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 12 
We describe an effective means of defining optimisation criteria for self-optimising 13 
reactors, applicable to situations where a compromise is sought between several 14 
competing objectives. The problem is framed as a constrained optimisation, in 15 
which a lead property is optimised subject to constraints on the values that other 16 
properties may assume. Compared to conventional methods (using weighted-sum- 17 
and weighted-product-based merit functions), the approach described here is more 18 
intuitive, easier to implement, and yields an optimised solution that more faithfully 19 
reflects user preferences. The method is applied here to the synthesis of o-xylenyl 20 
adducts of Buckminsterfullerene, using a cascadic reaction of the form X0 � X1 � 21 
X2 � … XN. Specifically, we selectively target the formation of the (technologically 22 
useful) first- and second-order adducts X1 and X2, while at the same time 23 
suppressing the formation of unwanted higher-order products. More generally, the 24 
approach is applicable to any chemical optimisation involving a trade-off between 25 
competing criteria. To assist with implementation we provide a self-contained 26 
software package for carrying out constrained optimisation, together with detailed 27 
tutorial-style instructions. 28 

 29 
The goal of finding an efficient route to a target molecule, while at the same time 30 
minimising the formation of unwanted side products, lies at the heart of 31 
synthetic chemistry. In the ideal case, where the target molecule corresponds to 32 
the sole end-point of a reaction, a near-quantitative product yield may be readily 33 
achieved by allowing the reaction to progress to completion. More often than 34 
not, however, the target is just one of several possible end products, or else it is 35 
an intermediate that can only be obtained by quenching the reaction before it 36 
has reached completion. In such circumstances, a mixture of reaction products is 37 
inevitably obtained, with the yield of the target molecule depending on the 38 
(typically unknown) kinetics of the reaction and the specific reaction conditions 39 
employed. Manually searching for reaction conditions that deliver an acceptable 40 
yield of the target molecule is a laborious undertaking, requiring extensive 41 
experimentation and chemical intuition. Even then, there is no guarantee the 42 
chosen conditions will correspond to the best attainable solution. 43 
 44 
In this paper we set out an easily-implemented and fully automated approach for 45 
preferentially synthesising one or more target molecules amongst a larger group 46 
of possible products, using a technique that (given sufficient time) will yield a 47 
globally optimised solution. Our approach builds on previous work in the area of 48 
‘intelligent’ or ‘self-optimising’ reactors1–5, using an automated reactor with on-49 
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line analysis and algorithmic control to repeatedly update the reaction 50 
conditions until a desired goal has been achieved. For each set of reaction 51 
conditions tested, the system is allowed to stabilise, a measurement is made 52 
using the on-line analysis system, and a scalar merit value that quantifies the 53 
acceptability of the product is then extracted from the data. In this way the 54 
overall physical process may be treated as a mathematical objective function in 55 
which the inputs are the selected reaction conditions and the output is the merit 56 
value. Assuming lower merit values signify superior products, optimisation of 57 
the chemical process is formally equivalent to minimisation of the associated 58 
objective function, and may accordingly be achieved using numerical techniques. 59 
 60 
In two of the earliest reports in the field, self-optimisation was used by 61 
Krishnadasan et al.1 in 2007 to tailor the spectral characteristics of metal 62 
chalcogenide quantum dots and by McMullen et al.6 in 2010 to optimise the 63 
Knoevenagel condensation reaction of p-anisaldehyde and malononitrile. 64 
Further important contributions in the area have been made by the groups of 65 
Bourne7,8, Jensen9–11, and Poliakoff.12–14 Using a variety of in-line/on-line analysis 66 
techniques – including infrared absorption spectroscopy9, visible fluorescence 67 
spectroscopy1, chromatographic separations6,8,10–15, nuclear magnetic 68 
resonance16, and mass spectrometry7,17 – self-optimisation has been successfully 69 
used to optimise the yield and/or production rate of a variety of target 70 
molecules6–17 and to control the physical properties of materials1,18. The above 71 
optimisations were carried out using a mixture of local6,9–18 and global1,6,8,7 72 
search methods. For unknown chemical systems that may potentially exhibit 73 
multiple optima, global routines that fit measured data to approximating 74 
surfaces are typically preferred since they do not get trapped in sub-optimal 75 
local minima, can cope with measurement noise, and – by avoiding the need for 76 
derivative calculations – require relatively few function evaluations to locate 77 
optima. In situations where the chemical parameter space is monotonic with a 78 
single minimum (or multiple minima exist but the approximate location of the 79 
global minimum is known) local search methods may sometimes offer faster 80 
convergence. 81 
 82 
In many cases a trade-off or compromise must be reached between several 83 
competing criteria. Mathematically, this may be achieved through the use of a 84 
compound merit function, typically formed from a weighted sum19,20 or weighted 85 
product20,21 of individual merit functions that separately take into account each 86 
property being optimised. Weighted-product-based merit functions were used 87 
by Krishnadasan et al. to maximize the intensity of quantum dot emission at a 88 
target wavelength1 and by Jumban et al. to achieve an optimised trade-off 89 
between the production rate and yield of methylated ethers15; while weighted-90 
sum-based merit functions were used by Moore et al. to achieve an optimised 91 
trade-off between the production rate and the conversion efficiency of a 92 
Paal−Knorr reaction9. 93 
 94 
The above studies showed that merit-based multi-objective optimization can be 95 
a powerful method for chemical optimization. However, its success hinges on the 96 
ability of the merit function to reduce multiple property values to a single, 97 
meaningful number that can be used to objectively rank the adequacy of 98 
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different outcomes. Unfortunately, devising a suitable merit function can be a 99 
fraught endeavor17,19, especially when there are more than two parameters to 100 
balance: extensive physical experimentation and mathematical manipulation is 101 
often required to find an appropriate form of merit function that sensibly 102 
balances the different optimisation criteria and, even then, there is no guarantee 103 
that the merit-based ranking will fully accord with user perception. 104 
 105 
The lack of a straightforward method for codifying product requirements in the 106 
form of chemical merit functions is a major obstacle to the widespread 107 
deployment of self-optimising reactors. What is needed is an easily implemented 108 
procedure that allows a user to set out all requirements in a simple, intuitive 109 
form that can then be directly translated into a usable merit function without 110 
significant experimentation or mathematical effort. Here we demonstrate how 111 
this may be readily achieved by configuring the problem as a constrained 112 
optimisation, in which a lead property is optimised, subject to lower and upper 113 
limits being placed on the values that other properties of interest may assume. 114 
By way of example, in a typical polymerization reaction, the lead property might 115 
be the conversion rate (which we wish to maximize), while typical constrained 116 
properties could include the weight-averaged molecular weight (which should 117 
fall between certain application-dependent bounds) and the polydispersity index 118 
(which should not exceed a maximum level).  119 
 120 
The constraints are handled here using an analytical procedure due to Huyer and 121 
Neumaier.22,23 In the discussion below we focus primarily on implementational 122 
aspects of the method; a description of its mathematical basis may be found in 123 
the SI. We assume that our goal is to minimise the lead property subject to 124 
specific constraints on other properties. (If the goal were to maximize the lead 125 
property, we would minimize its negative). For each constrained property the 126 
user specifies a range of values [FLower, FUpper] within which that property should 127 
preferably lie plus a parameter ∆ corresponding to the maximum permitted 128 
deviation from the preferred range (see Fig. S1a). Property values that lie within 129 
the preferred range [FLower, FUpper] completely satisfy user specifications and 130 
hence are said to be “fully feasible”. Values that lie outside the preferred range 131 
but within the expanded range [FLower-∆, FUpper +∆] partially satisfy user 132 
requirements and are said to be “semi feasible” (since they lie within a permitted 133 
margin of the preferred range). Values outside the expanded range do not meet 134 
user requirements and are said to be “infeasible”. It is the goal of the 135 
optimisation procedure to identify the set of reaction conditions that minimises 136 
the value of the lead property, while at the same time ensuring the values of all 137 
constrained properties are feasible or at worst semi-feasible (i.e. they lie within 138 
or as close as possible to their preferred windows).  139 
 140 
The procedure begins with an initial search of the chemical parameter space to 141 
identify at least one data point that completely satisfies all constraints (see 142 
Methods). This is typically a straightforward task since any fully feasible point 143 
will suffice, irrespective of its lead property value. Two experimental parameters 144 
are extracted from these initial measurements: �� the value of the lead property 145 
at the best feasible point (i.e. the point with the lowest lead property value); and 146 
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∆, the median value of |���� − ��	| where ���� is the value of the lead property at 147 
a data point �. 148 
 149 
Using the experimentally determined parameters f0 and ∆, together with the user 150 
defined-parameters FLower, FUpper and ∆ for each constrained property, one may 151 
then construct a merit function �	
����� that takes into account both the value of 152 
the lead property and the specified constraints:  153 

�	
����� = �∗��� + ���� = ���� − ��Δ + |���� − ��| + 2 � ∑ �������1 + ∑ ������� � (1) 

where the index i runs over all constrained properties and ����� is assigned a 154 
value [���
��� − �����] 	 ��⁄ , zero, or "����� − ��#$ 	 ��⁄  according to whether 155 ����� lies below, within, or above the preferred bounds of the window. With the 156 
merit function defined in this way, constrained optimisation is straightforwardly 157 
carried out by searching for the location �% of the global minimum of �	
�����.  158 
 159 
We note here some pertinent properties of Eq. (1). The first term �∗��� is simply 160 
a rescaled variant of the original unconstrained merit function ����: �∗��� varies 161 
monotonically with ����, so the optima of �∗��� occur at the same locations as 162 
the optima of ����. The second term ���� is a penalty term that has the effect of 163 
increasing the value of �	
����� whenever a property value lies outside its 164 
preferred window (otherwise if all constraints are satisfied its value is zero). 165 
From the construction of Eq. (1), the merit values are bounded to lie between -1 166 
and 3. Fully feasible points have merit values less than one (with x0 having a 167 
merit value of zero), infeasible points have merit values greater than one, while 168 
semi-feasible points can span the full range of merit values from -1 to 3. It 169 
follows from these properties that the optimisation procedure will never prefer 170 
an infeasible point over a feasible point (since the infeasible point will always 171 
have a higher merit value). Moreover, it will only prefer a semi-feasible point 172 
over the best identified feasible point if the value of the lead property at the 173 
semi-feasible point is substantially lower than that at the best identified feasible 174 
point (resulting in a lower overall merit value). The complete step-by-step 175 
procedure for carrying out the constrained optimisation is summarised in the 176 
flow diagram of Fig. S1b for a problem involving two constrained variables. The 177 
diagram makes clear the simplicity of the procedure, which in practice is scarcely 178 
more difficult to implement than a standard unconstrained optimisation.  179 
 180 
To exemplify the application of the procedure to chemical optimisation, we show 181 
how it may be used to tune the products of a cascadic reaction of the type X0 � 182 
X1 � X2 � … XN. It is a characteristic feature of such reactions that a mixture of 183 
products is present at all intermediate times, with the instantaneous distribution 184 
of products depending (in an often complicated way) on the underlying kinetics 185 
of the reaction. For the purposes of exposition, we specifically focus on the 186 
synthesis of o-xylenyl adducts of Buckminsterfullerene by the reaction of C60 187 
with cyclic esters of a hydroxy sulfinic acid (sultines)25, see Scheme 1. While 188 
these molecules have important applications as light-harvesting agents and 189 
electron conductors25–27, the details of their use need not concern us here. Suffice 190 
to say, it is frequently the first- and second-order adducts that are used in 191 
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practice, with the presence of significant quantities of higher-order adducts 192 
having a detrimental impact on optoelectronic behaviour28. Hence, there is a 193 
need to identify reaction conditions that maximise the yields of singly- and 194 
doubly-functionalised molecules, while minimising the fractions of higher-order 195 
adducts. 196 
 197 
The high stabilities of the reagents used in the synthesis of o-xylenyl-198 
functionalised C60 make it a viable candidate for self-optimisation, with the one-199 
pot nature of the reaction lending itself to straightforward automation. Here we 200 
used a simple single-phase, capillary-based flow reactor*, incorporating: two 201 
syringe pumps, separately loaded with C60 and sultine solutions; a passive y-202 
shaped mixer for bringing the two solutions into contact; and a cylindrical solid-203 
state heater for thermally activating the reaction (see Fig. 1 and Methods). 204 
Control over the time, temperature and chemical composition of the reaction 205 
was achieved by making independent adjustments to the infusion rates of the 206 
two reagent streams and the temperature of the heater. 207 
 208 
High performance liquid chromatography (HPLC) was selected for on-line 209 
analysis, being a moderately fast, flow-compatible method for analysing 210 
multicomponent solutions. HPLC has been successfully applied to self-optimising 211 
reactors by the groups of Jensen and Bourne6,8,10,11. For the current work, 212 
discrimination of the o-xylenyl adducts was achieved using pyrenylpropyl-213 
functionalised silica as the stationary phase and a mixture of toluene and hexane 214 
as the mobile phase27. (The affinity of the C60 adducts to the mobile phase rises 215 
substantially with increasing order number, resulting in progressively shorter 216 
and well separated elution times). Following each change of reaction conditions, 217 
the system was allowed to stabilize for a time period equal to twice the current 218 
calculated residence time. A sample of the product mixture was then taken by 219 
diverting the out-flow of the reactor to a sample coil, from where it was injected 220 
into an HPLC column using a high-pressure switching valve. Detection was 221 
carried out optically by absorption spectroscopy. For ease of comparison all 222 
chromatograms reported here have been normalised to the total area under the 223 
measured peaks. The relative concentrations of the adducts were determined 224 
from the areas under the chromatographic peaks, using a calibration curve. 225 
 226 
Initial testing of the reactor was carried out by varying in turn the reaction 227 
temperature, reaction time and molar ratio of sultine to C60, while holding the 228 
other two parameters constant. The effects of varying these parameters on the 229 
measured chromatograms are shown in Fig. 2a(i, ii, iii), while the effects on the 230 
mole fractions of the adducts are shown in the stacked area plots of Fig. 2b(i, ii, 231 
iii). Up to four distinct and well separated chromatographic peaks were observed 232 
in each case at elution times of approximately 4.4, 5.4, 7.5, and 11.4 min, 233 
corresponding to triply- (X3), doubly- (X2), singly- (X1) and un- (X0) 234 
functionalised C60, respectively (see Methods). Similar trends are evident in each 235 
plot, with there being a reduction in the C60 peak accompanied by an increase in 236 
the other three peaks as the variable parameter was increased. Hence, for the 237 

                                                        
* A flow synthesis for indene C60 adducts has previously been reported by Seyler et al29. 
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conditions tested, increases in the temperature, reaction time and sultine:C60 238 
ratio all resulted in increased conversion of C60 into higher-order adducts in 239 
broad accordance with expectation.  240 
 241 
The plots in Fig. 2 show smooth trends in the concentrations of the adducts as 242 
the reaction parameters were varied, indicating a well controlled reaction 243 
environment and low noise in the measurement system – necessary 244 
characteristics for developing a reliable self-optimising reactor. However, 245 
collectively, the plots represent a very limited data set since only one reaction 246 
parameter was varied in each case, with the other two being held fixed. There is 247 
no guarantee similar trends would be obtained for different values of the fixed 248 
parameters. (Indeed, given the cascadic nature of the reaction, the mole fractions 249 
of all species must eventually decrease as the reaction proceeds and they are 250 
converted into higher-order adducts in contrast to the behaviour seen in Fig. 2.) 251 
 252 
For a more complete understanding of how the distribution of reaction products 253 
depends on the reaction conditions, the three-dimensional parameter space 254 
should be mapped out by varying all reaction parameters in parallel. The result 255 
of doing this at a coarse level – using a 6 × 6 × 6 set of evenly spaced grid points 256 
for the temperature, time and sultine:C60 ratio – is shown in Fig. 3. The 257 
measurements were carried out in a randomized order, with several sets of 258 
reaction parameters being repeated multiple times. Chromatograms for the 259 
replicate measurements showed only slight differences (see Fig. S2), indicating 260 
negligible system drift over the timescale of the measurement run, with only 261 
small sample-to-sample variations due to minor reactor instability and/or 262 
measurement errors.  263 
 264 
A number of general observations may be made about the data in Fig. 3: as 265 
before, in all cases a mixture of reaction products was obtained; increasing the 266 
reaction time, temperature and/or sultine:C60 ratio resulted in a progressive 267 
reduction in the mole fraction of unreacted C60 and a progressive increase in the 268 
mole fraction of the (typically unwanted) third-order adduct; at lower 269 
temperatures the (typically preferred) first- and second-order adducts were the 270 
dominant products, while at higher temperatures and sultine:C60 ratios the third-271 
order adduct dominated; an increase in higher-order adducts was evident at 272 
higher temperatures and sultine concentrations, under which conditions C60 was 273 
fully depleted during the reaction, consistent with the cascadic reaction 274 
mechanism.  275 
 276 
The systematic, reproducible nature of the data in Figs. 3 and S2 suggest the 277 
complete system – i.e. the reagents, reactor and measurement system taken as a 278 
whole – is a good candidate for self-optimisation (reproducibility being a pre-279 
requisite for successful optimisation). As noted above, first- and second-order 280 
adducts of C60 are typically preferred for electronic applications, with the 281 
presence of higher-order adducts often having a detrimental impact on 282 
optoelectronic behaviour. Hence, as an initial test, a simple unconstrained 283 
optimisation was carried out, in which we sought to minimise the formation of 284 
the third-order adduct by setting the merit function – i.e. the quantity to be 285 
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minimised – equal to the mole fraction of the third-order adduct, [X3] (see 286 
Table 1).  287 
 288 
For all optimisation runs reported here we used the global optimisation code 289 
Stable Noisy Optimisation by Branch and Fit (SNOBFIT)22 – a noise-tolerant 290 
routine that first divides the search space into separate boxes that each contain 291 
one sampled data point, and then forms quadratic models around each point; 292 
local searching is handled by selecting the model minima as new evaluation 293 
points, and global searching is handled by making measurements in large boxes 294 
(which correspond to large regions of unexplored territory). In each iteration, a 295 
batch of new points is selected for testing, some for local optimisation and others 296 
for global searching. In all cases: the temperature was varied between 100 and 297 
150 °C; the reaction time was varied between 3 and 31 min; the flow-rate ratio 298 
was varied between 2:1 and 1:2†; the routine was started ‘cold’, i.e. with no pre-299 
supplied measurement data; and approximately one hundred trial 300 
measurements were carried out during each search, of which 30 % were selected 301 
for global searching and 70 % for local refinement (see Methods). 302 
 303 
The left side of Fig. 4 shows a scatter plot of the sampled data from Run I, in 304 
which the marker locations indicate the reaction conditions and the colours 305 
denote the merit values: lower merit values are denoted by darker colours; and, 306 
for ease of distinction, merit values higher than the median value of 0.011 are 307 
coloured red, while those lower than the median value are coloured blue. (Pale, 308 
near-white markers denote points with merit values equal or close to the median 309 
value). The wire-frame ‘cage’ denotes the bounds defined by the flow rate and 310 
temperature constraints. The algorithm has evidently sampled certain regions of 311 
the parameter space preferentially – in particular the region next to the lower 312 
half of the right face of the cage, corresponding to lower temperatures and lower 313 
sultine concentrations. The data markers in this region are all coloured blue, 314 
signifying low merit values, i.e. low mole fractions of the third-order adduct.   315 
 316 
The mole fractions [X0], [X1], [X2] and [X3] of the four adducts are plotted against 317 
measurement number in Fig. 5a(i). The mole fraction distribution can be seen to 318 
fluctuate substantially between successive measurements  due to local searching 319 
at the beginning of each batch of points, and global searching at the end of each 320 
batch: in the local phase, the parameter space is sampled preferentially in 321 

                                                        
† When the sultine flow rate (FS), the C60 flow rate  (FC60) and the temperature (T) are 

plotted along the x, y and z axes, respectively, the constraints define a right prism 
shaped parameter space with vertical walls and a trapezoidal base (see Fig. 4) – the 
non-parallel sides of the base being due to the constraints imposed on the flow-rate 
ratio. SNOBFIT by contrast accepts only box-bounded constraints, corresponding to a 
rectangular prism shaped parameter space. The trapezoidal flow constraints were 
handled by a two-stage transformation of the external variables FS and FC60 to box-
bounded internal variables. The first stage involved a rotation of each coordinate [FS,  
FC60] by 45°, the angle between the axis of symmetry of the trapezium and the y-axis; 
while the second stage involved a mapping of each rotated coordinate to the internal 
rectangular space used by SNOBFIT, using the shadow-map algorithm of Tobias and 
Tiow-Seng30. 
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regions where the existing merit values are low, yielding new merit values that 322 
are typically low also; in the global phase, unexplored regions of the parameter 323 
space are sampled where the merit values tend to be large (but where superior, 324 
as yet undiscovered, minima might potentially exist). Insight into the behaviour 325 
of the algorithm can be drawn from Figs. 6a(i) and 6a(ii) which show successive 326 
merit values and a histogram of the merit values, respectively. The plots indicate 327 
that the algorithm preferentially explored regions of the parameter space that 328 
yielded low merit values, with more than 80 % of sampled data points having 329 
merit values of 0.050 or less (compared to a maximum measured value of 0.389). 330 
The best point with the lowest merit value of 0.001 had mole fractions of 0.318, 331 
0.649, 0.033 and 0.001 for the zero-, first-, second- and third-order adducts, 332 
respectively, confirming effective suppression of the third-order adduct. 333 
 334 
Fig. 5b(i) shows mole fractions for the best result obtained so far versus 335 
measurement number, N. Changes in the best result occurred whenever the most 336 
recently tested reaction conditions gave rise to a product distribution with a 337 
lower merit value than the previous best result, i.e. a lower mole fraction for the 338 
third-order adduct. Improvements occurred at N = 5, 15, 18 and 53, with the 339 
mole fraction of the third-order adduct falling from an initial value of 0.384 at N 340 
= 1 to a value of 0.001 at N = 53. At the same time, the concentration of unreacted 341 
C60 increased from an initial value of 0.000 at N = 1 to a value of 0.318 at N = 53. 342 
Hence, it is evident that the reduction in [X3] was primarily achieved at the 343 
expense of an undesirable drop in C60 conversion. 344 
 345 
To improve the conversion rate, a second optimisation (Run II) was carried out 346 
in which the mole fraction of the third-order adduct was again minimized, but 347 
constraints were applied to the combined mole fraction of the (desired) first- 348 
and second-order adducts: soft and hard lower limits of 90 and 60 %, 349 
respectively, were imposed on the combined mole fraction [X1,2] = [X1] + [X2], 350 
using a constraint window for [X1,2] of [0.9, 1.0] and a &-value of 0.3. The right 351 
side of Fig. 4 shows a scatter plot of the measurements made during Run II, 352 
where merit values above the median value (0.020) are again coloured red and 353 
those below the median value are coloured blue. As before, the algorithm 354 
preferentially sampled the low temperature, low sultine region close to the right 355 
face of the cage. However, this time the majority of sub-median data points 356 
occurred close to the foremost ‘spine’ of the cage, corresponding to lower flow 357 
rates, i.e. longer reaction times. Hence, in common with the unconstrained case 358 
of Run I, the algorithm ensured a low mole fraction of the third-order adduct by 359 
selecting low temperatures and low sultine concentrations, but this time it 360 
selected longer reaction times that resulted in higher C60 conversion. The best 361 
point with the lowest merit value of -0.166 had mole fractions of 0.101, 0.784, 362 
0.110 and 0.004 for [X0], [X1], [X2] and [X3]. 363 
 364 
The mole fraction distribution is plotted against measurement number in 365 
Fig. 5a(ii). While the observed behaviour is similar to that seen in Fig. 5a(i) for 366 
Run I – with the mole fractions again fluctuating substantially between 367 
successive measurements as the optimisation routine switched between local 368 
and global searching – the average height of the dark purple bars that denote 369 
unreacted C60 is significantly lower. Hence, compared to the first optimisation 370 
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run, the algorithm preferentially selected reaction conditions that resulted in 371 
substantial conversion of C60. Fig. 5b(ii) shows mole fractions for the best result 372 
to date versus N, where the best result corresponds to the outcome with the 373 
lowest (soft) merit value. Improvements occurred at N = 3, 13, 14 and 33, with 374 
[X3] assuming respective values of 0.013, 0.006, 0.005 and 0.004 and [X0] 375 
assuming respective values of 0.067, 0.155, 0.134 and 0.101. Hence, although the 376 
initial reduction in [X3] was again achieved at the cost of an increase in [X0], the 377 
C60 concentration subsequently dropped without the concentration of the third-378 
order adduct increasing. The algorithm therefore succeeded in its aim of 379 
minimizing the amount of the third-order adduct, while also achieving a close 380 
to ninety percent yield of first- and second-order adducts. 381 
 382 
The contrasting behaviour of the constrained and unconstrained optimisation 383 
runs can be seen more easily by ranking the data from Figs. 5a(i) and 5a(ii) in 384 
order of decreasing third-order adduct. While the two ranked plots in Figs. 5c(i) 385 
and 5c(ii) are qualitatively similar in appearance – with the concentrations of the 386 
second- and third-order adducts decreasing and the concentrations of the zero- 387 
and first-order adducts increasing from left to right – clear differences are 388 
evident: the average mole fraction of the third-order adduct is slightly higher in 389 
the case of the constrained optimisation (Run II), while the average mole fraction 390 
of unreacted C60 is markedly lower. Hence it is evident that, during Run II, the 391 
algorithm preferentially probed regions of the parameter space that resulted in 392 
high C60 conversion. 393 
 394 
The behaviour of (the constrained optimisation) Run II can be understood by 395 
examining the plots in Fig. 6b, which show successive values and the 396 
corresponding histograms for the total objective function �	
����� , the 397 
transformed merit function �∗��� and the constraint function ����. It can be seen 398 
that the algorithm preferentially explored regions of the chemical parameter 399 
space that yielded low merit values, with these low values being achieved 400 
through a combination of low �∗��� values and low ���� values. The �∗��� 401 
values, while running from –0.227 to 0.887, were strongly biased towards 402 
negative values, indicating that the algorithm identified many points that yielded 403 
a lower third-order adduct concentration than the first identified feasible point 404 �� (identified at N = 1). In addition, the ���� values were preferentially skewed 405 
towards zero, signifying a strong bias towards points that satisfied or nearly 406 
satisfied the constraint: of the 100 measurements, 46 resulted in a ���� value of 407 
zero, corresponding to fully feasible points that completely satisfied the applied 408 
constraint (i.e. yielded a combined mole fraction for X1 and X2 of > 90 %). 409 
 410 
Fig. 7a(i) shows the chromatogram corresponding to the lowest merit value 411 
(0.001) obtained during Run I, while Fig. 7a(ii) shows chromatograms for the 412 
lowest merit value (-0.166) and the lowest fully feasible merit value (-0.123) 413 
obtained during Run II. Comparing these chromatograms, it can be seen that 414 
[X1,2] was substantially higher for Run II (~0.9) than Run I (0.68), consistent with 415 
the successful application of the constraint in the former case. The fully feasible 416 
and semi-feasible chromatograms of Fig. 7a(ii) are very similar to one another, 417 
implying similar amounts of the four adducts in both cases. The best feasible 418 
point had a third-order adduct mole fraction of 0.007 and a combined mole 419 
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fraction [X1,2] of 0.905 for the first- and second-order adducts, compared to 420 
values of 0.004 and 0.894 for the best semi-feasible point. Hence, comparing the 421 
best point and the best feasible point, it is clear that – in accordance with the 422 
discussion above – an improvement (reduction) in the primary parameter [X3] 423 
was achieved through a slight violation of the constraint on [X1,2]. The violation 424 
in this particular case was rather small since the best feasible point had an [X3] 425 
value that was already close to the lowest possible value of zero, so straying far 426 
outside the feasible zone would have caused a substantial increase in ���� 427 
without significantly reducing �∗���.  428 
 429 
In Run II, a constraint was applied to [X1,2], the combined mole fraction of the 430 
first- and second-order adducts, but the relative amounts of the two mole 431 
fractions were allowed to vary freely. While the best point and best feasible 432 
points corresponded to product mixtures that contained substantially more of  433 
the first-order adduct than the second-order adduct, this was not specifically 434 
encoded within the merit function. To ensure such an outcome, it is necessary to 435 
impose a constraint on the ratio ℜ(� = [X(]/[X�] , alongside the existing 436 
constraint on [X1,2]. To demonstrate the feasibility of doing this, in the next 437 
optimisation run (Run III), we additionally sought to enforce a lower limit of 4:1 438 
on the ratio ℜ(� = [X(]/[X�], using a constraint window of [4,∞] and a sigma 439 
value of 0.3‡  (while maintaining the existing constraint on [X12]).  440 
 441 
Scatter plots for Run III, plots of mole fractions and merit values versus 442 
measurement number, and histograms of �	
�����, �∗��� and ���� are provided 443 
in Fig. S3. The chromatograms for the best point and the best feasible point, 444 
obtained at measurement numbers 26 and 99 respectively, are shown in 445 
Fig. 7a(iii). The best feasible point had mole fractions of 0.085, 0.778, 0.128 and 446 
0.009, implying an ℜ(� value of ~6.1:1 and an [X12] value of 0.906 – both values 447 
being consistent with the specified limits. The best point by contrast had mole 448 
fractions of 0.129, 0.776, 0.091 and 0.004, implying an ℜ(� value of ~8.5:1 and 449 
an [X12] value of 0.867 - the slight violation of the [X12] constraint having led to a 450 
beneficial reduction in [X3] from 0.009 to 0.004. 451 
 452 
Obtaining a product mixture that is rich in the first-order adduct is not especially 453 
difficult, and indeed occurred by chance in Run II, even without imposing a 454 
constraint on ℜ(�. For the fourth optimisation run (Run IV), we sought to obtain 455 
a product mixture that contained more of the second-order adduct than the first-456 
order adduct. Owing to the cascadic nature of the reaction, this is a substantially 457 
harder challenge since the second-order product lies adjacent in the reaction 458 
sequence to the unwanted third-order adduct, meaning conditions that favour 459 
the formation of the second-order product are liable to promote (to a lesser 460 
extent) the unwanted formation of the third-order product.  461 
 462 

                                                        
‡ In this work, we were primarily interested in achieving fully feasible solutions, for 

which the exact &-value chosen is of secondary importance. Hence a common value of 
0.3 was used for all constraints. 
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To assess the feasibility of attaining an end-product rich in the second-order 463 
adduct, we placed what we hoped would be a physically achievable upper limit 464 
of 1:2 on the ratio ℜ(� = [X(]/[X�], using a constraint window of [0, 0.5] and a 465 
sigma value of 0.3, while again maintaining the constraint on [X12]. The resultant 466 
scatter plots, plots of mole fraction and merit value versus measurement 467 
number, and histograms of �	
�����, �∗��� and ����, are provided in Fig. S4.  In 468 
contrast to the previous results, no feasible point was identified during the 469 
course of the run, with the histogram for ���� spanning the range 0.280 to 1.999 470 
due to partial �0 < ���� ≤ 1� or complete ����� > 1� violation of at least one of 471 
the constraints in all cases. There were 50 cases of partial violations, of which 36 472 
were due to partial violation of the yield constraint only, and 14 were due to 473 
partial violation of both constraints. There were 50 cases of full violations, of 474 
which 2 were due to full violation of the yield constraint, 26 were due to full 475 
violation of the ratio constraint, and 22 were due to full violation of both 476 
constraints. The constraint violations are consistent with the difficulty noted 477 
above of suppressing the formation of the third-order adduct, while at the same 478 
time trying to achieve a high mole fraction of the second-order adduct.  479 
 480 
The chromatogram for the best point in Run IV, i.e. the point with the lowest soft 481 
merit value (-0.212), is shown in Fig. 7a(iv). From the areas under the 482 
chromatographic peaks, [X0], [X1], [X2] and [X3] were determined to be 0.001, 483 
0.288, 0.510 and 0.201, respectively. Hence, even at the best point, a substantial 484 
amount of the third-order adduct was present and both constraints were 485 
partially violated, with [X12] having a value of 0.798 (i.e. less than 0.9) and ℜ(� 486 
having a value of 0.564 (i.e. greater than 0.5). As expected from the above 487 
discussion, in an effort to find conditions that came close to satisfying the 488 
constraint on ℜ(�, the algorithm identified conditions that resulted in a high 489 
concentration of the third-order adduct and virtually no C60. 490 
 491 
The difficulty of simultaneously achieving a high ratio of the second- to first-492 
order adducts, while at the same time suppressing formation of the third-order 493 
adduct is evident from Fig. 7b, which shows chromatograms (acquired during 494 
Run IV) at several illustrative values of [X3]. From the chromatograms, it is 495 
evident that the ratio of the first-order adduct to the second-order adduct 496 
decreases steadily as [X3] increases. In Fig. 7c, the ratio ℜ(� is plotted against the 497 
mole fraction [X3] for each measurement in Run IV. The data points lie on a 498 
trade-off curve, with desired reductions in ℜ(� leading to an unwanted increase 499 
in [X3]. From the trade-off curve, it is evident that [X3] can only be kept below the 500 
10 % level (which we consider to be an acceptably low value) if ℜ(� is greater 501 
than approximately 1.5. Armed with this information, a fifth optimisation run 502 
(Run V) was carried out using an expanded constraint window for ℜ(� of [0, 1.5] 503 
and the same sigma value of 0.3. Scatter plots for Run V, plots of the mole 504 
fraction distributions and merit values versus measurement number, and 505 
histograms of �	
�����, �∗��� and ���� are provided in Fig. S5.  506 
 507 
Using the expanded constraint window for ℜ(�, an initial feasible point �/ was 508 
found at N = 21. The same point turned out to be both the best feasible point and 509 
the point with the lowest overall merit value (see Fig. 7a(v) for chromatogram). 510 
The mole fractions for [X0], [X1], [X2] and [X3] were 0.007, 0.535, 0.373 and 0.085, 511 
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respectively, corresponding to values of 0.909 and 1.43 for [X12] and ℜ(� in close 512 
agreement with the trade-off curve of Fig. 7c. Hence, given the successful 513 
discovery of a fully feasible solution in Run V, it is evident that data generated in 514 
an initial optimisation run based on unsatisfiable constraints (i.e. Run IV) may 515 
nonetheless still be used to identify more appropriate constraints for future 516 
runs. In this way, it is easy to learn from experience and progressively modify 517 
constraints over a number of repeat runs until the constraints are appropriately 518 
matched to the underlying chemical system. 519 
 520 
While the merit functions proposed above are sensible choices for achieving the 521 
intended outcomes, they are not the only options. The same (or at least a similar) 522 
result should be obtained for any sensibly constructed merit function that has 523 
been designed to achieve a particular goal. Based on the trade-off curve of Fig. 7c, 524 
as an alternative to the merit function used for optimisation Run V, the ratio ℜ(� 525 
could be used as the principal property to be minimised, subject to [X12] lying in 526 
the constraint window [0.9, 1.0] (using here the same sigma value of 0.3). The 527 
results of framing the merit function in this way were investigated in Run VI. The 528 
chromatograms for the best feasible point and the best point are shown in 529 
Fig. 7a(vi) and can be seen to closely match those of the previous run, confirming 530 
the approximate equivalence of the optimisation criteria. The best feasible point 531 
had mole fractions of 0.007, 0.527, 0.378 and 0.087 for [X0], [X1], [X2] and [X3], 532 
corresponding to values of 0.906 and 1.393 for [X12] and ℜ(�in reasonably close 533 
agreement with the best feasible point of Run V. The best point by contrast had 534 
mole fractions of 0.004, 0.382, 0.458 and 0.157, corresponding to a favourable 535 
reduction in ℜ(� (to 0.833) at the expense of an unfavourable reduction in [X12] 536 
(to 0.840) . 537 
 538 
 539 
Discussion and Conclusion 540 
 541 
The results presented above illustrate the use of self-optimisation in two distinct 542 
forms: the first form, blind discovery, relates to the optimisation of an unknown 543 
system, for which little information is available at the outset; while the second, 544 
rediscovery, relates to a repeat optimisation of a (partially) known system. In the 545 
case of blind discovery, it is not known in advance what can be achieved by the 546 
system. Physically plausible constraints must therefore be proposed on the basis 547 
of physicochemical intuition in the hope that an acceptable solution will be 548 
attained. The acceptability or otherwise of the solution is determined by the 549 
appropriateness of the constraints chosen. In cases where the solution is not 550 
acceptable to the user, blind optimisation may be straightforwardly followed by 551 
one or more refinement stages, in which the constraint windows are iteratively 552 
modified to achieve a superior outcome. 553 
 554 
Rediscovery relates to repeat optimisations of a well understood system for 555 
which a near optimal outcome is known in advance, but the detailed reaction 556 
conditions needed to achieve that outcome remain to be discovered. This might 557 
be the case, for instance, when resuming a previously optimised reaction after 558 
changing reagent batches or otherwise servicing/modifying the reactor, or on 559 
transferring the reaction to a similar, but untested, reactor. In such cases, it is 560 
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reasonable to expect broadly equivalent behavior across the reaction runs and 561 
reactors, but the detailed mapping of reaction conditions onto the final product 562 
may differ due to slight differences in reagent compositions or the mechanical 563 
configuration of the reactor(s). 564 
 565 
Most of the optimisation runs reported above were carried out in the manner of 566 
blind runs, where we postulated appropriate constraints without using 567 
information gained in previous runs to guide our choice. Rather loose constraints 568 
were applied that had a significant chance of being satisfied immediately, 569 
recognising they could if necessary be tightened in subsequent runs to achieve a 570 
superior outcome. Run V is an example of rediscovery in the sense that we used 571 
the trade-off information acquired during Run IV to identify an achievable 572 
solution with an acceptable mole fraction distribution. We then modified the 573 
upper limit on ℜ(� accordingly to deliver that solution in Run V. (Run VI may be 574 
considered an example of re-optimisation for similar reasons.)  575 
 576 
We stress again that the merit functions used here are constructed entirely on 577 
the basis of easily acquired physical information and consequently, once the 578 
appropriate constraints are established, they may be written down directly with 579 
no further work or mathematical manipulation being required on the part of the 580 
user. For the benefit of readers wishing to implement the procedure described in 581 
this paper, we have provided an easy-to-use self-contained software package 582 
(see https://github.com/jdmgroup/SNOBFit_for_chemical_optimisations ) that 583 
takes care of the construction and subsequent optimisation of the merit function, 584 
together with detailed tutorial-style instructions. We hope the provision of this 585 
software will substantially simplify the implementation of self-optimising 586 
reactors, and so encourage their wider adoption by the general chemistry 587 
community. 588 
 589 
Beyond the tuning of product distributions, the procedure used here is also 590 
applicable to reactions where product yield must be balanced against practical 591 
factors such as production rates and/or materials and energy costs. The 592 
approach has further applications in materials optimisation, where a 593 
compromise must frequently be reached between several physicochemical 594 
properties. For instance, using a conventional weighted product based multi-595 
objective merit function, Krishnadasan et al.1 reported a self-optimising reactor 596 
that optimised the emission intensity of quantum dots at a chosen emission 597 
wavelength. Owing to the difficulty of identifying weights that accurately 598 
encapsulated the intended outcome, small (nm-level) deviations from the target 599 
wavelength were heavily penalized even when they resulted in a substantial 600 
improvement in emission intensity. Framing the same problem as a constrained 601 
optimisation – in which the intensity is maximized subject to the emission 602 
wavelength lying in a prescribed range – would allow the trade-off to be 603 
precisely encoded within the merit function in a way that more closely reflects 604 
typical user preferences. 605 
 606 
In summary, we have described a simple procedure for constructing multi-607 
objective merit functions for self-optimising reactors. Framing the problem as a 608 
constrained optimisation, in which a principal property is optimised subject to 609 
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soft and hard constraints on the other parameters, allows the optimisation 610 
criteria to be set out in a manner that is intuitive even for the non-specialist. The 611 
specific method for constructing chemical utility functions used here offers 612 
substantial advantages over conventional approaches based on weighted sums 613 
and products, both in terms of their ease of construction and their mathematical 614 
behaviour. In particular, the merit function may be written down directly from 615 
the specified constraints without the need to tune weighing coefficients or 616 
penalty parameters, and given sufficient time (if satisfiable constraints are 617 
selected) the solution is guaranteed to minimise the lead property, while 618 
ensuring all other properties lie within the prescribed boundaries. The generic 619 
approach is not tied to any specific optimisation algorithm and consequently can 620 
be expected to simplify the implementation of self-optimising reactors in many 621 
situations, while at the same time yielding improved reaction products that more 622 
closely match user requirements. 623 
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Methods 624 
 625 
Preparation of precursors for o-xylenyl C60 adducts 626 
C60 was obtained from Solenne BV, while all other chemicals were obtained from 627 
Sigma-Aldrich. Sultine (1,4-dihydro-2,3-benzoxothiin 3-oxide) was synthesised 628 
using the protocol described in Kim et al25. A stock solution of sultine was 629 
prepared by dissolving under argon the unpurified product in o-dichlorobenzene 630 
(o-DCB) at a concentration of 1.4 mg/mL. A stock solution of C60 was prepared by 631 
dissolving under argon the as-received C60 in o-DCB at a concentration of 632 
2 mg/mL. The stock solutions were stored under argon for up to a week before 633 
use.  634 
 635 
Reactor setup 636 
The reagent solutions were  transferred to separate 500 mL flasks, where they 637 
were stored under argon and delivered to the reactor by a dual-channel 638 
continuous-flow syringe pump (Syrris Asia), using PTFE tubing (1 mm I.D., 2 mm 639 
O.D., Polyflon Technology Ltd.). The two solutions were merged using a static y-640 
shaped mixer (PEEK, tP-512, Upchurch Scientific). Using the same diameter 641 
PTFE tubing, the mixed reagents were passed helically around a heater formed 642 
from a solid 88-mm-diameter cylindrical block of aluminium containing three 643 
symmetrically disposed inset cartridge heaters (3/8” × 2”, 150 W, RS 644 
Components Ltd.). The temperature of the heater surface was monitored using a 645 
K-type flag-style thermocouple (25x13 mm, FL-K-2M, LABFACILITY) connected 646 
to a microcontroller (Arduino Uno) via a thermocouple amplifier (MAX6675, 647 
Adafruit).  The total length of tubing in contact with the heater was 119 cm, 648 
equating to a heated reactor volume of 0.931 mL. The heater was enclosed in a 649 
plastic box, containing two fans inset into the walls for air cooling. The heater 650 
and fans were controlled by the microcontroller, using the Arduino PID library. A 651 
back-pressure regulator (20 psi, PEEK, Upchurch Scientific) was placed at the 652 
outflow of the reactor. The destination of the product stream was controlled by 653 
an injection valve as described below. The total length of tubing in the reactor 654 
was 202 cm, equating to a total reactor volume V of 1.587 mL. 655 
 656 
On-line HPLC analysis 657 
Eluent solvent (Hexane/Toluene, 1:3) was passed through a pyrenylpropyl-658 
functionalised silica column (BuckyPrep, Cosmosil) using an HPLC pump (Model 659 
12-6, SSI). Sample loading and injection were controlled by an injection valve 660 
(MXP-7900, Rheodyne) connected to the outflow of the reactor via a sample coil 661 
(Stainless Steel, Upchurch Scientific, Vcoil = 5 µL). The sample transmittance after 662 
the column was monitored using a 390 nm light-emitting diode and an amplified 663 
silicon photodiode (OPT101, Texas Instruments), which were placed either side 664 
of transparent perfluoroalkoxy tubing (I.D. 0.50 mm, O.D 1/16 in, Upchurch 665 
Scientific). A second amplified silicon photodiode arranged at 90° to the LED 666 
allowed the signal from the first photodiode to be corrected for fluctuations in 667 
LED light intensity. The signals from the photodiodes were acquired using a data 668 
acquisition card (NI-6211, National Instruments) controlled by a MATLAB script. 669 
 670 
 671 
 672 
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Manual Operation 673 
The heater, injection valve and syringe pump were controlled by a PC across the 674 
Universal Serial Bus (USB). A custom-written MATLAB script was used to step 675 
through a pre-determined sequence of reaction conditions. The set-point 676 
temperature of the heater was updated at the start of each step. Following a 677 
delay of at least one minute as described below, the two syringe pumps 678 
containing the C60 and sultine solutions were set to the specified volumetric 679 
flow-rates (�01� and �234�56�), with the injection valve oriented in the inject 680 
position (i.e. with the sample loop between the eluent stream and the column), 681 
so that the product flowed directly to the collection flask. The flow was allowed 682 
to stabilize for a duration  7  equal to twice the mean residence time 683 
( 7 = 28/[�09: + �234�56�]). The injection valve was then switched to the load 684 

position (i.e. the sample loop was inserted between the product stream and the 685 
collection flask) and held there for a duration sufficient for 50 µL (= 10 Vcoil) of 686 
fluid  to pass through. With the product loaded in the sample coil, the injection 687 
valve was switched back to the inject position, causing the product to be carried 688 
by the eluent stream into the column. Chromatograms were obtained by 689 
recording the signals from the two photodiodes for thirteen minutes. The next 690 
step was started while the chromatogram from the previous step was still being 691 
recorded by first updating the target temperature and waiting for it to stabilize 692 
and then, at a time  7 before the end of the current HPLC measurement, setting 693 
the syringe pumps to infuse at the new flow rates. 694 
 695 
Automated Operation 696 
For ease of use a class-based MATLAB wrapper was written for the SNOBFit 697 
functions provided by Huyer and Neumaier.§ At the start of each optimisation 698 
run, using a Latin Hypercube design, SNOBFit selected a batch of npoint  699 
randomised data points inside the region bounded by the parameter constraints. 700 
In subsequent iterations, SNOBFit selected new data points for measurement in 701 
batches of size nreq. New batches were generated until the total number n of 702 
function evaluations exceeded a pre-set limit ncall. (The final batch was carried 703 
out to completion). To initialise the soft optimisations, a feasible point �� 704 
satisfying the condition ���/� = 0  was first identified by running an 705 
unconstrained optimisation, using the penalty function ���� as the objective 706 
function to be minimised. Once a feasible point had been found, soft merit values 707 
for all data points so far measured were calculated using Eq. (1). The 708 
optimisation run was then restarted using the soft merit function	�∗��� as the 709 
objective function. In cases where no feasible point had been found after fifty 710 
function evaluations, the soft optimisation was instead started using 711 2�;<= − �;56 as a proxy for a feasible point (see main text).  712 

                                                        
§ http://www.mat.univie.ac.at/~neum/software/snobfit/ 
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The following SNOBFit parameters (see Ref. 2) were used:  
 
Parameter Value Description 

N 3 Number of reaction parameters 
Δf 0.02 Uncertainty in f, used for fitting 
npoint N+4 = 7 Number of points in initial batch 
nreq N+4 = 7 Number of points in subsequent batches  
ncall 100 Maximum number of function calls 
p 0.3 Probability of generating a point away from a minimum: 

used to control the balance of local and global searching. 
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Scheme 1: Synthesis of o-xylenyl C60 adducts of varying order via in-situ conversion of sultine (1,4-dihydro-2,3- 
benzoxathiin 3-oxide) to o-quinodimethane (oQDM) (a) followed by successive attachments of oQDM to C60 (X0) by 
Diels-Alder cycloadditions (b) 
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Figure 1: Schematic showing experimental set-up for manual and automated synthesis of o-xylenyl C60 adducts. 
Sultine and C60 solutions are separately injected into the two inlets of a y-shaped mixer, and the resulting mixture is 
then passed helically around a cylindrical solid-state heater to initiate the reaction prior to collection in a flask. For 
on-line analysis, a small amount of the product mixture is diverted to a sample coil, from where it is injected into an 
HPLC column using a high-pressure switching valve. Detection is carried out optically by absorption spectroscopy. 
The transient signal from the detector is passed to a personal computer (PC) for display and analysis. In manual 
mode, the flow rates and temperatures used in successive measurements are read in sequence from a pre-written 
file; in automated mode they are determined at runtime by an optimisation routine on the basis of previously 
acquired data.  
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Figure 2: (a) Graphs showing chromatograms for flow-synthesised o-xylenyl fullerene adducts as a function of 
temperature (i), reaction time (ii), and sultine to C60 ratio (iii), holding in each case the other two reaction parameters 
fixed. The peaks corresponding to each adduct are labelled in the uppermost plots. (b) Stacked plots showing mole 
fraction distributions for the fullerene adducts versus temperature (i), reaction time (ii), and sultine to C60 ratio (iii), 
using mole fraction values extracted from the chromatograms in (a). For the reaction conditions chosen, increases in 
temperature, reaction time and sultine to C60 ratio all lead to increased conversion of C60 into higher order adducts, 
with the concentration of C60 decreasing and the concentration of higher order adducts increasing. 
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Figure 3: Stacked plots showing the effect on the mole fraction distribution of concurrently varying the temperature, 
reaction time, and sultine to C60 ratio. Each individual plot shows the variation of mole fraction distribution with 
reaction time at a given temperature and sultine to C60 ratio. Plots in the same row correspond to reactions 
undertaken at a common temperature, while plots in the same column correspond to reactions undertaken at a 
common sultine to C60 ratio. The measurements were carried out in a randomized order to eliminate possible bias 
due to system drift. Increases in the reaction time, temperature and/or sultine:C60 ratio cause a progressive reduction 
in the mole fraction of unreacted C60 and a progressive increase in the mole fraction of the third-order adduct; at 
lower temperatures the first- and second- order adducts are the dominant products, while at higher temperatures 
and sultine:C60 ratios the third-order adduct dominates. 
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Figure 4: Scatter plots for Runs I and II, showing the influence of the sultine flow rate, the C60 flow rate and the 
temperature on the merit values fI and fII. The location of each data point indicates the reaction conditions used, 
while the colour denotes the corresponding merit value. For ease of interpretation, points with merit values above 
the median merit value have been coloured red, while those with merit values below the median value have been 
coloured blue; points with merit values close to the median value appear as white. The black cage defines the flow 
rate and temperature constraints. The arrows indicate the locations of the best point (i.e. the point with the lowest 
merit value) for the two runs. In Run I, the algorithm preferentially sampled the region next to the lower half of the 
right face of the cage, corresponding to lower temperatures and lower sultine concentrations. In Run II it 
preferentially sampled the same broad region, but placed a stronger emphasis on data points close to the foremost 
‘spine’ of the cage, corresponding to longer reaction times. 
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Figure 5: (a) Time series for Runs I and II, showing the mole fraction distribution of the o-xylenyl adducts versus 
measurement number N. (b) Time series showing the mole fraction distribution for the best result to date (i.e. the 
data point yielding the lowest merit value) versus N. In the case of Run I, the reduction in [X3] was achieved at the 
cost of an unwanted increase in [X0], whereas in the case of Run II [X0] was maintained at a low value as intended. (c) 
Mole fraction distributions from (a) arranged in order of decreasing [X3].  
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Figure 6: (a) Merit values for optimisation Run I expressed as a time series (i) and a histogram (ii). The square-
shaped marker in the time-series plot corresponds to the best point. (b) Merit values for optimisation Run II 
expressed as a time series (i) and a histogram (ii). Also shown for Run II are the time series and histograms for fII*�xxxx� 
(iii, iv) and pDD�xxxx� (v, vi). The square- and circle-shaped markers in the time-series plots correspond to the best point 
and the best feasible point, respectively. As expected, during both runs the optimiser preferentially explored regions 
of the chemical parameter space that yielded low merit values. In the case of Run II, these low values were achieved 
through a combination of low f *�xxxx� values (corresponding to points with low [X3] values) and low p�xxxx� values 
(corresponding to points that satisfied or nearly satisfied the constraint). 
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Figure 7: (a) Chromatograms for the best points (dark purple curves) and the best feasible points (red 
curves) obtained during the six optimisation runs. (Note: for varying reasons only a single chromatogram is 
shown for Runs I, IV and V: Run I was an unconstrained optimisation, meaning all points were feasible; no 
feasible point was found for Run IV; and the best feasible point for Run V was also the best overall point for 
that run). The mole fraction distributions extracted from the chromatograms are shown inset, with “B” 
denoting the best point and “F” denoting the best feasible point. (b) Illustrative chromatograms from Run 
IV, obtained at different values of [X3], ranging from 0.01 to 0.4. (c) Trade-off curve for Run IV, showing an 
unwanted increase in [X3] as R(� decreases. 

 
 

Page 27 of 27 Reaction Chemistry & Engineering


