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ABSTRACT
We show how the massive data compression algorithm MOPED can be used to reduce, by
orders of magnitude, the number of simulated data sets which are required to estimate the
covariance matrix required for the analysis of Gaussian-distributed data. This is relevant
when the covariance matrix cannot be calculated directly. The compression is especially
valuable when the covariance matrix varies with the model parameters. In this case, it may
be prohibitively expensive to run enough simulations to estimate the full covariance matrix
throughout the parameter space. This compression may be particularly valuable for the next
generation of weak lensing surveys, such as proposed for Euclid and Large Synoptic Survey
Telescope, for which the number of summary data (such as band power or shear correlation
estimates) is very large, ∼104, due to the large number of tomographic redshift bins which
the data will be divided into. In the pessimistic case where the covariance matrix is estimated
separately for all points in an Monte Carlo Markov Chain analysis, this may require an
unfeasible 109 simulations. We show here that MOPED can reduce this number by a factor of
1000, or a factor of ∼106 if some regularity in the covariance matrix is assumed, reducing the
number of simulations required to a manageable 103, making an otherwise intractable analysis
feasible.
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1 IN T RO D U C T I O N

Many problems concern data which are Gaussian-distributed, either
as a result of some underlying physical process, or by virtue of the
central limit theorem. The sampling distribution then depends only
on the mean and the covariance matrix of the data, and inference of
model parameters then follows with the use of a likelihood which
is a multivariate Gaussian function of the data. One challenge that
can be considerable is if the covariance matrix cannot be calculated
readily, and the experiment has to be simulated and the covariance
matrix estimated from the simulated data. In principle this is not
difficult, but it can be expensive to do, since at least p + 3 simula-
tions are required, where p is the number of data. If the number of
simulations is less than this, the expectation of the precision matrix
(the inverse of the covariance matrix) diverges. Ideally one would
like many more than p + 3, in order for the estimated covariance
matrix to be precise. Furthermore, if the covariance matrix de-
pends on the model parameters, then it may be a severe challenge:
for Bayesian inference using, for example Monte Carlo Markov
Chains (MCMCs), the covariance matrix might in the worst case be
estimated at each point in parameter space that is sampled.
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If it is impractical to perform so many simulations, then some
savings may be made by regularizing the behaviour of the covari-
ance matrix, but in addition we can markedly improve the situation
by reducing the number of data points p, in some cases by orders of
magnitude. In the same spirit, Asgari & Schneider (2015) proposed
a more modest level of linear compression of COSEBI statistics.
In general, this will lose information, but we previously published
an algorithm MOPED1 (Heavens, Jimenez & Lahav 2000) which
can massively reduce the number of data points, without losing in-
formation, in the sense that the Fisher matrix is unchanged by the
data compression, subject to certain conditions. The MOPED algo-
rithm reduces the size of the data set from p to m, where m is the
number of parameters in the model, and this can be a dramatic re-
duction in the data set size with little or no loss of information. It has
been successfully applied to determine the star formation history of
galaxies (Reichardt, Jimenez & Heavens 2001; Heavens et al. 2004;
Panter et al. 2007), and investigated for data compression in the
cosmic microwave background (Gupta & Heavens 2002; Zablocki
& Dodelson 2016) and in gravitational waves (Graff, Hobson &
Lasenby 2011).

MOPED is therefore an interesting candidate to tackle the issue
of experiments with large data sets, relatively few model parameters
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and covariance matrices which need to be simulated. In this paper,
we explore how effective MOPED can be in such situations, finding
that it can reduce enormously the computational requirements to
analyse such experiments, at the expense of a small increase in the
parameter errors compared with the ideal, but unattainable, analysis.

The second element in this paper is that when the covariance
matrix is estimated, then the true covariance matrix needs to be
marginalized over, as shown by Sellentin & Heavens (2016), lead-
ing to a modified t-distribution. This leads to a modification of the
credible regions, increasing them at low credibility levels but main-
taining a compact core. The situation may be more complicated if
one has some prior knowledge of the covariance matrix, or there is
one part of it which is known. This subject has become very topical
in the light of the expected data set size of future cosmology surveys
such as Euclid and the Large Synoptic Survey Telescope (LSST),
and as a result, much attention is being devoted to this issue. As one
application, it is expected that next-generation photometric surveys
will be split into ∼10 tomographic bins of redshift, so with ∼25
band-powers in frequency (or separations, if configuration-space
statistics such as correlation functions are used), then the total num-
ber of summary data, including auto- and cross-correlations, and E
and B (or ξ+ and ξ−), is ∼6 × 103, or higher if one also investigates
E−B correlations to test isotropy.

See Sellentin & Heavens (2017) and Blot et al. (2016), Dodelson
& Schneider (2013), and Percival et al. (2014), Taylor & Joachimi
(2014) for assessments of the increase in errors due to uncertainties
in the covariance matrix, and for further discussion, see Joachimi
(2017), Friedrich & Eifler (2016) and Padmanabhan et al. (2016),
Petri, Haiman & May (2016), Pope & Szapudi (2008).

2 TH E M O P E D A L G O R I T H M

Here, we review and extend the MOPED algorithm as originally
presented in Heavens et al. (2000). MOPED forms linear combi-
nations of the data x (which has length p), using a set of MOPED
vectors bα , where α = 1. . . m, and m is the number of parameters,
each of which is contained in an ordered list represented by a vector
θ. They compress the data to a set of MOPED coefficients

yα = bT
α x. (1)

The MOPED vectors are chosen in sequence, according to the fol-
lowing algorithm: the first is the linear combination which mini-
mizes the expected conditional error on parameter θ1. i.e. it maxi-
mizes the matrix element F

y
11, where F

y
αβ = −〈∂2 ln Ly/∂θα∂θβ〉 is

the Fisher matrix for the y data set, and Ly = p( y|θ) is the likeli-
hood of the compressed data. Subsequent bα vectors are chosen to
maximize Fy

αα (α > 1), subject to the b vectors being orthogonal to
the previous vectors, in the specific sense that the yα are uncorre-
lated. This requires bT

α Cbβ = δαβ , if we also normalize the MOPED
coefficients to unit variance.

For Gaussian data, the Fisher matrices (Fy and the analogue Fx

for the original data set) are computed from (Tegmark, Taylor &
Heavens 1997)

Fαβ = 1

2
Tr

[
C−1C,αC−1C,β + C−1

(
μ,αμ

T
,β + μ,βμT

,α

)]
. (2)

where μ ≡ 〈x(θ)〉 or 〈 y(θ)〉 are length p or length m expected data
vectors for the full or compressed data sets, respectively. C is the
p × p or m × m covariance matrix of the data, and a comma indicates
a partial derivative with respect to the labelled parameter. Generally
if there is no superscript on C, it will refer to the original data vector
x, but we will identify C with a superscript x or y if extra clarity is

required. We assume that μ and its derivatives can be computed via
theoretical or computational methods.

In its previous applications, MOPED has made the assumption
that the covariance matrix is independent of the parameters. This
assumption is relaxed in this paper, and we can properly account
for the parameter dependence. MOPED also requires a fiducial set
of parameters to be chosen, since the Fisher matrix depends on
derivatives of μ as well as the covariance matrix. The solutions for
the optimized weighting vectors in equation (1) are

b1 = C−1μ,1√
μT

,1C−1μ,1

(3)

and

bα = C−1μ,α − ∑α−1
β=1

(
μT

,α bβ

)
bβ√

μT
,αC−1μ,α − ∑α−1

β=1

(
μT

,α bβ

)2
1 < α ≤ m, (4)

where C and μ,α are evaluated at the fiducial parameter set.
It can be shown (Heavens et al. 2000) that if the fiducial parame-

ters coincide with the true parameters, and the Fisher matrix is dom-
inated by the second term of equation (2), then the compression is
locally lossless, defined by Fx = Fy . In the case that the covariance
matrix does not depend on the parameters, the covariance matrix of
the compressed data is by construction very simple everywhere. If
we define B to be a p × m matrix of which the columns are the b
vectors, then the compressed data vector is y = BT x, and from the
orthogonality condition of the b vectors,

Cy = BT CB = Im (5)

i.e. the m × m identity matrix. This makes parameter inference with
MOPED extremely fast, as the likelihood involves only O(m) opera-
tions, rather than the O(p3) operations for the full data set, provided
that the covariance matrix is independent of the model parameters.
Note that the method is completely general: the data and the model
can be anything. In this paper, we use as an illustrative example
the pixellized intensities of a galaxy image as the data vector, and
an exponential light profile as the model. Another example, which
we do not explore, is to take as the data vector the estimates of the
shear correlation functions in a weak lensing analysis. A specific
example of this is the CFHTLenS analysis of Heymans et al. (2013),
which had p = 210 shear correlation measurements and a model
with m = 6 parameters, so the gains would be considerable in this
case. However, since various assumptions in deriving equation (5)
are violated in practice, in this paper we do not assume that Cy is the
identity matrix, but we estimate it with simulations (see Section 4).

3 PA R A M E T E R I N F E R E N C E W I T H
E S T I M AT E D C OVA R I A N C E M AT R I C E S

The fact that the covariance matrix is not known but is estimated
changes the likelihood function. As pointed out by Kaufman (1967),
even if the estimated covariance matrix is unbiased, its inverse is
not, and needs to be multiplied by a factor α = (N − p − 2)/(N − 1)
to make it so, where p is the number of data and N the number
of simulations. This was introduced into astronomy by Hartlap,
Simon & Schneider (2007). In fact it is strictly incorrect to retain
the Gaussian form and use an unbiased inverse covariance matrix;
rather one should marginalize over the true covariance matrix, given
its estimate. Since the estimate, which we denote by S, follows a
Wishart distribution, this can be done analytically, and the solution
is given by Sellentin & Heavens (2016), yielding a likelihood which
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is a modified t-distribution:

ln p(x|μ, S, N )=const.− N

2
ln

[
1+ (x−μ)T S−1(x−μ)

N − 1

]
. (6)

In the limit N � p, this approaches the original Gaussian distribu-
tion, but in general it has a narrower core and wider tails.

If we form linear combinations of the original data, as here with
the MOPED compression, y = BT x, the estimated covariance ma-
trix of the compressed data Sy is also Wishart distributed (with
scale matrix Cy/nc and degrees of freedom nc = Nc − 1, where
Nc is the number of simulations of the compressed data). The same
marginalization then applies, and the likelihood of y is given by the
t-distribution of equation (6) but with x → y, S → Sy and N →
Nc, and μ is the expectation value of y. However, the big advantage
of the compression is that the enlargement of the credible regions
due to the uncertainty in the covariance matrix is small provided
only that Nc � m, which requires far fewer simulations than when
using the full data set, if p � m.

4 M E T H O D F O R A C OVA R I A N C E M AT R I X
T H AT D E P E N D S O N M O D E L PA R A M E T E R S

It is important to realize that we can choose to make any linear com-
pression of the data, whether it is locally lossless or not. Hence, we
can apply a MOPED compression to the data even if the assumptions
in its derivation are violated so that the compression is not optimal.
The parameter inference would still be entirely valid; the credible
regions would just be larger than they could be. Past investigations
(Heavens et al. 2000; Gupta & Heavens 2002) have shown that in
practical cases, the increase in parameter credible reasons is usually
negligibly small. There is a subtlety in that the inference will be
correct provided that the compressed covariance matrix is correct.
In typical MOPED applications, the compressed covariance matrix
has been assumed to be fixed at the identity, and this gives very
rapid inference. However, it is an approximation if C depends on
parameters. If more accuracy and precision are required, an iterative
solution is to find the most probable parameters and then repeat the
MOPED data compression with the solution as the fiducial model.
In practical applications, we have not found this to be necessary,
but strictly we should use the correct covariance matrix appropriate
for the position in parameter space. This is what we do in
this paper.

An alternative to the assumption that the compressed covariance
matrix is the identity is to compute it directly from B and C, or
equivalently to simulate x and then form y by matrix multiplication,
and estimate Sy from the simulated y vectors. This then dispenses
with an approximation, but the cost of the matrix operations in
normal applications then negates the massive computational speed
advantage of MOPED. However, in this paper we are considering
the situation where the time is dominated by the time to estimate
the covariance matrix, not to evaluate the likelihood, so the matrix
operations used to generate y come at negligible cost.

The method we advocate is this: create N simulated data sets,
x(i); i = 1 . . . N , for a fiducial set of model parameters, in order
to obtain an unbiased estimate S for the full (fiducial) covariance
matrix:

S = 1

N − 1

N∑
i=1

(x(i) − x̄)(x(i) − x̄)T . (7)

We then use this to pre-compute a set of MOPED compression vec-
tors, using equations (3) and (4) but with C replaced by its estimate
S. This set will be close to optimal, provided that the chosen fiducial

model is correct, and the covariance matrix S has been estimated
sufficiently from many simulations to be a good approximation to
C. After this point, we keep the MOPED b vectors fixed, and do not
vary them during the parameter inference phase. If this preliminary
step is already too expensive in terms of computer time, then an
alternative approach is to use an approximate covariance matrix,
perhaps theoretically generated on the basis of assumptions that do
not precisely hold. The MOPED vectors would not be optimal in
this case, but may be close enough that the information loss is small.

When inferring parameters (via say MCMC chains), we again
make an estimate of a covariance matrix, but this time we form Sy

as an estimate for the compressed data covariance matrix Cy , using

Sy = 1

Nc − 1

Nc∑
i=1

( y(i) − ȳ)( y(i) − ȳ)T . (8)

The advantage that we have is that we require only m + 3 or more
simulations, rather than the typically much larger p + 3. If the
simulations are expensive, this could still be a considerable cost,
depending on how much the covariance matrix depends on the
parameters, but it may make the analysis feasible when otherwise
it might be essentially impossible (if p � m, as is typical).

5 EXAMPLE PRO BLEM

Let us illustrate with a simple m = 2 parameter model, representing a
circularly symmetric image of a galaxy with an exponential surface
brightness profile. Ignoring complications of finite pixel size, the
model is that the pixel brightness values are

μ(r) = A exp(−a|r|) (9)

where r is the pixel position vector, of length npix. A and a are the
model parameters. Purely for simplicity in this illustrative example,
we assume that the true covariance matrix is proportional to the
identity, C = σ 2 Ip , where σ 2 is the pixel variance. In this initial
example, we will not vary σ 2 with the parameters.

In order to estimate C, we generate N simulated data sets and
evaluate S via equation (7). For a given N, we compute the two
MOPED vectors using equation (3) and (4), with C replaced by
S. We then generate a test image and compute the likelihood of A
and a using the compressed data. In this example, we estimate the
compressed covariance only once, from Nc simulations of the full
data set, which are then compressed, and use equation (8). We then
compute the posterior of A and a given the estimated compressed
covariance matrix, by analytically marginalizing over the unknown
covariance matrix, and using the likelihood of Sellentin & Heavens
(2016).

In Fig. 1, we show contours of the likelihood, for a case when the
covariance matrix is independent of parameters, so the compressed
covariance matrix is estimated only once. We see that MOPED is
very effective when the covariance matrix is known and the fiducial
model is the correct one. In more realistic cases, when the covariance
matrices for the full data and for the compressed data have to be
estimated, then the compression is not locally lossless except in the
limits N, Nc → ∞. The large size of the outer contour in the bottom
right panel comes from the broad wings of the Sellentin & Heavens
(2016) likelihood, whereas the contours containing ∼68 per cent
and ∼95 per cent of the posterior are not much larger than in the
ideal case.

If the covariance matrix depends on the parameters of the model,
then the analysis is much more challenging. The covariance ma-
trix may need to be estimated separately each time a new point in
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Figure 1. Posteriors for the parameters in the model μ = A exp (−ar) for
400 pixels and noise per pixel of 0.1. True values (A = 1, a = 1) are marked
by the red dot, and contours are at levels δ ln L = −2.3, −6.2, −11.8,
corresponding to 1σ , 2σ , 3σ , two-parameter credible regions of Gaussian
likelihoods. From top left, clockwise: full likelihood with known covari-
ance matrix (best possible case); MOPED compression, using correct full
and compressed covariance matrix, and correct fiducial model; compressed
analysis using the likelihood of Sellentin & Heavens (2016), with 1116 sim-
ulations used to determine the MOPED vectors, and only 10 to estimate the
compressed covariance matrix; same, with a Gaussian likelihood, using the
Hartlap et al. (2007) scaling, where the inner contour is too large and
the outer one is too small. Here, we assume that the covariance matrix
is parameter-independent, so we estimate it only once.

parameter space is considered. Fig. 2 is an illustration of this, where
we estimate the compressed covariance matrix afresh at every point
in the parameter grid. Since the estimated covariance matrix is a
random object, this adds noise to the posterior, which might ben-
efit from some smoothing. In practice some sort of regularization
procedure would almost certainly be employed for the covariance
matrix, which would smooth the contours.

In Figs 3 and 4, we show the relative increase in error com-
pared with the ideal case (where we use the true covariance matrix
and the full data set, or indeed the MOPED compressed data as-
suming the correct fiducial model and covariance matrix; they are
essentially identical), as a function of the number of simulations N
and Nc, or the Hartlap parameters α = (N − p − 2)/(N − 1) and
αc = (Nc − m − 2)/(Nc − 1). To produce these figures, we simulate
images and compute the marginal credible regions by integration
of the 2D posterior, and average over 500 realizations. In Fig. 3,
we see that there is little to be gained on increasing N beyond 200
(log10N = 2.3), for this relatively small image of p = 25 pixels.

In these examples, we have chosen data sets of different sizes,
p = 400 and p = 25 pixels. The time for inversion of a p × p
matrix scales as p3 (although iterative techniques may be faster),
whereas the size of the compressed data set is m = 2 in both
cases, so the time taken is less dependent on the original data set
size. The timings would scale as p2, arising both from the time

Figure 2. Similar to Fig. 1, except that we estimate the compressed covari-
ance matrix separately at each point in the parameter space grid. This would
be required if the covariance matrix varied with the parameters of the model,
when brute force estimation of the covariance matrix everywhere might be
impractical without the data compression proposed here. There are 25 pixels
in this example, the MOPED vectors are determined from 129 simulations,
and 25 simulations are used to estimate the compressed covariance matrix
at each point.

Figure 3. Posterior standard deviation for the amplitude parameter A, rela-
tive to the ideal error when the covariance matrix is known and the full data
set is used. The contour labels refer to the relative increase of the standard
deviation. The vertical axis is the number of initial simulations used to esti-
mate the MOPED vectors. The horizontal axis is the number of simulations
used to compute the covariance matrix at different points in parameter space.
In this case, the image is a square of p = n2

side = 25 pixels, σ = 0.3 and the
plot is averaged over 500 realizations.

required to generate each sample image used in the estimation of
the compressed likelihood, and also from the scalar products which
compress the image data. The generation of the MOPED vectors
scales as p3, but this is done only once, and not at each point where
the posterior is computed.
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Figure 4. As in Fig. 3, but here for the scalelength parameter a, and plotted
against α = (N − p − 2)/(N − 1) (y axis) and αc = (Nc − m − 2)/(Nc − 1)
(x axis), where m = 2 is the number of compressed data, and p = 25 is the
number of pixels.

5.1 A more complex model explored with MCMC

In Fig. 5, we show the effect of MOPED compression on a more
complex four-parameter model, which we explore with more typical
MCMC techniques. In this model, the model represents a circular
exponential profile disc, seen at an angle, and resulting in a surface
brightness distribution (see Heavens, Alsing & Jaffe 2013 for more
details):

μ(r, ψ |a, ε, φ,A)=A exp
[
−a r

√
1 + ε2 − 2ε cos 2(ψ−φ)

]
(10)

where A is the central surface brightness, a is the inverse semimajor
axis, φ its position angle and ε is the (magnitude of the) ellipticity
of the galaxy. r and ψ are polar coordinates about the centre of
the galaxy, whose position is assumed to be known. Posteriors for
the parameters are obtained using STAN (Carpenter et al. 2017).
An image is generated with a = A = φ = 1.0 and ε = 0.25, on a
10 × 10 grid. In this case, we make the covariance matrix parameter
dependent, assuming white noise, but with a pixel variance that
depends on the central amplitude parameter: σ 2 = 0.01A.

In Fig. 5, we plot a comparison of the different possibilities for
analysing this data set. In the top left, we plot the posterior gained
from the full data set of size p = 100, using the known covariance
matrix. Flat priors on the parameters were assumed. This panel
depicts the maximal information content on the parameters to be
measured. In the bottom left of Fig. 5, we still assume the correct
covariance matrix is known, but we now apply MOPED compres-
sion. The MOPED compression vectors are hence determined from
the correct covariance matrix, with the fiducial model coinciding
with the true model. The covariance for the compressed data set
is then the 4 × 4 identity matrix. In the top right, we see the effect
of determining the covariance matrix of the full data set from
1000 simulations, for the purpose of determining the MOPED
vectors. The MOPED compression vectors are therefore not quite
optimal, but we still assume the compressed covariance matrix is
the identity. Finally, in the bottom right we show the actual target
of MOPED compression in cosmology: parameter dependence in
the covariance matrix is now included, and each time a compressed
covariance matrix is estimated from 10 simulations only but at
each point in the chain. The compressed covariance matrix is then
marginalized over using the Sellentin & Heavens (2016) likelihood.

The likelihood is computed with STAN in a simple hierarchical
model, where the covariance matrix is a random object. Note that 10
simulations are not in the asymptotic regime where the compressed
covariance matrix is very well determined, so we expect to see a
degradation of the errors. We also see that the effect of sampling is
to obscure the variability that is apparent in Fig. 2. Note that in this
last case, the outer contours are again broadened because of the
marginalization over the true covariance matrix. The inner contours
are only moderately larger than in the other figures, reflecting the
small core and broad wings of the Sellentin–Heavens likelihood.
The result of the non-optimal MOPED vectors, and the marginal-
ization over the compressed covariance matrix are to increase the
errors, by approximately 50–100 per cent in this case. However,
the compression has now successfully accomplished the otherwise
unfeasible task of computing the parameter-dependence of the (now
compressed) covariance matrix at each point of the MCMC chain.

6 C O N C L U S I O N S

In this paper, we have considered the relatively common situation
of parameter inference from Gaussian-distributed data (of length
p), where the covariance matrix is not directly calculable, but has to
be simulated. In the case where the covariance matrix varies with
parameters, this can lead to a requirement for an unfeasibly large
number of simulations, especially if the covariance matrix were to
be evaluated separately at each sample point in the m-dimensional
parameter space. We have shown that this can be speeded up by
a very large factor, with little loss of information, by compressing
the data using the MOPED algorithm first. The algorithm proposed
is to run a very large number N � p + 2 of simulations with
the model parameters kept fixed at some fiducial values, if this
is feasible, and to use the resulting estimated covariance matrix
for the full data set to define a set of near-optimal MOPED data
compression vectors, which are then kept fixed. When sampling
the parameter space, using MCMC for example, the much smaller
compressed covariance matrix may be estimated accurately from far
fewer simulations, requiring only Nc > m + 2, which is typically
much less than p.

It is clear that there is some trade-off between running many
simulations to define the MOPED vectors, and running more sim-
ulations during the MCMC phase, but Figs 3 and 4 indicate that
it is likely that the best strategy will be to run N � p simulations
for a fiducial parameter choice, since an accurate full covariance
matrix delivers MOPED vectors which are closer to optimal, and
which thus require fewer compressed simulations when the param-
eter space is sampled. However, it may be that this reduction in
the number of simulations is still inadequate, and there are various
possibilities to overcome this.

For the MOPED vectors, it may be adequate to have an approxi-
mate full covariance matrix, determined without simulations. It may
not yield optimal compression vectors, but the compression is likely
still to be useful. Secondly, to reduce the number of simulations for
the compressed stage, one could use some interpolation in the pa-
rameter space, estimating the compressed covariance matrix only
at a relatively small number of locations.

Emulator-based methods, for example based on a Latin hy-
percube, may be effective (Heitmann et al. 2009, 2010), even
with only ∼100 simulations. Such a scheme was proposed by
Morrison & Schneider (2013), using Gaussian processes to interpo-
late between the covariance matrices. An alternative approximate
approach would be to estimate the covariance matrix at a fiducial
point, and estimate the generator of the linear part of the variation

MNRAS 472, 4244–4250 (2017)
Downloaded from https://academic.oup.com/mnras/article-abstract/472/4/4244/4157281
by guest
on 07 November 2017



Data compression for covariance matrices 4249

Figure 5. Top left: full likelihood of the four parameters a, A, ε, φ of the model of equation (10), given a 10 × 10 galaxy image as the p = 100 data vector.
10 000 points are generated after burn-in, using Hamiltonian Monte Carlo NUTS with STAN. Bottom left: likelihood of parameters using m = 4 MOPED
compressed data. MOPED compression vectors have been computed on the basis of the true full covariance matrix. The compressed covariance matrix is
assumed to be the identity matrix. Uncertainties are increased since the distribution has been marginalized, and MOPED only guarantees that the distribution
is unchanged near the peak. Top right: MOPED compression vectors computed on the basis of an estimated covariance matrix from 1000 simulated data sets.
The compressed covariance matrix is assumed to be the identity matrix. In this case, the constraints are essentially as good as if the true covariance matrix
was known, since many simulations were used. Bottom right: now also including parameter-dependence in the covariance matrix with the 4 × 4 compressed
covariance matrix estimated from 10 simulations at each MCMC point. The credible regions are moderately larger, but the general aim is to make such
calculations feasible at all, in cases where it would essentially be impossible to compute the full likelihood.

of the covariance matrix with parameters, and using it to extrapo-
late to other locations in parameter space (Reischke, Kiessling &
Schaefer 2017).

An additional advantage of this radical data compression is that
the central limit theorem may assist in giving the compressed data
a near-Gaussian sampling distribution, although there is no guar-
antee that the summary statistics can be grouped into large iid
subsets. Furthermore, it will be far easier to explore numerically the
sampling distribution in a small number of dimensions rather than

in the original very high dimensional space, to test the Gaussian
assumption.

We see clear applications, including, but not limited to, the anal-
ysis of weak lensing data from the Euclid and LSST photometric
surveys, where the number of summary statistics is expected to be
∼104, and the number of cosmological parameters only ∼10, so
reductions in the number of simulations by a factor of 1000 is fea-
sible, or by a factor of 106 with emulation techniques as well (see
Table 1).
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Table 1. Number of simulations required, for numbers typical of future Euclid or LSST weak lensing surveys, with p = 5000 summary statistics, m = 6
cosmological parameters, and an MCMC chain of length 105. 100 emulator points are assumed.

Estimating Cy at Emulator locations Each MCMC point Comments

No compression 106 109 Estimating Cx for each MCMC sample is overkill
MOPED compression, using simulated Cx 104 106 Preferred option
MOPED compression, using analytic/theoretical Cx 103 106 Sub-optimal, but reduces simulation requirements
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