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In Holm (Holm 2015 Proc. R. Soc. A 471, 20140963.
(doi:10.1098/rspa.2014.0963)), stochastic fluid
equations were derived by employing a variational
principle with an assumed stochastic Lagrangian
particle dynamics. Here we show that the same
stochastic Lagrangian dynamics naturally arises in
a multi-scale decomposition of the deterministic
Lagrangian flow map into a slow large-scale mean
and a rapidly fluctuating small-scale map. We
employ homogenization theory to derive effective
slow stochastic particle dynamics for the resolved
mean part, thereby obtaining stochastic fluid partial
equations in the Eulerian formulation. To justify the
application of rigorous homogenization theory, we
assume mildly chaotic fast small-scale dynamics, as
well as a centring condition. The latter requires that
the mean of the fluctuating deviations is small, when
pulled back to the mean flow.

1. Introduction
When studying complex turbulent flows or astrophysical
and geophysical fluids, in which physical processes
occur over a wide range of spatial and temporal scales,
we are faced with the inevitable problem that our
limited computational resources will eventually force us
to under-represent processes that occur below certain
temporal and spatial scales. Processes with spatial scales
smaller than the grid scale and with temporal scales
below the applied discrete time step simply cannot

2017 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.

 on October 18, 2017http://rspa.royalsocietypublishing.org/Downloaded from 

http://crossmark.crossref.org/dialog/?doi=10.1098/rspa.2017.0388&domain=pdf&date_stamp=2017-09-20
mailto:georg.gottwald@sydney.edu.au
http://orcid.org/0000-0002-5046-8520
http://orcid.org/0000-0001-6362-9912
http://dx.doi.org/doi:10.1098/rspa.2014.0963
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://rspa.royalsocietypublishing.org/


2

rspa.royalsocietypublishing.org
Proc.R.Soc.A473:20170388

...................................................

be resolved. However, these unresolved processes may be energetically important and could have
a non-trivial impact on the resolved scales. For example, in the study of mid-latitude weather, one
is generally interested in the dynamics of the synoptic weather systems such as high- and low-
pressure fields with spatial scales of several hundred kilometres and time scales of several days.
Numerical simulations must choose a discretization to resolve those processes. The atmosphere,
however, also supports gravity waves, which are the buoyancy oscillations of the stratification
surfaces with spatial scales of hundred metres and time scales of several minutes to hours. These
unresolved gravity waves play a crucial role in vertical momentum transport; so their omission
in a numerical simulation would lead to a misrepresentation of this transport. Similarly, ocean
current models do not resolve meso-scale eddies which transport momentum, heat and salinity
over large spatial scales. Scientists therefore search for methods to parametrize the influence of
these unresolved processes.

Recently, stochastic partial differential fluid equations have been proposed to model the
influence of unresolved scales on the resolved scales of interest [1–5]. These novel approaches
introduce stochasticity into the flow map for the Lagrangian particle trajectories, then the noise
in the Lagrange-to-Euler map produces a random Eulerian vector field. This approach results
in an interesting form of multiplicative noise in the Eulerian stochastic partial differential fluid
equation (SPDE). In the SPDE, the gradient of the noise and its magnitude multiply, respectively,
the solution and the gradient of the solution. Thus, the effects of the noise depend on spatial
gradients of both the noise and the solution. In [1,3–5], the transformation from the Lagrangian
to the Eulerian fluid formulation was achieved via a particular version of the Reynold’s transport
theorem that preserved conservation of energy.

In [2], a variational principle was employed in the derivation of the SPDE for fluids. The same
model was later derived in [6] from Newton’s second Law of Motion and a different version
of the Reynold’s transport theorem, which included the transformation of the coordinate basis
under the Lagrange-to-Euler map. Instead of preserving the energy, the model derived in [2,6] has
the property of preserving Kelvin’s circulation theorem, while introducing a stochastic advecting
velocity for the Kelvin loop, which transports the line elements of the Kelvin loop along stochastic
Lagrangian trajectories.

The stochastic Eulerian random field associated with this advecting velocity vector field was
prescribed in [2,6]. Here, we will motivate the stochastic advection of fluid particles by using
homogenization techniques [7]. In particular, we will show that the same form of stochasticity
as in [2,6] naturally arises, upon splitting the Lagrangian fluid flow map into the composition of
mean and fluctuating maps that is standard for generalized Lagrangian mean theories [8–11]. In
particular, when the time scale of the fluctuating map is sufficiently rapid in comparison to the
slow mean field dynamics, and when the fast dynamics is sufficiently chaotic, its integrated effect
on the slow mean field dynamics is an effective stochastic term, whose variance is determined via
the autocorrelation function of the fast fluctuating flow map.

The paper is organized as follows. Section 2 briefly summarizes the variational stochastic
fluid dynamics introduced in Holm [2]. Section 3 then constructs a deterministic multi-scale
Lagrangian particle system. In §4, we employ homogenization to derive the stochastic noise
in the Lagrangian dynamics, assumed in the variational stochastic fluid approach, from the
deterministic multi-scale system. We conclude in §5 with a summary and discussion.

2. Variational stochastic fluid equations

(a) Variational principles for deterministic fluids
Governing equations for a variety of ideal fluid dynamics theories can be derived within a
variational framework as the Euler–Poincaré equations associated with the following variational
principle with the action [12]

S(u, p, q) =
∫

�(u, a) dt + 〈p, ∂tq − u(q, t)〉 dt, (2.1)
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where, q(l, t) = g(t)l is the Lagrangian trajectory for the time-dependent fluid particle flow map
g(t), with g(0) = Id. In this paper, we will denote explicit time dependence with either parentheses,
such as g(t), or with subscript t, such as as gt; while as usual ∂t will denote partial time derivative
and a dot a total time derivative. For example, the fluid particle flow map q(l, t) = g(t)l = gtl
provides the spatial location of the particle with label l at time t. Accordingly, the time derivative
along the Lagrangian particle trajectory q(l, t) satisfies the defining relation for the Eulerian
velocity, ut, given by

q̇(l, t) = ġtl = (ġtg−1
t )gtl = ut ◦ gtl := u(q(l, t), t). (2.2)

Thus, in this notation, ut = ġtg−1
t is an Eulerian time-dependent velocity vector field, L(gt, ġt, a0) =

L(g0, ġtg−1
t , a0g−1

t ) = �(ut, at) is the reduced Lagrangian, in which at := a0 ◦ g−1
t represents a

set of advected quantities; such as advected tracers, θ = θ0 ◦ g−1
t , or advected densities,

ρ d3x = (ρ0 d3l) ◦ g−1
t .

Relation (2.2) is encoded as a constraint in the Clebsch variational formulation in (2.1) with the
Lagrange multiplier p(l, t), via the inner product

〈p, q̇〉 =
∫
Ω

p(l, t) · q̇(l, t) dnl, (2.3)

where n is the dimension of the domain Ω . The extremal points of the constrained, reduced action
in (2.1) then lead to the Euler–Poincaré equations

∂

∂t
δ�

δu
+ ad∗

u
δ�

δu
= a � δ�

δa
, (2.4)

where one defines ad∗
u(v · dx ⊗ dnx) = Lu(v · dx ⊗ dnx), which has components

ad∗
uv = ∇ · (u ⊗ v) + (∇u)T · v = Luv (2.5)

and the diamond operator (�) is defined as∫
Ω

w · a � φ dnx =
∫
Ω

φLwa dnx, (2.6)

for all test functions φ and w (satisfying the boundary conditions w · n = 0 on ∂Ω).
In (2.5), Lwa denotes the advection law for the advected quantity in question. Since advected

fluid quantities satisfy a0 = at ◦ gt = a(q(l, t), t) =: g∗
t a(x, t), we have the advection law

da0

dt
= 0 = d

dt
(g∗

t a(x, t)) = g∗
t ((∂t + Lu)at) = dat

dt
along q̇(l, t) = u(x, t)|x=q(l,t)

= [∂tat + q̇(l, t) · ∇at]x=q(l,t) = [∂tat + u(x, t) · ∇at]x=q(l,t). (2.7)

For example, if a = ρ dnx is a density, then g∗
t a = g∗

t (ρ dnx) = [ρ(x, t) dnx]x=q(l,t). Thus, the
advection law for a density satisfies the continuity equation in Eulerian coordinates, since in this
case the previous formula becomes

0 = d
dt

[ρ(x, t) dnx]x=q(l,t) = [(∂tρ + u · ∇ρ + ρ∇ · u) dnx]x=q(l,t). (2.8)

Consequently, for a density ρ dnx and a scalar function φ, we find ρ � φ = −ρ∇φ, since∫
Ω

w · ρ � φ dnx =
∫
Ω

φLwρ dnx =
∫
Ω

φ∇ · (wρ) dnx = −
∫
Ω

w · (ρ∇φ) dnx. (2.9)

It is slightly more complicated to prove equation (2.5). However, the same rules apply; so

g∗
t (Lu(v · dx ⊗ dnx)) = d

dt
(g∗

t (v(x) · dx ⊗ dnx)) = d
dt

[v(x) · dx ⊗ dnx]x=q(l,t)

= [((u · ∇)v + vj∇uj + v(∇ · u)) · dx ⊗ dnx]x=q(l,t)

= [(∇ · (u ⊗ v) + (∇u)T · v) · dx ⊗ dnx]x=q(l,t)

= g∗
t [(∇ · (u ⊗ v) + (∇u)T · v) · dx ⊗ dnx]. (2.10)
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The proof of equation (2.5) then follows, because in this case we have the identity,

Lu(v · dx ⊗ dnx) = ad∗
u(v · dx ⊗ dnx). (2.11)

Different choices of a and � lead to a huge range of equation systems in fluid dynamics, including
magnetohydrodynamics, geophysical fluid dynamics and complex fluids, all formulated in terms
of their transformation properties under smooth invertible flow maps; see the examples in [12].
The possibility to eliminate p and q from the equations is a result of the particle relabelling
transformation properties of the action S, which leads to Kelvin’s circulation theorem, expressed
as [12]

d
dt

∮
C(t)

1
ρ

δ�

δu
· dx =

∮
C(t)

1
ρ

(
a � δ�

δa

)
· dx, (2.12)

where C(t) is an arbitrary closed loop which is advected by the velocity u. This leads, for example,
to Lagrangian conserved potential vorticity, in particular instances of the advected quantity a.
The equations also have a conserved energy provided � does not depend explicitly on time,
which arises from Noether’s theorem for variational principles that are invariant under time
translations.

For example, the reduced Lagrangian for the incompressible Euler equations is

�[u, ρ] =
∫
Ω

1
2
ρ|u|2 + p(ρ − ρ0) dnx, (2.13)

where p is a Lagrange multiplier (which will turn out to be the pressure) enforcing constant
density ρ = ρ0. Then, the Euler–Poincaré equations with advected quantities become

∂t(ρu) + ∇ · (u ⊗ ρu) + (∇u)T · ρu = ρ∇
(

−p + |u|
2

)
, (2.14)

ρt + ∇ · (ρu) = 0 (2.15)

and ρ = ρ0. (2.16)

When ρ0 is a constant, these equations simplify to

∂tu + u · ∇u = −∇p and ∇ · u = 0. (2.17)

(b) Variational principles for stochastic fluids
In [2,6], this framework was extended to include stochastic parametrizations of unresolved
dynamics, by replacing the deterministic equation (2.2) with a stochastic equation

dq = u(q, t) dt +
m∑

i=1

ξ i(q) ◦ dWi, (2.18)

where ξ i(q) are time-independent vector fields, and Wi are independent stochastic Brownian
paths. Inserting the stochastic vector field Ansatz (2.18) into the action S and seeking extrema
leads to the stochastic Euler–Poincarè equation, and (2.4) is replaced by

d
δ�

δu
+ ad∗

(u dt+∑m
i=1 ξ i◦ dWi)

δ�

δu
= a � δ�

δa
dt. (2.19)

This equation no longer conserves energy, but it still has a Kelvin circulation theorem

d
∮

C(t)

1
ρ

δ�

δu
· dx =

∮
C(t)

a � δ�

δa
· dx dt, (2.20)

where points on the closed curve C(t) now follow the stochastic vector field in (2.18). A number of
example stochastic geophysical fluid dynamics models derived in this framework were explored
in [2].
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Returning to our example of the incompressible Euler equation, the stochastic Euler–Poincaré
equation with advected quantities becomes

d(ρu) + ∇ · (dx ⊗ ρu) + (∇ dx)T · ρu = ρ∇
(

−p + |u|
2

)
dt,

dρ + ∇ · (ρ dx) = 0

and ρ = ρ0,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.21)

where

dx = u dt +
m∑

i=1

ξ i ◦ dWi. (2.22)

For constant density, system (2.21) simplifies to the stochastic Euler fluid equations analysed in
[6]; namely,

du + dx · ∇u +
(

∇
m∑

i=1

ξ i ◦ dWi

)T

· u = −∇p dt, with ∇ · u = 0. (2.23)

Aim of the paper. The aim of this paper is to establish conditions under which the stochastic vector
field Ansatz in equation (2.18) may be derived by applying the method of homogenization [7,13],
for the purpose of gaining insight into the situations where such a model can be used in fluid
dynamics.

3. Stochastic Lagrangian multi-time dynamics
We postulate a slow–fast evolutionary fluid flow map as the composition of a mean flow ḡt

depending on slow time t and a rapidly fluctuating flow g′
t/ε associated with the evolution of

the fast time scales t/ε, with ε 
 1. We define the flow map associated with the fast scales as the
(spatially) smooth invertible map with smooth inverse (i.e. a diffeomorphism, or diffeo for short)
given by the sum,

g′
t/ε = Id + ζt/ε where ε 
 1. (3.1)

The full flow map is taken to be the composition of ḡt and g′
t/ε , as

gt = g′
t/ε ◦ ḡt = ḡt + ζt/ε ◦ ḡt. (3.2)

The Lagrangian trajectory of a fluid parcel is then given by q(l, t) = gtl, so that

q(l, t) = q̄(l, t) + ζt/ε ◦ q̄(l, t), (3.3)

where the vector l denotes the fluid label, e.g. the initial condition of the particles. The rapidly
fluctuating vector displacement field

ζ (q̄(l, t), t/ε) := ζt/ε ◦ q̄(l, t) (3.4)

is defined along the slow large-scale resolved trajectory, q̄. At this point, (3.3) may be taken as
exact, since it follows directly from the definition of the map ζt/ε in (3.1).

The tangent to the flow map gt in (3.2) at q(l, t) along the Lagrangian trajectory (3.3) defines
the Eulerian velocity vector field u, written as:

ġtl = q̇(l, t) = u(q(l, t), t). (3.5)

Differentiation of the Lagrangian trajectory (3.3) with the assumed fluctuating displacement field
(3.4) yields

u(q̄ + ζt/ε ◦ q̄, t) = ˙̄q + ( ˙̄q · Vq̄)ζ (q̄(l, t), t/ε) + 1
ε
∂tζ . (3.6)

We shall express the temporal partial derivative ∂tζ of the fluctuating vector displacement field ζ

in (3.4) in terms of its empirical orthogonal eigenfunctions φi, i = 1, 2, . . . , M. We assume that the
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eigenfunctions φi are slowly varying in space and are conditioned on the large-scale mean flow
dynamics, so that we may write

∂tζ (q̄(l, t), t/ε) =
M∑

i=1

λi

(
t
ε

)
φi(q̄(l, t)). (3.7)

Note that the eigenvalues λi(t) have temporal mean zero. We assume chaotic deterministic
dynamics of the fast fluctuating λi(t/ε) with

λ̇i = 1
ε2 hi(λ). (3.8)

For convenience, let us summarize the deterministic multi-scale system describing the dynamics
of the Lagrangian mean position variable q̄, as follows:

(Id + ∇q̄ζ ) ˙̄q = u(q̄ + ζt/ε ◦ q̄, t) − 1
ε
∂tζ (λ, q̄(l, t)), (3.9)

λ̇i = 1
ε2 hi(λ) (3.10)

and ∂tζ =
M∑

i=1

λi

(
t
ε

)
φi(q̄(l, t)). (3.11)

The next section employs homogenization theory to show how this set of equations converges for
ε → 0 to solutions of a certain stochastic Lagrangian dynamics on long time scales.

4. Diffusive limit of stochastic Lagrangian dynamics
Homogenization is a mathematical tool for extracting the statistical behaviour of the slow degrees
of freedom in a multi-scale system, by providing an effective stochastic differential equation for
the slow degrees of freedom [7,13]. Homogenization represents the integrated effect of the fast
(either stochastic, or chaotic) dynamics on the slow variables as noise. Homogenization was
initially developed for stochastic multi-scale systems [14–16]. However, it has been extended
recently to apply for deterministic multi-scale systems with sufficiently chaotic fast dynamics
[17–19]. In particular, homogenization applies to deterministic multi-scale systems for slow
variables x ∈ R

d and fast variables y ∈ R
m of the form,

ẋ=1
ε

f0(x, y) + f1(x, y) (4.1)

and

ẏ= 1
ε2 g0(y). (4.2)

We assume that the vector fields f0 : R
d × R

m → R
d, f1 : R

d × R
m → R

d and g : R
m → R

m satisfy
certain regularity conditions. We consider sufficiently chaotic fast y-dynamics with a compact
chaotic attractor Λ ⊂ R

m and ergodic invariant probability measure μ. Homogenization requires
the so-called centring condition

∫
Λ f0 dμ = 0, i.e. that averaging would result in trivial dynamics

associated with f0. It is instructive to write the slow dynamics in the integrated form

x(t) = x(0) + ε2
∫ t/ε2

0
f1(x(τ ), y(τ )) dτ + ε

∫ t/ε2

0
f0(x(τ ), y(τ )) dτ , (4.3)

where we perform the time integral over the fast time scale τ = t/ε2. The first term involving
f1 approaches for ε → 0 its ergodic mean by means of the law of large numbers. The second
term involves summing up sufficiently decorrelated variables f0 with mean zero (the centring
condition) and in the limit ε → 0 leads to Brownian noise by means of the central limit theorem.
The randomness comes here from the initial conditions of the fast ergodic deterministic dynamical
system. Under the above hypotheses this heuristic argument can be made rigorous [17–19]: as
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ε → 0 the slow dynamics x(t) converges weakly in the space of continuous functions C([0, T], Rd)
for some T > 0 to the solution of the homogenized Itô stochastic differential equation

dX = F(X) dt + Σ(X) dWt, (4.4)

where Wt denotes Brownian motion and the drift coefficient is given by

F(x) =
∫

f1(x, y) μ(dy) +
∫∞

0
ds

∫
f0(x, y) · ∇f0(x, y(s))μ(dy) (4.5)

and the diffusion coefficient is defined by

Σ(X)ΣT(X) =
∫∞

0
ds

∫
(f0(y) ⊗ f0(y(s)) + f0(y(s)) ⊗ f0(y))μ(dy), (4.6)

where the outer product between two vectors is defined as (a ⊗ b)ij = aibj [19–21].
We remark that, in one spatial dimension d = 1, the drift term reduces to

F(X) =
∫

f1(x, y)μ(dy) + 1
2
Σ(X)ΣT(X),

which implies that the noise is of Stratonovich type. In higher dimensions, the noise is neither
of Stratonovich nor of the Itô type, and the drift term contains non-trivial corrections stemming
from f0. The required chaoticity assumption needed to assure the functional central limit theorem,
the so-called weak invariance principle, is rather innocuous, and it allows convergence to diffusive
laws to be proven for a large class of chaotic dynamical systems. In particular, no assumption
about mixing is needed. For deterministic maps, the convergence to Brownian motion holds
when the correlation function of f0 is summable. For flows, it suffices that there is a Poincaré map
with these properties (irrespective of the mixing properties of the flow). These systems include,
but extend far beyond, Axiom A diffeomorphisms and flows, Hénon-like attractors and Lorenz
attractors. Precise statements about their validity can be found in [22–24]. We remark that for
weakly chaotic dynamics, when the correlations are not summable/integrable, e.g. for systems
exhibiting intermittency with long laminar periods, the central limit theorem breaks down and the
noise is not Brownian anymore. Instead, the noise is α-stable, allowing for unbounded variance
and jumps [18].1

We now show that the deterministic Lagrangian multi-scale system (3.9)–(3.11) developed in
the previous section is amenable to homogenization and we will derive the associated effective
stochastic limit system. For these purposes, we assume sufficiently chaotic dynamics for λi with
ergodic measure μ(dλ).

First, we show that the centring condition is satisfied. Denoting by angular brackets the
average over the fast measure μ(dλ), we express the centring condition as

〈(Id + ∇ζ )−1∂tζ 〉 = 〈(∇g′
t/ε)−1∂tg′

t/ε〉
= 〈(∂t((g′

t/ε)−1)) ◦ g′
t/ε〉 = 0. (4.7)

Consequently, the mean displacements in the fluctuating map vanish, when pulled back to (i.e.
transformed back to vectors relative to) the mean Eulerian coordinates. In fact, this condition
simply defines how we take the mean; namely, it is defined so that this condition is satisfied.

Homogenization theory for deterministic multi-scale systems as developed in [17–19] assures
that the slow dynamics of the deterministic multi-scale Lagrangian particle system (3.9)–(3.11) is
on long time scales described by the stochastic differential equation

dQ̄ = Ū(Q̄) dt + σ (Q̄) dWt, (4.8)

where the drift term is given by

Ū(Q̄) = 〈(Id + ∇ζ )−1u(Q̄(l, t) + ζ , t)〉 + 〈∂tζ∇Q̄∂tζ 〉 (4.9)

1We use the terminology strongly and weakly chaotic here in a manner different from the usual distinction between
exponential and algebraic decay of correlations; cf. [25] for further discussion of this difference.
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and the diffusion tensor is given by

1
2
σσT =

∫∞

0
ds

M∑
i,j=1

〈λi(0)λj(s)(Id + ∇ζ )−1Pij (Id + ∇ζ )−T〉, (4.10)

where Pij = φi(q̄(l, t))φj(q̄(l, t))T, and dWt = (dW1, . . . , dWM) is a vector of independent Brownian
motions (cf. (4.5) and (4.6)). Upon defining ξ i as the ith row of σ , this result matches the Ansatz
(2.18) introduced in the stochastic variational framework [2,6].

Note that because of the multiplicative nature of the noise, the drift (4.9) is not just given by the
average mean flow 〈(Id + ∇ζ )−1u(Q̄(l, t) + ζ , t)〉; there is an additional drift component provided
by the fluctuating vector displacement field.

5. Summary and discussion
The diffusive limit we have described relies on homogenization theory. In order to apply it we had
to make several assumptions. First, we made an envelope assumption, that the fluctuating vector
displacement field ζ varies rapidly in time, but only slowly in space. Second, we made a chaoticity
assumption, whereby the temporal derivative of ζ evolves according to some unspecified chaotic
dynamics. The microscopic details of the fast chaotic dynamics are not relevant for the emergence
of stochastic Lagrangian particle dynamics, but they do feature in the diffusion tensor in equation
(4.10). In order to build reliable stochastic coarse-grained fluid models, one needs to determine
the drift and diffusion terms (4.9) and (4.10), respectively. The advantage of the approach taken
in [2,6] and in this paper is that the fluctuating small-scale field ζ is Eulerian. One can, therefore,
obtain the statistics by investigating time series of Eulerian flow fields in terms of their empirical
orthogonal eigenfunctions φ and their temporal evolution. The data may be generated either by
analysis of numerical high-resolution simulations, or from observational data.

The diffusive limit in the Lagrangian dynamics for the slowly varying mean flow then forms
the basis for the variational approach proposed in [2,6] to derive stochastic partial differential
equations for fluid systems. The same procedure can, however, also be applied to give a
deterministic multi-scale backbone for the stochastic fluid equations derived in [1,3–5].

Equation (4.9) shows that there are two contributions to the mean velocity ū. The first term
arises from averaging the full velocity over the fluctuations, and the second term arises purely
from the structure of the statistics of the time derivative of the fluctuation vector ζ . The second
term shows that the fluctuating dynamics affects the mean flow. Thus, beyond being potentially
useful as a means of uncertainty quantification, the sum of vector fields in (2.18) in the conditions
treated here represents a bona fide decomposition of the fluid transport velocity into a mean plus
fluctuating flow.

The present derivation shows that the stochastic fluid equations can be regarded as modelling
the evolution of the mean velocity ū for a fluid that has a fluctuating velocity that is O(1/ε).
These equations also provide a possible way to calculate the EOF eigenvectors ξi describing
spatial correlations for the stochastic model proposed in [2,6]. For this purpose, one should
compute a large number of Lagrangian trajectories, then apply a low-pass spatial filter to them,
and compute time series of displacement vectors ζ t for each trajectory. The values of ζ t may be
binned according to coarse-grained grid boxes, and then combined in the formula for σ . One can
then compute EOFs of σ , which, in turn, yield the EOF eigenvectors ξi for the stochastic model
proposed in [2,6]. The performance of the stochastic model constructed this way is currently being
evaluated, using data assimilation algorithms.

We conclude by stating that real atmospheric and oceanic flows do not exhibit the limit of
infinite time-scale separation required by homogenization theory. Finite time-scale effects amount
to finite sampling effects in the derivation of the central limit theorem (see the last term in (4.3)).
These can be calculated in the form of Edgeworth approximations and involve integrals over
higher-order autocorrelation functions [26].
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