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Controlling the behaviour of cells by rationally guiding
molecular processes is an overarching aim of much of synthetic
biology. Molecular processes, however, are notoriously noisy
and frequently nonlinear. We present an approach to
studying the impact of control measures on motifs of
molecular interactions that addresses the problems faced in
many biological systems: stochasticity, parameter uncertainty
and nonlinearity. We show that our reachability analysis
formalism can describe the potential behaviour of biological
(naturally evolved as well as engineered) systems, and
provides a set of bounds on their dynamics at the level
of population statistics: for example, we can obtain the
possible ranges of means and variances of mRNA and protein
expression levels, even in the presence of uncertainty about
model parameters.

1. Introduction
Much of the research in synthetic and systems biology in
the last decade has focused on the study of elementary
biological systems. This has often been with the aim of
controlling and modifying them in order to achieve new
functional modules exhibiting novel and useful behaviour [1],
such as sustained oscillations [2] and bistability [3]. It is now
becoming possible to use engineered biological systems made
of characterized components to solve specific problems, such
as information processing, energy production or production
of chemicals.

However, biological systems are inherently noisy and
probabilistic in nature, which can pose significant difficulty for
one aiming for a reliable, well-characterized module. Although
several external control techniques have been developed which
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are able to avoid some of the variability in a population [4,5], noise at the level of molecular processes
is often unavoidable and does, for example, affect quite profoundly how information is transmitted
along the molecular networks underlying cell function [6–8]. Furthermore, due to the unreliability of
measured quantities, our understanding of the underlying mechanisms might be mistaken leading to
sub-optimal analysis and design. Therefore, we have to assess the practical limits on the amount of noise
in a general biological module, in order to evaluate the efficiency of a control design or the reliability of
a mechanistic model.

Reachability analysis has been widely used in control design and engineering for applications such as
verification of electrical or mechanical networks and hybrid automata [9–13]. The analysis focuses on the
computation of the subset of the state-space that can be reached within a certain time-limit, given some
starting position of the system and external inputs. The technique can also be used to verify that a certain
undesired state is not reached under realistic operating condition, or that the behaviour of the system is
robust and qualitatively/quantitatively holds for different conditions, including different realistic inputs
to the system.

To this end, reachability is generally calculated under varying levels of uncertainty regarding details
of the system—such as initial state, input signal and rate parameters—usually formalized by assuming
that these parameters come from a set of plausible values. Therefore, unless analytical solutions are
derived for some abstraction of the system, the applicability of the computation heavily relies on the
choice of the set representation [11,14,15]. Some representations might prove computationally expensive
and hence impractical for high-dimensional systems, while a simple shape representation can lead to
crude over-approximation of the reachable set. Methods have been proposed using several techniques
such as polygonal projections [16], oriented hyper-rectangles, special polyhedra [17], ellipsoids [15] or
level sets [11]. In this work, we use zonotopes [9], a centrally symmetric type of polytopes that can be
conveniently represented by a list of vectors.

Although there is already a substantial body of work on reachable set computation for problems
in engineering, including highly nonlinear cases [18], hybrid automata [19] and differential-algebraic
equations [20], the complexity, frequent nonlinear behaviour and strict constraints on many of the model
parameters of biochemical systems require the development of specialized analysis methods. There
are already a few applications of reachability techniques to biological examples with special emphasis
on the treatment of the nonlinearity of the system, either through direct computation [21] or through
hybridization-based methods using either static or dynamic partitioning of the state-space [22–24].
The work by Dang et al. [24] has also been expanded to take into account the possible lack of
knowledge of parameter values [25]. The stochasticity in biological systems has been tackled in even
more diverse ways: through computing bounds on the probability function [26], using stochastic hybrid
systems [27], or analytically deriving invariant sets for linear equations obtained from the stochastic
model [28].

In this work, we propose a computationally efficient and flexible method to compute the reachable
set (in a zonotopic representation) of stochastic biochemical systems; besides stochasticity we also
consider possibly nonlinear rate laws; controlled or uncertain input signals; and uncertainty about model
parameters, including those which we may need to control. The main steps behind our derivation are
the following: (i) we first obtain an ordinary differential equation (ODE) representation of the system’s
mean and (co-)variances; (ii) then use an iterative procedure to obtain a conservative approximation
of consecutive reachable sets up to a final time of interest. Here, we primarily use the linear noise
approximation (LNA) for the first step, but also consider the moment expansion approximation [29–31]
to demonstrate that other methods with different applicability can be used equally well in order
to generate equations for the second step. We derive a new method to tightly approximate realistic
biological input signals, and piece-wise temporal linearization is employed to deal with common
nonlinearities. We also give conservative approximation formulae for the reachable set when rate
parameters of the system are not precisely known—which is very often the case in biochemical
systems [32].

The method is first demonstrated on two elementary modules fundamental to mathematical
models and regulatory designs of biochemical networks. The first system presents the use of
reachability analysis for the study of noisy biochemical reactions and evaluating a control on the
levels of cell heterogeneity; the second example considers the task of model (in)validation for
cases when high cell-to-cell variability poses a challenge to estimating the system’s true behaviour.
Finally, we explore the limitations of our method and how it can be used as a quick indicator of
‘challenging’ dynamics.
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2. Material and methods
2.1. Zonotopes
A zonotope [33] is described by the position of its centre (c) and a set of generator vectors (g1, . . . , gp) as

Z :=
{

x ∈R
n | x= c+

p∑
i=1

aigi, −1≤ ai ≤ 1

}
. (2.1)

Two example zonotopes are shown in the electronic supplementary material, figure S1(a). In the
following, we use the shortened notation (c; G) to represent Z , where G ∈R

n×p is a generator matrix
formed from the generator column vectors. Zonotopes are a convenient representation as they are
closed under Minkowski-addition and affine transformations, the two key operations in reachability
analysis [9]. Furthermore, the above can be calculated through simple matrix-vector operations: given
zonotopes Z = (c; G) and W = (d; H), (H ∈R

n×q) and the affine transformation T(x)=Ax+ b,

Z ⊕W = {x+ y | x ∈Z , y ∈W} = (c+ d; [G, H]) (2.2a)

and

T(Z)= {Ax+ b | x ∈Z} = (Ac+ b; AG), (2.2b)

where [G, H] is the concatenation of the ‘vector lists’.

2.2. Linear noise approximation
Given a stochastic system with N-dimensional state variable χ (t) describing the abundance of modelled
species at time t. We assume that the system is defined by (i) a stoichiometry matrix, S, in which each
element (Sij) describes the amount of i molecules gained through reaction j; and (ii) a collection of reaction
propensities, F= [a1, a2, . . . , ar]T that quantifies the probability of each reaction happening, similarly to
reaction speeds in classical deterministic systems. A detailed illustration of the stochastic formalism is
given in the first example in §4.

In the LNA [34], we divide the state variable into a macroscopic part, and random fluctuations, as
χ (t)= φ(t)+ ξ (t). This way the original system, which is typically described by the time-evolution of the
entire probability distribution [35], is converted into an ordinary and a stochastic differential equation
(in the Ito form),

dφ(t)
dt
= S · F(φ(t))

and
dξ (t)

dt
= S ·D(φ(t))ξ (t)+

r∑
j=1

S:,jWj(aj(φ(t))),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.3)

where Wj(aj(φ(t))) are independent Wiener processes (∀j) with normally distributed increments,
N (0, aj(φ(t))); and {D(φ)}ik = ∂aj(φ)/∂φk, hence D= ∂F/∂φ is the Jacobian of the system.

In the applications we aim to investigate, instead of trajectories of individual realization (i.e. single
cells), we are interested in the population-level behaviour. Therefore, equation (2.3) is used to obtain
equations that describe how the mean and variance of the probability distribution of values of χ (t)
changes. The decomposition of the state variable makes it straightforward to follow the change in the
mean of the system, as the macroscopic part corresponds to the mean behaviour and hence the evolution
it is already given by equation (2.3). The evolution of the covariance matrix (Σ ∈R

N×N) is calculated as

dΣ
dt
= SDΣ +Σ(SD)T + S · diag{F(φ)} · ST, (2.4)

where diag{F} represents the r× r matrix, whose diagonal elements are those of F (i.e. diag{F}ii = Fi) and
all other elements are zero.

Thus a set of ordinary differential equations can be derived that follows the time-dependent change of
the mean values and (co)variances of all species, summarized in the x(t) ∈R

n vector with n=N(N + 3)/2
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elements. We obtain x(t) by concatenating φ(t) and the vectorized form of the upper triangle of Σ(t)
denoted as (Σ(t))v,

dx
dt
= d

dt

[
φ(t)

(Σ(t))v

]
=
[

S · F(φ(t))
(SDΣ(t))v + (Σ(t)(SD)T)v + (S diag{F(φ(t))}ST)v

]
= f (x(t)),

where the upper triangle vectorization operator stands for row-continuous listing of all elements in and
above the diagonal: for example (Σ(t))v = [Σ11,Σ12, . . . ,Σ1N ,Σ22, . . . ,Σ2N ,Σ33, . . . ,ΣNN]. We give an
N= 2 dimensional example of this computation in the first example of §4.

2.3. Moment expansion approximation
The LNA is based on the assumption that the system noise is well described by a normal distribution, and
molecules are present in at least moderately high amounts. In many cases, it offers a good approximation
even when these conditions are not met. However, to handle more problematic cases, we also use
moment expansion approximation [29,30], a less constrained moment generating method, to obtain
ordinary differential equations.

In brief, given the aforementioned stochastic system formed by χ (t), S and F, one can use the moment
generating function of the species’ probability distribution to obtain expressions of the time-evolution
of kth order moments. This can be derived and evaluated to any arbitrary value of k. However, for
nonlinear systems every moment equation would depend on moments of subsequent orders, leading
to an infinite set of equations. Therefore, we also need to apply moment closure formulae (mck) to
substitute the highest order terms (E(χk)) with expressions of means (φ(t)) and (co)variances (Σ(t)):
E(χk)←−mck(φ(t),Σ(t)).

E(χk)←−mck(φ(t),Σ(t)).

A major difference between applying the LNA or moment expansion techniques is that the latter can be
applied to any arbitrary order or moments, such as skewness, kurtosis, etc. However, for reachability
analysis our primary interest is in the mean and variance of molecules of the system, and moment
expansion can be used in three ways to derive these. We can (i) set the expansion to be only up to
second-order moments; (ii) use the step in the above equation to substitute all higher-order moments,
not just the highest order ones; or (iii) use the whole system of k moments as our state vector, to make
sure no essential influence on means and variances is omitted.

There has been considerable discussion of moment equations and their applicability to the analysis of
stochastic systems, see e.g. [36–38]. We, therefore, refer to [29,30] for the applicability and limitations
of this particular method and mathematical details of the derivation. Furthermore, we suggest the use of
the Python-based implementation, MEANS [31], for automatic computation of the step converting the
stochastic system into a deterministic ODE. The package provides a user-friendly framework that only
requires the stochastic description to output the desired equation set, and offers both the linear noise and
the moment expansion approximation for equation generation.

2.4. State-space representation
Next we consider the representation of the deterministic system obtained via either of the
aforementioned approximation techniques. The general system is described by the evolution of the
n-dimensional state variable, x(t) as in [39]

ẋ(t)= f (x(t), u(t)); x(0)= x0, (2.5)

where u(t) ∈R
m is an input signal, and f (x, u) is a generally nonlinear but time-independent transition

function. We focus on the case where the input-dependence in the above equation can be separated as

f (x, u)= g(x)+ Bu,

where B ∈R
n×m is the input matrix, which specifies which states are affected by the inputs. In terms of the

original stochastic system, u can be understood, for example, as a zeroth-order (constitutive production)
reaction, as we will discuss through the first example in §4.

We further assume that instead of x0, a set containing all possible initial values in the state-space, I, is
given—for example, because we observe a range of expression values in a population of cells. Similarly,
the input signal may also come from a set, U , which is bound by some value μ ∈R so that ‖u(t)‖ ≤μ ∀t.
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Then equation (2.5) is presented as a differential inclusion [40] of the form

ẋ(t) ∈ g(x(t))⊕ BU ; x(0) ∈ I. (2.6)

The reachable set of this system at any time t is defined as

Rt := {y ∈R
n | ∃(x, u); x(0) ∈ I, u(s) ∈ U , x(s) follows (2.6) ∀s≤ t, y= x(t)}, (2.7)

i.e. all the states we can achieve by having the above described system start from a possible initial state
and affected by plausible input signals. Similarly, we can define R[0,t] as all the states reachable within
the time-interval [0, t], by computing all individual reach sets: R[0,t] =

⋃
s∈[0,t] Rs.

3. Reachable set computation
We start our derivation by considering the case when f is a linear function of x; under such condition the
system can be represented in the linear time-invariant (LTI) form,

ẋ(t)=Ax(t)+ Bu(t); x(0)= x0, (3.1)

where A ∈R
n×n is the state (transition) matrix. We focus on single-input systems, where B is an n× 1

matrix (i.e. a column vector); however, all results can be easily generalized to other values of input
dimension, m. The solution of this system is generally given as

x(t)= eAtx0 +
∫ t

0
eAsBu(t− s) ds, (3.2)

which can be further simplified through assuming a constant input signal and an invertible transition
matrix ∫ t

0
eAs ds · Bu=A−1(eAt − I)Bu, (3.3)

where I is the n× n identity matrix. In the following for convenience, we use the notation

ψ(A, t)=A−1(eAt − I).

We consider an equidistant partitioning of the time horizon into N intervals, with time-step τ = T/N.
We start the derivation of reachable sets from I to RT by handling the case of the autonomous system,
i.e. when u≡ 0.

Given a reachable set at an arbitrary time-point, Rt = (c; G), the new set reached under zero input can
be calculated according to equation (3.2), as

Rt+τ = eAτRt, (3.4)

since the second term becomes zero for autonomous systems. This operation is in fact an affine
transformation x→Mx (with M= eAτ ) and hence the resulting set will also be a zonotope, as given
by equation (2.2b),

Rt+τ = (eAτ c; eAτG).

As the same equation applies for all values of t, the transition matrix can be applied iteratively to
propagate I up to the final reach set, RT. If the aim is to map the entire space the system explores
between times 0 and T, the reachable sets of the time-intervals, R[iτ ,(i+1)τ ] has to be derived from the
two end-points. Generally, this can be done by computing the convex hull of Riτ and R(i+1)τ and then
extending this set to contain all affine solutions for one time-step (see [14]; electronic supplementary
material, figure S1(b) for an illustration). However, zonotopes are not closed under this operation and it is
desirable to avoid the exact computation of a convex hull. We use the conservative (over-)approximation
presented in [9] to derive a set enclosing all points reachable between 0 and τ . All following intervals can
be propagated from this set, as for all t ∈ [0, τ ], Rt ∈R[0,τ ] and hence eAτRt ∈ eAτR[0,τ ].

The above computation is easily extended to account for a constant input signal, u. According to
equations (3.3) and (3.4), Rt+τ is given by

Rt+τ = eAτRt + A−1(eAτ − I)Bu,

which is conveniently also a zonotope, as A−1(eAτ − I)Bu=ψ(A, τ ) is a constant vector. However, in
systems with uncertainty (so, for example, where the input signal is unknown) we need to transform
and enlarge, or bloat, the set Riτ in each iteration, to account for the system dynamics under all
admissible input/parameter values. This corresponds to taking all combinations of an unknown initial
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value (contained in I) and unknown parameter (input signal or reaction rate value) and obtaining every
state the system can thus possibly reach. This is generally done by taking the Minkowski sum of the
reachable set propagated from I, Rt+τ ; and the ‘bloating’ sets, βμ and βδ , accounting for the uncertainty
introduced in one time-step by the input or rate parameter set, respectively. In the following sections,
we derive these bloating sets in a zonotope formalism for convex, one-dimensional sets of input and
parameter values. In addition, see electronic supplementary material, figure S2 for demonstration of the
computational steps.

To summarize, using the short form Ri to denote either Riτ or R[(i−1)τ ,iτ ] given in a zonotope form,
the next reachable set is calculated as

Ri+1 = (eAτ ci; eAτGi)⊕ βμ ⊕ βδ . (3.5)

As zonotopes can be stored as a set of column vectors summarized in a matrix, all the above
computational steps are typically executed very efficiently, especially in languages dedicated for matrix-
vector operations. Additionally, functions of the transition matrix and the constant time-step—such as
eAτ—have to be calculated only once through the initialization of the algorithm, providing a further gain
in computational speed.

3.1. Input for biological systems
In the algorithm proposed by Girard [9] the input set, U is taken to be an n-dimensional hypercube
enclosing all points between [−μ,μ] in all dimensions: equivalent to the radiusμ ball in the infinity norm.
Such a generalized approximation of the input set is sometimes necessary, as the analysis is motivated
by determining either a target or an avoidable set in the state-space, and the input set is meant to capture
all variations induced by noise in a physical system.

In the case of biological inputs, however, we usually have more detailed information about U ,
meaning that the aforementioned general input set would contain many implausible signals, and hence
the over-approximation would be too loose to provide useful information on the actual reachable sets.
For example, in the typical case the control input is implemented as a certain type of molecular species
added to the system; this cannot take negative values and it is also reasonable to assume an upper limit on
the number of molecules injected at any time-point, which can be viewed as the bound μ. Furthermore,
the input matrix, B, determines how much each variable is affected by the input signal and hence cannot
be neglected.

As U is typically not centred around 0, we divide the input effect into a drift term, corresponding to the
effect of the centre of U (uc) and an uncertainty term representing our lack of knowledge about the exact
input value, i.e. the maximal difference, ud, between the centre and possible values of U . Thus, the whole
input set is taken into account as U = [uc − ud; uc + ud]; for instance, in the example above, uc =μ/2 and
ud =μ/2. The drift and uncertainty terms are calculated using equation (3.3), and the bloating set will be
the zonotope

βμ = (ψ(A, τ )Buc;ψ(A, τ )Bud). (3.6)

This calculation in this exact form is only possible if A is invertible—in the singular case we can use an
approximation of equation (3.3), based on the integral of the Taylor-series of eAs and compute a bloating
factor βν to correct for the small error thus introduced [20]:

ψ(A, t)=
ν∑

i=0

Aiti+1

(i+ 1)!
⊕
⎛
⎝0; e|A|t −

ν∑
i=0

|A|iti

i!

⎞
⎠

︸ ︷︷ ︸
βν

3.2. Parameter uncertainty
Often we have to make predictions but only have approximate values of the parameters contributing
to matrix A, either due to imperfect knowledge of reaction rates [41], or because we can only control a
reaction through some interaction that is not or cannot be modelled explicitly. Therefore, we derive a
way to account for uncertainty in case the matrix A is also drawn from a set or ensemble of matrices.
For example, we can consider the case where a single reaction rate, k, possibly affecting more than one
element of A, is not known precisely or controlled. We assume that k has some plausible upper and
lower bounds and hence it can be considered as coming from an interval centred at the nominal value k̂,
i.e. k ∈ [k̂− δ, k̂+ δ]. We approach the problem by following the nominal dynamics using the previously
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defined matrix, A, and defining a bloating term to enclose all solutions arising from admissible parameter
values, so that

Ri+1(A(k))⊆Ri+1(A(k̂))⊕ βδ ,
where A(k) denotes the matrix formed using the parameter value k. For positive x, we can bound A(k)x
with A(k̂)x+Dx, where D is the n× n matrix computed as |A(k̂+ δ)− A(k̂)|. To make Dx independent
of the state variable—and thus derive a general formula—we use a conservative estimation of x: Dx≤
D|x|max, where |x|max can be approximated generally for the whole algorithm, or, more practically, in each
time-step based on the states in the current reachable set. We derive |x|max from the zonotope definition
in equation (2.1): given a reachable set in the form (c, G), the ith coordinate of the maximal vector is
computed by the formula

{|x|max}i = {c}i +
p∑

k=1

|{gk}i|. (3.7)

Note that |x|max might not be in the reachable set, but there is at least one point for each coordinate
for which {x}i = {|x|max}i holds (see electronic supplementary material, figure S2(b)). |x|max is derived
as |c| +∑ |G| with all summations carried out by rows. We also take into account a rough estimate of
the next reachable set, so that in non-converging cases |x|max is not underestimated: |x|max =max{|c| +∑ |G|, eAτ (|c| +∑ |G|)}.

For each coordinate of vector D|x|max the difference between dynamics under any k and the centre, k̂,
can be enclosed in the zero-centred set,

∀di = {A(k)x}i − {A(k̂)x}i; di ∈ (0; {D|x|max}i), (3.8)

from which a zonotope considering all coordinates can be obtained as (0; diag{D|x|max}). From here,
we proceed considering this zonotope as an input set centred at 0—in agreement with the fact that
trajectories of the nominal value, k̂, are already calculated through the transition matrix. Therefore, the
bloating set accounting for parameter uncertainty, βδ , can be computed as

βδ = (0;ψ(A, τ )diag{D|x|max}). (3.9)

3.3. Nonlinear systems
Biological systems are often nonlinear, as even the simplest dimer-formation requires second-order
rate laws that cannot be eliminated from the system. Nonlinear systems can lead to complex and
unpredictable behaviour and their analysis can be difficult. The most popular way to overcome this
is by performing a (piece-wise) linearization of the system. Here, we adopt this strategy, and at each
step we linearize the system around its current centre using a first-order Taylor expansion, as described
in [42]. This results in a system which is piece-wise linear, and has LTI properties in any interval, but
which is overall time-varying; of course, this is only an approximation of the real underlying dynamics.
The linearized system calculated at time iτ is

ẋ(t)= ∂f
∂x

∣∣∣∣
x=ci

(x(t)− ci)+ f (ci)=Aix(t)− Aici + f (ci). (3.10)

This system can be used to obtain the next reachable set together with a bloating factor that accounts for
the difference between the original and the linearized dynamics

Ri+1 = (ci + ψ(Ai, τ )f (ci); eAiτGi)⊕ βε , (3.11)

where βε can be computed iteratively as proposed in [42]. Here, we use the zonotopic set representation
to obtain a tight estimate of the effect of nonlinearity.

Consider the error function ε(x)= |f (x)− [Ai(x− ci)+ f (ci)]|—using a substitution of x by (ci + dx),
we obtain ε as a function of dx, the distance between a point and the centre. We define an upper
bound for dx, as in equation (3.7): {|dx|max}i =

∑p
k=1 |{gk}i|, and approximate ε(x) with a function

monotonously increasing with dx. Hence, we obtain an estimation for which ε(x)≤ ε̂(|dx|max) and
construct a generator set

Gl = diag{ε̂(|dx|max)}, (3.12)

which represents a bound on the nonlinearity of the system.
To obtain the reach set of the time-interval [iτ , (i+ 1)τ ] further approximations have to be applied to

enclose all trajectories between the two time-points. As the piece-wise linear system is time-varying, the
estimation of the time-interval [0, τ ] is not sufficient. Instead, as mentioned before (see also in electronic
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supplementary material, figure S1(b)), the convex hull of two delimiting reach sets is calculated and
bloated, the bloating factor for which can be derived in several ways, e.g. as in [9] or [42].

Although the computation in equation (3.11) assumes a constant time-step, it can be modified to
incorporate variable steps, τi, without loss of efficiency, as in the nonlinear case the matrix exponential,
eAiτ , should anyway be computed in each iteration. Consequently, the first-order linearization used
above can be combined with a higher-order, adaptive method by computing the central trajectory (ci) and
each time-step (τi) with the higher-order numerical technique, followed by reachable set computation
based on these quantities. This way stiff systems with rapidly changing dynamics can be tackled without
significant additional computing time, and slowly changing systems can gain a speed-up compared
with fixed time-step calculations. Alternatively, we could replace the linearization with a more flexible
description of the stochasticity than the LNA, such as moment closures [30] or finite-state projection
methods [43].

4. Example applications
4.1. Control of gene expression noise
The first example considered is a controlled stochastic gene expression system [28,44]. In spite of its
simplicity, this model is one of the most important examples in practice as protein production is a
necessary and elementary building module in real and synthetic biological systems. Many applications
might rely on the steady operation of such a unit, hence it is of great practical interest to know what the
achievable noise levels and possible states of operation are. Let us take a simple depiction of protein
production that focuses on two macromolecules, mRNA and protein, captured in two quantities of
interest (mRNA and protein copy numbers, m and p, respectively). The overall process is broken up
into four reactions, as follows:

∅ k1μ−−→mRNA (transcription),

mRNA
k2−→∅ (mRNA degradation),

mRNA
k3−→mRNA+ protein (translation) and

protein
k4−→∅ (protein degradation),

where the symbol ∅ represents that a molecule is produced from (or degraded into) some substance not
modelled in the representation. This system translates into the stoichiometry matrix

S=
[

1 −1 0 0
0 0 1 −1

]
,

with each column standing for molecular abundance changes during a reaction of the ones listed
above. The propensity of each reaction is formed by its characteristic rate and the molecular species’
abundances,

a1 = k1μ; a2 = k2m; a3 = k3m and a4 = k4p.

In this example, the dimensionless multiplier in the first reaction, μ, represents our control over the
transcription rate, assuming either discrete (μ= 0 or μ= 1) or continuous (μ ∈ [0, 1]) values. A typical
control signal would be a sequence of zeros and ones, delivered through, e.g. a light-sensitive set-up [45],
switching transcription on and off for some time period. After performing the LNA, we obtain a set of
five ordinary differential equations, determining the time-evolution of the mean of m and p, the variance
of m (σm), the covariance of the two species (σmp) and finally the variance of the protein abundance (σp),

d
dt

⎡
⎢⎢⎢⎢⎢⎣

m
p
σm

σmp

σp

⎤
⎥⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎣

k1μ− k2m
k3m− k4p

−2k2σm + k1μ+ k2m
k3σm − (k2 + k4)σmp

2k3σmp − 2k4σp + k3m+ k4p

⎤
⎥⎥⎥⎥⎥⎦ .

The system is started from I = 0, corresponding to no previously produced target molecules in the
system and we investigate the reachable sets up to time T= 10 with time-step τ = 0.01. The time-units
are normalized according to the protein’s average turnover time, so that we gain a general model that
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Figure 1. Reachable states of the stochastic gene expression system with controlled transcription and additional uncertainty. Blue-
shaded regions show projection of the final reachable set to (a) the mRNA mean–protein mean plane and (b) the protein mean–
protein variance plane. Dark and light blue shades indicate reachable sets without and with 5% uncertainty in parameter k4. Red and
green example trajectories are calculated from 10 000 exact simulations, under the input sequences u1 = [1, 0, 1, 1, 1, 0, 1, 0, 1, 0] and
u2 = [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1], respectively, with protein degradation values as indicated in legend.

might be later scaled to reflect a specific macromolecule. Therefore, k1 has units of [molecules/time-unit
(t.u.)], and all other ki are in [1/t.u.]. We choose the reaction rates k= [100, 5, 100, 1] to show biologically
relevant ratios of reaction speeds and steady states: under constitutive production there will be on
average 20 mRNA and 2000 protein molecules.

Figure 1 shows projections of the final reachable set together with two sample trajectories. The
samples are computed as the mean and variance of a population consisted of 10 000 direct realizations
of the original stochastic system. The input signal μ(t) is defined as a piece-wise constant function with
values randomly drawn from {0, 1} and switching every 60 or 30 s (u1 and u2, respectively); the signal
is kept the same for all realizations contributing to a particular trajectory in figure 1. We also take into
account some uncertainty regarding the protein degradation rate, i.e. that the value of k4 is unknown or
can be externally changed to values within 5% of the nominal value, 1. The light blue regions in figure 1
show the estimate of the reachable set under such uncertainty. Interestingly, while a substantial part of the
mRNA—protein mean space can be covered, the reachable states on the protein mean—variance plane
are limited to a very narrow band. Therefore, if relying on the production of a protein with this module
we will have to make a compromise: either have a low number of proteins produced, or a high amount
but with great variability (as may be expected given the Poisson nature of this process). In addition, we
find that uncertainty in the degradation rates has a profound effect on the general uncertainty of both the
mean and variance levels (see electronic supplementary material, figure S3)—in agreement with previous
findings on the importance of degradation [46,47].

4.2. Model validation
In our second application, we consider a chain of three molecules affecting each others’ production and
demonstrate how our reachability analysis can contribute to model validation [48] for stochastic systems.
The molecules A, B and C in figure 2 can represent any chain of interacting species with similar reaction
networks; for example, a simple model of transcription factors, where only protein levels are modelled
explicitly. The regulatory effect of these molecules is through the production rate of their target species.
Three different wiring schemes are considered: (i) molecule A induces molecule B, which in turn activates
the production of C; (ii) molecule A also activates molecule C, such that this effect is more profound than
the activation via B; (iii) molecule C feeds back onto, and induces the production of A. In each model,
we simplify the mathematical description by assuming equal degradation rates for all species; hence
the models can be summarized by five parameters: kAB, kBC, kAC, kCA and kdeg, where the subscript XY
refers to the activation of Y by X. In all models kAB = 1 and kdeg = 0.8, and the other parameters are
chosen to reflect the connections of the model and produce similar maximal values in the output, C.
All reaction rate values have units of [1/t.u.], where the arbitrary unit of time relates to the speed of
changes in the system. However, the general shape of dynamics is determined by the relative weights of
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Figure 2. Model evaluation by comparing reachable sets and single measurements. (a) Schematics of the three reaction chain models.
Models differ in rates corresponding to dashed arrows. (i) kBC = 1, kAC = kCA = 0. (ii) kBC = 0.1, kAC = 0.9, kCA = 0. (iii) kBC = 1,
kAC = 0, kCA = 0.2. (b) Reachable region over time of the output (molecule C) starting from the initial set 80≤ A0 ≤ 120,
B0 = C0 = 0. Dark areas represent reachable values of the mean, light blue shades are the± 1 s.d. region computed with the maximal
reachable value of the variance. Coloured circles are sample points taken from single exact simulations of model (i). (c) Distance of
observation points from the reachable set of mean values. Lines show the average distance of observed data points at each time of
measurement, the top of error bars depict the maximal distance at the evaluation points (colours as indicated in legend). Distances for
each model are normalized by the maximal reachable standard deviation value. Time in (b) and (c) is in arbitrary units based on the
macromolecular production rate, such that with maximal interaction strength, on average one product molecule is created in 1 t.u.

certain reactions, which the above simplified rate values show more clearly. These can be later scaled to
represent a particular system with known time-scales. For example, if it is known that the production of
molecule B through the activation of A results in approximately 500 molecules each hour, kAB and kdeg
should become 500 and 400 [1/hour], but the following analysis would only differ in the scale of the
horizontal axis.

In order to model measurements, we generate five individual stochastic trajectories from model (i),
with parameter values kBC = 1, kAC = kCA = 0 and an initial A value randomly chosen from the range
[80, 120]. We then sample the amount of molecule C, associated with the experimentally measurable
output, from these simulations at six time-points; and evaluate the distance of each measurement point
from the reachable set of mean values at that specific time. The distance is normalized by the maximum
reachable value of standard deviation and consequently zero for all points within the reachable set.
As figure 2b,c show, it is very unlikely that the observations arose from model (ii). Although the true
model shows the best correspondence to the data, model (iii)—representing a feedback system—cannot
be discarded due to the wide range of values molecule C can reach in that specific wiring scheme. If
the relative noise level is reduced by raising the average initial abundance (to approx. 300 molecules), or
measurements from another species (e.g. molecule A) is also available, the distinction between different
models becomes clear with model (i) unambiguously fitting the data best.

This should only serve as an illustration of the potential use of reachability analysis for model
(in)validation. Coupled with, e.g. experimental design methods [49,50], we can, for example, iteratively
rule out candidate models.
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4.3. Bistable system
Our last example is a model exhibiting bistability, on which we demonstrate limitations of zonotope-
based reach set computation, but also how reachability analysis can be used for qualitative exploration
of biological system dynamics. As bistability plays a crucial role in cellular decision making [51], we
choose a concrete stem cell differentiation model to examine this phenomenon. The model describes
the interaction of the Oct4-Sox2 complex with stem cell marker Nanog [52]. Although it is a simplified
representation of the underlying network that summarizes numerous reactions into rates used in
modelling, it still produces bistable behaviour. The model has two variables (N and OS) and five
reactions,

a1 = k1 ·
(

k2OSγos

(K +OSγos )kdeg

)2

; a2 = kdegOS;

a3 = k3OSγos

K +OSγos
; a4 = k4Nγn

K +Nγn
and a5 = kdegN,

where the reactions stand for auto-activated production of the Oct4-Sox2 complex, degradation of
the complex, Oct4-Sox2 activated production of Nanog, auto-activated production and degradation of
Nanog, respectively. Accordingly, the stoichiometry matrix of the system is

S=
[

1 −1 0 0 0
0 0 1 1 −1

]
.

We take a set of parameter values from [52] that makes the model bistable,

[k1, k2, k3, k4, kdeg, K, γOS, γN]= [0.03, 50, 0.1, 14, 1, 10, 1, 2].

Here, we focus on how bistability affects our prediction of the average behaviour. Therefore, in practice,
our analysis is equivalent to computing the reachable sets of the corresponding deterministic system. We
fix rate parameters to the above values, and introduce uncertainty through allowing a range of initial
values. As noise in the initial Oct4-Sox2 concentration, OS0, has no significant effect on the dynamics, we
fix its value to 60. Similarly, variance and covariance values do not influence mean Nanog level, hence
their value is also without variability, σos = 10, σos−n = 1, σn = 0.1. On the other hand, as the system is
in a bistable regime, Nanog initial values determine which of the two fixed points—corresponding to
high-Nanog, stem cell phenotype or low-Nanog, differentiated phenotype—is reached by the system.
Therefore, we explore different initial values of Nanog, N0, with a 25% uncertainty in each case.

The value 0.6 is close to the boundary between the two basins of attraction (c.f. fig. 2A in [52]). Hence,
the initial set I = [0.45, 0.75] inevitably contains a sample of states from both basins. We first compute the
reachable set up until 15 arbitrary time units. As zonotopes are limited to describe centrally symmetric
and convex reach sets, the set enclosing both high- and low-Nanog steady states also includes a set of
implausible, negative values that arise as the symmetric counterparts of the highly positive (greater than
10) Nanog values. We exclude this range of values as it is clearly an artefact of set representation and
concentrate on the strictly positive subset of reachable states. Figure 3 shows Nanog mean values in
blue on a logarithmic scale as a function of time. As a comparison, we also conduct reachability analysis
restricted to the stem cell or differentiated cell regime. The former is started from the initial set I =
[1.5, 2.5] and the latter from Nanog values N0 ∈ [0.3, 0.5]. The collective evolution of trajectories is shown
with red and green reach sets in figure 3.

It is clear from the comparison of the shaded regions in figure 3 that the final reachable set obtained
with N0 = 0.6 indeed contains both steady states. Furthermore, the upper limit of the reach set is not only
conservative, but also tight. Therefore, the only crude over-approximation is due to symmetry and the
high-Nanog state is well outlined even in this analysis. In addition, obtaining negative reachable sets for
variables that should not assume negative values can be used as an indicator of discontinuous behaviour
within the analysis. After such an observation, restricting the set of initial values—similarly to how the
second and third reachable sets are obtained in figure 3—can shed light on the underlying dynamics.

5. Discussion
In this work we have introduced a method to compute the states that a stochastic biochemical network
can access under a control input signal. The method is particularly applicable to determine reachable
mean–variance values of the investigated species, and hence estimate noise levels of a system. Our aim
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Figure 3. Investigating bistability via reachable sets of a stem cell differentiation model. Shaded regions show a conservative estimate
of the achievablemeanNanog levels over time. The dark blue region is an over-approximation of the reachable set of the bistable system,
when the analysis is started from an initial set of bistability, i.e. a set enclosing states leading to both fixed points. N0 = 0.6± 0.15. Red
and green shades show reachable sets computed from ‘monostable’ initial sets, fromwhich all trajectories converge to the differentiation
fixed point (low-Nanog level, in red) or to the stem cell fixed point (high-Nanog level, in green). Initial Nanog values are 0.4± 0.1 and
2± 0.5, respectively.

is to provide a computationally efficient tool that could be used in the search for the best modelling
description or regulatory design of stochastic networks.

Here, we used the linear noise and moment expansion approximations to extract deterministic
equations of the mean and covariance matrix that served as a basis for our reachable set computation.
Both can be accessed on GitHub as parts of our Python package, MEANS [31]. We have presented
a general algorithm for linear and nonlinear reachability analysis based on zonotopes, together with
formulae for handling relevant input types: addition of molecules and control of a reaction rate. All steps
are implemented in Matlab to semi-automatically generate the reachable sets for a problem defined in
terms of a transition function, input matrix and bounds, and parameter uncertainty. The algorithm can
be executed on any given set of ODEs describing some characteristics of the system, hence it is applicable
regardless of the approximation method used for the generation of equations and also to deterministic
biological models.

We demonstrate the method on three schematic models of biological macromolecules: a controlled
gene expression system; a cascade of modifying molecules, e.g. transcription factors; and a bistable
model of stem cell differentiation. In all examples the approximation is conservative, hence trajectories
randomly generated from a set of admissible signals and initial values are confined within the set
our method predicts. In linear cases, if we have precise knowledge of the parameter values and input
bounds, the predicted reachable set will be exact as well, i.e. each point in it can be actually accessed
by an appropriate input sequence. This cannot be ensured for nonlinear systems (or uncertain rate
values) as the conservative estimates used for the nonlinearity (or reaction rate effect) are obtained from
approximations the system might not take. However, our estimation reflects the general characteristics
of the system—e.g. if some variables of a generally nonlinear system have linear equations—and hence
unnecessary over-approximations are avoided to provide a tight estimate. This is crucial in the evaluation
of various control designs on the basis of mean–variance values reachable through them.

Our method is based on a zonotope representation of reachable, initial and parameter sets. Set
operations can be efficiently computed using this representation method, which allows us to apply
our reachability analysis to many-variable, complicated biological networks. However, the number of
generator vectors in the reachable set increases in every iteration, and for a long time horizon or small
time-step the algorithm can become expensive regarding memory space. In smaller systems, such as our
examples, this effect is still negligible, but for high-dimensional cases the increase is more significant. For
such cases one can turn to the zonotope-reduction technique presented by Girard [9] to limit the size of
zonotopes to an adjustable value.

Note also that zonotopes, and hence the sets in our analysis, are by definition convex and centrally
symmetric. Therefore, systems where the actual reachable set is concave or consisted of multiple sets—
especially networks with bi- and multi-stability—will be largely over-approximated. In our last example,
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we have tested this aspect of the algorithm on a differentiation model with bistable dynamics. As the
two expression level states in such cases are typically of different magnitudes, our method is forced to
enclose a high proportion of negative values besides also incorporating a non-accessible region between
the two states. However, we also found that this drop in approximation quality is a good indicator of the
system entering a bistable regime of initial conditions/input signal. A similar over-approximation case
can arise for imprecise parameter values of the transition matrix: although admissible parameter sets
are symmetric sets given as a nominal value with error bounds, the influence of parameters is usually
not symmetric on the reachable set. Therefore zonotopes lead to a rough approximation when some
rates show high uncertainty. Just like in the case of multi-stability, a preliminary analysis using our
general method can reveal these issues, and point one towards a more exhaustive study using a series of
reachable sets for fixed values (or small intervals) of initial values or rate parameters to cover the range
of interest and extrapolate for tighter approximation.

As often the case in the analysis of biochemical systems, incomplete information about the model
structure and crucial constants of the system makes a detailed and informative analysis impossible.
Our method is not applicable for the exploration of differences in model structures; this problem can
be treated implicitly by either doing independent analysis of all candidate models or choosing rate
parameter uncertainty such that zero (i.e. no interaction) is among the admissible values. The latter
is likely to give rise to an over-generalized approximation, as described above; while the first one is
only advisable for a small number of possible models, like in our second example. Furthermore, limited
measurements and high levels of noise can also influence the method’s power for validation, as figure 2c
demonstrates: in such cases flexible models might be favoured even over the true model. Therefore, we
advise the use of other tools, such as topological sensitivity analysis [53] coupled with our method for a
more thorough investigation of model space.
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