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Abstract 

This work concerns the calculation of the neutron source strength necessary to start up a 
nuclear reactor such that the likelihood of an undesirable stochastic transient is reduced to a 
specified value (e.g. 810− ). We extend our earlier point model work on low source 
calculations to include the spatial variation of the neutron source. Results for the source 
multiplier for a given safety factor are obtained for slab, cylindrical and spherical systems. 
The spatial term in the Pál-Bell equation is dealt with by Chebyshev-Gauss-Lobatto 
collocation methods and this enables an extrapolation distance to be included, thereby 
simulating a reflector. Results are given for a range of system sizes, and corresponding source 
multipliers for safe source determination are obtained. The saddlepoint method is used to 
invert the generating function. In addition to the low source calculations, we have also tested 
the collocation method on the survival probability in a sphere which demonstrates excellent 
convergence. We also comment on the usefulness of the Gamma pdf for spatially dependent 
problems. For clarity of presentation, some of the detailed mathematical work is relegated to 
Appendices. 

1. Introduction 

This paper extends our earlier work (Williams and Eaton, 2017), henceforth referred to as I, 
on low source effects during start-up to include a detailed treatment of the spatial variation of 
the source on the calculation of the safety factor Q, where Q is the likelihood of an 
undesirable stochastic transient, and the resulting safe source magnitude. We will briefly 
review the main points of the earlier work before presenting the detailed mathematical 
treatment based on the Pál-Bell equations for dealing with space dependence. 

   The safe start-up of a nuclear reactor depends upon the presence in the core of a steady 
neutron source. As well as the fixed source, there also exist intrinsic natural neutron sources 
from spontaneous fission, cosmic rays, photo neutrons, fission products, etc, and it is 
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necessary to account for these when assessing the overall effect. From an operational point of 
view, it is important to assess the strength of the natural sources to see if they will be 
sufficient in magnitude to ensure safe stochastic start-up without the addition of an 
extraneous source. The most important case for source evaluation is that of a reactor starting 
up with fresh, un-irradiated fuel because then the natural sources will be at a minimum. The 
theory developed below will be a powerful tool in that respect. 

    To understand how the reactor behaves as the control rods are withdrawn or reactivity is 
increased in some other way, it is necessary to solve the traditional equations of reactor 
kinetics. A full space-energy-time dependent case should be carried out if possible, but 
initially a point model approach will be sufficient for guidance. Now, in conventional reactor 
kinetics, it is implicitly assumed that the neutron source strength and the associated neutron 
density are high enough to reduce any statistical fluctuations arising from the underlying 
random processes to negligible proportions. However, for a sufficiently low source strength 
this may not be the case and the possibility of large fluctuations can arise. This matter is 
better understood if we recognise the fact that the concept of criticality does not depend on 
neutrons. A system may be supercritical by a great margin and nothing may happen. 
However, as soon as a neutron, the carrier of the chain reaction, is introduced then 
multiplication can proceed very rapidly. It is this possibility that we must study. A practical 
example is when a control rod is withdrawn in the presence of a low density neutron field. If 
there are few neutrons then the count-rate in a detector will be small and so the operator, or 
automatic control system, may assume that the rod has not been withdrawn far enough. The 
rod is then withdrawn further, but at this point the density, which was initially low, may quite 
rapidly (within a prompt neutron lifetime) become large and, as there is also by then a larger 
amount of reactivity present (due to the continued withdrawal of the control rod), the 
doubling time may be very short indeed. It is necessary therefore to specify the source 
strength such that the probability of the neutron level not exceeding some prescribed value 
which, on deterministic calculations is safe, is acceptably small. Starting a reactor with no 
source, or a source of unknown strength, is known as a 'blind start' and is to be avoided for 
the reasons explained above (Shaw, 1969).  

    It is useful to explain physically why the stochastic behaviour differs from the 
deterministic one. First we note that the chain reaction consists of many independent chains 
of neutrons which are initiated and, depending on the multiplying properties of the medium, 
will either die out from leakage or capture or will multiply due to fission. But even in the case 
of multiplication, there is the possibility that the chain will eventually die out or, in the 
language of statistics, become extinct. It is only when a persistent chain arises, i.e. a chain 
that continues to multiply and increase the neutron number indefinitely, that a genuine 
supercritical transient will arise. With a weak source, such persistent chains can take several 
seconds to develop, during which time the reactivity can increase to a high value so that when 
the persistent chain does appear, a very rapid increase in power and energy release arises. 
This energy release can be several orders of magnitude greater than that predicted by 
deterministic reactor kinetics (Hansen, 1960, Cooling et al, 2016). If the source is strong 
enough to make fluctuations unlikely, it means physically that the independent chains are 
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overlapping in time and hence the likelihood of the creation of a single dominant persistent 
chain is remote. 

    In summary, the work involves the calculation of the probability distribution function for 
the neutrons which is carried out by a tried and tested method using the saddlepoint approach 
of Hurwitz et al (1963 a, b, c), MacMillan (1960, 1970), and that of Bell et al (1963) to invert 
the associated generating function. The accuracy of the saddlepoint method has been assessed 
by comparison with an exact inversion formula (I). We include delayed neutrons, both one 
and six groups, and come to the conclusion that six groups are essential for an accurate 
probability evaluation. Results are presented in graphical form and a computer code will 
eventually be available to enable the user to assess quickly and accurately the low source 
behaviour with a spatially movable source. A computer code, CALLISTO, based on the 
multi-group point model described in Cooling et al (2017) is already available. It has recently 
been pointed out to the authors (Pazsit, 2017) that the saddlepoint method was first used by 
Jánossy (1946, 1950) and Jánossy and Messel (1950) to invert generating functions in 
connection with electron-photon cascades. 

   We have also found that the Gamma pdf is a reasonable approximation to the actual pdf and 
can be used for guidance on the influence of a low source without having to calculate the 
exact pdf. It is not, however, reliable for cases where the value of the pdf is less than 

4 510 10− −
 , except for very low reactivity insertion rates and strong sources.  Nevertheless, it 

may well be useful as a guide when complex arrays of sources are present both in position 
and energy because it reduces the computational time significantly.  

2. General theory 

  The full details of the theory based on the Pál-Bell equation (Pázsit and Pál, 2008) are given 
in I, but we summarise here the main points, especially insofar as they concern spatial 
variation. The probability distribution and related generating function are defined below and 
the equation obeyed by the generating function or, to be precise, the complement of the one 
speed single neutron generating function ( , , , , ) 1 ( , , , , )g x R t s g x R t s= −y r y r , may be written 

for a homogeneous medium in the diffusion approximation as (Pázsit and Pál, 2008), 
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    (1) 

where the delayed neutron generating functions ( , , , , )ih x R t sy r  obey 
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The term ( ), iH g h  involves the multiplicity processes due to fission and delayed neutrons, it 

is a complicated function and can be found in Appendix B. Coupled to eqns (1) and (2) is the 
equation which incorporates an independent source into the calculations. This is written 
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 ( )( , , , )
( , , , ) ( , ) ( , , , , ) 1S

S d q
V

G x t R s
G x t R s d S s f g x t R s

s

∂
 = − ∂ ∫

y
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In eqn (3a) ( , )dS sr is the number of disintegrations of the source per second, each 

disintegration leading, with a given probability, to n neutrons. ( )qf x  is the associated 

probability generating function defining the probability that n neutrons are emitted. For 
simplicity, in this work we assume that one disintegration leads to one neutron, when eqn 
(3a) becomes 

 
( , , , )
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y

y r r y r  (3b) 

 To be more explicit regarding the generating functions, we have in standard statistical 
notation, 
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The generating functions are 
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where 1,2,..i I=  and 1 2
1 2 ... Ic c c

Iy y y≡cy . Thus (...)g  refers to the prompt neutrons and (...)ih to 

delayed neutrons. The final conditions on (...)g  and (...)ih  at s t= are 
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 ( ) ( ), 1; and , 0;r r r rV V V V∆ = ∈ ∆ = ∉r r r r  

In other words the chain reaction can be triggered off by one prompt neutron, or by the 
neutron emitted by the decay of any precursor. The boundary conditions will be discussed in 
section 4.3. In our previous work we have solved eqn (1) for the point model in which the 
spatial operator was ignored. Here we will explicitly include the spatial variation which will 
require a solution of eqns (1) and (2) and subsequent quadrature in eqn (3 a,b).  

3. Collocation 

   In order to solve eqn (1) numerically, it will be necessary to convert the term 2g∇   into 
finite difference form. To do this we will use Chebyshev-Gauss-Lobatto (CGL) collocation 
(Kopriva, 2009) which enables the first and second derivatives to be written in a very simple 
and convenient form and also allows the boundary values to correspond to a collocation 
point. The details of this process for one dimensional systems (slab, sphere and cylinder) are 
given in Appendix A, but the outcome is that for a system of the form 

 ( )
2

2

( ) ( )( ) ( ) ( ) ( ) ( ) 0; 0,d u x du x
A x B x C x u x Q x x a

dx dx
+ + + = ∈  (10) 

with two boundaries and the following boundary conditions,  

 0 1
0

( ) ( )(0) and ( )
x x a

du x du x
u u a

dx dx
λ λ

= =

= − =  (11) 

we can write after the transformation 2 / 1v x a= − , so that ( )1,1v∈ − , 

 
1

1
( , ) 0; 1,2,.. 1

N

j k k k
j

B k j u C u Q k N
−

=

+ + = = −∑  (12) 

where the collocation points are ( )cos /kv k Nπ=  and ( )j ju u v= . The matrix elements 

( , )B k j are given explicitly in Appendix A in terms of 0 1andλ λ . The boundary conditions 
(11) as they stand refer to a slab, but if we consider a sphere or cylinder with radial symmetry 
then the boundary condition at 0x =  becomes the centre of the sphere or cylinder and is, 
with 0λ = ∞ , 
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0

( ) 0
x

du x
dx =

=  (13). 

3.1 Quadrature 

Eqn (3b) contains a quadrature over the generating function in the form 

 ( , ) ( , , , , )d
V

I d S s g x t R s= ∫ r r y r  (14) 

In the case of slab geometry, ( )0,z a∈ , this expression becomes for a time independent 

source 
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∑∫    (16) 

where jw  is a weight function (Dehghan and Saadatmandi, 2008, Zhou and Li, 2017).  For a 

uniform source of total strength TS , we may write 1 1( ) / ( )j TS v S a ns cm− −= . As the width 

of the slab increases, the values of ( ), , , ,jg x y t R v s become very close and in the limit 

TI S g→ which corresponds to the point model. 

For a cylindrical system of radius R (of infinite length), we have 
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which reduces to collocation form 
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For a spherical system we have 
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For a uniformly distributed source of total strength TS , the source in (17b) may be written 

 1 3
3

3( ) [ ]
4
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whence 

 

1 13
2 2

1 1
1

2 2
0 0

0 1

3(1 ) ( (1 )) ( (1 )) (1 ) ( )
2 2 2 8
3 3 3(1 ) ( ) (1 ) ( ) 4 ( )
8 8 8

T

N N
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∫ ∫

∑ ∑

 

    

 (19) 

This representation is adequate for a smoothly varying source and generating function, for 
example if the source is uniform, but for a localised source it would converge very slowly.  In 
the case of a localised source which can be represented by a delta function in the form 

 ( )( ) -TS S δ= 0r r r  (20) 

we have from eqn (14) that 

 ( ) 0( , , , , ) ( , , , , )T T
V

d S g x t R s S g x t R sδ =∫ 0r r - r y r y r   (21) 

TS is the total source strength and using the collocation points cos( / )jv j Nπ= , this becomes  

 ( ), , , ,T jS g x t R v sy  (22) 

For a slab a number of sources can be represented across the slab, each located at a 
collocation point. However, due to the symmetry restriction, it is only possible to have a point 
or line source at the sphere or cylinder centre; if we wished to move it to a larger radius it 
would have to be in the form of a concentric annulus. Any asymmetry would require the 
angular variables to be included in 2∇ and that would increase the number of collocation 
points to unacceptable levels. The central case requires the use of eqn (A19) to evaluate the 
generating function at the central point Nv . For a concentric source we may write 

 0 0
2

( ) ( )cylinder : ( ) sphere : ( )
2 4

T TS r r S r r
S r S r

r r
δ δ
π π
− −

= =  (23) 

which leads to a quadrature of ( )T jS g v . For a central source we would use ( )T NS g v . It would 

be possible to form an interpolation function for ( )g v  and hence examine other more general 
source positions. As far as the generating function equation is concerned, the localised source 
is readily represented using eqn (22) by writing eqn (3b) as 
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1

( , , , )
( , , , ) , , , ,

M
S

S j j
j

G x t R s
G x t R s S g x y t R v s

s =

∂
=

∂ ∑
y
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where jS is the source strength at each collocation point. We will show below how the safety 

factor Q depends on the source position and the geometry. 

   The modifications to include space dependence into the problem are embodied in a 
computer code and we will give below some numerical results and discuss their implications 
for low source startup. In order to use the Pál-Bell equation (1) for low source startup 
problems we refer the reader to I. There it is shown how to calculate the strength of a startup 
source that will reduce the probability of any rogue transient arising from the low density of 
neutrons, to a prescribed value. In short, it is necessary to reconstruct the probability 
distribution of the neutrons from the generating function and hence calculate the cumulative 
distribution 

 
* 1

0
( ) ( , )

n

S
n

Q t P n t
−

=

= ∑  (24) 

where ( , )SP n t is the inverse of the generating function ( ),1, , 0SG x t R . Physically, Q(t) is the 

fraction of the neutron population with number density less than n*. Later we will see that n* 
corresponds to the neutron density at the start of the deterministic regime. For safe startup it 
is essential that Q be very small. In order to perform the inverse, the saddlepoint method is 
employed as described in detail in I and briefly in Appendix B. 

4. Numerical examples 

   It is important that the final results of the calculations employ six groups of delayed 
neutrons but because the running time of the associated computer code is so long with six 
groups (  hours), we illustrate some general points using one group of delayed neutrons. 
Later some comparisons with six groups will be given. Also it is useful to exemplify the 
collocation method on a relatively simple problem before using it for startup; for this we 
choose the survival probability. 

4.1 The Survival Probability 

The survival probability can be obtained directly from eqn (1) and written as 

 ( , ) (0, , ,0) 1 (0, , ,0)W t g t R p t R= = −r r r  (25) 

Physically, ( , )W r t is the probability that a neutron injected at any point on a concentric 
surface of radius r at t=0, will survive to time t. To illustrate the collocation method, we will 
calculate the survival probability of a neutron in a reflected sphere with the reflector replaced 
by an effective boundary condition of the form 
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 ( , ) ( , ) 0s
r R

W r t
W R t

r
λ

=

∂
+ =

∂
 (26) 

Note that this boundary condition follows from the adjoint nature of the Pál-Bell equation.  

For a radially symmetric sphere, ( , )W r t satisfies 

  
2

0 2
2

( , ) ( , ) 2 ( , ) ( 1)( , ) ( , )
!

nM
n

f a f n
n

W r t W r t W r t
D W r t W r t

t r r r n
   



              
  

  (27) 

An interesting matter arises concerning symmetry. For example, if the initiating neutron is 
injected at a particular point at a given radius r, then the same subsequent behaviour will arise 
no matter where on that radial circle the neutron is injected. As long as the medium is 
homogeneous then spherical symmetry holds and we are justified in neglecting the angular 
variables in 2∇ . Thus, physically, ( , )W r t is the probability that a neutron injected at point at 
r, at time zero, will survive to time t. 

  We have neglected delayed neutrons in eqn (28); this is not essential but simplifies the 
discussion (Williams and Pázsit, 2015). We also assume that the cross sections are 
independent of time and set t t s→ − . To further simplify the equation we divide by 

( )1/aλ τ=  the reciprocal of the prompt neutron lifetime, to get 

  
2 2

2 2
2

( , ) ( , ) 2 ( , ) ( 1)1 ( , ) ( , )
!

nM
n

n
n

W r t L W r t W r t k
k W r t W r t

t R r r r n


 

              
  (28) 

where 2
0/ , / , / , /a f at t r r R L D kτ λ νλ λ= = = = . In the above, ( )0,1r ∈  and the initial 

condition is ( ,0) 1W r = , i.e. no matter where the initial neutron is in the sphere, its survival at 
t=0 is certain. Only subsequently does the survival probability decrease. 

If we convert eqn (28) to Gauss-Chevyshev-Lobatto form we find, using the transformation
(1 ) / 2r v= +  , that ( , ) ( )j jW v t W t=  and cos( / )jv j Nπ= , whence 

  
2 1

22
2

1

( ) , ( ) ( 1) ( ) ( )
2

N
k

j k k
j

dW t kL
B k j W t k W t W t

dt R







     (29) 

where, for simplicity, we have kept only the quadratic term. The form of ( , )B k j , which 
incorporates the boundary condition (26), is derived in Appendix A. This equation is solved 
for N=20 for a range of times and values of extrapolation distances sλ . Fig 1 shows the 
survival probability at times from 5 to 60 prompt neutron lifetimes and for a range of 
extrapolation distances from zero up to 50. An important observation is that, as time 
increases, so the initial flat distribution tends to a convex shape. 60 τ is essentially the 
asymptotic shape for t →∞ . The effect of reflection is also interesting and shows marked 



10 
 

changes near the boundary as would be expected, but the inside of the sphere (some 20 
diffusion lengths from the surface) is virtually unaffected by the boundary condition, as 
illustrated by the example at 10τ . The data used are  

 5
22.5 , 50 , 10 , 4.6, 2.4, 1.1L cm R cm s kτ χ ν−= = = = = =  

              

  

A further feature of interest is how the survival probability changes with time at the centre of 
the sphere and at the surface. Fig 2 shows the variation of (0, ) and ( , )W t W R t for two 
values of the extrapolation distance; 0 and 5s cmλ = . As expected from Fig 1, the centre 
point is insensitive to the extrapolation distance. However, the surface point is very sensitive 
and we note how for the bare case ( 0sλ = ) W decreases very rapidly with time due to the 
large leakage at the surface (NB: this value is not exactly at the surface, where it would be 
zero, but 0.006 cm from it). On the other hand, for the reflected case, the survival probability 
decreases much more slowly. This again is expected physically and shows the importance of 
having reflectors around a supercritical system. 
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Figure 1: Survival probability in a sphere for various reflector properties
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4.2 The Startup Source 

We now move on to the calculation of the safety factor Q and the magnitude of the associated 
startup source. The principle involved here depends, as noted above, on the value of 

 
* 1

*

0
( , ) ( , )

n

S
n

Q n t P n t
−

=

= ∑  (30) 

Before entering into these calculations it will be helpful to look at the physical situation. We 
wish to ensure that the probability of a first persistent chain, i.e. the random generation of a 
very severe transient, will be reduced to a certain value Q. Alternatively, we must ensure that 
the fraction of neutrons less than n* is very small because it is a low neutron density that 
leads to fluctuations. First it is necessary to decide what is meant by a deterministic situation. 
Clearly this means the time at which the fluctuations have reduced to small relative values 
and we approach this situation as the neutron density or power increases. In practice, it may 
be shown by simulation that for a low neutron density the fluctuations are very large but, as 
the density increases, for example due to the insertion of reactivity, so the relative 
fluctuations which we define by ( ) ( ) / ( )sR t t n tσ= , where ( )tσ is the standard deviation of 

the density and ( )n t the mean density, are small. It turns out that ( )sR t  decreases as density 

increases until, at a certain time, which we refer to as the ‘maturity time’ matt , ( )s matR t  is 

0

0.2
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Figure 2: Survival probability as a function of time at the surface of the sphere 
and the centre for  different extrapolation distances



12 
 

essentially a constant with any further increase in time having little effect. We define matt

arbitrarily but with little error as the value from which any fractional change in ( )sR t is less 

than 410− . Values of 5 310 10to− − would also suffice and we will have more to say about the 
practical aspects of this choice below. The important point is that the fluctuations are no 
longer changing statistically and we are in the so-called deterministic regime; actually it is 
not quite deterministic as fluctuations will always be present, but in this case they are very 
small. The value of the mean density at the start of the deterministic regime is important and 
by definition is is ( )matn t . Now in the formula for *( , )matQ n t  above we have a neutron 

number density *n . The value of *( , )matQ n t  is defined as that value for which *( )matn t n= . 

To be more precise we actually fix the value of Q, say 810− , and find the magnitude of the 
external source such that *( )matn t n= ; this will be the safe source. To show how this 
argument links up with the source strength we may note that at the maturity time the 
probability distribution function ( , )SP n t becomes a function of  / ( )n n t  and so the 
cumulative distribution  

 
* *1

0
( *, )

( ) ( )

n

mat
n mat mat

n n
Q n t P Q

n t n t

−

=

   
= =   

   
∑  

Now *( ) and ( )mat m matn t S n t S∝ ∝ , where mS  is the original source and S is new source 
required to ensure the desired safety factor. Thus we can write 

 
* *( ) ( )so that
( ) ( )

mat m mat m

mat mat

n t S n t S
Q Q

n t S n t S

   = =   
  

 

These arguments were first developed by Hurwitz et al (1963), although it is not easy to 
extract them from their discussion. As a clear example of how the increase in source strength 
dampens the fluctuations, we show below a simulation based on a Gamma distribution for the 
neutron density as a function of time as the reactivity increases in a ramp-like manner. The 
data used are as follows: 

 
0.017$ / , 45 , (0) 0.5$, 0.008

426 / and 18659 /
dot

m

R s s

S n s S n s

     

 
 

Six groups of delayed neutrons are employed. We find the simulations shown in Fig 3; see 
Appendix C for full details. The source multiplier comes from the appropriate Hurwitz curve 
(defined in I and below) and in this case is  

 *

( ) 18659 43.8
( ) 426

mat

mat m

n t S
n t S

= = =  
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The behaviour in the figure shows very clearly that, for the weaker source, mS , the 

fluctuations are very large indeed whereas for the stronger source S (which is mS corrected by 
the source multiplier) the fluctuations are much smaller and not too different from those 
expected in the deterministic regime. The source multiplier is therefore a crucial parameter in 
ensuring the absence of fluctuations. Calculation of the source multiplier, i.e. the factor by 
which the original source must be multiplied to give a value of 810Q −= , has been discussed 
in detail in I which assumed a point model; now we extend that to spatial variation of the 
source. 

4.3. The Saddlepoint Method 

It will have been noted that eqn (1) is for the generating function of the probability 
distribution but that in practice we need eqn (30) which is the cumulative distribution. 
Hurwitz et al (1963) employed the saddlepoint method to effect the inversion of the 
generating function to obtain Q directly. Their result is given in the form 

 *
0*

0 0 0

( ,1, , )1( , )
2 (1 )

S

n

G x t R s
Q n t s

x x


 
 (31) 

where the forms of 0 0andx σ are given in Appendix B. From these results it is clear that not 

only do we require the generating function (...)SG  but also its first and second derivative 

with respect to z, viz: (...)SxG  and (...)SxxG . These derivatives can be obtained from eqns (1), 
(2) and (3a) in a straightforward manner, full details are given in I but a summary is given 
below, viz: 

10-30

10-20

10-10

100

1010

0 10 20 30 40 50 60 70 80

S=18659 n/s
Sm=426 n/s

t sec

Figure 3:  Fluctuating number densities for Sm and S
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( ) ( )

( ) ( )
( ) ( ) ( )

0
0 0 0

2
0 0 0 0

1

( , , , , )
, , ( , , , , )

( , , , , ) , ,

where , 1 1

λ λ

λ

νβ
=

∂
− = −

∂

+ ∇ −

= − −∏

y r
r r y r

y r r







 

 

 

f a

f i

I

i i i
i

g x t R s
s s g x t R s

s
D g x t R s s H g h

H g h f g h

 (32) 

In addition, we will need equations for 

( , ), ( , ), ( , ), ( , ), ( , ), ( , )y y y y y y 

 x xx ix ixx Sx Sxxg x g x h x h x G x G x  

which assume the form 

 ( )2
0 0 ,λ λ∂

− = − + ∇ −
∂




  

x
a x x f x i

g g D g H g h
s

 (33) 

 ( )2
0 0 ,λ λ∂

− = − + ∇ −
∂




  

xx
a xx xx f xx i

g g D g H g h
s

 (34) 

 , ,i ix ixx
i i i i ix i x i ixx i xx

h h h
h g h g h g

s s s
λ λ λ λ λ λ∂ ∂ ∂

− = − + − = − + − = − +
∂ ∂ ∂

  

  

    (35 a,b,c) 

 

 
 

     
, , ,

( , ) 1Sx
d q Sx qx S

V

G x y t R s
d S s f g G f g G

s
r

r r


   
   (36) 

and 

 
 

       
, , ,

( , ) 1 2Sxx
d q Sxx qx Sx qxx S

V

G x y t R s
d S s f g G f g G f g G

s
r

r r


    
    (37) 

The final conditions on these quantities are 

 0 0 0( , , , , ) (1 ) ( , ) and ( , , , , ) 0r ig x t R t x V h x t R ty r r y r

      (38) 

These conditions apply for the neutron probability distribution. If the pdf of the precursors is 
required then the final conditions change to 

 0 0 0( , , , , ) 0 and ( , , , , ) (1 ) ( , )i i rg x t R t h x t R t y Vy r y r r

      (39) 

The boundary conditions corresponding to zero neutron and precursor density on the surface 

sr of the system are 

 ( , , , , ) 0 and ( , , , , ) 0s i sg x t R s h x t R ty r y r

    (40a) 
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If we have a reflector around the core which can be modelled by a reflector savings sλ , then 
eqn (40a) for neutrons becomes 

 ( ) ( ). , , , , , , , , 0s g x t R s g x t R sλ ∇ + =s sn y r y r   (40b) 

The condition on ih is unchanged. The final condition on ( , , , )SG x t R sy  

 ( , , , ) 1SG x t R t =y  (41) 

which implies that there are no neutrons in region R. It is also necessary to evaluate the 
quantities ( ) ( ), and ,x p i xx p iH g h H g h 

   which are given in Appendix B. We now have the 

complete set of equations that enable us to obtain the quantities used in the saddlepoint 
method, as described in eqns (B7)-(B9). The spatial aspects in the saddlepoint method use the 
collocation approach as described in Appendix A, see eqns A20-A23. 

  A further useful observation is that if one has the set of equations for the saddle-point 
method, i.e., ( , ), ( , ), ( , ), ( , ), ( , ), ( , )y y y y y y 

 x xx ix ixx Sx Sxxg x g x h x h x G x G x , then by setting 

1= =ix y , we immediately have those for the moments, , ( 1)n n n − , etc. Moreover, the 

only place where x and iy  appear explicitly in the backward equations is in the final 

condition, e.g. ( , , ) 1= −yg x t t x  and ( , , ) 1= −y

i ih x t t y , so  we may set x=1 or 1iy =  for the 

appropriate moment. Thus we simply run the saddle-point code with new final conditions. 

4.4 Criticality  

In order to introduce reactivity into the system we shall use a ramp model. First, however, 
consider the criticality problem of our system. Let us assume that we have a homogeneous 
sphere of radius R in which the diffusion equation may be written 

 
2

02

( ) 2 ( ) 1 ( ) 0f f c
eff

d r d r
D r

dr r dr k
φ φ ν φ

  
+ + Σ −Σ −Σ =       

 (42) 

This may be rewritten as  

 
2

2 2
02

( ) 2 ( ) 1 1( ) 0, with f f c
eff

d r d r
B r B

dr r dr D k
φ φ φ ν

 
+ + = = Σ −Σ −Σ  

 
 (43) 

The boundary condition is ( ) ( ) 0s
r R

d r
R

dr
φλ φ

=

+ = . The general solution of eqn (43) is  

 sin( )( ) Br
r A

r
φ =  (44) 
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which after using the boundary condition leads to the following transcendental equation  for 
the eigenvalue B, viz: 

 cos( ) (1 )sin( ) 0x x xλ λ+ − =  (45a) 

where and /sx BR Rλ λ= = .  For a cylinder the eigenvalue equation becomes 

 0 1( ) ( ) 0J x xJ xλ− =  (45b) 

The criticality equation can be written 

 2
0

f
eff

f c

k
DB

νΣ
=

+Σ +Σ
 (46) 

For an arbitrary variation of reactivity with time, ( )tρ  we may, from eqn (46), write the 
variation of the capture cross section as 

 ( ) 2( ) 1 ( ) 1c ft t DBν ρΣ = Σ − − −    (47) 

The initial value of the reactivity is defined by (0)ρ [<0] which in terms of  0cΣ  will be 

 ( ) 2
0 1 (0)c f f DBν ρΣ = Σ − −Σ −  (48) 

B is calculated from the root of eqn (45a) or (45b) according to geometry. 

4.5 slab geometry 

   We illustrate numerically the above equations for one group of delayed neutrons and one 
speed neutrons for slab and spherical reactors with a series of localised sources and a uniform 
source. The neutron flux is zero on the boundary. The following data are used in Figs 4-6 for 
a ramp insertion of reactivity: 

 
1

2
1 1

1/ 3, 4.635, 0.008, 0.08519 , 2.42
426 , 0.017$ , 45 , (0) 0.5$dot

D s

S ns R s s

χ β λ ν

µ ρ

−

− −

= = = = =

= = Λ = = −
 

Although one group of delayed neutrons is sufficient to show the general behaviour of the 
generating function with regard to system size, extrapolation distance, etc, it is not sufficient 
to get working values of Q. Thus we will repeat some of the calculations with six groups to 
show the error involved. The problem with using six groups is that it takes about 10 times 
longer to run the code which amounts to around 5 hours per run. We also note that due to the 
slow rate of change of reactivity and the maximum reactivity achieved in such calculations 
(about 1$), it is only necessary to use the quadratic approximation in the multiplicity terms. 
We have checked that using seven terms gives no significant change in Q. 

    In order to compare the accuracy of the collocation method with that of our earlier method 
(I), namely the eigenfunction expansion, we have used both methods for a few examples. Fig 
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4 shows the variation of Q with / *n n  (the source multiplier) as a function of the source 

position ( 87.4matt s= ). Three configurations are used; the source is at the core centre (a/2) 
and the source midway between centre and edge (a/4) and finally the source is uniformly 
distributed across the core. It is noted that the eigenfunction and collocation methods are 
close to each other especially in the region of interest ( )810Q −= . We have also checked the 

result of placing two sources of half-strength in mirror image positions in the core. It appears 
that two half strength sources at a/4 and 3a/4 give the same value of Q as one full strength 
source at either a/4 or 3a/4. The execution times of the two methods are broadly comparable 
for the same accuracy. However, when six groups of delayed neutrons are included and 
higher multiplicities used, the collocation method proves more effective, especially when the 
geometry is of a realistic form. The symbol 2nd N= −  in Fig 4, where N is the number of 
collocation points. 

                    

 

Fig 5 shows the variation of Q with reactor width, when the source is uniformly distributed 
across the core. The behaviour in fig 5 is interesting because it shows that Q tends to a 
limiting value as the width decreases. This suggests that a point model is developing and 
might explain why the point model is such a good approximation to assemblies such as 
Godiva. Conversely, as the width increases, Q again tends to a limiting value which, in the 
limit of infinite width, does tend to the classic point model as developed in I [see eqn (16)]. 
Thus the small width limit shows that there is a significant error in the point model for small 
systems due to the increased leakage. We also note that the results converge well with only a 
few collocation points; for example nd=5, 7 and 9 values of Q are within 0.01% of each 
other. When we move on to spherical geometry we will see some rather different behaviour 
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Figure: 4:  Hurwitz curve  at various positions in slab of width a



18 
 

of Q with system size. Fig 6 shows how the single particle neutron density varies across the 
core and each collocation source term eqn(14) in the Pál-Bell equation is weighted by this. 
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4.6 Effective point model 

    It would be very convenient if we could employ the point model approach to describe the 
space dependence by simply modifying the strength of the source, i.e. by multiplying the 
source by a factor which is related to the importance function associated with the source 
position in the core. As an example of this, we show in Figs 7 and 8 the Hurwitz curves and 
the relative standard deviation ( ) / ( )t n tσ , respectively. The data used are 

426 / and 0.017$ / .dotS n s R s= =  Fig 7 shows the Hurwitz curves for the exact space 
dependent case when the source is at a/2, a/4 and a/8 and these curves are compared with 
curves from the point model in which the source has been multiplied by 1.15, 0.85 and 0.46, 
respectively. Fig 8 shows the corresponding values of ( ) / ( )t n tσ  for a/2, a/4 and a/8 while 
Fig 9 shows ( ) / ( )t n tσ  for the weighted values of the source. The values of Q in Fig 7 are 
very close and the values of ( ) / ( )t n tσ  are also close at the maturity time. We have not been 
able to deduce values of these weighting functions from first principles, but it seems likely 
that they can be obtained from an expression similar to that in the weighted source found 
from perturbation theory (Akcasu et al, 1971). This would seem to be a profitable line of 
investigation as it could simplify the solution of the Pál-Bell equation significantly. 
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Figure 7: Hurwitz curves for space and effective point models
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4.7. Spherical and cylindrical geometry 

We pass on now to more realistic geometries, namely the sphere and cylinder. Our first 
example uses the following data 

 
1

2
1 1

1/ 3, 4.635, 0.008, 0.08519 , 2.42
127 , 0.008519$ , 45 , (0) 0.5$dot

D s

S ns R s s

χ β λ ν

µ ρ

−

− −

= = = = =

= = Λ = = −
 

The Hurwitz curves are obtained for one group of delayed neutrons for a sphere of radius 50 
cm and for extrapolation distances ranging from sλ = 0 to 50 cm. Fig 10 shows the results and 

we note that, for the uniform source, as sλ  increases the source multiplication factor */n n

decreases. On the other hand for a point, centrally located source the reverse effect occurs. 
The uniform case is physically clear because as the extrapolation distance increases the 
leakage decreases and hence the neutron density is higher leading to a weaker source for 
stochastic stability. To explain the behaviour for the point source we must refer back to eqn 
(22), viz: ( ), , , ,T jS g x t R v sy which for a centrally located source becomes 

( ), , , ,T NS g x t R v sy . Fig 11 shows the values of the single particle density 

( )( , ) 1, 1, , ,0j mat x mat jn r t g x t R v= = =y  and also the corresponding relative standard 

deviation. It is important to note that the value of (0, )matn t  decreases as sλ increases 

thereby reducing the effective source strength, and explaining mathematically why the source 
multiplication factor increases. The physical reason for this behaviour is more difficult to 
understand. 

    The shape of the density in Fig 11 is as we expect, and that of the relative standard 
deviation increases as we move towards the sphere surface. This is also to be expected 
because at the sphere surface the neutron density is lower than at the centre and hence 
involves greater fluctuations. There is also a general flattening of the distribution as sλ  
increases. 
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Fig 11 also shows how the spatial variation converges as the number of collocation points 
increases from five to nine (see 15sλ = ). It is satisfying to note that despite the radius being 
50 cm, five collocation points give a reasonably accurate representation. 

     In order to illustrate the relative differences between slab, cylindrical and spherical 
systems we show Fig 12. The source is in the form of a plane sheet at the centre of the slab, a 
line along the centre of the infinite cylinder and a central point for the sphere. A range of slab 
thicknesses and cylinder and sphere radii are used and it is clear that, for such localised 
sources, the size of the system is of minor importance as far as the value of Q is concerned in 
the range of radii 25-100 cm. The curves in Fig 12 are all for one group of delayed neutrons 
except for one case for the sphere which is for 6 groups. The one group case has a maturity 
time of 87.2 s. We give this example in order to show the significant, indeed vital, importance 
of using 6 groups. However, as we intimated earlier, the one group results are still useful for 
demonstrating general behaviour. We also show the insensitivity to the number of collocation 
points greater than five. A further result shown in Fig 12 is for the classic point model (bold 
line) which is significantly different from the spatial models and is strongly conservative. For 
example, if we require a safety factor of  810− , then fig 12 shows that for a sphere of radius 
50 cm the source multiplier is 6.6, whereas the point model gives 147. 

 

To show the sensitivity of size and geometry on Q for a uniform source and a central source, 
we have Figs 13 and 14 for cylinders and spheres, respectively with an extrapolation distance 
of 5 cm. In this case we have a source of 1127ns − , and reactivity rate of 10.00852$s − and an 
initial reactivity of 0.5$− . The results are for one group of delayed neutrons and in some 
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cases we have increased the number of collocation points above the base value of 5. Very 
little change in the Hurwitz curves are noted, particularly around and below the interesting 
range of Q values ( 810−> ).  We note that, in contrast to the central source location, the Q 
value for a uniformly distributed source is very sensitive to size. Physically, this is easy to 
understand because central sources are always in the position of maximum importance 
whereas for uniform sources each point has a gradually decreasing importance as the 
boundary is approached. A combination of localised and and uniform sources, as will be met 
in practice, indicates that system size will have an effect on Q. The traditional point model 
results lie in between the uniform and central values and there are significant differences 
between these values. 
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An example will show how the effect of the source multiplication factor modifies the Hurwitz 
curve. Thus let us choose 1127S ns −= and 10.0085$dotR s −= at an initial reactivity of 0.5$−  

and radius 100 cm. The Hurwitz curve in Fig 14 shows that for 810Q −= , the source 
multiplication factor must be 21. Thus the modified source strength will be 

* 121 127 2667S ns −= × = . Using this value as a new source strength we calculate the new 
associated Hurwitz curve which is shown in Fig 14 as a thick dark line. The new source 
multiplication factor is around 2, which is physically acceptable because there is always some 
stochastic residual behaviour, but in this case it is so small as to indicate essentially 
deterministic behaviour. The point model result in Fig 14 shows, that for a centrally located 
source, the point model is highly conservative, whereas in the case of uniformly distributed 
source the point model is highly non-conservative. We also show (indicated by “space λ = ∞
”) the case of the spatial model with an infinite extrapolation distance. As can be seen, and as 
expected, this closely resembles the point model. It is tempting to approximate leakage by 
introducing a 2DB term but this has little practical effect as its contribution to neutron losses 
in a typical reactor system is much less that that due to absorption. The main effect of spatial 
dependence is via the source position and distribution, as indicated by the graphical results 
above. 

Finally we show Fig 15 for slab, cylinder and sphere each of which has the same mean chord 
length  , i.e. 2 , 2 , 4 / 3slab cylinder spherea R R= = =   . We choose 100 cm as the mean chord 
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length and note that for a specified value of safety factor 810Q −= , the slab has the smallest 
source multiplier of 32 followed by the cylinder at 37 and then slab at 71. 

 

 

4 Summary and conclusions 

The problem of dealing with the calculation of the magnitude of the neutron source in the 
startup of a nuclear reactor is of great practical importance. If the source is too weak then 
severe statistical fluctuations can arise, and if too strong unnecessary expense is incurred. The 
theory described above is based on the Pál-Bell equations which comprise methods of 
representing the neutron and precursor probability distribution in a compact form using 
generating functions. The main goal of the calculations is to obtain the source strength 
necessary to restrict the probability of any adverse stochastic effect to a prescribed value, say 

810− . We have described the way in which the Pál-Bell equation can be used and the methods 
of inverting the generating function to obtain the probability distribution function. From this 
one can ensure that the fraction of neutrons less than a prescribed value is very small thereby 
reducing the likelihood of unwanted fluctuations. To put it otherwise the probability of there 
being very few neutrons below some fiducial level is small. In order to carry out the 
calculations, we have relied on the general philosophy of earlier workers in the field, mainly 
Hurwitz and co-workers (1963), but with a significant variation in method. These early 
workers used the forward form of probability balance which, although applicable to a point 
model, is not suitable for the case of energy dependence or spatial variation of the source. 
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The main advances in this paper are extensions to space dependence and to slab, cylindrical 
and spherical geometries. One group of delayed neutrons and six groups are used in the 
calculations. It is found that six groups are essential for practical calculations but that using 
one group is suitable for general scoping studies to investigate changes in geometry and 
system size. Using six groups does involve long computation times of several hours but this 
is possible, and results for practical situations are readily available. 

Finally we comment on energy dependence. Calculations with the code CALLISTO, and 
using our earlier two group work (I), indicate that the effect of cross section energy 
dependence and the associated slowing down process, do not change the value of Q 
significantly provided the appropriate average thermal cross sections are employed. More 
will be written about this matter in future. 

 

Appendix A Collocation methods in slabs, spheres and cylinders. 

Let us assume that we have a one dimensional system such that ( )u x , is the solution of the 
following second order differential equation.  

 ( )
2

2

( ) ( )( ) ( ) ( ) ( ) ( ) 0; 0,d u x du x
A x B x C x u x Q x x a

dx dx
+ + + = ∈  (A1) 

We now transform x such that 2 / 1v x a= − , so that ( )1,1v∈ − . The above equation then 

becomes 

 ( )
2

2 2

4 ( ) 2 ( )( ( 1)) ( ( 1)) ( ( 1)) ( ) ( ( 1)) 0; 1,1
2 2 2 2
a d u v a du v a a

A v B v C v u v Q v v
a dv a dv

+ + + + + + + = ∈ −  

            (A2) 

We may now choose collocation points ( )cos /kv k Nπ=  where 0,1,2...k N= , when 

according to Chebyshev-Gauss-Lobatto (CGL) rules we have 

 
2

1 22
0 0

( ) ( )( , ) ( ) and ( , ) ( )
N N

j j
j jk k

du v d u v
d k j u v d k j u v

dv dv= =

≈ ≈∑ ∑  (A3) 

Eqn (A2) now becomes in an obvious notation 

 2 12
0 0

4 2( , ) ( , ) 0
N N

k j k j k k k
j j

A d k j u B d k j u C u Q
a a= =

+ + + =∑ ∑  (A4) 

The symbols 1 2( , ) and ( , )d k j d k j are defined in Kopriva (2009). The advantage of the CGL 
method is that the boundary lies on collocation points and so may be separated off in order to 
apply boundary conditions. Thus we may re-write eqn (A4) as 
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1 1

2 12
1 1

2 0 2 1 0 12

4 2( , ) ( , )

4 2( ( ,0) ( , ) ) ( ( ,0) ( , ) ) 0

N N

k j k j k k k
j j

k N k N

A d k j u B d k j u C u Q
a a

A d k u d k N u B d k u d k N u
a a

− −

= =

+ + +

+ + + + =

∑ ∑
 (A5) 

In the simplest case of zero value on the boundary 0 0Nu u= = and the additional terms are 
zero. Suppose now that we have more general boundary conditions of the form 

 0 1
0

( ) ( )(0) and ( )
x x a

du x du x
u u a

dx dx
λ λ

= =

= − =  (A6) 

Transforming these conditions to the variable v , as described above, we find 

 0 1
1 1

( ) ( )2 ( 1) and 2 (1)
v v

du v du v
u u

dv dv
λ λ

=− =

= − − =   (A7) 

Using the CGL approximation for the first derivative leads to 

 0 1 1 1 0
0 0

2 ( , ) and 2 (0, )
N N

j N j
j j

d N j u u d j u uλ λ
= =

= − =∑ ∑    (A8) 

where /i i aλ λ= . Separating off  the 0 and termsj N= , we find 

 

( )

( )

1

0 1 0 1 0 1
1

1

1 1 1 1 0 1 0
1

2 ( , ) 2 ( ,0) ( , )

and

2 (0, ) 2 (0,0) (0, )

N

j N N
j

N

j N
j

d N j u d N u d N N u u

d j u d u d N u u

λ λ

λ λ

−

=

−

=

+ + =

− − + =

∑

∑

 

 

 (A9 a,b) 

We may solve eqns (A9 a,b) for 0 and Nu u to get 

 
( )

( ) ( )
1 0 1 0 0 1

0 0 0 0
0 1 1 1 1 1 1 1 0 1

2 (2 ( , ) 1) 2 (0, )

1 4 (0,0) ( , ) (0, ) ( ,0) 2 (0,0) ( , )
N

N

d N N d d N d
u X d Y d

d d N N d N d N d d N N

λ λ λ

λ λ λ λ

− −
= ≡ +

− − + −

  

   

 

  (A10 a) 

 
( )

( ) ( )
0 1 1 1 1 0

0
0 1 1 1 1 1 1 1 0 1

2 (2 (0,0) 1) 2 ( ,0)

1 4 (0,0) ( , ) (0, ) ( ,0) 2 (0,0) ( , )
N

N N N N

d d d N d
u X d Y d

d d N N d N d N d d N N

λ λ λ

λ λ λ λ

+ −
= ≡ +

− − + −

  

   

  
  (A10 b) 

The terms 0 and Nd d are defined as 
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1 1

0 1 1
1 1

(0, ) and ( , )
N N

j N j
j j

d d j u d d N j u
− −

= =

= =∑ ∑  (A11 a,b) 

Combining these terms with those in eqn(A5) we have 

 ( ) ( ){ }

( ) ( ){ }

1 1

2 1
1 1

1

2 1 0 2 1 1
1

1

2 1 0 2 1 1
1

4 ( , ) 2 ( , )

4 ( ,0) 2 ( ,0) 4 ( , ) 2 ( , ) (0, )

4 ( ,0) 2 ( ,0) 4 ( , ) 2 ( , ) ( , ) 0

N N

k j k j k k k
j j

N

k k k k N j
j

N

k k k k N j
j

A d k j u B d k j u C u Q

Ad k B d k X Ad k N B d k N Y d j u

Ad k B d k Y Ad k N B d k N X d N j u

− −

= =

−

=

−

=

+ + +

+ + + +

+ + + + =

∑ ∑

∑

∑

 

  (A12) 

Eqn (A12) may be written more concisely as 

 
1

1
( , ) 0; 1,2,.. 1

N

j k k k
j

B k j u C u Q k N
−

=

+ + = = −∑  (A13) 

where 

 ( ) ( ){ }
( ) ( ){ }

2 1

2 1 0 2 1 1

2 1 0 2 1 1

( , ) 4 ( , ) 2 ( , )

4 ( ,0) 2 ( ,0) 4 ( , ) 2 ( , ) (0, )

4 ( ,0) 2 ( ,0) 4 ( , ) 2 ( , ) ( , )

k k

k k k k N

k k k k N

B k j Ad k j B d k j

Ad k B d k X Ad k N B d k N Y d j

Ad k B d k Y Ad k N B d k N X d N j

= + +

+ + + +

+ + + +

 (A14) 

This operator does, of course, include the boundary conditions (A6). The solution of these 
linear equations gives the solution to eqn (A1) with boundary conditions (A6) to any degree 
of accuracy as N is increased. In general, for smoothly varying functions, relatively few 
collocation points ( )10N < give adequate accuracy. 

To extend the collocation method to two and three dimensions we refer the reader to Kopriva 
(2009) who shows that, for two dimensional x-y geometry, Poisson’s equation 

2 ( , ) ( , ) 0x y S x y    , may be written in the form  

 
1 1

(2), (2), (2), (2), (2), (2),
, , , , , ,0 0, , , ,0 ,0 , ,

1 1

N M
x y x x y y

i k k j j k i k i j i j i N N j j i j M i M
k k

D D S D D D D
 

 

                       

where the terms on the right hand side are the source and the known boundary conditions. An 
analogous expression arises for three dimensions. 

Spherical and cylindrical geometry 

The results above apply to slab geometry and to symmetric spherical and cylindrical 
geometry, i.e. no angular terms. For example, if we have a sphere or an infinite cylinder then 
the centre point is equivalent to the boundary condition (0) 0u′ =  or in terms of eqns (A7), 
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0λ = ∞ . Thus if we set a R= , the sphere or cylinder radius, then the above formula reduces 

to ( ) 1A x = or 1kA = and ( ) 2 /B x x= for a sphere i.e. 4 / (1 )k kB v R= +  ; for a cylinder 

2 / (1 )k kB v R= + . We then find, with 1λ λ=  , 

 2 1 1 12

1 8( , ) 4 ( , ) ( , ) ( , ) (0, )
(1 ) k k

k

B k j d k j d k j S d N j T d j
R v

 
= + + + + 

 (A15) 

where 
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1 1 1 1 1
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1 1 1 1 1

2 (0, ) (1 2 (0,0))
2 (0,0) ( , ) (0, ) ( ,0) ( , )

2 ( ,0) ( , )
2 (0,0) ( , ) (0, ) ( ,0) ( , )

k k
k

k k
k

U d N V d
S

d d N N d N d N d N N

V d N U d N N
T

d d N N d N d N d N N

λ λ
λ

λ
λ

− +
=

− +

−
=

− +

 







 (A16 a,b) 

and 

 2 1 2 1
8 84 ( ,0) ( ,0), 4 ( , ) ( , )

1 1k k
k k

U d k d k V d k N d k N
v v

= + = +
+ +

 (A17) 

For a cylinder we have the same value of ( , )B k j except the numeral 8 in eqns (A15) and 
(A17) is changed to a 4. Also, for sphere and cylinder: 

Boundary value 

 
( )

( )

1

1 1 1 1 1
1

0
11 1 1 1 1

2 (0, ) ( , ) ( , ) (0, )

2 (0,0) ( , ) (0, ) ( ,0) ( , )
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j N
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j

d N d N j d N N d j u
u BPu
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−

−
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=
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= ≡
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 (A18) 

and central value 
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 (A19) 

The collocation form of the generating function is therefore defined by eqn (32) as: 

 

( ) ( ) ( )

( )( ) ( )( )

1

0 ,
1

,
1

, , ,
( ) , , , , , ,
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N
k
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s f g x t R s h x t R s s

λ

λ νβ λ
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=

∂
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∏
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y y
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 (A20) 

with 
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( ) ( ) ( )

0

, , ,
, , , , , ,

N
S

S j j j
j

G x y t R s
G x y t R s w S g x y t R s

s =

∂
=

∂ ∑    (A22) 

or for a localised source 

 
( ) ( ) ( )

0

, , ,
, , , , , ,

N
S

S j j
j

G x y t R s
G x y t R s S g x y t R s

s =

∂
=

∂ ∑   (A23) 

Note that 0 and Ng g  are given by eqns (A18) and (A19). The final conditions on the above 

quantities are ( ), , , 1kg x y t R t z= − , ( ), , , , 0k ih x y t R t =  and ( ), , , 1SG x y t R t = . 

It will be noted that, in the above calculations, the reactivity via the change in capture cross 
section is inserted in a spatially uniform manner. In practice, the reactivity change would 
result from a locally placed absorber, i.e. the control rod or blade. This spatial location could 
be taken into account by regarding the capture cross section to be composed of two parts; a 
homogeneous part due to fuel and moderator and a highly localised part due to the rod. Thus 
in eqn A20 above we can write hom( ) ( , )a a Rs sλ λ λ= + r . The spatial part of this can further be 

written in terms of the collocation points as *,
( , ) ( , )R R k k k

s sλ λ δ=r r with *k
r being the control 

rod position. The localisation of the absorber has been discussed by Stacey (1969) and in 
some cases, for example in large reactors where spatial instability may occur, could have 
some effect. That is to say the neutron density on one side of the core could be lower than 
that on the other. This matter should be studied, although preliminary calculations indicate 
that it will not be a severe threat to stochastic stability. 

Appendix B: multiplicities and delayed neutrons 

To evaluate the quantities ( ) ( ), and ,x i xx iH g h H g h 

   we follow the usual rules of 

differentiation . We do this by recalling that   

 ( ) ( ) ( )
1

, 1 1 νβ
=

= − −∏ 

 

I

i i i
i

H g h f g h  (B1) 

where 

 
0

( 1)(1 ) ( )
!

nM

n
n

f g g f g
n

χ
=

−
− = →∑    (B2) 

For simplicity we write ( , )iH H A B= , where and i i iA g B hνβ= = 

 . In our earlier work (I), 
we obtained these derivatives and now write them as  
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with  
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2 2, , ,i i
x xx ix ixx

dB d BdA d A
A A B B

dx dx dx dx
= = = =  

. 

We now have the complete set of equations that enable us to obtain the necessary quantities 
used in the saddlepoint method (see I),viz: 

 *
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0 0 0

( ,1, , )1( , )
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n

G x t R s
Q n t s

x x
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 (B9) 

   A further useful observation is that if one has the set of equations for the saddle-point 
method, i.e., ( , ), ( , ), ( , ), ( , ), ( , ), ( , )y y y y y y 

 x xx ix ixx Sx Sxxg x g x h x h x G x G x , then by setting 

1= =ix y , we immediately have those for the moments and tedious algebraic manipulations 
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are avoided unless one wishes to actually write down the equations. Even though this would 
be a useful exercise it would not be necessary to code them separately as their solution is 
readily incorporated into the code. Moreover, the only place where x and iy  appear explicitly 

in the backward equations is in the final condition, e.g. ( , , ) 1= −yg x t t x , and so  we may set 

x=1 and (1,1, ) 0=g t t . Thus we simply run the saddle-point code with new final conditions. 

Appendix C: The Gamma distribution 

In our previous work (I), we noted the general usefulness of the Gamma pdf which requires 
only the mean and variance of the distribution to completely specify it. As an example of this 
we have seen that the Gamma pdf leads to good agreement with the CALIBAN experiments 
(Williams, 2016). We also note that for a sufficiently small start-up rate it agrees well with 
the saddlepoint method for predicting values of Q. In addition, the Gamma pdf is a powerful 
tool for simulating stochastic behaviour by obtaining realisations of the neutron density to 
explain the physical processes behind the low source problem and the calculation of a safe 
source.    

The conventional method devised by Hurwitz and co-workers to calculate the safe source in 
reactor startup is to find the maturity time tmat and hence to find the source multiplier 

*( ) /matM n t n=   for a specified Q where 

 
* 1

0

( , )
n

mat
n

Q P n t S




  (C1) 

and ( , )P n t S  is the neutron density pdf which we will take as the Gamma pdf, and which 

bypasses the need to solve the Pál-Bell equations. We wish to give some physical explanation 
to the argument which defines the maturity time as a suitable criterion for defining the onset 
of the deterministic region and for the calculation of the source multiplier M. In practice, we 
find a relationship between Q and ( ) / *matM n t n  so that if S is the original source then M 
is the factor by which it must be multiplied to give the specified value of Q. For the case of 
S=426 n/s and a ramp reactivity of 0.017 $/s , in a reactor initially at a sub-criticality of -0.5$, 
we obtain the Hurwitz curve shown in Fig C1 which, using the point model, corresponds to a 
maturity time of 76 s.                                                          



34 
 

                 

 

If we wish to have 810Q  , then from fig C1, we see that the multiplier is M=43.8. The safe 

source is therefore * 43.8 426 18659S     n/s. It is the purpose of this Appendix to 
compare the neutron density pdf for the original source of 426 n/s with that of the revised 
safe source S*. Before this, we may calculate the value of Q for the original source of 426 n/s 
which for ( ) / * 1matM n t n   gives a value of 0.25510 0.56Q −= = , i.e. using the original 
source there will be a 56 % chance of a persistent chain arising but with the new one this is 

810Q  . 

The Gamma pdf is known to be a physically acceptable equivalent of the actual neutron pdf 
and we use it in eqn C1 in the form, 

 
 

( ) 1
( ) ( ) ( )( , ) exp

( ) ( ) ( ) ( )

t

G

t t n t n
P n t

n t t n t n t


  



                 
 (C 2) 

where ( )n t  is the mean neutron density and ( )t is equal to 2 2( ) / ( )nn t t ; 2 ( )n t  being the 
variance. The corresponding value of the cumulative pdf at the maturity time is 

 ( ) ( )
( )

*( ), ( ) / ( )
( )

mat mat S mat

mat
mat

t t n N t
Q t

t

γ η η

η
=

Γ
 (C 3) 
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Figure C1: Hurwitz curve from Gamma pdf for S=426 n/s Rdot=0.017 $/s
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where ( , )x yγ  is the incomplete Gamma function. Although the Gamma pdf is physically 
reasonable, as we shall see it is not always so quantitatively. 

In order to understand the actual physical behaviour of the pdf we may regard the Gamma pdf 
as a close analogy and use the data below to illustrate a number of points. 

 
0.017$ / , 45 , (0) 0.5$, 0.008

426 / and * 18659 /
R s s

S n s S n s

     
 

 

Thus, in fig C2, we see the pdfs at various times after startup as the reactivity increases from 
its subcritical value at -0.5$ to a supercritical value, passing through criticality at 29.4s. We 
use five different times 10, 20, 30 , 40 and 50 s. The figure shows that, for the weak source, 
all pdfs diverge at n=0 and thereby emphasise the low density region. This behaviour is 
reflected in the large fluctuations in the density observed in Fig 3 of the text. The source S*, 
which is increased by the factor 43.8, yields pdfs that are zero at n=0 and have a maximum 
value which moves towards the deterministic mean as time increases. The behaviour of both 
curves can be explained if we examine the behaviour of ( )t  as it appears in eqn (C2). Fig 
C3 shows ( )t  for both sources as a function of time, along with the variation of reactivity 

( )t  in $. It is clear from the form of the Gamma pdf that the value of ( )t is crucial. If it is 
less that unity, then the curve will diverge as 0n  , on the other hand for ( )t  greater than 
unity the pdf will go to zero at 0n  . Numerically, we find that for the weaker source 

( ) 1t   at a time of 58 s. Thus the bulk of the pdfs will be divergent at n=0 until after 58 s 
and the maturity time of 76 s is reached. For the modified source S* we find that ( ) 1t   
when t= 0.48 s which means that only during a small period of time, very near the beginning 
of startup, is it liable to undergo divergence at n=0. The value of ( )t  for S* goes up to 
nearly 200 and the associated pdf will have a maximum over most of its time period. Note 
that the relative standard deviation is / 1/nσ η= . The maturity time matt is unaffected by 
source strength.    
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We conclude by noting that the Gamma pdf is in principle useful for space dependent studies 
because all that is needed are the mean SN , i.e. a solution of the first derivative with respect 
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Figure C 2: pdf at various times for S and S*
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to x of eqn (3b), and the variance 2
Sσ , which arises from the solution of the second derivative 

with respect to x of eqn (3b). In this case the spatial distribution of the source is reflected in 
the corresponding values of mean and variance and hence in the Gamma pdf for which 

( )2
( ) ( ) and ( ) ( ) / ( )mat S mat mat S mat S matn t N t t N t tη σ→ = . An example, based on one delayed 

neutron group and 1 1426 , 0.017$S ns R s− −= = , is shown in Fig C4 for the saddlepoint 
method and the Gamma pdf for two source positions, viz: a/2 and a/4. The calculations use 
the collocation method for nd =5 and 11. To show the order of error incurred in the use of the 
Gamma pdf we show in Table C1 the source multiplication factors M for 810Q −= . It is clear 
that the Gamma pdf underestimates the multiplication factor and is therefore non-
conservative, also the error increases as the source weakens. In spite of that, the Gamma pdf  
remains a useful tool for guidance. Increasing the number of collocation points to 11, changes 
the results by an insignificant amount.  

Table C 1. 

Source multiplication factors for Gamma and saddlepoint methods. 

ND=5 and 11 
M(a/2,Gamma)=9.5 
M(a/2, saddle)=11.0 

M(a/4, Gamma)=17.0 
M(a/4, saddle)=23.0 
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