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Abstract

This paper proposes a method to estimate the curvature of an interface represented implicitly by discrete
volume fractions on an unstructured two-dimensional mesh. The method relies on the computation of
local parabolic reconstructions of the interface. The parabolic reconstruction of the interface in a given
computational cell is obtained by solving a local non-linear minimisation problem, and only requires
additional information from two neighbouring cells. This compactness ensures a robust behaviour on
poorly-resolved interfaces. The proposed method is proven to be analogous to the height-function method
for Cartesian configurations with consistent heights, and can be interpreted as a generalisation of the
height-function method to meshes of any type. Tests are conducted on a range of interfaces with known
curvature. The method is shown to converge with mesh refinement with the same order of accuracy as
the height-function method for all three types of meshes tested, i.e. Cartesian, triangular, and polygonal.
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1. Introduction

The modelling of interfacial flows with surface tension represents a numerical challenge. In the context of
the so-called ‘volume-tracking’ or ‘volume-of-fluid’ (VOF) methods [1–5], this challenge predominantly lies
in the accurate transport of the fluid/fluid interface, and in the evaluation of its curvature. An accurate
estimation of the interface curvature is indeed needed in order to avoid the generation of parasitic and/or
spurious flow currents [6, 7]. VOF frameworks rely on an implicit definition of the interface between the
two immiscible fluids a and b. A discontinuous indicator function χ : Rd → R characterises the type of
fluid present at each location of the d-dimension space, i.e.

χ(x) =

{
1 if x ∈ fluid a
0 if x ∈ fluid b

. (1)

In each control volume (or computational cell) K of the simulation meshM, the local fraction of volume
occupied by the fluid a is given by

γK =
1

`(K)

ˆ
K

χ(x) dx, (2)

where `(K) =
´
K
dx is the Lebesgue measure1 of K. This discrete field γ is referred to as the ‘volume

fraction’ field (illustrated in figure 1). In classic VOF frameworks, it is the sole piece of information
from which the geometric properties of the interface are to be extracted. In other words, evaluating local
interface normals and curvatures implies to compute the first and second derivatives of the indicator
function χ, when the only quantities which are known are the integrals of χ in the computational cells.
Early-days VOF curvature evaluation methods rely on the mollification of the volume fraction field (e.g.
by means of convolution with a smooth kernel function) [8–12]. The volume fraction field having been
made ‘more differentiable’, the local normals and curvatures can then be obtained by differentiating the
mollified field once and twice, respectively. The VOF method has also been coupled with level-set (LS)
representations of the interface. High-order methods can then be applied onto the reconstructed-distance-
function (RDF) in order to extract curvature [11, 13, 14]. It has been shown that both of these families
of methods exhibit poor or no convergence at all under mesh refinement [11, 15, 16], making them badly

1For the rest of this paper, `(·) refers to the Lebesgue measure
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Figure 1: Illustration of the VOF formalism. (a) Indicator function field of a fluid body: the indicator function χ(x) is
defined at all positions x in the simulation domain, and is equal to either 0 or 1; (b) Associated volume-fraction field γ
defined for all control volumes of mesh M, and for which 0 ≤ γK ≤ 1, ∀K ∈ M. The boundary δM of the simulation
domain is represented by a thick black line, while the control volumes K ∈M are separated by thin black lines.

suited for surface tension dominated flows. The only VOF curvature evaluation method which has been
shown – both analytically [17, 18] and numerically [11, 19, 20] – to convergence with mesh refinement is
the height-function (HF) method. The HF curvature evaluation method, in its original form, is limited to
Cartesian grids and requires to be coupled with an alternative method when consistent heights can not
be obtained (i.e. for high-curvature regions of the interface). It converges with second-order accuracy
[11, 18–20]. An attempt to extend the method to unstructured two-dimensional meshes was conducted
by Ito et al. [16], but the method shows less than first-order accuracy. Variants of the HF method with
embedded (or mesh-decoupled) stencils have recently been developed, suggesting that this could lead to
converging curvature evaluation on unstructured meshes [20, 21]. The mesh-decoupled height-function
method of Owkes and Desjardins [20] shows second-order accuracy on Cartesian grids with smaller errors
at low resolutions than classic or mixed HF methods. The embedded height-function (EHF) method
of Ivey and Moin [21] shows monotically decreasing curvature errors with refinement on unstructured
meshes – their convergence rate dropping at high-resolutions due to errors in the interpolation of the
volume fractions on the embedded stencils. Finally, the approach of Renardy and Renardy [22] proposes
to evaluate curvature from an optimal fit for a quadratric approximation of the interface over a local
stencil. The method, limited to Cartesian grids, showed a great reduction of the curvature-error-induced
parasitic currents.
To this date, no method yields height-function-like convergence rates on unstructured meshes, making
surface tension dominated flows difficult to simulate in complex geometries using the VOF method [7].
This paper proposes a method to compute local parabolic reconstructions of the interface, from which
curvature is then extracted. This curvature evaluation method, equivalent to the HF method for well-
posed Cartesian configurations, is shown to converge on all types of meshes with the same order of
accuracy as the HF method.

2. Analogy between the parabolic reconstruction problem and the height-function method

Consider a fluid body Ω ⊂ R2 with its boundary ∂Ω crossing three rectangular cells C−1, C0, and C1, of
height h and width w. The three cells are adjacent to each other, forming a 3w × h rectangular stencil,
and the origin of the local coordinate system is located at the middle of the central bottom edge. This
setup is summarised in figure 2a. It is assumed that, locally, ∂Ω can be written in an explicit form
y = f(x), and that 0 ≤ f(x) ≤ h,∀x ∈ [−3w/2, 3w/2]. Under these assumptions, the area Ai of Ci ∩ Ω
(i.e. the ‘volume of fluid’ in each cell) is given by

Ai =

ˆ (i+1/2)w

(i−1/2)w

f(x) dx, i ∈ {−1, 0, 1}. (3)
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Figure 2: Illustration of the analogy between the parabolic reconstruction problem and the height-function method.

The ‘height of fluid’ in each column (see figure 2b) follows as

Hi =
Ai
w
, i ∈ {−1, 0, 1}. (4)

Let us now consider the quadratic height function

f̃(x) = ax2 + bx+ c, (5)

with coefficients (a,b, c) ∈ R3. The quantity Ãi is the integral of f̃(x) in column Ci, and H̃i is the
associated height, i.e.

H̃i =
1

w

ˆ (i+1/2)w

(i−1/2)w

f̃(x) dx, i ∈ {−1, 0, 1}. (6)

Equating Hi with H̃i (or equivalently Ai with Ãi) for all i ∈ {−1, 0, 1} reduces to solving the linear
system of equations

Hi =
1

w

[
a
x3

3
+ b

x2

2
+ cx

](i+1/2)w

(i−1/2)w

, i ∈ {−1, 0, 1}, (7)

which, in its matricial form, writes

M

a
b
c

 =

H−1

H0

H1

 , (8)

with

M =

13w2/12 −w 1
w2/12 0 1

13w2/12 w 1

 . (9)

Provided that w 6= 0, M−1 is defined, and it is given by

M−1 =

 1/2w2 −1/w2 1/2w2

−1/2w 0 1/2w
−1/24 13/12 −1/24

 . (10)

This means that for the configuration considered in this example, there exists a unique parabola y = f̃?(x)
whose coefficients satisfy the system of equations (7). Illustrated in figure 2b, y = f̃?(x) is the constrained
parabola which produces column heights H̃i equal to the original arbitrary heights Hi. Note that f̃?(x)
is not necessarily bounded to [0, h] for x ∈ [−3w/2, 3w/2], and that one does not necessarily have

3



f̃?(iw) = Hi,∀i ∈ {−1, 0, 1} either. From equation (10), it results that the coefficients of f̃?(x) are

a =
H−1 − 2H0 +H1

2w2
, (11)

b =
H1 −H−1

2w
, (12)

c = −H−1 − 26H0 +H1

24
. (13)

The first derivative of f̃?(x) at x = 0 is given by

f̃ ′?(0) = b =
H1 −H−1

2w
, (14)

and the second derivative by

f̃ ′′? (0) = 2a =
H−1 − 2H0 +H1

w2
. (15)

The formulas (14) and (15) are in fact the central-differences formulas which are employed in the widely-
used height-function (HF) curvature evaluation method [11]. From this observation, one deduces the
following proposition:

Proposition 1. Calculating the derivatives f̃ ′?(0) and f̃ ′′? (0) of the quadratic polynomial f̃?(x) whose
column heights satisfy H̃i = Hi,∀i ∈ {−1, 0, 1}, is equivalent to using central-differences on the heights
Hi.

The major outcome of this proposition is that the HF method relates to the volume-fraction-based
parabolic fit:

Find (a,b, c) such that H̃i = Hi, ∀i ∈ {−1, 0, 1} , (Pvf)

which goes against the common misconception that the HF method is linked to the point-based parabolic
fit:

Find (a,b, c) such that f̃(iw) = Hi, ∀i ∈ {−1, 0, 1} . (Ppt)

The correct approach to evaluate curvature from a parabolic reconstruction, hence, is to consider the
volume-fraction-based parabolic fit (Pvf) rather than the point-based parabolic fit (Ppt).
These results, although seemingly anecdotic, are the foundation of this paper. Having shown that the
volume-fraction-based parabolic reconstruction problem described in this section is equivalent to the HF
method with regards to the evaluation of the derivatives (and thus curvature), this paper proposes a
method for its resolution for arbitrary discretisations – where the HF method is not applicable anymore
– with the aim of reaching HF-like convergence rates for the evaluation of curvature on unstructured
meshes. The rest of the paper is organised as follow: section 3 defines the parabolic reconstruction
problem in a general arbitrary case and discusses the evaluation of relevant quantities for its resolution;
section 4 describes the general curvature evaluation algorithm, and a convergence study of the method
is conducted in section 5. Finally, conclusions are drawn in section 6.

3. Resolution of the parabolic reconstruction problem in a general arbitrary case

3.1. Definition of the local problem
Consider N arbitrary polygons Pi, which are not necessarily convex and may or may not have vertices in
common, and a fluid body Ω ⊂ R2 with boundary ∂Ω. The subset Ω is characterised by a discontinuous
indicator function χ : R2 → R defined as

χ(x, y) =

{
1 if (x, y) ∈ Ω
0 if (x, y) /∈ Ω

. (16)

To each polygon Pi is associated a ‘volume fraction’ γi given by

γi =
1

`(Pi)

¨
Pi

χ(x, y) dxdy. (17)

The area Ai = `(Pi ∩ Ω), i ∈ {1, . . . , N} relates to the volume fraction γi following

Ai = `(Pi)γi. (18)
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An example of such a setup with N = 3 is given in figure 3.
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Ω

Figure 3: A fluid body Ω ⊂ R2 intersects three arbitrary polygonal cells P0, P1, and P2.

It is assumed that the interface ∂Ω can be locally approximated by a parabola y = f̃(x) with

f̃(x) = ax2 + bx+ c. (19)

Let Λ ⊂ R2 be the subset {y ≤ f̃(x),∀x ∈ R}. The volume fraction associated with Λ is given by

γ̃i =
1

`(Pi)

¨
Pi

χ̃(x, y) dxdy, (20)

where χ̃ is the parabola indicator function, i.e.

χ̃(x, y) =

{
1 if (x, y) ∈ Λ (⇔ y ≤ f̃(x))

0 if (x, y) /∈ Λ (⇔ y > f̃(x))
. (21)

The area Ãi = `(Pi ∩ Λ) relates to γ̃i following

Ãi = `(Pi)γ̃i. (22)

In order to minimise the difference between the γ̃i and the given volume fractions γi, the coefficients of
the parabola are chosen to be the solutions of the minimisation problem

min
(a,b,c)∈R3

J(a,b, c), (P)

where

J(a,b, c) =
1

2

N∑
i=1

(γ̃i − γi)2. (23)

In the example presented in section 2, γ̃ was varying linearly with the coefficients (a,b, c), which allowed
for the quick and direct resolution of problem (Pvf). In the general case, however, γ̃ does not vary linearly
with the coefficients (a,b, c), and its computation is not straightforward. The problem (P) thus needs to
be solved iteratively using, for instance, a quasi-Newton or Newton minimisation method. Although not
trivial, analytical expressions can be derived for the necessary calculations of the gradient and Hessian
matrix of J , and are given in the following section.
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3.2. Computation of the cost function and its derivatives

Solving (P) using a Newton method requires to evaluate γ̃ efficiently and accurately, as well as its gradient
and Hessian matrix with regards to the coefficients (a,b, c),

∇γ̃ =



∂ γ̃

∂a

∂ γ̃

∂b

∂ γ̃

∂c


, Hγ̃ = ∇ (∇γ̃)

T
=



∂2 γ̃

∂a2

∂2 γ̃

∂a ∂b

∂2 γ̃

∂a ∂c

∂2 γ̃

∂b ∂a

∂2 γ̃

∂b2

∂2 γ̃

∂b ∂c

∂2 γ̃

∂c ∂a

∂2 γ̃

∂c ∂b

∂2 γ̃

∂c2


. (24)

From there, the cost function J , its gradient, and its Hessian matrix directly follow as

J =
1

2

N∑
i=1

(γ̃i − γi)2, (25)

∇J =

N∑
i=1

∇γ̃i(γ̃i − γi), (26)

HJ =

N∑
i=1

Hγ̃i(γ̃i − γi) +∇γ̃i (∇γ̃i)T . (27)

In order to calculate ∇γ̃ and Hγ̃ , the volume fraction γ̃ needs to be written as a function of the parabola
coefficients (a,b, c). Doing so requires to define a robust way of expressing γ̃ for any polygonal cell. This
process is described here:
Consider an arbitrary polygon P with n vertices xj which have been ordered anti-clockwise. The area of
P is obtained using Gauss’ area formula

`(P ) =
1

2

n−1∑
j=1

xjyj+1

−
n−1∑
j=1

xj+1yj

+ xny1 − x1yn

 . (28)

The intersections between P and ∂Λ are referred to as the points ik, k ∈ {1, . . . ,m}. If 0 < γ̃ < 1, then
necessarily m ≥ 2. The computation of these intersections is detailed in Appendix A. A main algorithmic
difficulty for the calculation of γ̃ lies in the fact that P ∩ Λ can be formed of several distinct subsets
(even if P is convex). To make sure that these distinct subsets are rightly accounted for, a modified
Weiler-Atherton polygon clipping algorithm is employed [23]. This algorithm is described in Appendix
B; it returns a list of q polygons Ql which approximate the distinct subsets of P ∩ Λ. The edges of the
polygons Ql which are not on ∂P are representative of the sections of the parabola ∂Λ which are inside
P . Once P ∩Λ has been clipped accordingly, the area Ã = `(P ∩Λ) is divided into three components for
its calculation, as illustrated in figure 4:

1. The area Ãpoly of the union of the clipped polygons Ql. The area of each polygon is calculated
using Gauss’ area formula (28), leading to

Ãpoly =
1

2

q∑
l=1

nQl
−1∑

j=1

xjyj+1

−
nQl

−1∑
j=1

xj+1yj

+ xnQl
y1 − x1ynQl

 , (29)

2. The area Ãint under the segments of the parabola ∂Λ which are inside P

Ãint =

q∑
l=1

∑
edges
∈ ∂Ql

/∈ ∂P

ˆ max(xedge)

min(xedge)

f̃(x) dx, (30)
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3. The area Ãmid, approximation of Ãint using the midpoint rule

Ãmid =

q∑
l=1

∑
edges
∈ ∂Ql

/∈ ∂P

[
f̃(min(xedge)) + f̃(max(xedge))

2
(max(xedge)−min(xedge))

]
. (31)
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Ã = Ãpoly

∂Λ

y

x

•
x6

P

•
x5

•
x4

•

•
x2

•

•
i4

•
i1 •

i2

• i3

Λ
∂Λ

y

x

•
x6

P

•
x5

•
x4

•

•
x2

•

•
i4

•
i1 •

i2

• i3

Λ
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Figure 4: 3-step computation of the area Ã = Ãpoly + Ãint − Ãmid = `(P ∩Λ), where P is an arbitrary polygon, and Λ the

subset {y ≤ f̃(x), ∀x ∈ R} with f̃(x) a quadratic polynomial.

With these definitions, the volume fraction γ̃ is given by

γ̃ =
Ãpoly + Ãint − Ãmid

`(P )
. (32)

The calculation of ∇γ̃ and Hγ̃ thus implies to differentiate the terms Ãpoly, Ãint, and Ãmid, with regards
to the coefficients of the parabola. The key-steps of this derivation are described in Appendix C.
Note that a generalisation of the present approach to arbitrary implicit curves f(x, y) = 0 is used to
initialise the volume fraction fields considered in the examples and test-cases of this paper. The main
difference between the approach presented in this section and its generalisation to arbitrary functions lies
in the calculation of the term (Ãint − Ãmid), as the integral in equation (30) may not have an obvious
analytical solution in the latter case. The details of this modification are provided in Appendix D.

3.3. Resolution of the minimisation problem (P)

A Newton method is employed for the minimisation of J (see algorithm 1).
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Algorithm 1: Newton minimisation of J

k ←− 1
kmax ←− Maximum number of iterations
ε, ∂ ←− Small positive constants
ak ←− Initial guess a0

Jk,∇Jk,HJk ←− ComputeCostF&Derivatives(a0)

while |Jk| < ε and |∇Jk| < ∂ and k < kmax do
pk ←− −H−1

Jk
∇Jk Compute descent direction

αk ←− ComputeStep(ak,pk) Compute step
ak+1 ←− ak + αkpk Update coefficients
Jk+1,∇Jk+1,HJk+1

←− ComputeCostF&Derivatives(ak+1) Update cost function and derivatives
k ←− k + 1 Update counter

Let a be the vector of coefficients of the parabola,

a =
[
a b c

]T
. (33)

The Newton minimisation method is based on the second-order Taylor series approximation to J , i.e.

J(a + p) ' J(a) + pT ∇J +
1

2
pT HJ p, (34)

with |p| � |a|. This quadratic approximation of J near a will reach an extremum for

∇J + HJ p = 0. (35)

The Newton direction of minimisation p is thus solution of the equation (35). Here, HJ is a 3× 3 matrix
so it can easily be inverted directly. The vector p, however, is a descent direction provided that HJ is
positive definite. This may not be the case, especially if a is far from a local minimiser a?. For this
reason, equation (35) is solved using a modified Cholesky decomposition [24, 25] that guarantees p to be
a descent direction. Special attention must also be paid while updating the coefficients of the parabola
in algorithm 1. If the updated parabola leaves one of the polygonal cells, this cell will not contribute to
∇J anymore, making it very unlikely that the parabola re-enters the cell during a future iteration. This,
obviously, can prevent the problem from converging towards a local minimum. In order to avoid such
situations, the update of the parabola coefficients follows

ak+1 = ak + αkpk, (36)

where αk is taken as
αk = min(1, αout), (37)

αout being the smallest positive step for which ak+1 leaves one of the polygonal cells.
Although it is possible to prove the existence and uniqueness of a zero minimum for J in the example
provided in section 2, such a proof is not possible in the general case. In practice, using algorithm 1 for
the resolution of (P) with N = 3 will, in the vast majority of cases, converge towards a zero minimum.

4. Evaluation of curvature from local parabolic reconstructions

Before entering the details of the present curvature evaluation method, the following denominations are
introduced:

• An “interfacial cell” is a cell whose volume fraction is strictly enclosed between 0 and 1. For the
rest of this paper, a cell is considered to be interfacial if its volume fraction satisfies the inequalities
10−6 < γ < 1− 10−6.

• The “nearest neighbourhood” of a cell K is defined as the ensemble of cells which share at least an
edge or a vertex with cell K, as illustrated in figure 5a.
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• The “direct neighbourhood” of a cell K is defined as the ensemble of cells which share at least an
edge with cell K, and is a subset of the nearest neighbourhood of K.

4.1. Computation of the interface normals

The present method computes curvature from local parabolic reconstructions. Prior to the computation
of these reconstructions, interface normals are to be evaluated as they determine the orientation of the
local coordinate systems in which to solve the parabolic reconstruction problems. A first approximation
of the normals is obtained from the gradient of the volume fraction field, that is ni = ∇γ/|∇γ| (the
subscripts i and f are used to label the initial and final normal estimates). These normals are then
corrected using the second-order iterative method of Ito et al. [16]. This procedure relies on the definition
of local heights which are used to adjust the orientation of the interface normals. Consider, for instance,
an interfacial cell K with an initial normal guess niK . The normal niK is used to compute piecewise-linear
approximations of the interface in K and in the interfacial cells of its nearest neighbourhood, based on
the local values of volume fraction. Having defined a baseline reference orthogonal to niK , the height of
fluid in each of these cells can be taken as the signed distance between the linear reconstruction and the
reference line, as illustrated in figure 5b. If h0 is the height associated with the cell K and hj , j ∈ {1, n},
the heights associated with the n interfacial cells in the nearest neighbourhood of K, the normal niK is
rotated as to minimise the absolute differences |h0 − hj |. The procedure is repeated until convergence is
reached. For details on how to calculate the amount of rotation needed at each step of the minimisation
process, the reader is referred to the work of Ito et al. [16]. The final converged result nfK obtained from
the initial setup of figure 5b is shown in figure 5c.
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(a) Cell K and its nearest
neighbourhood, delimited by a red and

white double line
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(b) Local interface heights in the
reference frame of the initial
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(c) Local interface heights in the
reference frame of the final

normal nf
K after the iterative

correction procedure [16]

Figure 5: Illustration of the nearest neighbourhood of a given cell K and initial/final setups associated with the correction
of the interface normal in K. The local piecewise-linear reconstructions in the interfacial cells are represented by the black
and white double lines.

4.2. Choice of a local stencil for the parabolic reconstruction

Once the interface normals have been computed, two neighbours are chosen within the nearest neigh-
bourhood of each interfacial cell in order to form a 3-cell stencil in which the parabolic reconstruction
problem is to be solved. Three configurations can then be encountered, as the nearest neighbourhood of
an interfacial cell K can contain:

(a) less than two interfacial cells,

(b) exactly two interfacial cells,

(c) more than two interfacial cells.

Case (a) is peculiar and should, in principal, almost never occur. It typically indicates that the interface is
locally very poorly resolved. In such a case, the parabolic reconstruction is not computed for cell K, and
the curvature is interpolated from neighbouring cells (as explained in section 4.4). Case (b) leads to an
obvious and simple choice: the two neighbour interfacial cells which, with the cell K under consideration,
form the 3-cell stencil. Case (c), finally, requires to select the ‘best’ two candidates within the set of
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neighbouring interfacial cells, which will be used to form the 3-cell stencil. An exemple of such a case is
given in figure 6a. The best two candidates are chosen to be the neighbours whose volume fractions are
closest to 0.5, as shown in figure 6b.

K

(a) Cell K and its nearest neighbourhood.
The interfacial neighbour candidates are

highlighted in red.

K

(b) 3-cell stencil chosen for the parabolic
reconstruction in cell K

1
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lu
m
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c
ti
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γ

0

Figure 6: Choice of a local stencil for the parabolic reconstruction in cell K: the available interfacial candidates are
highlighted in (a), and the final 3-cell stencil is shown in (b).

The 3-cell stencil, in which the parabolic reconstruction problem is solved, is written in a local orthogonal
coordinate system (x′, y′) whose origin is the center of cell K (see exemple in figure 5c). The local
coordinate system is scaled so that the area of the smallest stencil cell is equal to unity, and it is oriented
such that the local interface normal is given by n′ = [ 0 1 ]T in this new frame of reference. Note that the
initial guess a0 in algorithm 1 is taken as the parabola that goes through the centres of the piecewise-linear
interface reconstruction segments in each stencil cell.

4.3. Convergence and cell merging

In practice, the convergence of the local minimisation problem (P) largely depends on the values of the
volume fractions in the stencil cells. If γ is very close to 0 or 1 (i.e. the cell is almost ‘empty’ or almost
‘full’) in some of the stencil cells, then algorithm 1 may struggle to converge, mainly due to numerical
approximations. In order to improve convergence and avoid such cases, interfacial cells which are almost
‘empty’ are merged with cells which are almost or completely ‘full’, and vice-versa, in an attempt to bring
the volume fractions of interfacial cells as close as possible to 0.5. This merging procedure is achieved in
the following manner:

1. In a first step, a “merging candidate” C is attributed to each cell K of the computational mesh.

• If K is an interfacial cell and its volume fraction is such that γK < 0.1 or γK > 0.9 (the cell
is almost empty or almost full), then a potential candidate for merging is searched within its
direct neighbourhood. Merging K with a direct neighbour N results in the volume fraction

γK∪N =
γK`(K) + γN`(N)

`(K ∪N)
. (38)

A direct neighbour N is considered a suitable candidate if |0.5 − γK | > |0.5 − γK∪N | and
|0.5 − γN | > |0.5 − γK∪N |, i.e. if the merging of N and K results in a volume fraction
that is closer to 0.5 than it is in both K and N . Of all suitable candidates in the direct
neighbourhood of K, the merging candidate C is chosen to be the one resulting in the smallest
value of |0.5− γK∪N |.

• If K is not an interfacial cell, or no suitable direct neighbours can be found, then C is chosen
to be the cell K itself (i.e. K does not need to be changed).

2. In a second step, it is decided whether to merge cells with the attributed candidates or not. If the
candidate C associated with a given cell K is the cell K itself, then nothing is done. If C is different
than K, and the candidate associated with C is the cell K or C itself, then both cells are merged.
In all other cases, the cells are not merged.

The application of the merging procedure is illustrated in figure 7.
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(a) Original mesh and volume fractions (b) Mesh and volume fractions after the
cell merging procedure
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Figure 7: Cell merging procedure: interfacial cells which are almost ‘empty’ are merged with cells which are almost or
completely ‘full’, and interfacial cells which are almost ‘full’ are merged with cells which are almost or completely ‘empty’.
Original cells which have been merged together are highlighted in red in figure (b). The exact interface from which the
original volume fractions have been computed is represented by the double black and white line.

4.4. Curvature integration

Once the local parabolic reconstruction has been computed for a given cell K, curvature is integrated
on the portions of the parabola inside K using a Legendre-Gauss quadrature rule. The details of this
procedure can be found in Appendix D. The integration of curvature using (D.2) is preferred to its
computation from a single point on the parabola or directly from the parabola coefficients. It is robust
as it naturally deals with complex configurations, such as cells containing multiple distinct portions of
parabola, and it is also consistent with the VOF framework, because the integrated curvature value is
coherent with the finite-volume formalism and in phase with the essence of volumetric surface-tension
treatment (e.g. the Continuum Surface Force model [8]).
If the parabolic reconstruction problem has not converged in cell K, then it is checked whether the
parabolas issued from the neighbouring cells in which convergence has been reached, intersect with cell
K. If that is the case, then curvature is averaged from the integrals on all intersecting neighbouring
parabolas. If all of these attempts have failed, curvature is interpolated from the neighbours. In practice,
the method very rarely resorts to this last options. The few occasions for which this is the case are linked
to poorly-resolved interfaces where the local parabolic reconstruction problem sometimes fails to converge.
Overall, in the test-cases presented in this paper, about 0.6% of the interfacial cells where 1/κ∆x < 4
(poorly-resolved interfaces) see the parabolic reconstruction fail and can not find an intersecting parabola
from their neighours, while this is the case for 0.0006% of the interfacial cells with 1/κ∆x ≥ 4.

4.5. Algorithm summary

The present curvature evaluation method is summarised in algorithm 2. Figure 8 shows the curvature
fields of an ellipse with maximum curvature κmax, obtained on three different mesh types (Cartesian,
triangular, and polygonal mesh), and various mesh resolutions (1/κmax∆x ' 1, 1/κmax∆x ' 2.5, and
1/κmax∆x ' 5). The local parabolic reconstructions are shown in red. Noticeably, one can see that
the method performs well at very low resolution (1/κmax∆x ' 1). In fact, an additional method is not
required to compute the curvature of under-resolved interfaces (as it is the case for the classic height-
function method).

5. Analysis of curvature errors and computational cost of the method

The errors associated with the present curvature evaluation method are studied in order to assess its
performance against existing methods as well as its convergence behaviour. Three interface shapes are
considered in this study:

(a) A circle with radius r whose exact curvature is κref = 1/r (figure 9a).

(b) An ellipse with semi-minor axis a and semi-major axis b whose maximum curvature is given by
κref = b/a2 (figure 9b).
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Figure 8: Curvature fields of an ellipse using the present method on: (left column) a Cartesian grid; (middle column) a
triangular mesh; (right column) a polygonal mesh; and with: (top row) 1/(κmax∆x) ' 1; (middle row) 1/(κmax∆x) ' 2.5;
(bottom row) 1/(κmax∆x) ' 5. The local parabolic reconstructions are shown in red.

Algorithm 2: Curvature evaluation from parabolic reconstructions

Compute interface normals
Merge problematic cells
for each interfacial cell do

Generate local stencil
Solve parabolic reconstruction problem in local coordinate system

for each interfacial cell do
if parabolic reconstruction has converged then

Integrate curvature from parabola

else
if parabolas from neighbours intersect current cell then

Integrate curvature from neighbour parabolas

for each interfacial cell do
if curvature evaluation has failed then

Interpolate curvature from neighbours
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(c) A sine wave with amplitude η and wavelength λ whose maximum absolute curvature is given by
κref = 4ηπ2/λ2 (figure 9c). The ratios η/λ = 0.25 and η/λ = 0.01 are used.

× r

κref = 1/r

(a) Circle

× b
a

κref = b/a2

(b) Ellipse

λ

η

κref = 4ηπ2/λ2

(c) Sine wave

Figure 9: Interfaces considered in the convergence study, and their reference curvature κref .

All tests are conducted on three different types of meshes:

(a) A Cartesian grid with constant mesh spacing (figure 10a).

(b) A triangular mesh generated using the Triangle mesh library of Shewchuk [26] (figure 10b).

(c) A polygonal mesh generated using the dual polygonal mesh generation method of Balafas [27] (fig-
ure 10c).

The domain considered for all cases is a 1 × 1 square, and the mesh spacing is defined as ∆x =
√

1/N ,
where N is the number of cells in the mesh.

(a) Cartesian grid (b) Triangular mesh (c) Polygonal mesh

Figure 10: Types of meshes considered for the convergence study.

In all numerical experiments, the volume fraction field is initialised using a modified version of the method
described in section 3.2, for which Ãint is evaluated using a 64-point Legendre-Gauss quadrature rule, as
explained in Appendix D. The total amount of interfacial cells is Nc. For all interfacial cells, the exact
curvature κexact is obtained by integrating the curvature of the portions of interface contained within the
cell, again using a 64-point Legendre-Gauss quadrature rule. Two absolute curvature error norms are
considered:

‖κ− κexact‖∞ = max
s∈{1,...,Ns}

max
i∈{1,...,Nc}

|κi,s − κexact,i,s|, (39)

‖κ− κexact‖2 =
1

Ns

Ns∑
s=1

√∑Nc

i=1 (κi,s − κexact,i,s)
2

Nc
, (40)

where Ns is the number of simulations performed. Each simulation is executed with random center
position for the case of the circle and ellipse, and random vertical position for the sine wave. All curvature
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errors are normalised by the reference curvature κref , and are the results of Ns = 100 tests for each
resolution. The level of refinement of the interface is quantified by 1/(κref∆x) which accounts for the
number of cells along the smallest radius of curvature of the interface. The present method is compared
against least-square differentiation on a convoluted volume fraction field following the method of Denner
and van Wachem [12] (CV method), a reconstructed-distance-function method based on Cummins et al.
[11] and its unstructured extension from Ito et al. [14] (RDF method), and an in-house implementation of
the mixed height-function method of Popinet [19] (HF method). Finally, in all error plots, the marks are
representative of the type of mesh which is employed: Squares – the mesh is a Cartesian grid,
Triangles – the mesh is made of triangular cells, Circles – the mesh is made of arbitrary polygonal
cells. Figures 11 and 12 respectively show the ‖ · ‖∞ and ‖ · ‖2 norms of the curvature errors for a circle
using the CV, RDF, HF, and present methods. Both the CV and RDF methods diverge with order one,
as shown by Raessi et al. [15], while the HF method converges with second-order accuracy, as expected
from theory [18] and shown in numerous numerical experiments [11, 19, 20]. The present method also
converges with second-order accuracy for both the ‖ · ‖∞ and ‖ · ‖2 norms, and that is for all types of
meshes (Cartesian, triangular, polygonal). The errors associated with unstructured meshes (triangular
and polygonal) are sensibly identical to those obtained on the Cartesian grid, which themselves are of
the same order of magnitude as the HF method errors. Figures 13 and 14 show the curvature errors
on an ellipse using the CV, RDF, HF, and present methods. Both the ‖ · ‖∞ and ‖ · ‖2 norms of the
errors for the HF and present methods converge with first-order accuracy, which is to be expected in this
case. Indeed, the HF method is proven to be second-order accurate with regards to the curvature at the
point of intersection between the interface and the symmetry axis of the heights stencil. This quantity,
itself, is a first-order approximation of the integral of curvature in the middle column. Second-order
convergence is achieve for the circle case because curvature is then constant, but as soon as the gradient
of the exact curvature is different than zero, one should expect first-order convergence. Figures 15, 16
and 17, 18 show the errors for the sine wave cases with η/λ = 0.25 and η/λ = 0.01, respectively. Here
again, the present method shows first-order convergence with mesh refinement on all mesh types, and
so does the HF method. The case with η/λ = 0.01, in figures 17 and 18, is the only case for which
the triangular and polygonal meshes perform significantly worse than the Cartesian grid. With the ratio
η/λ = 0.01, the interface is almost horizontal which, on a Cartesian grid, means that the parabolic
reconstruction problem is essentially well-posed everywhere (in the sense defined in section 2). It then
makes sense that the Cartesian grid performs somewhat better than the unstructured meshes in this
example. Figure 19 shows the curvature fields obtained for the η/λ = 0.01 case on all mesh types, for
a resolution 1/κref∆x ' 75, and using the present, RDF, and CV methods. At this relatively coarse
resolution (λ ' 30∆x), the CV and RDF methods already show large visible errors.
Finally, the computational cost of the proposed method is assessed on a specific test case: a circular
interface with 1/(κref∆x) = 100. Table 1 shows the timings (in µs per interfacial cell) associated with
the present and HF methods, as well as the average number of iterations required to reach convergence
when computing the local parabolic reconstructions. The timings of the present method are broken down
into three components for: the merging procedure, the computation of the interface normals following Ito
et al. [16], and the curvature evaluation itself (i.e. the computation of the parabolic reconstructions and
the integration of curvature in each interfacial cell). These results reveal two things. First, the average
number of iterations required to reach convergence is low and similar on all types of meshes (' 3). This
means that reaching convergence for the parabolic fit is not more difficult on the unstructured meshes
than it is on a Cartesian grid. Second, the timings show that the present method has a computational
cost which is about two orders of magnitude greater than the HF method, known for its simplicity and
low cost. All in all, this ratio is relatively good when one considers the iterative nature of the present
method, and its performance on unstructured meshes. In practice, the computational expense associated
with the present method is several orders of magnitude smaller than what is typically required to solve
the Navier-Stokes equations on a given mesh, making it a viable option for the evaluation of curvature
in interfacial flow simulations.

6. Conclusion

This paper proposes a method for the estimation of curvature from volume fractions on two-dimensional
meshes of any type, which is based on local parabolic reconstructions. Each parabolic reconstruction re-
quires to solve a local minimisation problem using an iterative Newton method. The proposed curvature
evaluation method is proven to be equivalent to the height-function method [11] for Cartesian configura-
tions with consistent heights. Numerical experiments show that it converges with mesh refinement with
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Figure 11: Maximum curvature errors for the circle case as a function of mesh refinement following the convoluted volume
fraction method (CV), the reconstructed-distance-function method (RDF), the height-function method (HF), and the
method proposed in this paper (Present). The values are normalised by κref = 1/r. For each mesh resolution, the errors
correspond to the maximum values reached over 100 simulations with random center position. Squares, triangles, or circles,
respectively relate to Cartesian, triangular, or polygonal meshes.

Mesh HF Present method

type method Merging
procedure

Normals
evaluation

Curvature
evaluation

Total
time

Average # of
iterations

� 2.1 6.2 61.1 36.5 103.8 2.96
4 – 6.0 113.9 37.4 157.3 3.17
© – 7.9 126.1 55.2 189.2 3.05

Table 1: Computational time spent for each interfacial cell (in µs), and average number of iterations required to solve the
local parabolic reconstruction problems, for the circle test case with 1/(κref∆x) = 100, using the present method on all
three types of meshes, and the HF method on a Cartesian mesh.

the same order of accuracy as the height-function method, both on structured and unstructured meshes.
Furthermore, the errors obtained on unstructured meshes are, in most cases, comparable to the errors ob-
tained on Cartesian grids with similar resolutions. Such convergence properties on unstructured meshes,
which have not yet been reached in the literature, open a new world of possibilities for the simulation
of interfacial flows in complex geometries using the VOF method. In particular, one can finally consider
using triangular or polygonal adaptive-mesh-refinement for such applications without being restricted
by crippling parasitic flow currents at the interface. The proposed method can be extended to three-
dimensional meshes based on the analogy shown in this paper between the height-function method and
the parabolic reconstruction problem. This raises, however, additional challenges due to the increased
complexity of the minimisation problem.

Appendix A. Intersections computation

Consider an edge [x0x1] and a parabola ∂Λ defined by y = f̃(x) = ax2 + bx + c. Two cases are to
distinguish for the computation of the intersections:

• If x0 = x1 (i.e. [x0x1] is vertical), then there exists a unique intersection between ∂Λ and the line
(x0x1) which is given by

i0 =
[
x0 f̃(x0)

]T
(A.1)
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Figure 12: Root mean square of the curvature errors for the circle case as a function of mesh refinement following the
convoluted volume fraction method (CV), the reconstructed-distance-function method (RDF), the height-function method
(HF), and the method proposed in this paper (Present). The values are normalised by κref = 1/r. For each mesh resolution,
the errors have been averaged from 100 simulations with random center position. Squares, triangles, or circles, respectively
relate to Cartesian, triangular, or polygonal meshes.
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Figure 13: Maximum curvature errors for the ellipse case as a function of mesh refinement following the convoluted volume
fraction method (CV), the reconstructed-distance-function method (RDF), the height-function method (HF), and the
method proposed in this paper (Present). The values are normalised by κref = b/a2. For each mesh resolution, the errors
correspond to the maximum values reached over 100 simulations with random center position. Squares, triangles, or circles,
respectively relate to Cartesian, triangular, or polygonal meshes.
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Figure 14: Root mean square of the curvature errors for the ellipse case as a function of mesh refinement following the
convoluted volume fraction method (CV), the reconstructed-distance-function method (RDF), the height-function method
(HF), and the method proposed in this paper (Present). The values are normalised by κref = b/a2. For each mesh resolution,
the errors have been averaged from 100 simulations with random center position. Squares, triangles, or circles, respectively
relate to Cartesian, triangular, or polygonal meshes.
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Figure 15: Maximum curvature errors for the sine wave case with η/λ = 0.25 as a function of mesh refinement following the
convoluted volume fraction method (CV), the reconstructed-distance-function method (RDF), the height-function method
(HF), and the method proposed in this paper (Present). The values are normalised by κref = 4ηπ2/λ2. For each mesh
resolution, the errors correspond to the maximum values reached over 100 simulations with random vertical position.
Squares, triangles, or circles, respectively relate to Cartesian, triangular, or polygonal meshes.
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Figure 16: Root mean square of the curvature errors for the sine wave case with η/λ = 0.25 as a function of mesh refinement
following the convoluted volume fraction method (CV), the reconstructed-distance-function method (RDF), the height-
function method (HF), and the method proposed in this paper (Present). The values are normalised by κref = 4ηπ2/λ2.
For each mesh resolution, the errors have been averaged from 100 simulations with random vertical position. Squares,
triangles, or circles, respectively relate to Cartesian, triangular, or polygonal meshes.
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Figure 17: Maximum curvature errors for the sine wave case with η/λ = 0.01 as a function of mesh refinement following the
convoluted volume fraction method (CV), the reconstructed-distance-function method (RDF), the height-function method
(HF), and the method proposed in this paper (Present). The values are normalised by κref = 4ηπ2/λ2. For each mesh
resolution, the errors correspond to the maximum values reached over 100 simulations with random vertical position.
Squares, triangles, or circles, respectively relate to Cartesian, triangular, or polygonal meshes.
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Figure 18: Root mean square of the curvature errors for the sine wave case with η/λ = 0.01 as a function of mesh refinement
following the convoluted volume fraction method (CV), the reconstructed-distance-function method (RDF), the height-
function method (HF), and the method proposed in this paper (Present). The values are normalised by κref = 4ηπ2/λ2.
For each mesh resolution, the errors have been averaged from 100 simulations with random vertical position. Squares,
triangles, or circles, respectively relate to Cartesian, triangular, or polygonal meshes.

Provided that min(y0, y1) ≤ f̃(x0) ≤ max(y0, y1), then i0 belongs to the edge [x0x1] and its
gradients and Hessian matrices with regards to the coefficients (a,b, c) are given by

∇i0x =
[
0 0 0

]T
, ∇i0y =

[
x2

0 x0 1
]T
, Hi0x =

0 0 0
0 0 0
0 0 0

 , Hi0y =

0 0 0
0 0 0
0 0 0

 (A.2)

• If x0 6= x1 (i.e. [x0x1] is not vertical), then ∂Λ intersects the line (x0x1) twice, once, or not at all.
Let D and E be the coefficient of the line (x0x1), that is

D =
y1 − y0

x1 − x0
, (A.3)

E = y0 −Dx0. (A.4)

– If a = 0 (i.e. ∂Λ is a line):

∗ If b 6= D (i.e. ∂Λ and (x0x1) are not parallel), then ∂Λ intersects (x0x1) once and the
intersection is given by

i0 =

[
E − c

b−D D
E − c

b−D + E

]T
(A.5)

Its gradients and Hessian matrices are given by

∇i0x =

[
0

c− E
(D − b)2

1

(D − b)

]T
, ∇i0y = D∇i0x (A.6)
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Figure 19: Curvature fields on a sine wave with η/λ = 0.01 and 1/κref∆x ' 75. The methods employed are: (left column):
Present method; (middle column) RDF method; (right column): CV method. At this relatively coarse resolution, large
errors are already noticeable for the CV and RDF methods.

Hi0x =


0 0 0

0
E − c

2(D − b)3

1

(D − b)2

0
1

(D − b)2
0

 , Hi0y = DHi0x (A.7)

– If a 6= 0 (i.e. ∂Λ is a parabola): Let A, B, and C, be the coefficients of the quadratic equation
one needs to solve to compute the intersection(s), and ∆ the discriminant of this equation

A = a, (A.8)

B = b−D, (A.9)

C = c− E, (A.10)

∆ = B2 − 4AC. (A.11)

∗ If ∆ < 0, then ∂Λ does not intersect (x0x1)

∗ If ∆ = 0, then ∂Λ intersects (x0x1) once and thus the case is irrelevant for the purpose
of this paper
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∗ If ∆ > 0, then ∂Λ intersects (x0x1) twice and the intersections are given by

i0 =

[
−B −

√
∆

2A
D
−B −

√
∆

2A
+ E

]T
, i1 =

[
−B +

√
∆

2A
D
−B +

√
∆

2A
+ E

]T
(A.12)

Their gradients are given by

∇i0x =

[
C

A
√

∆
− −B −

√
∆

2A2

−1−B/
√

∆

2A

1√
∆

]T
, ∇i0y = D∇i0x (A.13)

∇i1x =

[
−C
A
√

∆
− −B +

√
∆

2A2

−1 +B/
√

∆

2A
− 1√

∆

]T
, ∇i1y = D∇i1x (A.14)

and Hessian matrices by

Hi0x =
1

∆3/2



F −B∆3/2

A3

∆3/2 +G

2A2
2C

∆3/2 +G

2A2
2C −B

2C −B 2A


, Hi0y = DHi0x (A.15)

Hi1x =
1

∆3/2



−F −B∆3/2

A3

∆3/2 −G
2A2

−2C

∆3/2 −G
2A2

−2C B

−2C B −2A


, Hi1y = DHi1x (A.16)

with
F = 6AC(B2 −AC)−B4 (A.17)

and
G = B∆− 2ABC (A.18)

Appendix B. Modified Weiler-Atherton polygon clipping algorithm

Consider a polygon P with n vertices xj which have been ordered anti-clockwise, and a parabola y =

f̃(x). The intersections between P and the parabola are computed by looping over the polygonal chain
xj , j ∈ {1, . . . , n}. They are represented by the points ik, k ∈ {1, . . . ,m} in figure B.20a.

Algorithm 3: Weiler-Atherton polygon clipping algorithm

while intersection list is not empty do
Start on polygon to clip
Start at ‘entry’ intersection
Add point to clipped polygon list
Remove point from intersection list
while next point is not starting point do

Add next point to clipped polygon list
if next point is an intersection then

Remove from intersection list
Switch to other polygon

In order for the Weiler-Atherton polygon clipping algorithm [23] to be employed, one needs to define two
polygons: the polygon to clip, and the clipping region. The polygon to clip is given by P to which the inter-
sections have been added. In the example of figure B.20a, it is the chain {x1, i1,x2, i2,x3, i3,x4,x5,x6, i4}.
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Figure B.20: Illustration of the polygon clipping process: (a) Original polygonal cell P and the parabola y = f̃(x), with
their intersections ik. (b) Polygon to clip and clipping region for the polygon clipping algorithm; the points have been given
the flags ‘in’, ‘out’, ‘entry’, and ‘exit’.
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Figure B.21: Clipped polygons Q0 and Q1 resulting from the application of the polygon clipping algorithm to the example
presented in figure B.20a.

The clipping region is the polygonal approximation of the region below the parabola y = f̃(x), which
is obtained from the list of intersections reordered from the largest to the smallest x-coordinate. In the
example of figure B.20a, it is given by the chain {i3, i2, i1, i4}. This definition of the clipping region
slightly differs from classic Weiler-Atherton formulations when both the polygon to clip and clipping
region are closed polygons. Here, the clipping region is open and only the portion that is of interest for
our purpose is explicitly defined. The points xj are given an ‘in’ or ‘out’ flag which shows whether they
lie below or above the parabola, respectively. The points ik are given an ‘entry’ or ‘exit’ flag: if the
edge of P they lie on goes from ‘out’ to ‘in’, then it is an ‘entry’, else it is an ‘exit’ (see figure B.20b).
The polygon clipping algorithm then follows algorithm 3. Applied to the example in figure B.20a, the
algorithm 3 generate two clipped polygon Q0 and Q1 shown in figure B.21.

Appendix C. Volume fraction gradient and Hessian matrix computation

Consider a polygon P which has been clipped into q polygons Ql using the algorithm described in Ap-
pendix B. The volume fraction γ̃ associated with the parabola y = f̃(x) is given by

γ̃ =
Ãpoly + Ãint − Ãmid

`(P )
, (C.1)
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with Ãpoly, Ãint, and Ãmid, given by (29), (30), and (31). It then directly follows that

∇γ̃ =
1

`(P )

(
∇Ãpoly +∇Ãint −∇Ãmid

)
, (C.2)

and

Hγ̃ =
1

`(P )

(
HÃpoly

+ HÃint
−HÃmid

)
. (C.3)

The vertices of the polygons Ql are either issued from the vertices xj of P , or from the intersections ik
between P and the parabola. Because the mesh vertices are fixed, one necessarily has

∇xj = 0 and Hxj = 0, ∀j ∈ {1, . . . , n}. (C.4)

The position of the intersections, however, varies with the coefficients (a,b, c) of the parabola. Their
gradients and Hessian matrices are given in Appendix A.
All in all, calculating the right-hand sides of (C.2) and (C.3) requires to be able to compute the gradient
and Hessian matrices of the terms

T1 = x0y1, (C.5)

T2 =

ˆ x3

x2

f̃(x) dx, (C.6)

where x0 and x1 could be vertices of P and/or intersections between P and the parabola, while x2 and
x3 are necessarily intersections. These quantities are given in the following equations

∇T1 = y1∇x0 + x0∇y1 (C.7)

∇T2 =

[
x3

3

3

x2
3

2
x3

]T
+ y3∇x3 −

[
x3

2

3

x2
2

2
x2

]T
− y2∇x2 (C.8)

HT1
= y1 Hx0

+ x0Hy1 +∇x0(∇y1)T +∇y1(∇x0)T (C.9)

HT2
= ∇x3

[
x2

3 x3 1
]T

+ y3 Hx3
+∇x3(∇y3)T −∇x2

[
x2

2 x2 1
]T − y2 Hx2

−∇x2(∇y2)T (C.10)

Appendix D. Volume fraction calculation from arbitrary implicit interfaces

The generalisation of the method presented in section 3.2 to arbitrary implicit interfaces f(x, y) = 0
requires to change the way the term (Ãint − Ãmid) is computed, as the integral in equation (30) most
probably does not have an obvious solution. The area Ã = `(P ∩Λ) is then divided into two terms Ãpoly

and Ãquad, as illustrated in figure D.22. The term Ãpoly is calculated using (29), while the area Ãquad is
approximated using a Legendre-Gauss quadrature rule.
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Figure D.22: 2-step computation of the area Ã = Ãpoly + Ãquad = `(P ∩ Λ), where P is an arbitrary polygon, and Λ the
subset {f(x, y) ≤ 0, (x, y) ∈ R2} with f(x, y) = 0 an arbitrary implicit curve.
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The construction of the quadrature points used for the calculation of Ãquad is illustrated in figure D.23.
Each portion of interface located inside the polygon P is considered in a local orthonormal coordinate
system (x′, y′), in which both end-points of the curve are located on the x′ axis. Quadrature points
qi, i ∈ {0, n}, are positioned on the interface so that their x′ coordinates respect the chosen quadrature
rule. The area of each portion of interface can then be approximated by numerically integrating the
heights hi of the quadrature points qi. Using the notations introduced in section 3.2, one can write that

Ãquad =

q∑
l=1

∑
edges
∈ ∂Ql

/∈ ∂P

[
`(edge)

2

n∑
i=0

wi hi

]
, (D.1)

where wi are the quadrature weights associated with n quadrature points (and
∑n

0 wi = 2).

∂Λ
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Figure D.23: Construction of the quadrature points qi, for the computation of the area highlighted in red. The area is
approximated by numerically integrating the heights hi. A 5-point quadrature rule has been chosen for this example.

This formalism is also employed to integrate the curvature of the interface inside the polygon P , which
follows as

κP =
1

LP

q∑
l=1

∑
edges
∈ ∂Ql

/∈ ∂P

[
`(edge)

2

n∑
i=0

wi κ(qi)

]
, (D.2)

where

LP =

q∑
l=1

∑
edges
∈ ∂Ql

/∈ ∂P

`(edge) . (D.3)

In this paper, a 64-point Legendre-Gauss quadrature rule is chosen to initialise the volume fraction fields
used in the examples and test-cases. This guarantees that the relative volume error associated with
the initialised volume fraction field typically lies within a few orders of magnitude of the floating point
machine accuracy (' 10−15). For the integration of curvature, a 5-point quadrature rule is deemed
sufficient.
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