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Abstract: In this work we study the distributed representations learnt by generative neural network1

models. In particular, we investigate the properties of redundant and synergistic information that2

groups of hidden neurons contain about the target variable. To this end, we use an emerging branch3

of information theory called Partial Information Decomposition (PID) and track the informational4

properties of the neurons through training. We find two differentiated phases during the training5

process: a first, short phase in which the neurons learn redundant information about the target, and a6

second phase in which neurons start specialising and each of them learns unique information about7

the target. We also find that in smaller networks individual neurons learn more specific information8

about certain features of the input, suggesting that learning pressure can encourage disentangled9

representations.10
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1. Introduction12

Neural networks are famously known for their excellent performance, yet infamously known for13

their thin theoretical grounding. While common deep learning “tricks” that are empirically proven14

successful tend to be later discovered to have a theoretical justification (e.g. the Bayesian interpretation15

of dropout [1,2]), deep learning research still operates “in the dark” and is guided almost exclusively16

by empirical performance.17

One common topic in learning theory is the study of data representations, and in the case of18

deep learning it is the hierarchy of such representations that is often hailed as the key to neural19

networks’ success [3]. More specifically, disentangled representations have received increased attention20

recently [4–6] and are particularly interesting given their reusability and their potential for transfer21

learning [7,8]. A representation can be said to be disentangled if it has factorisable or compositional22

structure, and has consistent semantics associated to different generating factors of the underlying23

data generation process.24

In this article we explore the evolution of learnt representations in the hidden layer of a restricted25

Boltzmann machine as it is being trained. Are groups of neurons correlated or independent? To what26

extent do neurons learn the same information or specialise during training? If they do so, when? To27

answer these questions, we need to know how multiple sources of information (the neurons) contribute28

to the correct prediction of a target variable – which is known as a multivariate information problem.29

To this end, the Partial Information Decomposition (PID) framework by Williams and Beer,30

which seeks a rigorous mathematical generalisation of mutual information to the multivariate setting,31

provides an excellent foundation for this study [9]. In PID, the information that multiple sources32
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contain about a target is decomposed into unique non-negative information atoms, the distribution of33

which gives insight into the interactions between the sources.34

1.1. Why information theory?35

Information theory was developed to optimise communication through noisy channels, and it36

quickly found other areas of application in the mathematical and computer sciences. Nevertheless, it is37

not commonly linked to machine learning and it is not part of the standard deep learning engineer’s38

toolkit or training. So why, then, is information theory the right tool to study neural networks?39

To answer that question, we must first consider some of the outstanding theoretical problems in40

deep learning: what kind of stimuli do certain neurons encode; how do different layers compress certain41

features of an input image; or how can we transfer learnt information from one dataset to another?42

These problems (encodings, compression, transfer) are precisely among the problems information43

theory was made to solve. Casting these questions within the established framework of information44

theory gives us a solid language to reason about these systems and a comprehensive set of quantitative45

methods to study them.46

We can also motivate this choice from a different perspective: in the same way as neuroscientists47

have been using information theory to study computation in biological brains, here we try to48

understand an artificially developed neural code [10]. Although the code used by artificial neural49

networks is most likely much simpler than the one used by biological brains, deep learning researchers50

can benefit from the neuroscientists’ set of tools.51

1.2. Related work52

When it comes to representations, the conventional way of obtaining insights about a network53

has typically been through visualisation. Famously, Le et al. trained a neural network on web-scraped54

images and reported finding neural receptive fields consisting mostly of human faces, human bodies55

and cat faces [11]. Later, Zeiler and Fergus devised a technique to visualise the features learnt by56

neurons in hidden layers, and provided good qualitative evidence to support the long-standing claim57

that deeper layers learn increasingly abstract features of the input [12].58

While visualisation is a great exploration tool, it provides only qualitative insights and is therefore59

unable to make strong statements about the learning dynamics. Furthermore, as later work showed,60

the specific values of weights are highly sensitive to the details of the optimisation algorithm used,61

and therefore cannot be used to make definite judgements about the network’s behaviour [13,14].62

More recently there is a small line of emerging work investigating the behaviour of neural63

networks from an information-theoretic perspective [15–20], with some work going as far back as64

[21]. The most relevant of these is the work by Schwartz-Ziv and Tishby, who show that feed-forward65

deep neural networks undergo a dynamic transition between drift- and diffusion-like regimes during66

training.67

The main contribution of this article is to show how PID can be used for the analysis of learning68

algorithms, and its application to neural generative models. The results of our PID analysis show two69

distinct learning phases during the optimisation of the network, and a decrease in the specialisation of70

single neurons in bigger networks.71

2. Methods72

2.1. Restricted Boltzmann Machines73

We deal with the problem of multiclass classification, in which we have a dataset D of (x, y)74

tuples, where y is a discrete label (also called the target variable) and x is a vector of predictor variables.75

The goal is to learn an approximation to the joint distribution of the predictors and the labels, p(x, y).76

We will use a class of neural generative models known as Boltzmann Machines.77
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Boltzmann Machines (BM) are energy-based probabilistic graphical models, the origin of which78

goes as far back as Paul Smolensky’s Harmonium [22]. Of particular interest are the so-called Restricted79

Boltzmann Machines (RBM). These are called restricted because all the nodes in the model are separated80

in two layers, and intra-layer connections are prohibited. These typically receive the names of visible81

and hidden layers.82

In this article we follow [23] and perform classification with a discriminative RBM (DRBM). To
do this we introduce the vector of target classes y as part of the visible layer, such that the DRBM
represents the joint distribution over the hidden, visible, and target class variables. The distribution
parametrized by the DRBM is:

p(y, x, h) =
1
Z

e−E(y,x,h) , (1)

where E(y, x, h) is the DRBM energy function, given by

E(y, x, h) = −hTWx− bTx− cTh− hTU~y− dT~y , (2)

where ~y = (1y=i)
C
i=1 for the C different classes. For comparison, the energy function for a standard83

RBM is the same but with the last two terms removed. Figure 1 shows a schematic diagram of a DRBM84

and the variables involved.85

h

xy

U W

Figure 1. Graphical representation of the Discriminative Restricted Boltzmann Machine and its
components. Vectors x and y correspond to the training input and label respectively, h is the activation
of the hidden neurons, and U and W are the weight matrices to be learnt. (Adapted from [23].)

Now the model is specified, we calculate the predictive posterior density p(y|x, θ) given DRBM
parameters θ = {W, b, c, U, d}. At this point the restricted connectivity of RBMs comes into play – this
connectivity induces conditional independence between all neurons in one layer given the other layer.
This resulting intra-layer conditional independence allows us to factorise p(yi, xi|θ) and to write the
following conditional distributions [24]:

p(Xi = 1|h) = σ(bi + ∑
j

Wjihj)

p(Hj = 1|y, x) = σ(cj + Ujy + ∑
i

Wjixi)

p(y|h) = edy+∑j Ujyhj

∑y∗ edy∗+∑j Ujy∗ hj
,

(3)

where σ(t) = (1 + e−t)−1 is the standard sigmoid function. With these equations at hand we can86

classify a new input vector x∗ by sampling from the predictive posterior p(y|x∗, θ), or we can sample87

from the joint distribution p(y, x|θ) via Gibbs sampling.88
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Finally, the network needs to be trained to find the right parameters θ that approximate the
distribution of the data. We use a standard maximum likelihood objective function,

L(θ) = −∑
i

log p(yi, xi|θ) . (4)

Gradients of this objective cannot be obtained in closed form, and we must resort to contrastive89

sampling techniques. In particular, we use the Constrastive Divergence (CD) algorithm [24] to estimate90

the gradient and we apply fixed-step size stochastic gradient updates to all parameters in the network.91

The technical details of CD and other contrastive sampling estimators are outside the scope of this92

paper, and the interested reader is referred to the original publications for more information [24,25].93

2.2. Information Theory94

In this section we introduce a few relevant tools from Information Theory (IT) that we will use to95

analyse the networks trained as explained in the previous section. For a broader introduction to IT and96

more rigorous mathematical detail we refer the reader to [26].97

We focus on systems of discrete variables with a finite number of states. Throughout the paper98

we will deal with the scenario in which we have one target variable and a number of source variables.99

We refer to the target variable as Y (matching the nomenclature in Sec. 2.1), to the source variables as100

Zi and let Z denote generically any nonempty subset of the set of all sources. Summations always run101

over all possible states of the variables considered.102

Mutual Information (MI) is a fundamental quantity in IT that quantifies how much information is
shared between two variables Z and Y, and is given by

I(Y; Z) = ∑
y,z

p(y, z) log
(

p(y, z)
p(y)p(z)

)
. (5)

MI can be thought of as a generalised (non-linear) correlation, which is higher the more a given value
of Z constrains possible values of Y. Note that this is an average measure – it quantifies the information
about Y gained when observing Z on average. In a similar fashion, specific information [27] quantifies the
information contained in Z associated with a particular outcome y of Y, and is given by

I(Y = y; Z) = ∑
z

p(z|y) log
(

p(y|z)
p(y)

)
. (6)

Specific information quantifies to what extent the observation of Z makes outcome y more likely than
otherwise expected based on the prior p(y). Conveniently, MI can easily be written in terms of specific
information as

I(Y; Z) = ∑
y

p(y)I(Y = y; Z) .

2.2.1. Non-negative Decomposition of Multivariate Information103

In this section we discuss the main principles of the PID framework proposed by Williams and104

Beer. Technical details will not be covered and the interested reader is referred to the original paper [9].105

The goal of PID is to decompose the joint mutual information that two or more sources have about106

the target, I(Y; {Z1, Z2, . . . , Zn}), into interpretable non-negative terms. For simplicity, we present the107

two-variable case here, although the framework applies to an arbitrary number of sources. In the108

two-variable PID (or PI-2), there are three types of contributions to the total information of {Z1, Z2}109

about Y which form the basic atoms of multivariate information:110

• Unique information U one of the sources provides and the other does not.111

• Redundant information R both sources provide.112



Version August 13, 2017 submitted to Entropy 5 of 12

• Synergystic information S the sources provide jointly, which is not known when either of them is113

considered separately.114

There is a very intuitive analogy between this decomposition and set theory – in fact the decomposition115

for any number of variables can be shown to have a formal lattice structure if R is mapped to the116

set intersection operation. This mapping corresponds to the intuitive notion that R should quantify117

the overlapping information of Z1 and Z2. Consequently, these quantities can be represented in a Venn118

diagram called the PI diagram, shown in Figure 2.

U1 U2R

S

I(Y; {Z1, Z2})

Figure 2. Partial information diagram for 2 source variables and a target. Outer ellipse corresponds
to the MI between both sources and the target, I(Y; {Z1, Z2}), and both inner circles (highlighted in
black) to the MI between each source and the target, I(Y; Zi). Coloured areas represent the PI terms
described in the text.

119

Mathematically, the relation between MI and S, R and U (which we refer to jointly as PI terms)
can be written as follows:

I(Y; Z1) = R(Y; {Z1, Z2}) + U(Y; Z1) ,

I(Y; Z2) = R(Y; {Z1, Z2}) + U(Y; Z2) ,

I(Y; {Z1, Z2}) = R(Y; {Z1, Z2}) + U(Y; Z1) + U(Y; Z2) + S(Y; {Z1, Z2}) .

(7)

This is an underdetermined system of three equations with four unknowns, which means the PI120

decomposition in itself does not provide a method to calculate the PI terms. To do that we need to121

specify one of the four variables in the system, typically by providing an expression to calculate either122

R or S. There are a number of proposals in the literature [28–31], but at the time of writing there is no123

consensus on any one single candidate.124

In this study we follow the original proposal by Williams and Beer and use Imin as a measure of
redundancy, defined as

R(Y; {Z1, Z2}) = Imin(Y; {Z1, Z2}) = ∑
y

p(y)min{I(Y = y; Z1), I(Y = y, Z2)} , (8)

where I(Y = y; Zi) is the specific information1 in Eq. 6. Despite the known flaws of Imin, we choose it125

for its extensibility, tractability and inclusion-exclusion properties. With this defition of redundancy126

and the standard MI expression in Eq. 5 we can go back to system 7 and calculate the rest of the terms.127

While all the terms in PI-2 can be readily calculated with the procedure above, with more
sources the number of terms explodes very quickly – to the point that the computation of all PI terms
is intractable even for very small networks. Conveniently, with Imin we can compute the overall
redundancy, synergy, and unique information terms for arbitrarily many sources – restricted only by

1 In their original article, DeWeese and Meister propose two quantities to measure “the information gained from one symbol:”
specific information and specific surprise. Confusingly, the quantity that Williams and Beer chose and named specific
information is actually the specific surprise of DeWeese and Meister.
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the computational cost and amount of data necessary to construct large joint probability tables. We
write here the overall redundancy, synergy and unique information equations for completeness, but
the interested reader is referred to [32] for a full derivation:

R(Y; {Z1, . . . , Zn}) = Imin(Y; {Z1, . . . , Zn})
= ∑

y
p(y)min{I(Y = y; Z1), . . . , I(Y = y; Zn)}

S(Y; {Z1, . . . , Zn}) = I(Y; {Z1, . . . , Zn})− Imax(Y; {A ∈ {Z1, . . . , Zn} : |A| = n− 1})
U(Y; Zi) = I(Y; Zi)− Imin(Y; {Zi, {Z1, . . . , Zn}\Zi}) ,

(9)

where Imax is defined exactly the same as Imin except substituting max for min [33].128

3. Results129

Instead of generating a synthetic dataset, we opt for a more realistic benchmark and use the130

MNIST dataset of hand-written digits. We use a stochastic binarised version of MNIST – every time an131

image is fed as input to the network, the value of each pixel is sampled from a binomial distribution132

with a probability equal to the normalised intensity of that pixel. Then we use Eqs. 3 to sample the133

state of the network, and repeat this process to build the probability distributions of interest.134

For training, the gradients are estimated with contrastive divergence [24] and the weights are135

optimised with vanilla stochastic gradient descent with fixed learning rate (0.01). We did not make136

strong efforts to optimise the hyperparameters used during training.137

To produce the results below we train an ensemble of 100 RBMs and take snapshots of these138

networks during training. Each RBM in the ensemble is initialised and trained separately using a139

different PRNG seed. All information-theoretic measures are reported in bits and debiased with140

random permutation tests – to debias the estimation of any measure on a given set of data we generate141

many surrogate data sets by randomly permuting the original data, calculate the mean of the measure142

across all surrogates and subtract this from the original estimation on the unshuffled data [34].143

3.1. Classification error and mutual information144

First, we train a small RBM with 20 hidden neurons and inspect its learning curve during training.145

In Fig. 3 we show the classification error and the mutual information between the predicted labels Ŷ146

and the real labels Y during training, averaged for the ensemble of 100 RBMs.147

As expected, classification error decreases and MI increases during training, the relationship148

between the two being an almost perfect line. This gives us an intuitive correspondence between a149

relatively abstract measure like bits and a more easily interpretable measure like error rate. We note150

that a perfect classifier with 0 error rate would have I(Ŷ, Y) = H(Y) = log2(10) ≈ 3.32 bit.151
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Figure 3. Classification error and mutual information between real and predicted labels, I(Ŷ, Y),
calculated through training. Note: X-axis in the rightmost plot is reversed for illustration pusposes, so
that training time goes from left to right.
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As should be apparent to any occasional reader of the ML literature, the classification error152

presented in Fig. 3 is worse than the authors reported originally in [23], and significantly worse than153

the state of the art on this dataset. The main reason for this is that we are restricting our network to a154

very small size to obtain a better resolution of the phenomena of interest.155

3.2. Phases of learning156

In this section we investigate the evolution of the network through training and show three157

complementary pieces of evidence for the existence of two separate learning phases. We describe the158

main results illustrated in Figs. 4 and 5.159
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Figure 4. Single-neuron entropy and mutual information follow non-trivial patterns during training.
(a) Entropy quickly rises up to close to its maximum value of 1 bit. (b) Inter-neuron correlation as
measured by pairwise MI peaks midway through training. (c) Histograms of Single-Neuron MI split
midway through training, implying that some neurons actually lose information. Average SNMI is
shown in black projected on the frame box.

First, in Fig. 4a, we show the evolution of the average entropy of single neurons in the hidden160

layer, where the average is taken over all neurons in the same network. Entropy increases rapidly161

at the start of training until it settles around the 0.8 to 0.9 bit range, relatively close to its maximum162

possible value of 1 bit. This means that throughout most of the training, including the final state,163

most of the informational capacity of the neurons is being actively used – if this were not the case, in164

a network with low entropy in which most neurons do not change their states much, the encoding165

capability of the network would be heavily reduced.166

As a measure of inter-neuron correlation, we calculate the average Pairwise Mutual Information
(PWMI) between hidden neurons Hi, defined as

PWMI =
〈

I(Hi; Hj)
〉

ij .

PWMI is shown in Fig. 4b and is the first sign of the transition mentioned above – it increases rapidly167

at the start, it reaches a peak at an intermediate point during training and then decays back to near168

zero.169

Next we calculate the average MI between a single hidden neuron and the target, I(Y; Hi), which170

we refer to as Single-Neuron Mutual Information (SNMI), and show the results in Fig. 4c. As expected,171

at first neurons barely have any information about the target and early in training we see a quick172

uniform increase in SNMI.173
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Remarkably, at the transition point there is a split in the SNMI histogram, with around half of174

the neurons reverting back to low values of SNMI and the other half continuing to increase. At the175

whole network level we do not find any sign of this split, as shown by the monotonically decreasing176

error rate in Fig. 3. This is a seemingly counterintuitive finding – some neurons actually get worse177

at predicting the target as the network learns. We currently do not have a solid explanation for this178

phenomenon, although we believe it could be due to the effects of local minima or to the neurons179

relying more on synergistic interactions at the cost of SNMI, as suggested by the results below.180

After exploring the behaviour of individual neurons, we now turn to PID and study the181

interactions between them when predicting the target. Since a full PID analysis of the whole network is182

intractable, we follow a procedure inspired by [35] to estimate the PI terms of the learnt representation:183

we sample pairs of neurons, calculate the PI terms for each of them, apply random permutation184

correction to each pair separately, and finally compute averages over all pairs. We present results185

obtained with Imin following Sec. 2.2.1, but qualitatively identical results are obtained if the more186

modern measures in [28,36] are used.187

We calculate synergy S, redundancy R and total unique information U = U(Y; Z1) + U(Y; Z2),188

as well as their normalised versions calculated by dividing S, R or U by the joint mutual information189

I(Y; {H1, H2}). Results are depicted in Fig. 5, and error intervals shown correspond to two standard190

deviations across pairs.2191
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Figure 5. PI terms (left) and PI terms normalised by joint mutual information (right). Mutual
information in black, redundancy in blue, synergy in green and unique information in red. MI increases
consistently during training, but the PI terms reveal a transition between a redundancy-dominated
phase and a unique-information-dominated phase.

Here we see again a transition between two phases of learning. Although synergy and joint192

MI increase steadily at all times, there is a clear distinction between a first phase dominated by193

redundancy and a second one dominated by unique information. It is at this point that neurons194

specialise, suggesting that this is when disentangled representations emerge.195

These three phenomena (peak in PWMI, split SNMI histogram and redundant-unique information196

transition) do not happen at the same time. In the figures shown, the peak in PWMI marks the onset197

of the decline of redundancy, and the split in SNMI happens between then and the point when198

redundancy is overtaken by unique information. This is, however, a consistent pattern we have199

observed in networks of multiple sizes, and in bigger networks these three events tend to come closer200

in time (results not shown).201

2 The number of surrogates was increased until their SEM was much lower than STD across samples.
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We note that there is a relation between PWMI and R and between SNMI and U. As indicated in202

Eq. 7, SNMI is an upper bound on that neuron’s unique information; and usually higher PWMI comes203

with higher redundancy between the neurons. However, although they follow similar shapes, these204

magnitudes do not quantify the same thing. Take the OR logical gate as an example – if we feed it a205

uniform distribution of all possible inputs (00, 01, 10, 11) both input bits will be perfectly uncorrelated,206

yet their redundancy (according to Imin) will be nonzero.207

These findings are in line with those of Schwartz-Ziv and Tishby, who observe a similar transition208

in a feed-forward neural network classifier. One of the pieces of evidence for Schwartz-Ziv and209

Tishby’s claim is in the change of gradient signal dynamics from a drift to a diffusion regime. We210

did not analyse gradient dynamics as part of this study, but investigating the relationship between211

informational and dynamical accounts of learning is certainly a promising topic.212

3.3. Neural interactions213

In this last set of experiments we examine the representations learnt jointly by larger groups of214

neurons. Due to computational constraints, we run the analyses only on fully trained networks instead215

of at multiple points during training. We train networks of different sizes, ranging from 20 to 500216

hidden neurons (using the same algorithm, but allowing each network to train for more epochs until217

convergence), and consider larger groups of neurons for the PID analysis. We use a procedure similar218

to the one used in the previous section, but this time sampling tuples of K neurons, and calculating219

their overal synergy following Eq. 9. We refer to this as the PI-K synergy. Results are shown in Fig. 6.220
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Figure 6. PID analysis of larger groups of neurons in networks of different sizes. (a) Single-neuron
MI is consistently smaller in bigger networks, indicating that, although the network as a whole is a
better classifier, each individual neuron has a less efficient encoding. (b) Normalised PI-K synergy,
with network size increasing from left to right and K from top to bottom. Network with maximum
synergy for each PI-K highlighted with a vertical dashing line. The PI group size with the highest
synergy becomes larger in larger networks, indicating that in bigger networks one needs to consider
larger groups to capture strong cooperative interactions.

The first result in Fig. 6a is that SNMI decreases consistently with network size. This represents221

reduced efficiency in the neurons’ compression – despite the overall accuracy of the network being222

significantly higher for bigger networks (∼20% error rate for a network with 20 hidden neurons, vs.223

∼5% for a network with 500), each individual neuron contains less information about the target. This224

suggests that the representation is more distributed in bigger networks, as emphasised below.225

What is somewhat counterintuitive is that normalised unique information actually grows in226

bigger networks, which is apparently in contradiction with more distributed representations. These227
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two, however, are perfectly compatible – bigger networks have more and less correlated neurons, and228

despite U growing relative to S and R, it still decreases significantly in absolute terms.3229

Interestingly, Fig. 6b shows that the network size that achieves maximum normalised synergy230

shifts to the right as we inspect larger groups of neurons. For bigger networks, bigger groups carry231

more synergistic information, meaning that representations also become more distributed. There is a232

consistent pattern that in bigger networks we need to explore increasingly high neural groups to see233

any meaningful PI values, which means that perhaps part of the success of bigger networks is that they234

make better use of higher-order correlations between hidden neurons. This can be seen as a signature235

of bigger networks achieving richer and more complex representations [37].236

3.4. Limitations237

The main limitation of the vanilla PID formulation is that the number of PI terms scales very238

rapidly with bigger group sizes – the number of terms in the PI decomposition of a system with239

n sources is the (n− 1)-st Dedekind number, which is 7579 terms for a 5-variable system and has240

not been computed yet for systems of more than 8 variables. For this reason we have restricted our241

analyses mostly to pairs of neurons, although in practice we expect larger groups of neurons to have242

strong effects on the prediction. Potentially some approximation to the whole PID or a reasonable243

grouping of PI terms could help scale this type of analysis to larger systems.244

On a separate topic, some of the phenomena of interest we have described in this article (two245

phases of learning, peak in correlation between the neurons) happen very early on during training, in246

practice. In a real-world ML setting, most of the time is spent in the last phase where error decreases247

very slowly; and so far we haven’t seen any unusual behaviour in that region. Future work should focus248

on this second phase and try to characterise it in more detail, with the aim of improving performance249

or speeding convergence.250

4. Conclusion251

In this article we have used Information Theory, and in particular the Partial Information252

Decomposition framework, to explore the latent representations learnt by a restricted Boltzmann253

machine. We have found that the learning process of neural generative models has two distinct phases:254

a first phase dominated by redundant information about the target, and another phase in which255

neurons specialise and each of them learns unique information about the target and synergy. This is in256

line with the findings of Schwartz-Ziv and Tishby in feed-forward networks, and we believe further257

research should explore the differences between generative and discriminative models in this regard.258

Additionally, we found that representations learnt by bigger networks are more distributed, yet259

significantly less efficient at the single-neuron level. This suggests that the learning pressure of having260

fewer neurons encourages those neurons to specialise more, and therefore yields more disentangled261

representations. The interesting challenge is to find a principled way of encouraging networks towards262

disentangled representations while preserving performance.263

An interesting piece of follow-up work would be to investigate whether these findings generalise264

to other deep generative models, most notably variational autoencoders [38]. We believe that further265

theoretical study of these learning systems is necessary to help us understand, interpret and improve266

them.267
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3 Note that the U term plotted in Fig. 6 is the sum of the unique information of both neurons in the pair. Naturally, for one
neuron U(Y; Hi) ≤ I(Y; Hi) as per Eq. 7.
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