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Abstract—We describe a single-channel speech enhancement
algorithm that is based on modulation-domain Kalman filtering
that tracks the inter-frame time evolution of the speech log-
power spectrum in combination with the long-term average
speech log-spectrum. We use offline-trained log-power spectrum
global priors incorporated in the Kalman filter prediction and
update steps for enhancing noise suppression. In particular, we
train and utilize Gaussian mixture model priors for speech in
the log-spectral domain that are normalized with respect to
the active speech level. The Kalman filter update step uses
the log-power spectrum global priors together with the local
priors obtained from the Kalman filter prediction step. The log-
spectrum Kalman filtering algorithm, which uses the theoretical
phase factor distribution and improves the modeling of the
modulation features, is evaluated in terms of speech quality.
Different algorithm configurations, dependent on whether global
priors and/or Kalman filter noise tracking are used, are compared
in various noise types.

I. INTRODUCTION

Speech enhancement algorithms can benefit from including
a model of the temporal/inter-frame correlation of speech.
Based on [1] [2] and on [3], assuming independence between
frames is unrealistic and this assumption could be relaxed by
imposing temporal structure to the speech model. Inter-frame
speech correlation modeling can be performed with a Kalman
filter (KF) with a state of low dimension order, based on [4],
[5] and [6]. The modulation-domain KF models the short-term
time dependencies between successive frames [4] [7].

Existing KF enhancement algorithms that work in the time-
frequency domain differ in their choice of the KF state,
the KF prediction and the KF update. The KF state can be
in the speech amplitude spectral domain [4] [8], the power
spectral domain or the log-power spectral domain [9]. Speech
spectra are well modelled by Gaussian distributions in the log-
power domain (and not so well in other domains) and mean
squared errors in the log-power domain are a good measure
to use for perceptual speech quality. In addition, the log-
power domain is most suitable for infinite-support Gaussian
modeling. Regarding the KF prediction, autoregressive (AR)
modeling with or without the AR mean can be performed
based on the autocorrelation method or the covariance method
[10], allowing or not allowing unstable AR poles.

The KF update is affected by the signal model that is used
for the addition of speech and noise [11]. If noise and speech
are independent then they add in the complex short time

Fourier transform (STFT) domain [12] [13]; it may however be
analytically simpler to assume that they add either in the power
domain or the amplitude domain [4] [8]. The aforementioned
alternative possible ways are related to the phase factor, which
is the cosine of the phase difference between speech and noise
[12] [14]. We can: (a) assume speech and noise additivity
in the power spectral domain, using a phase factor equal
to zero, or (b) assume additivity in the amplitude spectral
domain, using a phase factor equal to unity. In [4] and [8],
(b) is used assuming that speech and noise are Gaussian
in the amplitude spectral domain. Regarding (b), assuming
speech and noise additivity in the amplitude domain results
in noise oversubtraction in the region of 0 dB SNR, which
may sometimes be perceptually good [15].

Modulation-domain KF algorithms should be able to distin-
guish between speech and noise. Global speech priors consti-
tute a mechanism that helps in distinguishing between speech
and noise. Amongst other technical papers, log-spectrum
global priors have been used in denoising nonnegative ma-
trix factorization (NMF) [16] and in logNMF [17]. Speech
enhancement can be performed using global priors because
a long-term average speech spectrum (LTASS) model exists
for speech [18]. By using the long-term average speech log-
spectrum, we enhance speech log-spectrum tracking. In this
paper, we advance modulation-domain Kalman filtering by
utilizing multiple parallel KF updates that use log-spectrum
Gaussian Mixture Model (GMM) priors. In [9], we presented
a KF-based enhancer that used the log-power spectrum as the
KF state and speech-noise additivity in the complex STFT
domain as the signal model. In this paper, we extend the KF-
based enhancer in [9] to include a GMM speech prior.

II. THE SPEECH ENHANCEMENT ALGORITHM

The flowchart of the algorithm is shown in Fig. 1. The first
step is to perform the STFT and then to estimate the active
speech level (ASL) [19] [20] and perform ASL normalization.
The advantage of ASL normalization is that it permits the
use of offline-trained GMM priors that model the distribution
of the speech log-spectrum. With the ASL, we have speech
models that do not depend on the speech power. The next
step is to do Kalman filtering in the log-spectral domain.

In Fig. 1, the blocks in the dotted rectangle constitute
the KF. The KF state is the speech log-spectrum and is of



dimension <p. The KF observation is the noisy speech log-
power spectrum y. The algorithm’s final step is to keep the first
element of the KF state, which is the estimated clean speech
in the ASL-normalized log-power spectral domain, transform
it to the amplitude domain, denormalize it using the ASL
estimate and then reconstuct the clean speech signal using the
inverse STFT (ISTFT) and the noisy STFT phase.

A. Notation and the speech-noise signal model

We assume that in the complex STFT domain, the noisy
speech is given by ȳde

jθ = s̄de
jφ + n̄de

jψ. The amplitudes
of the noisy speech, speech and noise are respectively ȳd,
s̄d and n̄d. The subscript “d” denotes that the term is not
ASL-normalized. The noisy speech phase is θ, the speech
phase is φ and the noise phase is ψ. The ASL-normalized
spectral amplitudes of the noisy speech, speech and noise are
respectively ȳ, s̄ and n̄. Using ε as the ASL estimate, we have:
ȳ = ε−0.5 ȳd, s̄ = ε−0.5 s̄d and n̄ = ε−0.5 n̄d. The log-powers
of the noisy speech, clean speech and noise are respectively
denoted by y = 2 log ȳ, s = 2 log s̄ and n = 2 log n̄. Within
the KF algorithm, we only include the frame index, t, as a
subscript in equations involving multiple time frames.

B. The speech KF state and the speech KF prediction

We model the speech time correlation in the speech log-
spectrum using the KF prediction step. The speech KF state
is the ASL-normalized speech log-power spectrum. Figure 2
shows the speech KF state before and after the KF prediction
and update. We utilize the linear KF prediction equations:

xt = (st st−1 ... st−p+1)T (1)

At =

(
−aTt
I 0

)
,Qt =

(
q0 0
0 0

)
xt+1 = Atxt + wt, xt ∈ <p, At,Qt ∈ <p×p, wt ∈ <p

In (1), xt is the speech KF state, which contains the current
and the past (p − 1) speech spectral log-powers. In (1), the
KF transition matrix is At, the KF transition noise covariance
matrix is Qt and the KF transition noise is wt. The KF
transition noise wt is Gaussian, zero-mean and has Qt as
its covariance matrix. The KF transition matrix At is from
AR modeling; AR(p) modeling defines the dimensions of the
matrices in the KF prediction. The speech AR parameters are
at ∈ <p and q0 is the AR modeling error variance.

We use a time-varying KF: the transition matrix At and
the transition noise covariance matrix Qt depend on AR
modeling using the covariance method [10] on the pre-cleaned
modulation frame, estimating both the AR coefficients and the
AR mean of clean speech. The AR mean is the average clean
speech log-power that is estimated as an AR parameter.

In (1), we define how the speech KF state xt changes in
the KF prediction. The speech KF state consists of a speech
KF state mean and a speech KF state covariance matrix.
Considering the linear KF prediction equations and using (1),
both the speech KF state mean and the speech KF state
covariance matrix are updated in the KF prediction step. In
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Figure 1. The flowchart diagram of the algorithm. The term z−1 refers to
one-frame delay. The blocks in the dotted rectangle constitute the KF.
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Figure 2. The speech KF is shown. We focus on the speech KF state. We
expand to h weighted Gaussians based on our Gaussian splitting algorithm
using offline-trained log-spectrum global priors, as described in Sec. II.C.

Fig. 2, the speech KF state mean is denoted by µµµt and the
speech KF state covariance matrix is denoted by Pt.

C. The log-spectrum global speech priors

Based on Figs. 1-2, we perform multiple speech-noise KF
updates due to using a GMM of h mixtures as global speech
priors. We use global priors together with the KF-based local
priors. We use a Gaussian splitting algorithm that is based
on ASL-normalized offline-trained priors. We multiply the
current element of the decorrelated KF state with the global
priors. Decorrelation and correlation of the KF state are used
to preserve the KF prediction inter-frame modeling. We first
decompose the speech KF state covariance matrix P as:

P =

(
g0 gT
g G

)
(2)

where g0 is the variance of the current element of the speech
KF state. We define the linear transformation matrix B by [5]:

B =

(
1 0T

−g−10 g I

)
(3)

The next step is to compute the linearly transformed speech
KF state Bxt with mean Bµµµ and with covariance matrix [5]:

B P BT =

(
g0 0T

0 G− g−10 ggT

)
(4)

In (4), g0 is preserved. After the multiple parallel KF
updates, we correlate the KF state by using B−1 and the



inverse of the linear transformation in (4). We use speech
GMM priors that are multiplied with the current element of
the decorrelated speech KF state after the KF prediction. The
decorrelated speech KF state is Bxt so that the current speech
log-power st is uncorrelated with (st−1 ... st−p+1)T .

In Fig. 2, we compute the posterior weights w+
i,t for

i ∈ [1, h] after each of the multiple KF updates. Finding w+
i,t

involves the use of the GMM KF update [21], which in turn
involves the use of the nonlinear KF observation model.

D. The phase-factor-sensitive modified KF update

The KF update estimates the posterior of the speech and
noise log-powers given the noisy log-power. The KF update
is described in more detail in [9]. The KF update considers
the Gaussian speech and noise priors from the KF prediction,
the distribution of the STFT phase difference between speech
and noise using the phase factor α = cos(φ− ψ) [12] [13]:

ey = es + en + 2e0.5(s+n)α (5)

From (5): α = 0.5 exp (y − 0.5(s+ n)) − cosh (0.5u). We
use u = n− s and y = 0.5(s+n) + log (2(α+ cosh(0.5u))).

We do the variable transformation (s, n, α)⇒ (u, y, α). The
Jacobian determinant is ∆ = 1. Now, the posterior is:

p(u, α | y) =
p(u, α, y)

p(y)

∣∣∣∣
y

∝ p(u, α, y)|y (6)

∝
(
p(s, n) p(α) |∆|−1

)∣∣∣
y
∝ p(α)

×N

((
y − log (2(α+ cosh(0.5u)))− 0.5u
y − log (2(α+ cosh(0.5u))) + 0.5u

)
; m, S

)
where p(α) =

(
π
√

1− α2
)−1

for −1 < α < 1 and zero
otherwise. Here, we assume that ψ is uniform ψ ∼ U(−π, π)
and thus (φ − ψ) ∼ U(−π, π) [14]. In (6), for p(s, n), we
use a Gaussian with mean m and covariance matrix S. As in
[9], we find the moments of the posterior (s, n) using (7) for
0 ≤ a+ b ≤ 2. We use s = s(u, y, α) and n = n(u, y, α).

E{sanb | y} =

∫ 1

α=−1

∫ ∞
u=−∞

sanb p(u, α | y) du dα

=
1

|∆| p(y)

∫ 1

α=−1
p(α)

∫ ∞
u=−∞

sanb p(s, n) du dα (7)

In (7), the integration over u is performed with truncated
Gaussians and straight line segments, obtaining a closed-form
solution. The integration over α is done using R sigma points,
as in [9], utilizing the Unscented transform [22] [23]. In (7),
E{αz} is needed for the integration over α with sigma points:
E{αz} = 2−zz! ((0.5z)!)

−2 for even z and zero otherwise.

III. NOISE TRACKING AND THE SPEECH-NOISE KF

We now present the noise KF state, the noise KF prediction
[24] and the speech-noise KF prediction. With noise tracking,
the (s, n) priors are correlated and the KF state ∈ <p+q is the
speech KF state ∈ <p and the noise KF state ∈ <q .

We do noise tracking based on AR(q) modeling and on the
estimated SNR in the modulation frame [6] [9]. After the noise
KF prediction, we decorrelate the noise KF state and, then,
we multiply the noise log-power Gaussian with the Gaussian
that is obtained from external noise estimation and log-normal
noise power modeling [25] [26]. As in (1) that describes the
speech KF prediction, for the noise, (n), KF prediction:

x(n)
t = (nt nt−1 ... nt−q+1)T ∈ <q (8)

A(n)
t =

(
−a(n)T

t

I 0

)
∈ <q×q, Q(n)

t =

(
q(n)
0 0

0 0

)
∈ <q×q

x(n)
t+1 = A(n)

t x(n)
t + w(n)

t , w(n)
t ∈ <q

The joint, (j), speech-noise KF state zt is defined in (9). We
use full covariance matrices due to the KF update in Sec. II.D.

zt =
(

xTt x(n)T
t

)T
∈ <p+q, A(j)

t =

(
At 0
0 A(n)

t

)
(9)

Q(j)
t =

(
Qt 0
0 Q(n)

t

)
, A(j)

t ,Q
(j)
t ∈ <(p+q)×(p+q)

zt+1 = A(j)
t zt + w(j)

t , w(j)
t ∈ <p+q

IV. IMPLEMENTATION, RESULTS AND EVALUATION

We use acoustic frames of length 32 ms, modulation frames
of length 32 ms or 64 ms and a 4 ms acoustic and modulation
frame increment. We use the TIMIT database [27] sampled at
16 kHz. For the training of the global speech priors, we use
250 sentences and for testing, we use 40 sentences. We use
noise types from the noise database in [28] at SNR levels from
−20 dB to 30 dB. Random segments of noise from the noise
signals are used [29]. The external noise estimation is based
on [30] [29]. For pre-cleaning in Fig. 1, we use the traditional
log-MMSE approach [31] [29]. In Secs. II.B and III, we use
p = 2 and q = 2. In Secs. II.C-D, h = 4 and R = 3.

For evaluation purposes, we compare the results with and
without global speech priors, and with and without noise
KF tracking. We consider alternative configurations of the
algorithm in Figs. 1-2. Table I shows the Bark Spectral
Distortion (BSD) [32] for babble noise at 15 dB SNR. We
compute the BSD using no voice activity detection. In Table
I, the BSD of the noisy speech signal is 2.64× 10−2 dB.

Table I
BSD (×10−2 DB) FOR BABBLE NOISE AT 15 DB SNR.

ST SMST NTST GPST SMGPST
0.98 0.95 0.92 0.93 0.92

NTGPST EEST NTEEST SMEEST NTSMEEST
0.90 0.91 0.90 0.90 0.88
ST = Speech tracking: the KF tracks the clean speech log-spectrum.
SM = Smaller modulation frame: 32 ms instead of 64 ms.
NT = Noise tracking: the KF tracks the noise log-spectrum.
GP = Global priors: we use Fig. 2 and log-spectrum speech priors.
EE = Early expanding using the log-spectrum speech priors before the
KF prediction. EE assumes GP and EE changes Fig. 2.
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Based on Table I, the ST algorithm that does not perform
KF noise tracking has a higher BSD than the global priors ST
(GPST). This means that the offline-trained priors aid speech
tracking; using global speech priors reduces the BSD.

In Table I, we consider early expanding (EE). Figure 2 does
late expanding since the global speech priors are used after the
KF prediction. On the contrary, with EE, the global priors are
used before the KF prediction: the Gaussian-GMM multiplica-
tion is performed before the KF prediction. Comparing GPST
with EEST in Table I, we note that EE reduces the BSD.

In Table I, using smaller modulation frames (SM) reduces
the BSD. The tradeoff is between noisier AR modeling and a
modulation frame that is more concentrated in time.

We now use noise tracking and global priors (NTGP). In
Table I, we observe a decreasing error from ST to GPST and
to NTGPST. With the global priors, as presented in Fig. 2, the
BSD error is 0.90× 10−2 dB at 15 dB SNR babble noise.

We now examine babble noise at 5 dB SNR. Like Table I,
Table II shows the BSD. The same algorithm notation as in
Table I is used. We see a decreasing error from ST to GPST
and to NTGPST. The noisy speech BSD is 1.83× 10−1 dB.

Table II
BSD (×10−1 DB) FOR BABBLE NOISE AT 5 DB SNR.

ST SMST NTST GPST SMGPST
0.67 0.65 0.62 0.64 0.61

NTGPST EEST NTEEST SMEEST NTSMEEST
0.59 0.62 0.60 0.58 0.58

Figures 3-4 show the Cepstrum Distance (CD) as a speech
quality metric [33]. The cepstrum is directly related to the
minimization of the log-power error that we want to achieve
with log-spectrum Kalman filtering. Figures 3-4 depict the
negative CD improvement −∆CD of the algorithms for babble
and white noises. The −∆CD are positive at high SNRs.
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Figure 7. ∆PESQ for babble noise.
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Figure 9. Plot of the ∆PESQ scores
for aircraft f16 noise.
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Figure 10. Plot of the ∆PESQ for
non-stationary factory noise.

Tables I-II examine the alternative configurations of the
proposed algorithm for specific SNRs. On the contrary, Figs.
3-4 compare the alternative configurations of the proposed
algorithm with traditional speech ehnhancement techniques in
the SNR range of −20 dB to 30 dB. For comparison purposes,
we denote the traditional MMSE approach [34] as TMMSE
and the traditional log-MMSE approach [31] as TLMMSE.

We use the speech distortion SIG, noise distortion BAK and
overall quality OVRL metrics from [35] [15], which are in a
scale of 1 to 5 where 5 indicates excellent speech quality.
Figures 5-6 illustrate the ∆SIG and ∆OVRL for babble noise
at 15 dB and 5 dB SNR. Considering a specific case, in 15
dB babble noise, ST has the ∆OVRL score of 0.53.

In Figs. 7-10, we use the PESQ speech quality metric for
babble, white, aircraft f16 and factory noises. In Figs. 7-10, the
presented KF-based algorithms are better than the TLMMSE
and TMMSE. We observe that in the SNR range of 0 dB to
30 dB, the presented KF algorithms outperform the traditional
noise suppression techniques. We also observe that the best
performance of the presented algorithm is when both noise
KF tracking and global speech priors are used. As in Figs.
7-10, the ST algorithm is also evaluated in [9] with PESQ.

V. CONCLUSION

In this paper, we present a single-channel speech enhance-
ment algorithm that is based on modulation-domain Kalman
filtering that tracks the time evolution of the speech log-power
spectrum in every frequency using the long-term average
speech log-spectrum. The noise suppression algorithm applies
a KF that uses offline-trained log-spectrum priors that are
normalized with respect to the active speech level. Denoising
is performed with active speech level normalized log-spectrum
global priors, by training and utilizing Gaussian mixture
models. The KF update uses the phase factor between speech
and noise. The KF algorithm is evaluated in terms of speech
quality and different algorithm configurations are compared.
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