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Abstract—A cache-aided broadcast network is studied, in
which a server delivers contents to a group of receivers over
a packet erasure broadcast channel (BC). The receivers are
divided into two sets with regards to their channel qualities:
the weak and strong receivers, where all the weak receivers
have statistically worse channel qualities than all the strong
receivers. The weak receivers, in order to compensate for the
high erasure probability they encounter over the channel, are
equipped with cache memories of equal size, while the receivers
in the strong set have no caches. Data can be pre-delivered to
weak receivers’ caches over the off-peak traffic period before
the receivers reveal their demands. Allowing arbitrary erasure
probabilities for the weak and strong receivers, a joint caching
and channel coding scheme, which divides each file into several
subfiles, and applies a different caching and delivery scheme for
each subfile, is proposed. It is shown that all the receivers, even
those without any cache memories, benefit from the presence of
caches across the network. An information theoretic trade-off
between the cache size and the achievable rate is formulated. It
is shown that the proposed scheme improves upon the state-of-
the-art in terms of the achievable trade-off.

Index Terms—Network coding, centralized coded caching,
erasure broadcast channel, joint cache-channel coding.

I. INTRODUCTION

Content caching is a promising technique to flatten the
traffic over the backhaul network by shifting it from peak to
off-peak periods [1], [2]. Video-on-demand services for mobile
users would particularly benefit from content caching as a
few highly popular files are requested by a large number of
users over a relatively short time period. Popular contents that
are likely to be requested by a majority of the users can be
proactively cached at the network edge during periods of low
traffic, known as the placement phase. The delivery phase is
performed during a peak traffic period, when the users reveal
their demands, and the cached contents can be exploited to
reduce both the load over the backhaul links and the latency
in delivery [3].

A coded proactive content caching and delivery scheme has
been proposed by Maddah-Ali and Niesen in [3], [4], where
they consider a library of same-size files to be delivered over
a noiseless broadcast channel (BC), while the receivers are
equipped with cache memories of equal size. They identify
a trade-off between the cache size and the minimum rate
required during the delivery phase to serve all the receivers
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for all demand combinations, and show that coding can sig-
nificantly reduce the required delivery rate. Several improved
coded caching schemes and information theoretic performance
bounds have been introduced since then [5]–[13]. Coded
caching has since been extended to various other network
settings, including device-to-device caching [14], [15], online
cache placement [16], files with non-uniform popularities [17],
[18] and distinct lengths [19], users with non-uniform cache
sizes [20], [21], multi-layer caching [22], and caching by users
with different distortion requirements [23], [24].

In contrast to the setting introduced in [3], a noisy channel
is considered for the delivery phase in [25]–[30]. Here, we
follow the model considered in [27], and assume that the
delivery phase takes place over a memoryless packet erasure
BC, which models a packetized communication system, where
each packet is separately channel coded against errors at
the physical layer, so that a packet either arrives at the
receiver correctly, or is lost. Communication over the Internet
is usually modeled as a packet erasure channel. The receivers
in the system are grouped into two disjoint sets of weak and
strong receivers. All the weak receivers are assumed to have
statistically worse channels than the strong receivers, while
the users in each set can have arbitrary erasure probabilities.
To compensate for their worse channel quality, each weak
receiver is equipped with a cache memory of equal size.
Assuming equal-rate files in the library, we derive a trade-
off between the size of the caches provided to the weak
receivers and the rate of the files, for which any demand
combination can be reliably satisfied over the erasure BC.
The proposed scheme exploits a novel file subpacketization,
and performs a different caching and delivery scheme for
different subpackets. Moreover, the delivery of the contents
to the weak and strong receivers are coupled through the use
of a joint encoding scheme to maximally benefit from the
available cache memories. We show that, when specified to
the homogeneous scenario considered in [27], in which all the
receivers in the same set (i.e., weak and strong receivers) have
the same erasure probability, the proposed scheme outperforms
the one in [27].

The rest of this paper is organized as follows. We introduce
the system model in Section II. Main results are summarized
and compared with the state-of-the-art in Section III. The
proposed scheme is elaborated and analyzed in Section IV.
We conclude the paper in Section V.

Notations: For two integers i ≤ j, the set {i, i+ 1, ..., j} is
denoted by [i : j], while the set [1 : i] is denoted by [i]. For
two sets Q and P , Q\P is the set of elements in Q that do not
belong to P . Bold letters represent either sets or vectors, which
will be specified when they are used. Notation |·| represents
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Fig. 1. Cache-aided packet erasure BC. The first Kw receivers have statically
worse channels than the last Ks receivers, but each of them is equipped with
a cache of normalized size M .

the cardinality of a set, or the length of a vector. Notation ⊕
refers to bitwise XOR operation; and finally,

(
j
i

)
returns the

binomial coefficient “j choose i”.

II. SYSTEM MODEL AND PRELIMINARIES

We consider a server with a library of N files W
∆
=

(W1, ...,WN ). Each file is distributed uniformly over the set[⌈
2nR

⌉]
, where R denotes the rate of a file, and n is the

number of channel uses during the delivery phase. Receiver
k’s demand is represented by dk, where dk ∈ [N ], ∀k ∈ [K].
All the receivers are served simultaneously over a BC.

Following [27], the channel between the server and the
receivers is modeled as a memoryless packet erasure BC.
At each channel use, the server transmits an F -bit codeword
from the alphabet X ∆

= {0, 1}F , and the output alphabet at
each receiver is Y ∆

= X ∪ {∆}, where the erasure symbol ∆
corresponds to a packet that is not received at the receiver.
Receiver k, k ∈ [K], receives the transmitted codeword
correctly with probability 1 − δk, and the erasure symbol
∆ with probability δk. Thus, given the transmitted codeword
x ∈ X , receiver k ∈ [K] observes the output yk ∈ Y with the
conditional probability

P (Yk = yk |X = x ) =

{
1− δk, if yk = x,

δk, if yk = ∆.
(1)

Two disjoint sets of receivers, weak and strong receivers, are
considered, grouped according to the erasure probabilities of
their channels. These groups may model users located in areas
with relatively bad and good network coverage, respectively.
We assume that the channel condition of each strong receiver
is statistically better than that of each weak receiver; that is, the
erasure probability of a strong receiver is lower than any weak
receiver. Without loss of generality, we enumerate the receivers
in the order of improving channel quality, that is, we have
δ1 ≥ δ2 ≥ · · · ≥ δK . We denote the set of erasure probabilities
by δ

∆
= {δ1, δ2, ..., δK}. We denote the first Kw receivers as

the weak receivers, and the next Ks = K − Kw receivers
as the strong receivers, and we call this case, in which each
receiver in each set of weak or strong receivers can have a
different erasure probability, as the heterogeneous scenario. To
compensate for their worse channel quality, each weak receiver

is equipped with a cache memory of size nM bits, as depicted
in Fig. 1. The special case in which all the receivers in the
same set have the same erasure probability; that is, all the
weak receivers have erasure probability δw, and all the strong
receivers have erasure probability δs, with δs ≤ δw, is called
the homogeneous scenario. The set of erasure probabilities for
the homogeneous scenario is represented by δws.

In the placement phase, the caches of the weak receivers
are filled without the knowledge of their future demands, and
the contents of the cache of receiver k, for k ∈ [Kw], at the
end of this phase is denoted by Zk. The caching function for
receiver k ∈ [Kw] is given by

φk :
[⌈

2nR
⌉]N → [⌊

2nM
⌋]
, (2)

which maps the entire library to the cache content Zk, i.e.,
Zk = φk (W). Since the placement phase is performed over
a low-congestion period, it is assumed that no erasure occurs
during this phase.

The delivery phase follows once the demands of the re-
ceivers are revealed to the server, which transmits a length-
n codeword Xn over the erasure BC. For a demand vector
d

∆
= (d1, ..., dK), a coded delivery function

ψ :
[⌈

2nR
⌉]N × [N ]

K → Xn (3)

generates a common channel input Xn as a function of the
entire library and the receiver demands, i.e., Xn = ψ (W,d).
Each receiver k ∈ [K] observes Y nk according to (1). Weak
receiver k ∈ [Kw] tries to decode Wdk from its channel output
Y nk along with the cache content available locally and the
demand vector d, with the decoding function

µk : Yn ×
[⌊

2nM
⌋]
× [N ]

K →
[⌈

2nR
⌉]
, (4)

i.e., the reconstructed file by each weak receiver k ∈ [Kw] is

Ŵdk = µk (Y nk , Zk,d) . (5)

On the other hand, each strong receiver k ∈ [Kw + 1 : K]
reconstructs its demand Wdk solely from its channel output
Y nk through the decoding function

µk : Yn × [N ]
K →

[⌈
2nR

⌉]
, (6)

which generates the reconstructed file

Ŵdk = µk (Y nk ,d) . (7)

Definition 1. An error occurs if Ŵdk 6= Wdk for any k ∈ [K],
and the probability of error is given by

Pe
∆
= max

d∈[N ]K
Pr

{
K⋃
k=1

{
Ŵdk 6= Wdk

}}
. (8)

Definition 2. A memory-rate pair (M,R) is said to be
achievable, if for every ε > 0, there exists a large enough
n, and corresponding caching function (2), coded delivery
function (3), and decoding functions (4) and (6) at weak and
strong receivers, respectively, such that Pe < ε.

Definition 3. For a given cache size M at the weak receivers,
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the capacity of the network is defined as

C (M)
∆
= sup {R : (M,R) is achievable} . (9)

We note that the capacity of the above caching network
remains an open problem even when the delivery channel is an
error-free shared bit pipe except for uncoded cache placement
phase [9]. Here, our goal is to identify achievable memory-rate
pairs that improve upon the state-of-the-art.

Remark 1. It is reasonable to assume that cache memories are
placed at receivers with relatively weaker coverage. Indeed,
it is shown in [27] that placing cache memories at the
strong receivers, which already have good coverage, results
in a lower capacity. This is mainly due to the definition
of the capacity in this framework. Note that, the capacity
here characterizes the highest rate of equal-size messages
delivered to all the receivers in the network for any demand
combination. Since any receiver can request any of the files,
and the files in the library all have the same rate, the system
performance is determined by bad receivers. Therefore, in
order to increase the capacity the goal of the placement phase
should be to improve the performance of the weak receivers.
We remark, however, that, equipping weak receivers with cache
memories and exploiting the coding scheme proposed in this
paper also benefits the strong receivers.

The following results will be instrumental in deriving our
results later in the paper.

Proposition 1. [31] The capacity region of a packet erasure
BC with K receivers, where file Wi with rate Ri is targeted
for receiver i with erasure probability δi, for i = 1, ...,K, is
the closure of the set of non-negative rate tuples (R1, ..., RK)
that satisfy

K∑
i=1

Ri
(1− δi)F

≤ 1, (10)

where the size of the binary channel input per channel use is
F bits.

Next, we consider the packet erasure BC with side in-
formation, and provide an achievable rate pair based on the
joint encoding scheme of [32]. Here we briefly overview the
coding scheme and the proof of achievability, and refer the
reader to [32] for details. Consider two receivers with erasure
probabilities δ1 ≥ δ2. Let W1 and W2, distributed uniformly
over1

[
2nR1

]
and

[
2nR2

]
, denote the messages targeted for

receivers 1 and 2, respectively. We assume that message W2

is available as side information at receiver 1, the weak receiver.
We present a coding scheme and the corresponding achievable
rate region based on the joint encoding scheme of [32]. For a
fixed distribution P (X), we generate 2n(R1+R2) codewords of
length n, xn (w1, w2), w1 ∈

[
2nR1

]
, w2 ∈

[
2nR2

]
, where each

entry of each codeword is generated independently according
to P (X). The codebook is revealed to the transmitter and
the receivers. To transmit particular messages W1 = w1 and
W2 = w2, the codeword xn (w1, w2) is transmitted over the

1We assume that, for any real number R > 0, 2nR is an integer for large
enough n.

BC. In the proposed coding scheme, the good receiver, i.e.,
receiver 2, decodes both messages; and therefore, it tries to
find a unique pair (ŵ1, ŵ2) ∈

[
2nR1

]
×
[
2nR2

]
, such that

(Xn (ŵ1, ŵ2) , yn2 ) belongs to the jointly typical set defined
in [33]. The probability of decoding error tends to 0 as n
goes to infinity, if

R1 +R2 ≤ I (X;Y2) . (11)

The first receiver already knows W2 as side information;
therefore, it only needs to decode W1; thus, it looks for
a unique index ŵ1 ∈

[
2nR1

]
such that (Xn (ŵ1,W2) , yn1 )

belongs to the typical set [33]. The probability of error tends
to 0 as n goes to infinity, if

R1 ≤ I (X;Y1) . (12)

For the packet erasure BC, both mutual information terms are
maximized with a uniform input, and the following conditions
are obtained:

R1 ≤ (1− δ1)F, (13)
R1 +R2 ≤ (1− δ2)F, (14)

We can easily generalize this coding scheme to multiple
receivers and obtain the achievable rate region stated in the
following proposition (also provided in [27]).

Proposition 2. Consider a packet erasure BC with two disjoint
sets of receivers S1 and S2, where the channels of the receivers
in set Si have erasure probability δi, for i = 1, 2. A common
message Wi at rate Ri is to be transmitted to the receivers in
set Si, for i = 1, 2, while message W2 is known to the receivers
in set S1 as side information. With the joint encoding scheme
outlined above, rate pairs (R1, R2) satisfying the following
conditions can be achieved

R1 ≤ (1− δ1)F, (15)
R1 +R2 ≤ (1− δ2)F, (16)

which is equivalent to

max

{
R1

(1− δ1)F
,
R1 +R2

(1− δ2)F

}
≤ 1. (17)

For notational convenience, in the rest of the paper we use

JE
(
(W1)S1 , (W2)S2

)
(18)

to represent the transmission of message W1 to the receivers
in set S1, and message W2 to the receivers in set S2 using the
outlined joint encoding scheme, where S1 ∩ S2 = ∅, and W2

is available at all the receivers in S1 as side information.

III. ACHIEVABLE MEMORY-RATE PAIRS

A coding scheme as well as an information theoretic upper
bound on the capacity of the above caching and delivery
network are proposed in [27] for the homogeneous scenario.
Here, we present a new coding scheme, called the successive
cache-channel coding (SCC) scheme, for delivery over any
packet erasure BC, and show that it improves upon [27] in the
homogeneous scenario. We present the (M,R) pairs achieved
by this scheme in Theorem 1 below.
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Theorem 1. Consider cache-aided delivery of N files over a
packet erasure BC with Kw weak and Ks strong receivers,
where each weak receiver is equipped with a cache of nor-
malized capacity M . Memory-rate pairs

(
M(p,q), R(p,q)

)
are

achievable for any p ∈ [0 : Kw] and q ∈ [p : Kw], where

R(p,q)
∆
=

F
q∑
i=p

γ (p, δ, i)

q∑
i=p

(
γ(p,δ,i)

(Kw
i )

Kw−i∑
j=1

(Kw−j
i )

1−δj

)
+

K∑
j=Kw+1

1
1−δj

,

(19a)

M(p,q)
∆
=

N
q∑
i=p

iγ (p, δ, i)

Kw

q∑
i=p

γ (p, δ, i)

R(p,q), (19b)

with γ(p, δ, i) defined as follows:

γ(p, δ, i)
∆
=

(
Kw

i

)(
Kw

p

)
Ks

i−p

i−1∏
j=p

 Ks

(1− δKw−j)
K∑

l=Kw+1

1
1−δl

− 1

 , for i = p, ..., q.

(19c)

The upper convex hull of these (Kw + 1) (Kw + 2) /2
memory-rate pairs can also be achieved through memory-
sharing.

Corollary 1. For the homogeneous scenario, the achievable
memory-rate pairs

(
M(p,q), R(p,q)

)
, for any p ∈ [0 : Kw] and

q ∈ [p : Kw], are simplified as follows:

R(p,q) =

F
q∑
i=p

γ (p, δws, i)

1
1−δw

q∑
i=p

(
Kw−i
i+1 γ (p, δws, i)

)
+ Ks

1−δs

, (20a)

M(p,q) =

N
q∑
i=p

iγ (p, δws, i)

Kw

q∑
i=p

γ (p, δws, i)

R(p,q), (20b)

where

γ (p, δws, i) =

(
Kw

i

)(
Kw

p

)
Ks

i−p

(
1− δs
1− δw

− 1

)i−p
,

for i = p, ..., q. (20c)

Remark 2. As we will explain in Section IV, to achieve
the memory-rate pair

(
M(p,q), R(p,q)

)
with the proposed SCC

scheme, for p ∈ [0 : Kw] and q ∈ [p : Kw], each file is divided
into p− q + 1 non-overlapping subfiles. Here we remark that

γ (p, δ, i) /
q∑
j=p

γ (p, δ, j), for i ∈ [p : q], indicates the fraction

of the total rate R allocated to the (i−p+ 1)-th of these sub-
files; that is, proportional rate allocation is performed accord-
ing to the coefficients γ (p, δ, p) , γ (p, δ, p+ 1) , ..., γ (p, δ, q).
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Fig. 2. Lower and upper bounds on the capacity for the homogeneous scenario
with Kw = 2, Ks = 2, N = 20, F = 10, δs = 0.2, and δw = 0.8.

Next, we compare the achievable rate of the SCC scheme
for the homogeneous scenario with the scheme of [27], which
we will refer to as the STW scheme. In Fig. 2, the achievable
memory-rate trade-off of both schemes are plotted for Kw =
2, Ks = 2, N = 20, F = 10, δs = 0.2, and δw = 0.8.
The upper bound on the capacity derived in [27, Theorem 7]
is also included. The SCC scheme outperforms STW due to
the memory-rate pair

(
M(0,2), R(0,2)

)
, which is not achievable

by the STW scheme. This improvement can be extended to
a wider range of cache sizes through memory-sharing, also
reducing the gap to the upper bound.

In Fig. 3, we plot the achievable rates for both schemes
in the homogeneous scenario with Kw = 7, Ks = 10,
N = 50, F = 20, δs = 0.2, and δw = 0.9. Observe that, for
relatively small cache sizes, where the best memory-rate trade-
off is achieved by time-sharing between

(
M(0,0), R(0,0)

)
and(

M(0,1), R(0,1)

)
, and for relatively large cache sizes, where

the best memory-rate trade-off is achieved by time-sharing
between

(
M(6,7), R(6,7)

)
and

(
M(7,7), R(7,7)

)
, both schemes

achieve the same rate; however, the proposed SCC scheme
achieves a higher rate than STW for all other intermediate
cache sizes, and reduces the gap to the upper bound. For a
cache capacity of M = 30, SCC provides approximately 15%
increase in the achievable rate compared to STW.

In Fig. 4, the achievable rates of the SCC and STW schemes
in the homogeneous scenario are compared for different values
of δw for Kw = 20, Ks = 10, N = 100, F = 50,
δs = 0.2, and δw = 0.7, 0.8, 0.9. Observe that, unlike
STW, the performance of SCC does not deteriorate notably
for intermediate and relatively high cache capacities when
δw increases, i.e., having worse channel qualities for the
weak receivers. This is because SCC successfully exploits
the available cache capacities, and there is little to lose from
increasing δw when M is sufficiantly large. Moreover, the
superiority of SCC over STW is more pronounced for higher
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values of δw, in which case, exploiting the caches of the weak
receivers more effectively by SCC becomes more important.

For the heterogeneous scenario, the capacity of the network
under consideration is upper bounded by [27]

min
S⊂[K]

F
(∑
k∈S

1

1− δk

)−1

+
M

N
|S ∩ [Kw]|

 . (21)

In Fig. 5, the effect of Kw is considered for the het-
erogeneous scenario for K = 15, N = 100, F = 10,
δk = 0.9 − 0.01k, for k = 1, ..., 5, and δl = 0.2 − 0.01l,
for l = 6, ..., 15. Achievable rates are plotted with respect to
the total cache capacity of KwM for four different values for
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Fig. 5. Lower and upper bounds on the capacity for the heterogeneous
scenario with K = 15, N = 100, F = 10, δk = 0.9 − 0.01k, for
k = 1, ..., 5, and δl = 0.2 − 0.01l, for l = 6, ..., 15 with variable
Kw = 4, 5, 10, 15 and Ks = 0, 5, 10, 11.

the number of weak receivers in the system, Kw = 4, 5, 10, 15.
Note that the erasure probabilities are set such that the first 5
receivers have significantly worse channels than the remaining
10 receivers. Note also that the parameter Kw determines
which receivers are provided with cache memories. As it can
be seen, the setting with Kw = 5 achieves significantly higher
rates over a wide range of total cache capacities compared
to the other settings under consideration. If receiver 5, which
has a relatively bad channel quality, is not provided with any
cache memory, and only the first 4 receivers are equipped
with cache memories, i.e., Kw = 4, the performance degrades
significantly except for very small values of total cache size.
This is because the first five receivers have much worse
channel qualities, and the performance depends critically on
the caches provided to all these five weak receivers. On the
other hand, equipping receivers with relatively good channel
qualities with cache memories deteriorates the performance of
the system in terms of the achievable rate. Note that this is
because the total available cache capacity is allocated across
a larger number of receivers. This result confirms that it is
more beneficial to allocate cache memories to the receivers
with relatively worse channel qualities. The upper bound on
the achievable rate for the setting with Kw = 5 and Ks = 10
is also included in this figure. We observe that the gap between
the upper bound and the achievable rate for the same setting
is relatively small for a wide range of cache sizes.

IV. THE SUCCESSIVE CACHE-CHANNEL CODING (SCC)
SCHEME

Before presenting the SCC scheme for the general hetero-
geneous scenario, in which we allow the weak and strong
receivers to have distinct erasure probabilities, the main ideas
behind this scheme are illustrated on an example in the
simplified homogeneous scenario.
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For notational convenience, the i-element subsets of set
[Kw] are enumerated by S(i)

1 ,S(i)
2 , ..., S(i)

(Kw
i )

, i.e.,

S(i)
j ⊂ [Kw] and

∣∣∣S(i)
j

∣∣∣ = i,

for i ∈ [0 : Kw], and j = 1, ...,
(
Kw

i

)
. (22)

A. Example
Consider the cache-aided packet erasure homogeneous BC

with Kw = 3 weak and Ks = 2 strong receivers. Here, we
investigate the achievable memory-rate pair

(
M(0,2), R(0,2)

)
,

which corresponds to the memory-rate pair in (20) for p = 0
and q = 2. Each file Wf , f ∈ [N ], is divided into three subfiles
W

(0)
f , W (1)

f and W (2)
f , where subfile W (i)

f has a rate of

R(i) ∆
=

γ (0, δws, i)
2∑
j=0

γ (0, δws, j)

R, for i = 0, 1, 2, (23)

where γ (0, δws, i) is defined in (20c). We have
2∑
i=0

R(i) = R.

Placement phase: In the placement phase, subfiles
W

(i)
1 , ...,W

(i)
N are placed in the caches of Kw = 3 weak

receivers using the procedure in [3, Algorithm 1], specified
for a cache capacity of iN/Kw, for i = 0, 1, 2. In this cache
placement procedure, each subfile W

(i)
f is first divided into(

3
i

)
non-overlapping pieces, each at a rate of R(i)/

(
3
i

)
.

W
(i)
f =

W (i)

f,S(i)
1

,W
(i)

f,S(i)
2

, ...,W
(i)

f,S(i)

(3
i)

 ,

∀f ∈ [N ] ,∀i ∈ [0 : 2] , (24)

For the example under consideration, we have, ∀f ∈ [N ],

W
(0)
f =

(
W

(0)
f,∅

)
, (25a)

W
(1)
f =

(
W

(1)
f,{1},W

(1)
f,{2},W

(1)
f,{3}

)
, (25b)

W
(2)
f =

(
W

(2)
f,{1,2},W

(2)
f,{1,3},W

(2)
f,{2,3}

)
. (25c)

The piece W (i)

f,S(i)
l

is placed in the cache of each receiver k ∈

S(i)
l , for l = 1, ...,

(
3
i

)
. Therefore, the cache contents of the

weak receivers after the placement phase are as follows:

Z1 =
⋃
f∈[N ]

(
W

(1)
f,{1},W

(2)
f,{1,2},W

(2)
f,{1,3}

)
, (26a)

Z2 =
⋃
f∈[N ]

(
W

(1)
f,{2},W

(2)
f,{1,2},W

(2)
f,{2,3}

)
, (26b)

Z3 =
⋃
f∈[N ]

(
W

(1)
f,{3},W

(2)
f,{1,3},W

(2)
f,{2,3}

)
, (26c)

where the required cache capacity for each weak receiver is:

M =

(
R(1)

3
+

2R(2)

3

)
N

=
γ (0, δws, 1) + 2γ (0, δws, 2)

3
2∑
j=0

γ (0, δws, j)

NR. (27)

Delivery phase: The server tries to satisfy all the demands
in the delivery phase by sending four distinct messages in an
orthogonal fashion, i.e., by time division multiplexing, where
the codewords corresponding to the i-th message, i = 1, ..., 4,

are of length βin channel uses, such that
4∑
i=1

βi = 1. The

contents delivered with each message are shown in Table I.
The first message is targeted only for the weak receivers,

and its goal is to deliver the missing subfiles of file W (2)
dk

to
receiver k, k = 1, 2, 3, that is, having received this message,
each weak receiver should be able to decode the third subfile of
its desired file. Exploiting the delivery phase of [3, Algorithm
1] for cache capacity 2N/Kw, the coded content with message
1 in Table I is delivered to the weak receivers {1, 2, 3}. Having
received message 1 given in Table I, receiver k can recover
its missing piece W (2)

dk,[3]\{k} of subfile W (2)
dk

using its cache
contents Zk. Thus, together with its cache content, receiver k
can recover subfile W (2)

dk
, for k = 1, 2, 3.

Through the second message of the delivery phase, the
server simultaneously delivers subfile W (2)

dl
to strong receiver

l, l = 4, 5, and the missing bits of subfile W
(1)
dk

to weak
receiver k, k = 1, 2, 3. The content targeted to the weak
receivers is delivered by using the delivery phase of [3,
Algorithm 1] for the cache capacity of N/Kw; that is, the
contents{
W

(1)
d1,{2} ⊕W

(1)
d2,{1},W

(1)
d1,{3} ⊕W

(1)
d3,{1},W

(1)
d2,{3} ⊕W

(1)
d3,{2}

}
(28)

are transmitted to the weak receivers. Therefore, the goal is
to deliver W (2)

dl
to strong receiver l, l = 4, 5, while delivering

the contents in (28) to the weak receivers in parallel. The
transmission is performed by sending three sub-messages,
transmitted over orthogonal time periods. With the first sub-
message of message 2 given in Table I, receivers 1 and 2
receive W (1)

d1,{2}⊕W
(1)
d2,{1} since they both have W (2)

d4,{1,2} and

W
(2)
d5,{1,2} in their caches as side information. Accordingly,

receiver 1 and receiver 2 can recover W (1)
d1,{2} and W (1)

d2,{1}, re-
spectively. On the other hand, with the joint encoding scheme,
W

(2)
d4,{1,2} and W

(2)
d5,{1,2} are directly delivered to receiver 4

and receiver 5, respectively. With the second sub-message of
message 2 in Table I, W (2)

d4,{1,3} and W
(2)
d5,{1,3}, which are

available in the caches of receivers 1 and 3 as side information,
are delivered to receivers 4 and 5, while W (1)

d1,{3} ⊕W
(1)
d3,{1}

is delivered to receivers 1 and 3. By receiving sub-message 2,
receiver 1 and receiver 3 can obtain W

(1)
d1,{3} and W

(1)
d3,{1},

respectively. Finally, sub-message 3 of message 2 aims to
deliver W (2)

d4,{2,3} and W
(2)
d5,{2,3}, which are in the cache of

receivers 2 and 3, to receivers 4 and 5, respectively, and
W

(1)
d2,{3} ⊕W

(1)
d3,{2} to receivers 2 and 3 by the joint encoding

scheme. Having received coded content W (1)
d2,{3} ⊕ W

(1)
d3,{2},

receiver 2 and receiver 3 can recover W (1)
d2,{3} and W

(1)
d3,{2},

respectively. Thus, having received message 2, each weak
receiver k, k = 1, 2, 3, can recover all the missing bits of
subfile W

(1)
dk

of its request, while each strong receiver l,
l = 4, 5, can obtain subfile W (2)

dl
of its request.

The third message of the delivery phase is designed to
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TABLE I
CONTENTS SENT WITH MESSAGES 1 TO 4 IN THE DELIVERY PHASE.

Message 1
(
W

(2)
d1,{2,3} ⊕W

(2)
d2,{1,3} ⊕W

(2)
d3,{1,2}

)
to receivers 1, 2, 3

Message 2

Sub-message 1 JE
((

W
(1)
d1,{2} ⊕W

(1)
d2,{1}

)
{1,2}

,
(
W

(2)
d4,{1,2},W

(2)
d5,{1,2}

)
{4,5}

)
Sub-message 2 JE

((
W

(1)
d1,{3} ⊕W

(1)
d3,{1}

)
{1,3}

,
(
W

(2)
d4,{1,3},W

(2)
d5,{1,3}

)
{4,5}

)
Sub-message 3 JE

((
W

(1)
d2,{3} ⊕W

(1)
d3,{2}

)
{2,3}

,
(
W

(2)
d4,{2,3},W

(2)
d5,{2,3}

)
{4,5}

)

Message 3

Sub-message 1 JE
((

W
(0)
d1,∅

)
{1}
,
(
W

(1)
d4,{1},W

(1)
d5,{1}

)
{4,5}

)
Sub-message 2 JE

((
W

(0)
d2,∅

)
{2}
,
(
W

(1)
d4,{2},W

(1)
d5,{2}

)
{4,5}

)
Sub-message 3 JE

((
W

(0)
d3,∅

)
{3}
,
(
W

(1)
d4,{3},W

(1)
d5,{3}

)
{4,5}

)
Message 4

(
W

(0)
d4,∅

)
to receiver 4, and

(
W

(0)
d5,∅

)
to receiver 5

deliver W
(1)
dl

to strong receiver l, l = 4, 5, and W
(0)
dk

is
delivered to weak receiver k, k = 1, 2, 3. Third message is also
divided into three sub-messages, transmitted over orthogonal
time periods. With sub-message k, given in Table I, W (1)

d4,{k}

and W (1)
d5,{k}, both of which are available locally at receiver k

as side information, k = 1, 2, 3, are delivered to receivers
4 and 5, respectively, while W

(0)
dk,∅ is delivered to receiver

k. Therefore, with the third message in Table I, each weak
receiver k, k = 1, 2, 3, can obtain W

(0)
dk,∅, while each strong

receiver l, l = 4, 5, can recover W (1)
dl

. Thus, after receiving
message 3 in Table I, the demands of the weak receivers are
fully satisfied.

The last and fourth message of the delivery phase is gener-
ated only for the strong receivers with the goal of delivering
them the missing bits of their demands, in particular, subfile
W

(0)
dl,∅ is delivered to each strong receiver l, l = 4, 5.

Observe that message 1 in Table I has a rate of R(2)/3. The
capacity region of the standard packet erasure BC presented in
Proposition 1 suggests that all the weak receivers can decode
message 1, for n large enough, if

R(2)

3 (1− δw)F
≤ β1. (29)

From Table I, with each sub-message of the second mes-
sage, messages of rate 2R(2)/3, available at the weak receivers
as side information, are delivered to the strong receivers;
while, simultaneously, a common message at rate R(1)/3 is
transmitted to the weak receivers. Overall,

(
W

(2)
d4
,W

(2)
d5

)
and

the contents in (28) with a total rate of 2R(2) and R(1)

are delivered to the strong and weak receivers, respectively,
through three different sub-messages by using the joint en-
coding scheme of [32] that exploits the side information at
the weak receivers. Using the achievable rate region of the
joint encoding scheme for the packet erasure channels stated
in Proposition 2,

(
W

(2)
d4
,W

(2)
d5

)
and the contents in (28) can

be simultaneously decoded by the strong and weak receivers,

respectively, for n large enough, if

max

{
R(1)

(1− δw)F
,
R(1) + 2R(2)

(1− δs)F

}
≤ β2. (30)

From the expressions for R(1) and R(2) in (23), it can be
verified that the two terms in the maximization in (30) are
equal for the setting under consideration. Thus, the condition
in (30) can be simplified as

R(1)

(1− δw)F
≤ β2. (31)

According to Table I, with each sub-message of message
3, a message at rate R(0) is targeted for the weak receivers,
while message at rate 2R(1)/3, available locally at the weak
receivers, is aimed for the strong receivers. Therefore, through
joint encoding scheme over three periods, messages with a
total rate of 3R(0) are delivered to the weak receivers, while
the strong receivers receive a total rate of 2R(1). According
to Proposition 2, all the weak and strong receivers can decode
their messages, for n large enough, if

max

{
3R(0)

(1− δw)F
,

3R(0) + 2R(1)

(1− δs)F

}
≤ β3. (32)

Again, from the expressions of R(0) and R(1) in (23), it can
be verified that, when Kw = 3 and Ks = 2, (32) can be
simplified as

3R(0)

(1− δw)F
≤ β3. (33)

From the capacity region of the standard erasure BC in
Proposition 1, each receiver l, l = 4, 5, can decode W

(0)
dl,∅,

delivered with message 4, successfully for n sufficiently large,
if

2R(0)

(1− δs)F
≤ β4. (34)

Combining (29), (31), (33), (34), and the fact that
4∑
i=1

βi = 1,
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we have the condition

R(2)

3 (1− δw)F
+

R(1)

(1− δw)F
+

3R(0)

(1− δw)F
+

2R(0)

(1− δs)F
≤ 1.

(35)
By replacing R(i) with the expressions from (23), for i =
0, 1, 2, and using the fact that γ (0, δws, 0) = 1, (35) is reduced
to

R ≤

2∑
j=0

γ (0, δws, j)F

1
1−δw

(
3 + γ (0, δws, 1) + 1

3γ (0, δws, 2)
)

+ 2
1−δs

.

(36)
Observe that, the term on the right hand side of inequality (36)
is R(0,2), which is given by (20a). The cache size of each weak
receiver exploited by our coding scheme is given by (27), and
we have M = M(0,2), where M(0,2) is defined as in (20b).
Thus, the memory-rate pair

(
M(0,2), R(0,2)

)
given by (20) is

achievable for the setting under consideration.
In the sequel, we present the placement and delivery phases

of the SCC scheme for a general heterogeneous scenario,
achieving the memory-rate pair

(
M(p,q), R(p,q)

)
given by (19),

for any p ∈ [0 : Kw] and q ∈ [p : Kw].

B. Placement Phase
For a given (p, q) pair, where p ∈ [0 : Kw] and q ∈ [p : Kw],

each file Wf , f ∈ [N ], is divided into (q − p + 1) non-
overlapping subfiles, represented by

Wf =
(
W

(p)
f , ...,W

(q)
f

)
, (37)

where subfile W (i)
f , for i ∈ [p : q], has a rate of

R(i) ∆
=

γ (p, δ, i)
q∑
j=p

γ (p, δ, j)

R, (38)

such that
q∑
i=p

R(i) = R. Note that, γ (p, δ, i), for i ∈ [p : q], is

given in (19c).
In the placement phase, for each set of subfiles

W
(i)
1 , ...,W

(i)
N a cache placement procedure, corresponding to

the one proposed in [3, Algorithm 1] for a cache capacity of
iN/Kw, is performed, ∀i ∈ [p : q]; that is, each subfile W (i)

f

is partitioned into
(
Kw

i

)
independent equal-rate pieces,

W
(i)
f =

W (i)

f,S(i)
1

,W
(i)

f,S(i)
2

, ...,W
(i)

f,S(i)

(Kw
i )

 ,

∀f ∈ [N ] ,∀i ∈ [p : q] . (39)

The piece W (i)

f,S(i)
l

of rate R(i)/
(
Kw

i

)
is cached by receivers

k ∈ S(i)
l , for l = 1, ...,

(
Kw

i

)
. Thus, the content placed in the

cache of each weak receiver k ∈ [Kw] is given by

Zk =
⋃
f∈[N ]

⋃
i∈[p:q]

⋃
l∈[(Kw

i )]:k∈S(i)
l

W
(i)

f,S(i)
l

. (40)

Accordingly,
(
Kw−1
i−1

)
pieces, each of rate R(i)/

(
Kw

i

)
, cor-

responding to each subfile W
(i)
d are cached by each weak

receiver k ∈ [Kw], which requires a total cache capacity of

M = N

q∑
i=p

(
Kw − 1

i− 1

)
R(i)(
Kw

i

) =
N

Kw

q∑
i=p

iR(i)

=

N
q∑
i=p

iγ (p, δ, i)

Kw

q∑
i=p

γ (p, δ, i)

R. (41)

C. Delivery Phase
In the delivery phase, the goal is to satisfy all the demands

for an arbitrary demand combination (d1, ..., dK). The delivery
phase consists of (q − p + 2) different messages, transmitted
over orthogonal time periods, where the codewords of the i-th
message are of length βin channel uses, for i = 1, ..., q−p+2,

such that
q−p+2∑
i=1

βi = 1.

The first message of the delivery phase is only targeted for
the weak receivers, and the goal is to deliver the missing bits
of subfile W (q)

dk
to receiver k, ∀k ∈ [Kw]. It is to be noted that,

for q = Kw, based on the cache contents in (40), all the weak
receivers have all the subfiles W (q)

f , ∀f ∈ [N ]; therefore, no
message needs to be delivered. In the sequel, we consider q <
Kw. The first message of the delivery phase is transmitted over(
Kw

q+1

)
orthogonal time slots, where in each slot, a sub-message

is delivered to a group of q + 1 weak receivers. Sub-message
j is a codeword of length β1,jn channel uses, and is targeted
to the receivers in set S(q+1)

j , for j = 1, ...,
(
Kw

q+1

)
, such that

(Kw
q+1)∑
j=1

β1,j = β1. Following the procedure in [3, Algorithm 1],

the content delivered by sub-message j is given by

V
(q)
j

∆
=
⊕

k∈S(q+1)
j

W
(q)

dk,S(q+1)
j \{k}

, for j = 1, ...,
(
Kw

q+1

)
.

(42)
After receiving V

(q)
j , each receiver k ∈ S(q+1)

j can obtain
W

(q)

dk,S(q+1)
j \{k}

, for j = 1, ...,
(
Kw

q+1

)
, i.e., the missing bits of

subfile W (q)
dk

of its desired file, having access to Zk given in
(40). Thus, together with its cache content, receiver k ∈ [Kw]

can recover W (q)
dk

.
The delivery technique performed to transmit messages

2, 3, ..., q−p+1 follows the same procedure. With the message
q−i+1 of length βq−i+1n channel uses, the server delivers the
missing bits of subfile W (i)

dk
to each weak receiver k, k ∈ [Kw],

and W
(i+1)
dl

to each strong receiver l, l ∈ [Kw + 1 : K], for
i = q − 1, q − 2, ..., p.2 Message (q − i + 1) is delivered
through

(
Kw

i+1

)
sub-messages, transmitted over orthogonal time

periods, where sub-message j is of length βq−i+1,jn channel

uses, such that
(Kw
i+1)∑
j=1

βq−i+1,j = βq−i+1. With the j-th sub-

2For example, with the second message, subfile W (q)
dl

is delivered to each

strong receiver l ∈ [Kw+1 : K], and subfile W (q−1)
dk

to each weak receiver

k ∈ [Kw]. With the third message, subfile W (q−1)
dl

is delivered to each

strong receiver l ∈ [Kw+1 : K], and subfile W (q−2)
dk

to each weak receiver
k ∈ [Kw], and so on so forth.
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TABLE II
CONTENTS SENT WITH MESSAGES 1 TO q − p+ 2 IN THE DELIVERY PHASE OF THE SCC SCHEME FOR THE HETEROGENEOUS SCENARIO.

Message
index

Sub-message
index

Delivered content

1

1
(
V

(q)
1

)
to receivers in S(q+1)

1

...
...(

Kw

q+1

) (
V

(q)

(Kw
q+1)

)
to receivers in S(q+1)

(Kw
q+1)

t = 2, ...,
q − p+ 1

1 JE

((
V

(q−t+1)
1,m

)
S(q−t+2)
1

,

(
W

(q−t+2)

dKw+m,S(q−t+2)
1

)
{Kw+m}

)
in m-th time period, for m = 1, ...,Ks

...
...

(
Kw

q−t+2

) JE

(V (q−t+1)

( Kw
q−t+2),m

)
S(q−t+2)

( Kw
q−t+2)

,

W (q−t+2)

dKw+m,S(q−t+2)

( Kw
q−t+2)


{Kw+m}


in m-th time period, for m = 1, ...,Ks

q − p+ 2
(
W

(p)
dl

)
to receiver l ∈ [Kw + 1 : K]

message, using the coded delivery procedure in [3, Algorithm
1], the coded content

V
(i)
j

∆
=
⊕

k∈S(i+1)
j

W
(i)

dk,S(i+1)
j \{k}

, (43)

is delivered to the weak receivers in set S(i+1)
j , while{

W
(i+1)

dKw+1,S(i+1)
j

, ...,W
(i+1)

dK ,S(i+1)
j

}
, (44)

is delivered to the strong receivers, for i = q − 1, ..., p, and
j = 1, ...,

(
Kw

i+1

)
. Observe that, after receiving sub-message

V
(i)
j , each receiver k ∈ S(i+1)

j can obtain W (i)

dk,S(i+1)
j \{k}

, for

j = 1, ...,
(
Kw

i+1

)
, i.e., the missing bits of subfile W (i)

dk
of its

desired file, for i = q− 1, ..., p. Note that, the content in (44),
which is targeted to the strong receivers, is known by each
weak receiver in set S(i+1)

j . Therefore, the j-th sub-message
of message q− i+ 1 can be transmitted using joint encoding:

JE

((
V

(i)
j

)
S(i+1)
j

,

(
W

(i+1)

dKw+1,S(i+1)
j

, ...,W
(i+1)

dK ,S(i+1)
j

)
[Kw+1:K]

)
,

for i = q − 1, ..., p, and j = 1, ...,
(
Kw

i+1

)
. (45)

However, to increase the efficiency of the delivery phase, the
j-th sub-message is delivered via Ks orthogonal time periods,
such that in the m-th period a codeword of length βq−i+1,j,mn

channel uses is transmitted, where
Ks∑
m=1

βq−i+1,j,m =

βq−i+1,j . Coded content V (i)
j , targeted for receivers in set

S(i+1)
j , is divided into Ks non-overlapping equal-rate pieces

V
(i)
j =

(
V

(i)
j,1 , ..., V

(i)
j,Ks

)
, (46)

and the delivery over the m-th time period is performed by

joint encoding:

JE

((
V

(i)
j,m

)
S(i+1)
j

,

(
W

(i+1)

dKw+m,S(i+1)
j

)
{Kw+m}

)
,

for m = 1, ...,Ks. (47)

We note that, after receiving messages 2 to q − p +
1, each weak receiver k ∈ [Kw] can obtain sub-
files

(
W

(q−1)
dk

,W
(q−2)
dk

, ...,W
(p)
dk

)
, while each strong re-

ceiver l ∈ [Kw + 1 : K] can decode subfiles(
W

(q)
dl
,W

(q−1)
dl

, ...,W
(p+1)
dl

)
; therefore, together with mes-

sage 1, the demand of weak receivers are fully satisfied.
However, strong receiver l ∈ [Kw + 1 : K] only requires
to receive subfile W (p)

dl
.

The last message delivers subfile W (p)
dl

to the strong receiver
l ∈ [Kw+1 : K] using the channel coding scheme for standard
packet erasure BCs.

The contents delivered with each message in the delivery
phase for the heterogeneous case are summarized in Table II.

Remark 3. We remark that, instead of multicasting XORed
contents to groups of weak receivers, one can also use a higher
dimensional joint encoding scheme, in which case each weak
receiver can decode its missing part directly by using the parts
available in its cache as side information. However, we stick to
the coding scheme presented here as it makes the connection
to the original delivery scheme of [3] more explicit.

D. Achievable Memory-Rate Pair Analysis (Proof of Theorem
1)

The rate of the coded content targeted to a group of weak
receivers for each message of the delivery phase is allocated
such that it can be decoded by the weakest receiver among
the intended group of weak receivers.
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With sub-message j of message 1 of length β1,jn channel
uses, V (q)

j , is given in (42), a message of rate R(q)/
(
Kw

q

)
is transmitted to the weak receivers in S(q+1)

j , for j =

1, ...,
(
Kw

q+1

)
. The rate of V (q)

j is set such that the weakest

receiver in S(q+1)
j can decode it, i.e.,

R(q)(
Kw

q

) ≤ β1,j

(
1− max

r∈S(q+1)
j

{δr}

)
F, for j = 1, ...,

(
Kw

q+1

)
.

(48)
Summing over all the sets S(q+1)

j , for j = 1, ...,
(
Kw

q+1

)
, one

can obtain

R(q)(
Kw

q

) Kw−q∑
r=1

(
Kw−r
q

)
1− δr

≤
(Kw
q+1)∑
j=1

β1,jF = β1F. (49)

Note that with the codeword given in (47), V (i)
j,m, targeted

for the receivers in S(i+1)
j , is of rate R(i)/

(
Ks

(
Kw

i

))
, while

W
(i+1)

dKw+m,S(i+1)
j

, destined for receiver Kw + m, is of rate

R(i+1)/
(
Kw

i+1

)
, for m = 1, ...,Ks, i = q − 1, ..., p and

j = 1, ...,
(
Kw

i+1

)
. Proposition 2 suggests that the codeword in

(47) can be decoded correctly by the intended receivers if

max


R(i)/

(
Ks

(
Kw

i

))(
1− max

r∈S(i+1)
j

{δr}

)
F

,

R(i)/
(
Ks

(
Kw

i

))
+R(i+1)/

(
Kw

i+1

)
(1− δKw+m)F

 ≤ βq−i+1,j,m,

for m = 1, ...,Ks, (50)

where the rate of V (i)
j,m is limited by the weakest receiver in

S(i+1)
j , for i = q− 1, ..., p, and j = 1, ...,

(
Kw

i+1

)
. By summing

up all the Ks inequalities in (50), we have

max


R(i)/

(
Kw

i

)(
1− max

r∈S(i+1)
j

{δr}

)
F

,

(
R(i)

Ks

(
Kw

i

) +
R(i+1)(
Kw

i+1

) ) Ks∑
m=1

1

(1− δKw+m)F

}
≤ βq−i+1,j ,

for i = q − 1, ..., p, and j = 1, ...,
(
Kw

i+1

)
. (51)

By the choice of (38), and the fact that

γ (p, δ, i+ 1) = γ (p, δ, i)

(
Kw

i+1

)(
Kw

i

)
Ks

 Ks

(1− δKw−i)
K∑

l=Kw+1

1
1−δl

− 1

 , (52)

which follows from the definition in (19c), the second term of

the maximization in (51) is reduced to

R(i)/
(
Kw

i

)
(1− δKw−i)F

. (53)

Thus, (51) is simplified as follows:

max


R(i)/

(
Kw

i

)(
1− max

r∈S(i+1)
j

{δr}

)
F

,
R(i)/

(
Kw

i

)
(1− δKw−i)F

 ≤ βq−i+1,j ,

for i = q − 1, ..., p, j = 1, ...,
(
Kw

i+1

)
. (54)

Note that
∣∣∣S(i+1)
j

∣∣∣ = i+ 1; hence, for i = q − 1, ..., p,

max
r∈S(i+1)

j

{δr} ≥ δKw−i, ∀j ∈
[(

Kw

i+ 1

)]
. (55)

From (55), (54) is reduced to

R(i)/
(
Kw

i

)(
1− max

r∈S(i+1)
j

{δr}

)
F

≤ βq−i+1,j ,

for i = q − 1, ..., p, j = 1, ...,
(
Kw

i+1

)
, (56)

which holds for every j ∈
[(
Kw

i+1

)]
, each corresponding to a

different (i+1)-element subset S(i+1)
j . After summing up over

all values of j, one can obtain

R(i)(
Kw

i

) Kw−i∑
r=1

(
Kw−r
i

)
1− δr

≤
(Kw
i+1)∑
j=1

βq−i+1,jF = βq−i+1F,

for i = q − 1, ..., p. (57)

According to Proposition 1, each receiver l, l ∈ [Kw + 1 :

K], can decode subfile W
(p)
dk

of rate R(p), delivered by the
last message, correctly, if

R(p)
K∑

l=Kw+1

1

1− δl
≤ βq−p+2F. (58)

By combining inequalities (49), (57) and (58), we have

q∑
i=p

 R(i)(
Kw

i

) Kw−i∑
j=1

(
Kw−j
i

)
1− δj

+R(p)
K∑

j=Kw+1

1

1− δj

≤
q∑

i=p−1

βq−i+1F = F. (59)

Finally, by replacing R(i), for i = p, ..., q, with the expression
in (38), one can obtain

R ≤
F

q∑
i=p

γ (p, δ, i)

q∑
i=p

(
γ(p,δ,i)

(Kw
i )

Kw−i∑
j=1

(Kw−j
i )

1−δj

)
+

K∑
j=Kw+1

1
1−δj

, (60)

which, together with the cache capacity of each weak receiver,
M , given in (41), proves the achievability of the memory-rate
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pairs
(
M(p,q), R(p,q)

)
in (19).

Remark 4. We remark that, for the homogeneous scenario,
the codeword in (47) can be received by the targeted receivers
correctly if

max

R
(i)/
(
Ks

(
Kw

i

))
(1− δw)F

,
R(i)/

(
Ks

(
Kw

i

))
+R(i+1)/

(
Kw

i+1

)
(1− δs)F


≤ βq−i+1,j,m, for i = q − 1, ..., p, j = 1, ...,

(
Kw

i+1

)
,

and m = 1, ...,Ks, (61)

from which we obtain

max

{
R(i)(

Kw

i

)
(1− δw)F

,
R(i)/

(
Kw

i

)
+KsR

(i+1)/
(
Kw

i+1

)
(1− δs)F

}

≤
Ks∑
m=1

βq−i+1,j,m = βq−i+1,j ,

for i = q − 1, ..., p, and j = 1, ...,
(
Kw

i+1

)
. (62)

By adding all
(
Kw

i+1

)
sub-messages, each weak receiver and

each strong receiver can decode their targeted contents after
receiving message q − i+ 1, if

max

{
Kw−i
i+1 R(i)

(1− δw)F
,
Kw−i
i+1 R(i) +KsR

(i+1)

(1− δs)F

}

≤
(Kw
i+1)∑
j=1

βq−i+1,j = βq−i+1, for i = q − 1, ..., p. (63)

According to (38), we have

R(i+1) =
γ (p, δws, i+ 1)

γ (p, δws, i)
R(i)

=
Kw − i
Ks(i+ 1)

(
1− δs
1− δw

− 1

)
R(i), (64)

where we used

γ (p, δws, i+ 1) =
Kw − i
Ks(i+ 1)

(
1− δs
1− δw

− 1

)
γ (p, δws, i)

(65)
from (20c). By substituting (64) into (63), the second term of
the maximization in (63) can be rewritten as

Kw−i
i+1 R(i) + Kw−i

i+1

(
1−δs
1−δw − 1

)
R(i)

(1− δs)F
=

Kw−i
i+1 R(i)

(1− δw)F
, (66)

which is equal to the first term of the maximization in (63).
Thus, (63) can be simplified as

Kw−i
i+1 R(i)

(1− δw)F
≤ βq−i+1, for i = q − 1, ..., p. (67)

By combining (49), (67), and (58), we have
q∑
i=p

(
Kw−i
i+1 R(i)

(1− δw)F

)
+

KsR
(p)

(1− δs)F
≤

q∑
i=p−1

βq−i+1 = 1. (68)

Replacing R(i), for i = p, ..., q, with the expression in (38) for

the homogeneous scenario results in

R ≤
F

q∑
i=p

γ (p, δws, i)

1
1−δw

q∑
i=p

(
Kw−i
i+1 γ (p, δws, i)

)
+ Ks

1−δs

, (69)

where γ (p, δws, i) is given in (20c). Observe that (69) together
with the cache capacity of each weak receiver given in (41)
confirm the achievability of the memory-rate pair in (20) for
the homogeneous scenario.

Remark 5. It is to be noted that the STW scheme of [27]
is a special case of the SCC scheme for the homogeneous
scenario with q = p + 1. The delivery phase of STW is
performed by delivering three messages in orthogonal time
periods. The SCC scheme utilizes a more flexible caching
and coding scheme which applies a finer subpacketization
compared to [27], together with the joint encoding scheme
of [32], also used in [27], enabling all the receivers to exploit
the cache capacities of the weak receivers.

Remark 6. The performance gain from the SCC scheme is
relatively higher when the erasure probabilities of the two sets
of receivers are more disparate, i.e., the difference between
the erasure probabilities of the best receiver among the weak
receivers and the worst receiver among the strong receivers is
larger (see Fig. 5). Furthermore, SCC is relatively robust to
skewed erasure probabilities across the strong receivers; this
is due to the subpacketization performed to deliver the sub-
messages of messages 2 to q− p+ 1, where the sub-messages
targeted to strong receivers are delivered over orthogonal time
slots. On the other hand, it suffers more from skewed erasure
probabilities across the weak receivers, which is due to the
multicast nature of cache-aided coded content delivery to a
group of weak receivers, which should be decoded by all of
them simultaneously. Accordingly, the reliable rate at which
the coded content is delivered to the intended set of weak
receivers, is limited by the worst one.

V. CONCLUSIONS

We have studied cache-enabled content delivery over a
packet erasure BC with arbitrary erasure probabilities. The
capacity of this network is defined as the maximum common
rate of files in the library, which allows reliable delivery to all
the receivers, independent of their demands. We have derived
a lower bound on the capacity by proposing a novel caching
and delivery scheme, which enables each receiver, even the
strong receivers without a cache memory, to benefit from the
cache memories available at the weak receivers. The proposed
scheme utilizes a finer subpacketization of the files in the
library, and provides a better exploitation of the available cache
memories with a higher achievable rate than the state-of-the-
art. This model and the presented results illustrate that even
limited storage can be converted into spectral efficiency in
noisy communication networks, benefiting the whole network,
if it is placed strategically across the network, and exploited
intelligently.
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