however, care should be taken to examine which modes are being altered in
each case. Separating C into its mode specific values CI , CI I and CI I I to summarise the
change in each mode, using Equation 8, may be preferable during interaction analysis,
in order to identify where fractures will become non-planar during growth [Thomas and
Pollard, 1993].

For numerically derived values to be useful for analysis, they must not vary strongly
as a function of mesh refinement. Figure 8 shows, for two fractures with ∆/2r = 0.25,
the value of C and MI , plotted against the number of tip nodes on the fracture, similar
to Figure 2. Changes in separation have a much larger effect on C and MI than changes
in mesh density. The standard deviation of C and MI across 27 meshes are 0.00038 and
0.0023 respectively. MI varies more as it is reliant on the value from one node rather than
an average across all nodes.
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Figure 8. Sensitivity of interaction measures to mesh refinement. Two fractures have been placed with
separation ∆/2r = 0.25 on the same plane inclined 45o to the z axis. C and MI are measured on one fracture
for different mesh refinements, where the density of the mesh is controlled by the number of tips around the
fracture.

5 Interaction maps

In this section, fracture interaction maps are constructed to analyse the effect of one
fracture on another, specifically by capturing SIF variations comprising multiple interac-
tion cases, within a single image. They show the variation of Ci , Mi and εi as the relative
position between two fractures changes. A fracture interaction map is constructed by per-
forming simulations in which a base fracture is placed in a fixed position, perpendicular to
the direction of stress. A second fracture of equal radius is placed nearby with the same
orientation. The values of CI−I I I , MI−I I I , and εI−I I I are then measured on the base frac-
ture in tension. The second fracture is then moved to other locations and the same mea-
surements were made. This creates a grid of values in the x, z plane around the fracture,
which is interpolated to create a continuous map of SIF variation around a static fracture.
Figure 9 demonstrates this process for three locations alongside the fracture interaction
map for εI .

The objective of creating an interaction variation map is to explore the variation of
the magnitude and type of interaction, i.e. amplification, shielding, or a mix of the two,
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Figure 9. Schematic demonstrating creation of stress intensity factor variation maps. Maps are built up
of the results of many simulations. In each simulation, only two fractures are present at one time: the static
fracture (green) remains centered at (0, 0, 0) and the interacting fracture moves around the x > 0, z > 0
quadrant. The dashed space in the plot shows the region which cannot be sampled, because in this region the
fractures intersect. This region changes size based on the orientation and offset of the interacting fracture. An
interaction measure (CI−I I I , MI−I I I , and εI−I I I ) is measured on the static fracture, and then is interpolated
over the sampled space.

depending on relative fracture position and orientation. Compared to plotting the change
in stress around a fracture (e.g. Grechka and Kachanov [2006]), interaction maps observe
the change in the SIFs. Therefore, the impact of interaction is more directly quantified in
terms of changes at the fracture tip, and can be examined separately in modes I, II and III.
This process could be used to create interaction maps of any interacting fracture orienta-
tion or size, as long as the sampled locations do not cause fractures to intersect.

Fracture interaction variation maps are presented in Figures 10, 11 and 12 show-
ing values of CI−I I I , MI−I I I , and εI−I I I respectively. Each Figure includes maps for two
orientations of the interacting fracture. (a) shows the interaction map generated from two
fractures inclined perpendicular to the direction of tension, and (b) shows the map with
the interacting fracture inclined 45o towards the other fracture.

5.1 Interaction variation maps of Ci

Figure 10 shows fracture interaction maps of CI , CI I and CI I I for two geometries.
The coplanar geometry (a) shows the gradual change between coplanar and stacked ge-
ometries. The magnitude of the interaction in the stacked configuration, along x = 0 as
shown in Figure 7(c), was shown to be higher than in the coplanar configuration, along
z = 0, as shown in Figure 7(a) and (c). This behaviour is clear on the interaction varia-
tion map of CI , where the extent of the highly perturbed region is much larger when the
fractures overlap and enter one another’s stress shadow.

In Figure 10(a), CI shows that mode I is the most perturbed interaction mode, par-
ticularly when fractures are overlapping. Mode II and III are perturbed at approximately
half the magnitude of mode I. Mode II perturbations are not increased uniformly in the
overlap region. This is because mode II tends to be perturbed only where fracture tips are
close to one another. Otherwise, mode II relatively unperturbed if the tip lies above the
fracture surface. This leads to larger magnitudes when more of the fracture tips are lined
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up vertically, creating a region of lower CI I between x = 0.5 − 1. These changes in CI I

highlight where fractures will undergo non-planar growth as a result of interaction, due
to increased mangitudes KI I [Cotterell and Rice, 1980], as observed in én echelon frac-
ture sets [Delaney and Pollard, 1981]. Mode III is most perturbed when the fractures are
partially overlapped, and is unperturbed when the tips are close together. This results in
its highest value being in the region of x = 1, z = 0.5. Outside of this overlapped re-
gion, CI I I is essentially unperturbed, i.e. it falls below the 0.005 threshold discussed in
Section 4.1.4.

The inclined geometry in Figure 10(b) show much lower magnitudes of C. This is
partially because the fracture surfaces cannot be placed exactly next to one another, so the
highly interacting stacked case cannot be produced at any interacting fracture location. Re-
gions where mode I is more strongly perturbed are present when interacting fracture’s tip
is very close to the base fracture plane. In the same manner as in the coplanar case, mode
II is larger when the fracture tips are close and overlap in (b), creating a trough along the
line z = 0.75 for the 45o inclination.

5.2 Interaction variation maps of Mi

The interaction maps of Mi in Figure 11 show that Mi changes in a similar man-
ner to Ci , particularly in (b). The major difference is in the stacked case in Figure 11(a),
where the highest MI is found when fractures are partially overlapped rather than fully
stacked. When fractures are partially overlapped, the most significant shielding occurs at
the centre of the overlapped tips, resulting in a high value for MI . When fully overlapped,
the shielding is instead uniform around the whole tip, but lower, resulting in an interme-
diate value for MI . By measuring the area instead, CI considers the interaction magnitude
to be higher in the fully stacked case and intermediate in the overlapped case, as observed
in Figure 7.

5.3 Interaction variation maps of ε i

Figure 12 shows interaction maps that plot εI , εI I and εI I I for the same geometries
as Figure 10. In the coplanar geometry in Figure 12(a) εI demonstrates the transition be-
tween stress amplification and shielding very well. Coplanar orientations result in ampli-
fication where εI = 1, and stacked orientations result in shielding where εI = −1. The
transition zone is well resolved even at the coarse resolution of the grid. εI is presented
without altering values where CI is below the threshold of interaction because the few
locations where it is below 0.005 do not cause the distribution of εI to be less uniform.
The extent of the shielded zone changes significantly in the inclined case in Figure 12(b),
demonstrating the impact of fracture orientation on interaction behaviour. When the in-
teracting fracture is inclined at 45o, the extent of the shielded zone is much smaller be-
cause the region of stress amplification at the fracture tip is closest to the other fracture.
At -45o, the shielded zone is much larger, because the surface of the fractures face one an-
other in this orientation, combining two stress shielding regions. The coplanar non-offset
case of εI in Figure 12(a) can be seen as an intermediate between these two states.

The parameter εI I has the most complex distribution of the three modes. In (a),
εI I is amplified, but a zone of shielding is found on the line x = 1 where the fractures
are partially overlapped, contrasting the pure amplification when the fractures are fully
overlapped. A second small zone of shielding is found when the fractures are very close.
These shielding zones also arise in (b). The complex distribution of εI I reflects the sig-
nificant changes to fracture propagation angles when fractures are en échelon, because the
fracture growth angle depends on a combination of all three modes. It also corresponds to
the region of lower magnitude CI I in Figure 10(a).
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Figure 10. Stress intensity factor variation maps of CI , CI I and CI I I for two geometries: coplanar (a) and
inclined by 45o (b). Black dots denote sampled points. Larger values of C denote higher magnitudes of SIF
perturbation and therefore interaction. Both fractures have a radius of 1 m and 80 tip nodes.

Figure 11. Stress intensity factor variation maps of MI , MI I and MI I I for two geometries: coplanar (a)
and inclined by 45o (b). Black dots denote sampled points. Higher values of MI , MI I and MI I I show where
that mode changed most significantly from their isolated state.
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Figure 12. Stress intensity factor variation maps of εI , εI I and εI I I for two geometries: coplanar (a) and
red inclined by 45o (b), in surface and contour format. εI = 1 denotes that the SIFs around the fracture are
amplified all the way around the tip and εI = −1 denotes that they are shielded. Intermediate values de-
note that the fracture is partially amplified on one side and shielded on the other. Black dots denote sampled
points, and crosses denote points where Ci is less than a threshold amount (0.005). At these points, εi is set to
0 because εi produces scattered values when the SIFs in the isolated and interacting cases are very close. Both
fractures have a radius of 1 m and 80 tip nodes.
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In both geometries there is generally very little variation in εI I I . Typically, εI I I is
around 0 when the fractures are close (x and z < 2), and elsewhere the magnitude of CI I I

is below the threshold (0.005). KI I I is therefore always equally shielded and amplified if
it is altered due to interaction. The threshold of Ci > 0.005 is mostly effective at removing
misleading values where there is no interaction in modes II and III.

5.4 Comparison between tension and compression

The SIF interaction results in Sections 4 and 5 show results for fractures under ten-
sion. When fractures are compressed, friction between the two sides of the fracture per-
turbs the SIFs [Liu and Borja, 2008]. This additional force is important for geological
fractures, where compressive stress regimes are common and the surfaces of fractures will
have significant roughness, or brecciated material if they are open. In order to incorporate
fracture surface friction, the gap-based Augmented-Lagrangian contact resolution method
proposed and validated by Nejati et al. [2016] is incorporated into the simulation. This ap-
proach is specific to accurately resolving the contact and frictional forces between fracture
surfaces, using an iterative approach. The method accurately calculates tractions and aper-
tures between the two surfaces that are in contact. Initially, fractures have zero aperture,
and the stick or slip condition at each fracture surface node is an emerging property of the
simulation. During compression the fractures close, and may either stick or slip, rendering
the mode I SIFs negative until contact is resolved.
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Figure 13. Geometry of two interacting fractures (a), and the resulting effect on the stress intensity factors
for both tension (b) and compression (c). In (c) all modes of SIFs are collapsed to zero for the isolated frac-
ture case. Interaction affects the horizontal fracture in tension, by reducing KI , and under compression, by
inducing non-zero KI I and KI I I , consistent with slipping of the fracture surface. The analytical solution for
mode I is also visible as the flat blue line in (b).

The values of SIFs depend on the friction coefficient assumed for the fracture sur-
face. For fracture stick, SIFs are reduced to zero in most cases, as the fracture does not
display in-plane deformation. For slip cases, the deformation of the fracture leads to non-
zero stress intensity factors. Figure 13 illustrates the behaviour of two interacting fractures
under tension and under compression. In the compressive case, the friction coefficient is
assumed to be zero, in order to highlight the slip mode, and accentuate interaction. Spe-
cific values of C, Mi and εi for these cases are:

• Tension

– C = 0.06, CI = 0.11, CI I = 0.02, CI I I = 0.03
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– MI = 0.35, MI I = 0.07, MI I I = 0.10

– εI = -0.65, εI I = 0.62, εI I I = -0.04
• Compression

– C = 75.01, CI = 0.46, CI I = 117.11, CI I I = 107.46

– MI = 0.0004, MI I = 0.047815, MI I I = 0.07

– εI = -0.64, εI I = 0.17, εI I I = -0.009

SIFs are plotted for the horizontal fracture. While in tension KI values dominate
under compression KI values are reduced to zero, and KI I and KI I I values become dom-
inating. Interaction can be summarised using the same quantities as before. For tension,
values of C, Mi and ε are consistent with low interaction. In contrast, under compres-
sion, values of CI I and CI I I highlight the effect of the vicinal sliding fracture. In the iso-
lated compression case, SIF values of the isolated fracture case k isoi , are close to zero.
Therefore, the normalised area between SIF curves is much smaller, and the resulting C
values are larger. Mi captures accurately the interaction effect between the two fractures,
even if the isolated case has very low SIFs. For both tension and compression, Mi yields
similar values of interaction between the fractures, with the exception of mode I which is
non-interactive in the compression case. It follows that the same variational maps demon-
strated in previous sections can be employed to analyse the present case.

6 Discussion

6.1 Geological context

Fracture interaction maps provide a useful method for analysing how a system of
fractures will behave. Since the geometry of many fracture systems is well constrained
through field and geophysical data, the state of interaction can be explored for a variety
of boundary conditions. The interaction measures C and Mi provide a quantitative way
to establish whether fractures are interacting, by comparing the values to a threshold, as
shown by their change with separation in Figure 7. For the fractures that are considered
to be interacting, maps of εi show whether that interaction will amplify or shield poten-
tial growth. This workflow would provide a quantitative assessment for how a network of
joints or dykes will behave, for example, during coalescence into a fault, or ahead of the
tip of a fault with a damage zone. In particular, the amount of curvature expected when
en échelon fracture pairs grow can also be analysed using the interaction maps. Fractures
growing when centred in regions where CI I,I I I and MI I,I I I are high will deflect signifi-
cantly towards the other fracture. These regions arise when the fractures are overlapped,
as found in experiments, e.g. Thomas and Pollard [1993].

Whilst the methods proposed do not vary with the scale of the fractures being stud-
ied, it should be noted that SIFs require that the fractures have distinct tips. Large faults
have significant damage zones ahead of their tips, reducing how readily they can be com-
pared to an idealised flaw. Estimations of interaction measures for faults may have to take
into account the significant shear strength of faults resulting from brecciated rock inside
the fault. The traction-free surface of the Earth also provides an additional stress perturba-
tion if the scale of the fractures is comparable to their depth [Roering et al., 1997].

SIF perturbations also occur as a result of heterogeneity in the medium [Yu et al.,
2009]. Heterogeneity is a key aspect of geological materials which can be easily incorpo-
rated in mechanical models by variation of material properties such as the Young’s mod-
ulus or Poisson’s ratio. This effect could be quantified using interaction measures as more
general tools to study the way SIFs are perturbed. Care must be taken in order to differ-
entiate between perturbations induced by heterogeneity, and perturbations induced by frac-
ture interaction, because K int

i will include both of these effects. This can be accomplished
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by calculating K int
i in a volume containing all the fractures and material property varia-

tions, then calculating two versions of K iso
i per fracture - one with the material property

variations and one without. Then, separate values of C, Mi and εi can be found, each one
describing the SIF perturbation arising from either heterogeneity and interaction. Such an
analysis would facilitate understanding of the competing effects of interaction and hetero-
geneity on growth.

6.2 Computational considerations

The number of simulations needed to acquire a full dataset with n fixed fractures in
a volume is n + 1, because the system must be simulated with all fractures present, pro-
viding values for K int

I−I I I , then once for each fracture, where that fracture is the only one
in the volume, providing values for K iso

I−I I I . Only one mesh is required for the domain, as
the same mesh can be used for all calculations. The mesh does not need to be particularly
refined, as the interaction measures have been shown to remain accurate for coarse meshes
(Figure 8). Fracture interaction maps are relatively expensive to generate as each location
of the interacting fracture requires a new mesh around the moving fracture. The method is
also not restricted to using the disk-shaped domain integral method for calculating SIFs -
any 3D SIF computation method, such as displacement correlation [Branco et al., 2015] or
displacement discontinuity [Thomas and Pollard, 1993], would also be effective. Variation
maps can be generated using any numerical method that generates SIFs, and can be also
adapted to other fields.

3D growth simulations are an additional method with potential for exploring inter-
action. SIF variation maps are more convenient for several reasons. SIF perturbations are
reasonably computationally cheap to calculate compared to full fracture growth simula-
tions, that may require re-meshing at every step to track the propagation of the fracture.
Growth simulations rely on many non-physical parameters arising as a result of the par-
ticular modelling technique, such as the extension increment per step, which has a large
effect on the final geometry of the fracture. Additionally, the geometry from each possible
initial separation is difficult to summarize in a 2D plot, unlike interaction measures which
provide one numerical value per location.

6.3 Recommended use of interaction measures

The interaction measures and maps detailed in this work can be used to better un-
derstand the behavior of fractures. For an outcrop or subsurface system where fracture
geometries are known, examining the SIFs and interaction measures on each fracture pro-
vides a straightforward method for summarizing their behavior. Interaction maps are more
useful when the locations of fractures are either variable or unknown, such as when frac-
tures are blind, or across large outcrops. Maps shown in this work demonstrate their ef-
fectiveness at highlighting geometries which result in enhanced, reduced or non-planar
growth. They can also be created for any pair of fractures with different geometries and
orientations. Therefore, rather than referring to a catalog of maps, they should be created
to fit the relative fracture orientations which are frequently encountered in a specific geo-
logical setting, following the steps outlined in Section 5.

It should be noted that C and M do not directly determine the increased likelihood
of propagation without additional context, such as material toughness. This can instead
be approached by using a critical stress intensity factor for the material, which, if reached
by KI , results in fracture propagation [Atkinson, 1984]. This value can be used to scale
the results of the output, or in the place of K iso

i to show when fractures are close enough
to cause propagation. However, those results will be dependent on the properties of the
medium, unlike the maps presented here, which are material and scale-invariant.
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6.4 Contrasting C and Mi

C and Mi both characterise the magnitude of interaction experienced by a fracture.
C yields consistent quantifications of interaction across different levels of mesh refine-
ment. Because it is derived from comparing the area beneath two curves, its magnitude
is independent of the magnitude of stress. This makes C the most convenient measure for
assessing whether interaction occurs using a threshold. The benefits of using Mi are that
the calculation is simple, i.e. it does not require numerical integration and could be found
graphically, and it also provides a location on the fracture at which the SIF perturbation
is highest. Either method provides similar results for how interaction changes around a
fracture. In particular, the interaction map for CI in Figure 10 is almost identical to MI in
Figure 11.

A benefit of using C will be when a system contains multiple close fractures. This
would create a complex distribution of SIFs around the tip with multiple peaks and troughs,
which would be fully captured by C, but only one peak would be selected for Mi . Look-
ing at the modes individually is also important because, in overlapped geometries, there
may be multiple peaks and troughs in all three modes. Therefore, in most cases C is the
recommended measure.

7 Conclusions

This work provides several contributions towards analysing and understanding frac-
ture interaction processes through study of the stress intensity factor (SIF) perturbations.
These perturbations occur when two or more fractures are close enough to alter the state
of stress at one another’s tips. Using a 3D finite element based fracture mechanics model
simulating pairs of fractures, these perturbations have been demonstrated and quantified.
Three measures of interaction have been proposed to quantify how the SIFs are altered -
‘circumferential SIF perturbation’ (C), ‘maximum SIF perturbation’ (Mi) ‘amplification to
shielding ratio’ (ε). C and Mi can be used to quantify the magnitude of the interaction,
and ε can be used to describe whether the stress at the tip of a fracture is mostly ampli-
fied or shielded. These measures have been used to study the interaction occurring around
pairs of fractures of equal size in several orientations. This is accomplished by creating
interaction maps, which plot measures of interaction in space according to the location of
an interacting fracture. The analysis outlined in this work, and the interaction measures
that are proposed, are applicable to any stress state or fracture population. This provides a
new and powerful way to understand how fractures affect one another.
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