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Scaling behavior of thin films on chemically heterogeneous walls
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We study the adsorption of a fluid in the grand canonical ensemble occurring at a planar heterogeneous
wall which is decorated with a chemical stripe of width L. We suppose that the material of the stripe strongly
preferentially adsorbs the liquid in contrast to the outer material which is only partially wet. This competition
leads to the nucleation of a droplet of liquid on the stripe, the height hm and shape of which (at bulk two-phase
coexistence) has been predicted previously using mesoscopic interfacial Hamiltonian theory. We test these
predictions using a microscopic Fundamental Measure Density Functional Theory which incorporates short-
ranged fluid-fluid and fully long-ranged wall-fluid interactions. Our model functional accurately describes packing
effects not captured by the interfacial Hamiltonian but still we show that there is excellent agreement with the
predictions hm ≈ L1/2 and for the scaled circular shape of the drop even for L as small as 50 molecular diameters.
For smaller stripes the droplet height is considerably lower than that predicted by the mesoscopic interfacial theory.
Phase transitions for droplet configurations occurring on substrates with multiple stripes are also discussed.

DOI: 10.1103/PhysRevE.96.032801

I. INTRODUCTION

Complete wetting is a well known example of a surface
phase transition occurring at a wall-gas interface in systems for
which the contact angle of a liquid drop is zero. For open sys-
tems the transition corresponds to the growth in the thickness
�eq of an intruding liquid layer which becomes macroscopic
as the chemical potential μ is increased towards its saturation
value: δμ = μsat − μ → 0. Studies of complete wetting date
back to the Russian school of Derjaguin [1] who formulated the
problem using the concept of a disjoining pressure and were the
first to recognize the importance of microscopic forces in deter-
mining the growth of the film thickness. This phase transition
was subsequently rediscovered and placed within the greater
context of wetting transitions and fluid interfacial phenomena
following the seminal works of Cahn [2] and Ebner and Saam
[3] in the 1970s. Consequently over the last three decades there
have been numerous theoretical (and experimental) studies
of complete wetting at planar, and chemically homogeneous,
substrates using the modern statistical mechanical theory of
inhomogeneous fluids; for reviews see, for example, [4–8]. Of
particular importance in the theoretical development have been
treatments based on microscopic density functional theory
(DFT) [9] and interfacial Hamiltonian approaches which allow
for the influence of interfacial fluctuations [10]. These studies
have highlighted that in addition to the growth of �eq, complete
wetting is also characterised by the divergence of a parallel
correlation length ξ‖ due to (thermal) fluctuations of the liquid-
gas interface as it unbinds from the wall. Renormalization
group studies of interfacial models show for systems with
long-ranged forces the upper critical dimension for complete
wetting d∗ < 3, meaning that mean-field treatments, including
the predictions of the original Derjaguin theory, are correct in

three dimensions. More specifically, for systems with long-
range attractive molecular forces decaying asymptotically as
r−p−4, the wetting film �eq and parallel correlation length ξ‖
diverge according to the power-laws [10]

�eq ∼ δμ−βco
, ξ‖ ∼ δμ−νco

‖ (1)

with βco = 1/(p + 1) and νco
‖ = (p + 2)/2(p + 1). Thus for

systems with non-retarded van der Waals forces (p = 2), the
values of the critical exponents are βco = 1/3 and νco

‖ = 2/3,
respectively.

More recently, similar theoretical tools have been used
to study the adsorption and wetting on both heterogeneous
(chemically patterned) and structured solid substrates. This
research has revealed a number of novel interfacial phenom-
ena, not present for planar homogeneous substrates, including
new phase transitions and enhanced fluctuation effects. These
and related studies are also of practical relevance to nanotech-
nologies involving the fabrication of functional surfaces which
control the adsorption of microscopically small amounts of
liquid [11]. For geometrically sculpted substrates, theoretical
studies of wedges [12–14], grooves [15–17] and cones [18]
have shown that the wall geometry can dramatically alter the
adsorption properties and accompanying interfacial fluctuation
effects. New transitions also arise for planar but chemically
heterogeneous substrates in which the wall is a composite
formed by materials with different wetting properties. These
include studies of unbending transitions [19–21] involving the
local condensation of liquid within a patterned region, and
also complete pre-wetting (also called step-wetting) in which a
nucleated liquid phase spreads out laterally across the substrate
[22,23]. It is even possible to combine chemical patterning and
substrate geometry to produces surfaces that are partially wet
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(i.e., have a finite contact angle) even though the materials
involved only show complete wetting [24]. In the canonical
ensemble, i.e., considering fixed amount of liquid, chemically
patterned surfaces also lead to morphological phase transition
and the break down of Young’s equation [25,26].

In the present work we study fluid adsorption in an open
system at a very simple type of chemically heterogeneous sub-
strate; when a single stripe, of finite width L but macroscopic
length and depth, of a material that prefers complete wetting is
embedded into a surface that is otherwise completely dry (or
more generally, partial wet). This contrast leads to the nucle-
ation of a droplet of liquid at the stripe the height hm of which
remains finite even at bulk two-phase coexistence (μ = μsat).
For this system effective Hamiltonian theories make a number
of predictions not only for the dependence of hm on L but
also for the precise cross-sectional shape of the drop [27]. For
systems with short-ranged forces the droplet shape is further
predicted to display a conformal invariance which allows its
determination on a wide variety of patterned surfaces not just a
stripe. For systems with long-ranged forces, pertinent to most
solid-fluid interfaces, conformal invariance does not apply in
three-dimensions but the droplet height and shape are still
predicted to show strong scaling behavior. In the present study
we test these specific scaling predictions using an accurate
density functional model based on Rosenfeld’s fundamental
measure theory [28]. In particular, we wish to determine what
size of stripe width L is required before the droplet shape
agrees with the effective Hamiltonian theory. We note that
gravity is unimportant when the stripe width L is considerably
smaller than the capillary length (about a mm) and is therefore
utterly negligible at the microscopic scales studied here.

The remainder of our paper is organised as follows. In
Sec. II we derive the net potential for our single-stripe wall as-
suming that the wall atoms interact with the fluid via a Lennard-
Jones 12-6 potential. In Sec. III we present the microscopic
DFT model and also recall the interface Hamiltonian theory for
the scaling of the drop size and shape. In Sec. IV we present our

DFT results making comparison with the analytic results of the
interface Hamiltonian theory. We conclude with a discussion
of our results and also highlight possible extension of this work
to new phase transitions occurring on multiple stripes.

II. THE EXTERNAL POTENTIAL
OF THE COMPOSITE WALL

We suppose the composite wall is made from two species,
i = 1,2, each interacting with the fluid particles via the
Lennard-Jones 12-6 potential

φi(r) = 4εi

[(
σ

r

)12

−
(

σ

r

)6]
, (2)

where the molecular diameter σ and also the uniform density
distribution ρw are considered to be identical for both species.
The wall occupies the semi-infinite volume z < 0 and is
considered macroscopic and translationally invariant along the
y direction. The stripe (species i = 2) occupies the region
0 < x < L but the whole depth z < 0 and length −∞ < y <

∞ of the wall. The total external potential V (x,z) is inde-
pendent of y and is obtained by integrating the wall-fluid pair
potential over the wall volume from each region. Thus we write

V (x,z) = V∞(x,z; 1) + VL(x,z; 2) + V∞(L − x,z; 1). (3)

The contribution due to outer parts of the wall, formed from
species i = 1, is described by the triple integral

V∞(x,z; 1) = ρw

∫ ∞

x

dx ′
∫ ∞

−∞
dy ′

∫ ∞

z

φ1(
√

x ′2 + y ′2 + z′2).

(4)

This reduces to

V∞(x,z; 1) = πε1ρwσ 3

[
σ 9

z9
F9

(
x

z

)
− σ 3

z3
F3

(
x

z

)]
, (5)

where

F9(ξ ) = 2

45

(
1 + 1

ξ 9

)
− 1

2880

128 ξ 16 + 448 ξ 14 + 560 ξ 12 + 280 ξ 10 + 35 ξ 8 + 280 ξ 6 + 560 ξ 4 + ξ 2 + 128

ξ 9(1 + ξ 2)7/2
(6)

and

F3(ξ ) = 1

3

[
1 + 1

ξ 3
− 2 ξ 4 + ξ 2 + 2

2ξ 3
√

1 + ξ 2

]
. (7)

The contribution to the potential due to the stripe, formed by
species i = 2, is given by

VL(x,z; 2) = ρw

∫ L

x−L

dx ′
∫ ∞

−∞
dy ′

∫ ∞

z

dz′φ2

×(
√

x ′2 + y ′2 + z′2). (8)

which has now, owing to the finite size character of the stripe,
the scaling form

VL(x,z; 2) = πε2ρwσ 3

[
σ 9

z9
G9

(
x

z
,
L

z

)
− σ 3

z3
G3

(
x

z
,
L

z

)]
(9)

with

G9(ξ,η) = F9(ξ − η) − F9(ξ ) (10)

and

G3(ξ,η) = F3(ξ − η) − F3(ξ ) . (11)

Note that in the limit of L → ∞, the attractive part of the
wall potential decays as

V (x,z) ∼ −2

3
πε2ρwσ 3

(
σ

z

)3

(12)

recovering the behavior expected for a planar
three-dimensional homogeneous wall. On the other hand for
finite L and z/L → ∞ the wall the potential crosses over to

V (x,z) ∼ −3

8
πε2ρwσ 3

(
σ

z

)3
L

z
(13)
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which shows the correct power-law appropriate for a
pseudo-two-dimensional substrate.

III. THEORY

A. Density functional theory

Within classical density functional theory [29], the equi-
librium density profile is obtained from minimising the grand
potential functional

[ρ] = F[ρ] +
∫

drρ(r)[V (r) − μ] , (14)

where μ is the chemical potential, and V (r) is the external
potential due to the wall. The intrinsic free energy functional
F[ρ] is conveniently separated into an exact ideal gas
contribution and an excess part:

F[ρ] = β−1
∫

drρ(r)[ln(ρ(r)�3) − 1] + Fex[ρ] , (15)

where � is the thermal de Broglie wavelength and β = 1/kBT

is the inverse temperature. Following the spirit of van der Waals
or equivalently simple perturbation theory, the excess part is
modelled as a sum of hard-sphere and attractive contributions
where the latter is treated in a simple mean-field fashion:

Fex[ρ] = Fhs[ρ] + 1

2

∫ ∫
drdr′ρ(r)ρ(r′)ua(|r − r′|) , (16)

where ua(r) is the attractive part of the fluid-fluid interaction
potential. In our model the fluid atoms are assumed to interact
with one another via the truncated (i.e., short-ranged) and
non-shifted Lennard-Jones-like potential

ua(r) =
⎧⎨
⎩

0 ; r < σ ,

−4ε
(

σ
r

)6
; σ < r < rc ,

0 ; r > rc .

(17)

which is cut-off at rc = 2.5 σ , where σ is the hard-sphere
diameter.

The hard-sphere part of the excess free energy is approxi-
mated using the Fundamental Measure Theory functional [28],

Fhs[ρ] = 1

β

∫
dr �({nα}) , (18)

which accurately takes into account short-range correlations
between fluid particles and is known to satisfy exact statistical
mechanical sum rules [30]. Here, the free energy density � de-
pends on a set of six weighted densities {nα(r)} which may be
expressed as double integrals over the x and z dimensions [31].
These are evaluated numerically using Gaussian quadrature.

Minimization of Eq. (14) leads to the Euler-Lagrange
equation

V (r) + δFhs[ρ]

δρ(r)
+

∫
dr′ρ(r′)ua(|r − r′|) = μ , (19)

which can be solved iteratively on an appropriately discretized
two dimensional grid with suitable boundary conditions (see
later).

z

0

hmh(x)

L/2−L/2 x

FIG. 1. Schematic illustration of the shape of a drop, of height
hm, above a composite planar wall containing stripe of material, of
finite width L but infinite depth and length, which is completely wet.
The outer parts of the substrate only show microscopic adsorption
corresponding to partial wetting (or indeed drying).

B. Interfacial Hamiltonian theory

An alternative and complementary approach to microscopic
DFT, applicable to interfacial phenomena occurring at the
mesoscopic scale is based on the analysis of simple effective
Hamiltonian models. These have been successfully applied
to the theory of wetting at planar (homogeneous) walls
[5,9] and also continuous wedge filling [13] providing a
complete classification of universality classes and scaling
regimes arising due to the interplay between fluctuation effects
and those directly coming from the intermolecular forces. In
application to the present heterogeneous wall, the very simplest
effective Hamiltonian that can be used is given by the model
[27]

H [h] =
∫

dx

{
γ

2

(
dh

dx

)2

+ W (h)

}
, (20)

describing the functional dependence of the free-energy (per
unit wall length) on the height h(x) of the liquid-vapor interface
h(x) above the stripe (see Fig. 1). Here, γ is the liquid-vapor
surface tension and W (h) is the binding potential describing
the complete wetting properties which we specify below. At
mean field level the equilibrium configuration of the interface
is be determined by simply minimising the functional (20),
yielding the Euler-Lagrange equation

γ
d2h

dx2
= W ′(h) . (21)

This must be solved subject to boundary condition h(|L|/2) =
he, where the edge value he is considered fixed and micro-
scopic.

Within the model (20) the width of the stripe L is assumed
to be large enough that the binding potential can be considered
to be independent of x and approximated by the same function
appropriate to wetting at planar homogeneous wall. In the
case of the Lennard-Jones wall-fluid interaction the binding
potential, at bulk saturation, takes the form

W (h) = A

h2
, (22)
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where A = πε2ρwσ 6(ρl − ρv)/3 is the Hamaker constant
associated with the wettable part of the wall and ρl and
ρv are the liquid and vapor saturated densities, respectively.
Substituting Eq. (22) into Eq. (21) and integrating once we
obtain (for x < 0)

dh(x)

dx
=

√
2A

γ

√
h2

m − h2(x)

hmh(x)
(23)

and with a change of sign for x > 0. Here, hm is the maximum
of h(x) occurring at x = 0. Further integration leads to

√
h2

m − h2(x) =
√

2A

γ

x

hm

, (24)

and hence from the boundary condition

√
h2

m − h2
e =

√
2A

γ

L

2hm

. (25)

Assuming that hm 	 he we obtain the simple power-law
dependence of the droplet height on the stripe width

h2
m ≈ L

√
A

2γ
. (26)

which is independent of he and hence on the properties of the
outer wall (provided these remain partial wet). Substituting
Eq. (26) into Eq. (24) then implies that the droplet height has
a simple universal elliptical shape

h̃(x) =
√

1 − 4x̃2 , (27)

when expressed in rescaled variables x̃ = x/L and h̃(x) =
h(x)/hm.

The square root power-law dependence of hm on L is in
accord with expectations based on simple scaling theory. In the
presence of more general intermolecular forces finite scaling
suggests that for very wide stripes and away from co-existence
the droplet height scales as hm ≈ δμ−βco

H (L/ξ‖), where recall
ξ‖ ≈ δμ−νco

‖ is the complete wetting parallel correlation length.
For fixed L and δμ → 0 we require the scaling function

vanishes as H (x) ∝ xβco/νco
‖ implying hm ∝ L

2
p+2 recovering

Eq. (26) for the present case of van der Waals forces (p = 2).
For this model it is also possible to determine the equilib-

rium free-energy (per unit stripe length) of the droplet. Sub-
stituting the equilibrium profile back into Eq. (20) determines
that

F = (γ + W (hm))L +
√

8γ

∫ hm

he

dh
√

W (h) − W (hm), (28)

where we have also included the extensive contribution γL

coming from the interfacial tension. For the binding potential
(22) the integral can be evaluated quite easily giving

F = (γ + W (hm))L

−
√

8γA

[√
1 − h2

e

h2
m

+ ln

(
hm

he

−
√

h2
m

h2
e

− 1

)]
. (29)

For large L/he 	 1 this has the expansion

F = γL +
√

2Aγ ln
L

he

+ · · · , (30)

where the higher-order terms are of order unity and also
depend on he, γ , and A. The presence of the logarithmically
diverging Casimir term means it is not possible to define a
thermodynamic line tension associated with the three phase
contact line for this system. Again this term is consistent
with the anticipated finite-size scaling of the free-energy at
complete wetting. Recall that for complete wetting at an
infinite uniform planar wall, the wall-gas interfacial tension
contains a singular contribution γsing ≈ δμ2−αco

s , where stan-
dard exponent relations determine that 2 − αco

s = 1 − βco [8].
For a droplet of width L we expect that this contribution
scales as γsing ≈ δμ2−αco

s B(L/ξ‖) with B(x) a suitable scaling
function. In the limit of δμ → 0 this implies that the free-
energy per unit length (along the y-axis) of the drop should
contain a singular contribution Fsing ∝ L1−(2−αco

s )/νco
‖ which

reduces to Fsing ∝ L(2−p)/(2+p). This diverges as L → ∞ for
p < 2 which is consistent with the marginal logarithmic
divergence shown in Eq. (30) for the present case p = 2.
Similar logarithmic contributions occur in two dimensions
for systems with short-ranged forces where they arise due
to fluctuation effects. This similarity is not coincidental
since in this dimension interfacial wandering leads to an
effective entropic repulsion which also decays as an inverse
square [32,33].

IV. RESULTS

In our DFT calculations we have considered the simplest
case, setting ε1 = 0, so that the outer material is modelled
as a purely hard wall. This part of the substrate is therefore
completely dry, with local contact angle θ1 = π , at all (sub-
critical) temperatures. For the material of the stripe we set
ε2ρw = 1.2 εσ−3 which, from earlier studies [34], we know
leads to a first-order wetting transition occurring at Tw/Tc =
0.83 were it of infinite extent. Here, Tc is the bulk critical
temperature which in our model occurs at kBTc/ε = 1.41. Our
present calculations are performed at T/Tc = 0.95 far above
the wetting transition ensuring that the local contact angle of
the stripe phase θ2 = 0. This is also sufficiently below the
critical temperature that the bulk correlation length is small,
of order σ [34]. Furthermore, we fix the chemical potential to
its saturation value at this temperature, μ ≡ μsat = −3.945 ε.
For reference the coexisting bulk vapor and gas densities
are ρv = 0.1308σ−3 and ρl = 0.3872σ−3, respectively. The
Euler-Lagrange equation (19) was solved numerically on a
two-dimensional rectangular grid with mesh spacing 0.1 σ

(an order of magnitude smaller than the bulk correlation
length) using standard Picard iteration. We considered a
box of overall width Lx = 250 σ and height Lz = 30 σ and
determined the equilibrium density profiles for different stripe
widths L = 10 σ,20 σ, . . . ,200 σ . As can be seen from the
illustrative density profiles displayed in Fig. 2, a drop-like
structure forms above the stripe for L > 20 σ . For smaller
widths only a microscopic film forms above the stripe and the
mesoscopic interfacial Hamiltonian theory is not applicable.
For larger widths however it is possible to extract the shape
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FIG. 2. Equilibrium density profiles as obtained from DFT at a
temperature T = 0.95 Tc and bulk two-phase equilibrium for stripe
widths (from top to bottom): L = 20 σ , L = 40 σ , and L = 80 σ .

of an equilibrium drop h(x) from the density profile ρ(x,z) by
tracing the contour of iso-density ρ(x,h(x)) = (ρv + ρl)/2.
From this we can, in particular, extract the maximum (mid-
point) height ρ(0,hm) = (ρv + ρl)/2. In Fig. 3 we show a
log-log plot illustrating the dependence of hm on the stripe
width L. For L > 40 σ there is evidently a linear dependence
for which we find the slope 0.5079 ± 0.01 which is in excellent
agreement with the prediction of Eq. (26) of the effective
Hamiltonian theory. Interestingly, there is a sharp cross-over
in the form of hm(L) at smaller values of L which we
discuss later.

Finally, in Fig. 4 we show our numerical results for the drop
shape h(x) in suitable dimensionless rescaled units x̃ = x/L

 1

 1.5

 2

 2.5

 3

 3  3.5  4  4.5  5  5.5

ln
 (h

m
/σ

)

ln (L/σ)

DFT results
fit

FIG. 3. Dependence of the drop height hm on the stripe width L.
Symbols denote the DFT results with hm determined from the equi-
librium density profile using the criterion ρ(0,hm) = (ρv + ρl)/2).
The straight line fit to the data for L � 40 σ has slope 0.5079.

FIG. 4. DFT results for the droplet shape for different stripe
widths L in rescaled dimensionless units x̃ = x/L and h̃(x) =
h(x)/hm. The dashed red line is the prediction of the effective
Hamiltonian model.

and h̃(x) = h(x)/hm for different system sizes. While there is
not perfect data collapse there is clear indication that even for
relatively small system sizes the rescaled shape of the droplet
is close to, and converging towards, the analytic result given
by Eq. (27) (dashed red line).

V. SUMMARY

In this work we have used an accurate DFT based on a
Rosenfeld-like fundamental measure theory model to study
the formation and shape of liquid drops on a composite planar
wall decorated by a single stripe of lateral width L which
is completely wet. For both the mid-point height and droplet
shape we have found very good agreement with the predictions
of effective Hamiltonian theory. Indeed we were surprised
that the agreement is good even down to stripes which are
only 50σ across. This contrasts with the findings of DFT
studies of capillary condensation where the agreement with
the macroscopic Kelvin equation, for conditions where the
walls which are completely wet, only occurs if the slit width is
many hundreds of molecular diameters. This is indicative that
mesoscopic effective Hamiltonians are, in general, reliable
when the confining length scales are much larger than the
underlying bulk correlation length (which is molecularly small
in the present study). We were also intrigued to note that
there appears to be a sharp cross-over in the dependence of
hm on L for L < 50σ . It may well be possible to explain
this behavior by extending the simple interfacial model to
allow for a position dependent binding potential W (h; x,L).
Indeed within a sharp kink approximation, where we model the
density profile as a sharp step function between the bulk liquid
and gas, we can determine this from the external potential
using W (h; x,L) = −(ρl − ρv)

∫ ∞
h

V (x,z)dz. We can also
improve on Eq. (20) by using the full expression for the
interfacial area rather than a square gradient approximation.
However, given that the resulting equations must be solved
numerically they seem to offer little advantage over the full
microscopic DFT calculation. Another point to note is that both
approaches employed in this work were based on a mean-
field approximation which neglects the effect of interfacial
fluctuations. While these should not affect the scaling results
for the size and shape of larger drops it is possible that they
are important for smaller system sizes. Simulation studies of
this would be very welcome.
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To finish we point out that new phenomena are likely
to emerge when we consider walls decorated with multiple
wetting stripes on a dry (or partially wet) surface. Consider for
example the case of two parallel stripes of width L separated
by a distance D. When D 	 L the stripes are essentially
independent and isolated drops, similar to those described
here, form above them. As the distance D is decreased the
two droplets must eventually coalesce to form a single drop
containing a bubble of gas which spans the dry part of the
substrate between the two stripes. This would be an example
of a bridging transition akin to those studied for fluids between
spheres and cylinders [35,36]. The distance DB at which this
bridging transition occurs will be determined largely by the
logarithmic Casimir interaction shown in Eq. (30) [37] and we
anticipate DB ∝ ln L. With three stripes bridging must also
occur as we reduce the distance(s) between them but now
we also have the possibility that the coalesced drop covers
two or indeed three stripes. Similarly, it is natural to imagine
that on a periodic array of stripes similar bridging transitions

are induced by varying the inter-stripe gap. In this case such
transitions must be accompanied by symmetry breaking since
if we label the (wet) stripes i = 1,2,3,4, . . . coalesced drops
may span stripes 1 to 2, 3 to 4, etc., or (for exactly the
same free-energy) 2 to 3, 4 to 5, etc. Indeed, it is possible
that a sequence of symmetry breaking first-order transitions,
producing larger coalesced droplets, is encountered as the
distance between the stripes is reduced further. This may lead
to very complex phase behavior even before the interplay with
other surface phase transitions is allowed for. We hope that the
present study is a first step to classifying these potentially very
rich phase diagrams.
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