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Abstract: This work presents a new adaptive control algorithm for a class of discrete-time systems 

in strict feedback form with input delay and disturbances. The Immersion and Invariance 

formulation is employed to estimate the disturbances and to compensate the effect of the input delay, 

resulting in a recursive control law. The stability of the closed-loop system is studied employing 

Lyapunov functions and guidelines for tuning the controller parameters are presented. An explicit 

expression of the control law in case of multiple simultaneous disturbances is provided for the 

tracking problem of a pneumatic drive. The effectiveness of the control algorithm is demonstrated 

with numerical simulations considering disturbances and input delay representative of the 

application. 
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1. Introduction 

Systems with input delay and disturbances pose remarkable challenges from a control 

perspective and have been the object of extensive research [1]–[3]. Traditionally, most research has 

been focusing on continuous-time linear systems [4]–[6] and on systems with state delays and 

disturbances [7]–[9]. Notably, an adaptive algorithm for a continuous-time linear system with input 

delay and sinusoidal disturbance was developed in [1]. The case of linear time invariant systems 

with unknown disturbance and input delay was studied in [5] and an adaptive controller for time-

varying nonlinear systems with input delay and bounded parametric uncertainties was proposed in 

[3]. In parallel, control methods for discrete-time linear systems with input delay or state delay were 

also developed: the stabilisation of linear time-varying system with input delay was studied in [10]; 

a recursive control law for discrete-time systems with both input delay and state delays was 

presented in [11]; the effect of the input delay on a linear system was treated as an additive 

disturbance in [12]; in a different stream of research, model-based prediction methods were 

proposed for uncertain discrete-time linear systems in [13], [14]. However, the case of discrete-time 

nonlinear systems with input delay and disturbances has remained comparatively unexplored. 

Notably, a discrete-time predictor combined with Lyapunov redesign was proposed in [2] for 

discrete-time systems with input delay and bounded uncertainties. Recently, the stabilization of a 

nonlinear system with input delay, but without disturbances, was studied in [15] employing the 

Immersion and Invariance (I&I) formulation [16]. 

The main contribution of this work is a new adaptive control algorithm for nonlinear discrete-

time systems in strict feedback form with input delay and disturbances. In particular, the algorithm 

consists of a recursive control law that includes the adaptive compensation of the disturbances 

based on the I&I formulation [17], hence extending the scope of [15]. Differently from [2], the 

algorithm is applicable to multiple disturbances without assumptions on their bounds. After 

outlining the control design, the stability analysis is conducted employing Lyapunov functions and 

guidelines for tuning the controller parameters are provided. Subsequently, an explicit expression of 
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the control law for multiple simultaneous disturbances is presented for the tracking problem of a 

pneumatic drive, which has motivated this study. The effectiveness of the proposed approach is 

demonstrated with numerical simulations considering disturbances and input delay representative of 

the chosen application. 

The rest of the paper is organized as follows. The problem formulation is detailed in Section 2. 

The control design is outlined in Section 3 and the stability analysis is presented in Section 4. The 

control design for a discrete-time model representative of a pneumatic drive is outlined in Section 5. 

The simulation results are reported in Section 6, while Section 7 contains the concluding remarks. 

2. Problem Formulation  

In this work the following discrete time nonlinear system in strict feedback form is considered: 

𝑥(𝑡 + 1) = 𝑓0(𝑥) + 𝑔(𝑥)𝑢(𝑡 − 𝑁) + 𝑓1(𝑥)𝜃 (1) 

with 𝑓0(𝑥), 𝑓1(𝑥), 𝑔(𝑥) smooth functions of the state (i.e. infinitely differentiable in 𝑥), so that 

𝑔(𝑥) ≠ 0, ∀𝑥 ∈ ℜ𝑛 , the term 𝑓1(𝑥)𝜃  represents a disturbance where 𝜃  is an unknown constant 

parameter, and the integer 𝑁 > 0  indicates the input delay. An important property of finite 

dimensional discrete-time systems in strict feedback form which this work relies upon is that they 

retain their structure (i.e. finite dimensional strict feedback form) in the presence of input delay [2]. 

Consequently, we can express (1) in strict feedback form: 

{

𝑥+ = 𝑓0(𝑥) + 𝑔(𝑥)𝑦1 + 𝑓1(𝑥)𝜃

𝑦1
+ = 𝑦2
…

𝑦𝑁
+ = 𝑢 

                                           
 (2) 

where the terms 𝑦1, 𝑦2, . . , 𝑦𝑁  represent the control input at previous sampling intervals so that 

𝑦1 = 𝑢(𝑡 − 𝑁) . For notational simplicity the time dependency is indicated with a superscript: 

𝑥+ = 𝑥(𝑡 + 1); 𝑥+𝑁 = 𝑥(𝑡 + 𝑁). Notably, (1) is similar to the class of systems considered in [2], 

but with the addition of the disturbance 𝑓1(𝑥)𝜃. The aim of this work is finding a control law 𝑢 that 

stabilises system (1). To this end the following assumptions are made: 

Assumption 1: The sampling interval, here assumed unitary without loss of generality, is constant, 

while the input delay is a known multiple of the sampling interval (i.e. 𝑁 ∈ ℕ+). 

Assumption 2: The disturbance 𝑓1(𝑥)𝜃 can be variable and nonlinear, while 𝜃 is assumed constant 

and no restrictions are imposed on its bounds. This assumption is additional to those made in [15]. 

Assumption 3: The un-delayed version of system (1) with known parameter 𝜃∗ (𝑁 = 0, 𝜃 = 𝜃∗) is 

stabilizable with an appropriate control law 𝑢 = 𝛾(𝑥, 𝜃∗) according to a given Lyapunov function 

𝑉1 ≥ 0, and the system state converges to zero. For instance, this assumption is trivially satisfied by 

𝑉1 = 𝑘𝑥
2, where 𝑘 ∈ ℜ+ is a positive constant, and 𝑢 = −𝑓0(𝑥)/𝑔(𝑥) − 𝑓1(𝑥)𝜃

∗/𝑔(𝑥). 

3. Control Design 

In this section the control design is outlined for system (2) initially considering the case 

𝑁 = 1  and then extending the result to the general case 𝑁 > 1 . The parameter 𝜃  is estimated 

adaptively using the I&I method in its discrete-time form [17]. In case 𝑁 = 1 the stabilising control 

law for the un-delayed system with known parameter 𝜃∗ (ref. Assumption 3) is indicated in what 

follows as 𝑦̃1 = 𝛾(𝑥, 𝜃
∗). Two estimation errors 𝑧1, 𝑧2 are defined as: 
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𝑧1 = 𝜃+𝛽1(𝑥
−, 𝑥) − 𝜃 = 𝜃 + 𝛽1(𝑥

−)𝑥 − 𝜃
𝑧2 = 𝑦̃1 − 𝑦1

 (3) 

The terms 𝜃, 𝛽1(𝑥
−)𝑥  in 𝑧1  are the state-independent part and the state-dependent part of the 

disturbance estimate, with 𝛽1 representing the first design parameter of the adaptive algorithm. The 

term 𝑧2 can be interpreted as a prediction error and represents the discrepancy between the control 

input of the un-delayed system 𝑦̃1 and the new control input at the previous time step 𝑦1 = 𝑢(𝑡 − 1). 

Computing (3) at the next time step and substituting 𝑥+ from (2) and 𝜃, 𝑦1 from (3) we obtain: 

𝑧1
+ = 𝜃+ + 𝛽1(𝑥) (𝑓0(𝑥) + 𝑔(𝑥)(𝑦̃1 − 𝑧2) + 𝑓1(𝑥)(𝜃 + 𝛽1(𝑥

−)𝑥 − 𝑧1)) − 𝜃

𝑧2
+ = 𝑦̃1

+ − 𝑢
 (4) 

The update law for 𝜃 and the control law 𝑢 are chosen in order to enforce the convergence of 𝑧1, 𝑧2 

to zero. Introducing the second design parameter 𝛽2 we define: 

𝜃+ = 𝜃 − 𝛽1(𝑥) (𝑓0(𝑥) + 𝑔(𝑥)𝑦̃1 + 𝑓1(𝑥)(𝜃 + 𝛽1(𝑥
−)𝑥)) + 𝛽1(𝑥

−)𝑥

𝑢 = 𝑦̃1
+ −  𝛽2𝑧2

 (5) 

In summary, the control law for system (2) with 𝑁 = 1 is: 

𝑦̃1 = 𝛾(𝑥, 𝜃 + 𝛽1(𝑥
−)𝑥)

𝑥+ = 𝑓0(𝑥) + 𝑔(𝑥)𝑦̃1 + 𝑓1(𝑥)(𝜃̂ + 𝛽1(𝑥
−)𝑥)

𝜃+ = 𝜃 − 𝛽1(𝑥) (𝑓0(𝑥) + 𝑔(𝑥)𝑦̃1 + 𝑓1(𝑥)(𝜃 + 𝛽1(𝑥
−)𝑥)) + 𝛽1(𝑥

−)𝑥

𝑦̃1
+ = 𝛾(𝑥+, 𝜃+ + 𝛽1(𝑥)𝑥

+)

𝑢 = 𝑦̃1
+ − 𝛽2𝑧2

 (6) 

The first two equations in (6) represent the control input for the un-delayed system and the 

predicted state at the next time step. The third equation represents the update law for 𝜃. The last 

equation expresses the control input, consisting of the recursive part 𝑦̃1
+ and of a corrective term 

dependent on the estimation error 𝑧2, as defined in (3). 

The extension of (6) to the general case N > 1 is immediate and involves defining additional 

estimation and prediction errors 𝑧1, 𝑧2, 𝑧𝑁+1 as: 

𝑧1 = (𝜃 + 𝛽1(𝑥
−)𝑥) − 𝜃

𝑧2 = 𝑦̃1 − 𝑦1
…         

𝑧𝑁+1 = 𝑦̃𝑁 − 𝑦𝑁    

            
 (7) 

Computing (7) at the next time step we obtain: 

𝑧1
+ = 𝜃+ + 𝛽1(𝑥) (𝑓0(𝑥) + 𝑔(𝑥)(𝑦̃1 − 𝑧2) + 𝑓1(𝑥)(𝜃 + 𝛽1(𝑥

−)𝑥 − 𝑧1)) − 𝜃

𝑧2
+ = 𝑦̃1

+ − 𝑦2
…

𝑧𝑁+1
+ = 𝑦̃𝑁

+ − 𝑢

 (8) 

The update law (5) becomes in this case: 
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𝜃+ = 𝜃 − 𝛽1(𝑥) (𝑓0(𝑥) + 𝑔(𝑥)𝑦̃1 + 𝑓1(𝑥)(𝜃 + 𝛽1(𝑥
−)𝑥)) + 𝛽1(𝑥

−)𝑥

𝑦̃2 = 𝑦̃1
+ − 𝛽2𝑧2  
…

𝑢 = 𝑦̃𝑁
+ − 𝛽2𝑧𝑁+1 

 (9) 

In conclusion, the control law (6) for the general case 𝑁 > 1 is: 

𝑦̃1 = 𝛾(𝑥, 𝜃 + 𝛽1(𝑥
−)𝑥)

𝑥+ = 𝑓0(𝑥) + 𝑔(𝑥)𝑦̃1 + 𝑓1(𝑥)(𝜃 + 𝛽1(𝑥
−)𝑥) 

𝜃+ = 𝜃 − 𝛽1(𝑥) (𝑓0(𝑥) + 𝑔(𝑥)𝑦̃1 + 𝑓1(𝑥)(𝜃 + 𝛽1(𝑥
−)𝑥)) + 𝛽1(𝑥

−)𝑥

𝑦̃1
+ = 𝛾(𝑥+, 𝜃+ + 𝛽1(𝑥)𝑥

+)

𝑦̃2 = 𝑦̃1
+ −  𝛽2𝑧2…

  

𝑢 = 𝑦̃𝑁
+ − 𝛽2𝑧𝑁+1

 (10) 

Remark 1: Similarly to the case 𝑁 = 1, the update law (9) only employs two design parameters 

𝛽1, 𝛽2. While introducing additional parameters 𝛽𝑖 for each 𝑧𝑖 with 𝑖 > 2 is possible, in practice the 

same value (i.e. 𝛽2) can be used for all 𝑧2, 𝑧𝑁 considering that the sampling interval is constant (ref. 

Assumption 1). Finally, while the design parameter 𝛽1(𝑥
−) can be set constant, in general it is a 

nonlinear function of the state to be chosen as part of the design. Conversely, the parameter 𝛽2 is 

typically constant. Guidelines for tuning the parameters 𝛽1(𝑥
−), 𝛽2 are discussed in the next section. 

Remark 2: The corrective term 𝛽2𝑧𝑁+1 in (10) is computed recursively from (7),(9) and contains the 

contributions of each time step: 

𝑧𝑁+1 = 𝑦̃𝑁 − 𝑦𝑁
𝑦̃𝑁 = 𝑦̃𝑁−1

+ − 𝛽2𝑧𝑁… 
𝑦̃3 = 𝑦̃2

+ −  𝛽2𝑧3
𝑦̃2 = 𝑦̃1

+ −  𝛽2𝑧2 

   (11) 

Substituting (9) into (8) the recursive relation becomes apparent: 

𝑦̃2 = 𝑦̃1
+ − 𝛽2𝑧2

𝑦̃3 = 𝑦̃2
+ − 𝛽2𝑧3 = 𝑦̃1

++ − 𝛽2(𝛽2𝑧2 + 2𝑧3)

𝑦̃4 = 𝑦̃3
+ − 𝛽2𝑧4 = 𝑦̃1

+++ − 𝛽2(𝛽2
2𝑧2 + 3𝛽2𝑧3 + 3𝑧4) 

𝑦̃5 = 𝑦̃4
+ − 𝛽2𝑧5 = 𝑦̃1

++++ − 𝛽2(𝛽2
3𝑧2 + 4𝛽2

2𝑧3 + 6𝛽2𝑧4 + 4𝑧5)
…

  (12) 

Notably, the coefficients of 𝑧2, 𝑧𝑁 in (12) correspond to the binomial coefficients. Consequently, the 

control law in (10) can be rewritten in a more compact form as: 

𝑢 = 𝑦̃1
+𝑁 −∑𝛽2

𝑁+1−𝑖 (
𝑁!

(𝑖 − 1)! (𝑁 − 𝑖 + 1)!
)

𝑁

𝑖=1

𝑧𝑖+1   (13) 

Remark 3: For comparison purposes, a variation of the above design is defined as follows. 

𝜃+ = 𝜃 − 𝛽1(𝑥) (𝑓0(𝑥) + 𝑔(𝑥)𝑦1 + 𝑓1(𝑥)(𝜃 + 𝛽1(𝑥
−)𝑥)) + 𝛽1(𝑥

−)𝑥

𝑦̃2 = 𝑦̃1
+ = 𝛾(𝑥+, 𝜃 + 𝛽1(𝑥

−)𝑥)  
…

𝑢 = 𝑦̃1
+𝑁 − 𝛽2𝑧2 

 (14) 
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Differently from (10) where the adaptation law 𝜃+ is updated 𝑁 times at each time step based on the 

predicted state 𝑥+𝑖, the update only occurs once in (14) and it is based on the previous value of the control 

input 𝑦1 = 𝑢
−𝑁 . This alternative approach results in decoupling the dynamics of 𝑧1  and 𝑧2, 𝑧𝑁+1 . 

Additionally, only introducing the error  𝑧2 once in the last step of the recursive algorithm (14) further 

simplifies the stability analysis (ref. Section 4). In practice, (10) and (14) coincide for 𝑁 = 1 while their 

difference becomes more substantial for larger 𝑁. 

4. Stability Analysis 

Since system (1) can be expressed in strict feedback form (2), the stability of the closed-loop 

system (2)-(6) can be studied in a similar way to [2]. As initial result, the convergence of the errors 

𝑧1, 𝑧2 to zero, which represents a necessary condition for the stability of the closed-loop system, is 

studied for the case 𝑁 = 1. 

Lemma 1: Considering the discrete-time system (2) with disturbance 𝑓1(𝑥)𝜃 and input delay 𝑁 = 1, 

the update law (5) ensures that 𝑧1, 𝑧2 in (3) are bounded and converge to zero for some (𝛽1, 𝛽2) ∈

ℜ2 that satisfy the inequalities |1 − 𝛽1𝑓1| < 1, 𝛽2
2 + (𝛽1𝑔)

2 < 1. 

Proof: Exploiting the similarity to Proposition 1 in [17], the following Lyapunov function candidate 

is chosen, where the dependency of 𝑓1, 𝑔, 𝛽1 on the state 𝑥 is omitted for brevity (i.e. 𝛽1 stands for 

𝛽1(𝑥), while 𝛽1
− stands for 𝛽1(𝑥

−)): 

𝑉2 = 𝑧1
2 + 𝑧2

2 ≥ 0 (15) 

For 𝑧1, 𝑧2 to converge to zero, 𝑉2 in (15) should decrease at each time step. To confirm this, (15) is 

computed for the next time step substituting (5) and (4). Computing the squares and regrouping the 

terms we obtain: 

𝑉2
+ = 𝑧1

2(1 − 𝛽1𝑓1)
2 + 𝑧2

2(𝛽1𝑔)
2 − 2𝑧1𝑧2(1 − 𝛽1𝑓1)𝛽1𝑔 + 𝑧2

2𝛽2
2 (16) 

At this point the following inequality, which holds ∀𝜀 > 0, ∀(𝑧1, 𝑧2) ∈ ℜ
2, is introduced: 

−2𝑧1𝑧2(1 − 𝛽1𝑓1)𝛽1𝑔 ≤ 𝑧1
2(1 − 𝛽1𝑓1)

2𝜀 + 𝑧2
2(𝛽1𝑔)

2/𝜀 (17) 

Substituting (17) back into (16) we can rewrite it as: 

𝑉2
+ ≤ 𝑧1

2(1 − 𝛽1𝑓1)
2(1 + 𝜀)+𝑧2

2((𝛽1𝑔)
2(1 + 1/𝜀) + 𝛽2

2) (18) 

Comparing the corresponding terms in (18) and (15) and simplifying the common factors results in 

the following inequalities: 

𝑧1
2(1 − 𝛽1𝑓1)

2(1 + 𝜀) < 𝑧1
2

𝑧2
2((𝛽1𝑔)

2(1 + 1/𝜀) + 𝛽2
2) < 𝑧2

2 (19) 

which hold for some 𝜀 > 0 if |1 − 𝛽1𝑓1| < 1, 𝛽2
2 + (𝛽1𝑔)

2 < 1: for instance, choosing the values 

𝛽1𝑓1 = 0.1, (𝛽1𝑔)
2 = 0.1 , verifies (18) for some 𝜀 > 0 if simultaneously 𝛽2

2 < 0.9. Consequently, 

𝑉2 < 𝑉2
+which implies that 𝑧1, 𝑧2 are bounded and converge to zero ■ 

Remark 4: In case 𝑁 = 2 the Lyapunov function candidate (15) becomes: 

𝑉2 = 𝑧1
2 + 𝑧2

2 + 𝑧3
2 (20) 

Computing (20) at the next time step and substituting (9) we obtain: 

𝑉2
+ = (𝑧1(1−𝛽1𝑓1) − 𝑧2𝛽1𝑔)

2 + (𝛽2𝑧2 + 𝑧3)
2 + (𝛽2𝑧3)

2 (21) 
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In this case, an obvious choice of the parameters that ensures convergence of the errors to zero is 

0 < 𝛽1𝑓1 < 1, 𝛽2 = 0. It is trivial to show that the same applies to 𝑁 > 1. Notably, a consequence 

of the update law (9) is that the dynamics of 𝑧1, 𝑧2, 𝑧𝑁 are coupled, which introduces cross terms in 

the Lyapunov function 𝑉2
+ . This is due to the simultaneous presence of multiple disturbances 

affecting the same system state (ref. Section 5). Conversely, this does not occur if the disturbances 

affect different states, as for the class of systems considered in [17]. 

Proposition 1: Given the discrete-time system (2) in strict feedback form with disturbance 𝑓1(𝑥)𝜃 

and input delay 𝑁 = 1 under Assumption 1-3 let us define a stabilising control law 𝑢 = 𝛾(𝑥, 𝜃∗) 

and a corresponding Lyapunov function 𝑉1 = 𝑘𝑥2 ≥ 0  for the un-delayed system with known 

parameter 𝜃∗ (𝑁 = 0, 𝜃 = 𝜃∗) so that 𝑉1
+ ≤ 𝜆𝑉1, 0 < 𝜆 < 1. 

Then, the closed-loop system (2)-(6) is stable for some (𝛽1, 𝛽2) ∈ ℜ
2 , for which 

|1 − 𝛽1𝑓1| < 1, 𝛽2
2 + (𝛽1𝑔)

2 < 1, |1 − 𝛽1𝑓1||𝑓1
+| < |𝑓1| , |𝑔

+𝛽2 − 𝑔𝛽1𝑓1
+| < |𝑔|, the system state 

is bounded and converges to zero. 

Proof: We define a new Lyapunov function as: 

𝑉̅1 = 𝑉1 + 𝑉1
+ ≥ 0 (22) 

Computing (22) for the next time step we obtain: 

𝑉̅1
+ = 𝑉1

+ + 𝑉1
+2 (23) 

Substituting (6) into (2) and computing 𝑉1
+, 𝑉1

+2gives: 

𝑉1
+ = 𝑘(𝑓1𝑧1 + 𝑔𝑧2)

2

𝑉1
+2 = 𝑘(𝑓1

+𝑧1(1 − 𝛽1𝑓1) − 𝛽1𝑓1
+𝑔𝑧2 + 𝑔

+𝛽2𝑧2)
2 (24) 

According to Lemma 1 the errors 𝑧1, 𝑧2  converge to zero if |1 − 𝛽1𝑓1| < 1, 𝛽2
2 + (𝛽1𝑔)

2 < 1 . 

Consequently, substituting (24) into (23) and considering that 𝑉1
+ ≤ 𝜆𝑉1by hypothesis we obtain: 

𝑉̅1 = 𝑉1 + 𝑘(𝑓1𝑧1 + 𝑔𝑧2)
2

𝑉̅1
+ ≤ 𝜆𝑉1 + 𝑘(𝑓1

+𝑧1(1 − 𝛽1𝑓1) − 𝛽1𝑓1
+𝑔𝑧2 + 𝑔

+𝛽2𝑧2)
2 (25) 

Comparing the corresponding terms of 𝑉̅1, 𝑉̅1
+ in (25) gives: 

𝜆𝑉1 < 𝑉1
(𝑓1

+𝑧1(1 − 𝛽1𝑓1) + 𝑧2(𝑔
+𝛽2 − 𝑔𝛽1𝑓1

+))2 < (𝑓1𝑧1 + 𝑔𝑧2)
2 (26) 

Computing the squares in the second part of (26), regrouping the terms in a similar way to (17),(19) 

and simplifying common factors we obtain: 

𝜆𝑉1 < 𝑉1
𝑧1
2(1 − 𝛽1𝑓1)

2(𝑓1
+)2(1 + 𝜀) < 𝑧1

2𝑓1
2(1 + 𝜀)

𝑧2
2(𝑔+𝛽2 − 𝑔𝛽1𝑓1

+)2(1 + 1/𝜀) < 𝑧2
2𝑔2(1 + 1/𝜀) 

 (27) 

which holds for some 𝜀 > 0, ∀(𝑧1, 𝑧2) ∈ ℜ
2  with 0 < 𝜆 < 1, |1 − 𝛽1𝑓1||𝑓1

+| < |𝑓1|, 

|𝑔+𝛽2 − 𝑔𝛽1𝑓1
+| < |𝑔|. From (27) we conclude that 𝑉̅1

+ < 𝑉̅1, which implies that the closed-loop 

system (2)-(6) is stable, the system state is bounded and converges to zero for some(𝛽1, 𝛽2) ∈ ℜ
2, 

for which |1 − 𝛽1𝑓1| < 1, 𝛽2
2 + (𝛽1𝑔)

2 < 1, |1 − 𝛽1𝑓1||𝑓1
+| < |𝑓1| , |𝑔

+𝛽2 − 𝑔𝛽1𝑓1
+| < |𝑔|■ 

Remark 5: Due to the disturbance 𝑓1(𝑥)𝜃 in (2), Proposition 1 extends the results of Theorem 3.1 in 

[15] for 𝑁 = 1. In accordance with [2] and by analogy with Theorem 3.2 in [15], the stability of the 
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closed-loop system (2)-(10) for 𝑁 > 1  can be proved by induction based on the case 𝑁 = 1 

employing a Lyapunov function candidate of the form 𝑉̅1 = 𝑉1 + ∑ 𝑉1
+𝑖𝑁

𝑖=1 . 

Remark 6: If 𝑔+ = 𝑔, 𝑓1
+ = 𝑓1, the bounds on 𝛽1, 𝛽2 expressed by Proposition 1 can be simplified  

as |1 − 𝛽1𝑓1| < 1, 𝛽2
2 + (𝛽1𝑔)

2 < 1, |𝛽2 − 𝛽1𝑓1| < 1 . Consequently, a suitable choice of 𝛽2  for 

𝑁 = 1 is 𝛽2 = 𝛽1𝑓1 < 1, with 𝛽1
2(𝑓1

2 + 𝑔2) < 1, which results in the convergence of 𝑧2 to zero in 

one step. Considering the case 𝑁 = 2 we assume 𝑔+ = 𝑔, 𝑓1
+ = 𝑓1 and define 𝑉̅1 as: 

𝑉̅1 = 𝑉1 + 𝑉1
+ + 𝑉1

+2 ≥ 0 (28) 

Computing (28) for the next time step under the above assumption we obtain: 

𝑉̅1
+ = 𝑉1

+ + 𝑉1
+2 + 𝑉1

+3 ≥ 0 (29) 

From Proposition 1, we are left with comparing 𝑉1
+2, 𝑉1

+3which are computed from (2),(10) as: 

𝑉1
+2 = (𝑓1𝑧1(1 − 𝛽1𝑓1) − 𝛽1𝑓1𝑔𝑧2 + 𝑔𝛽2𝑧2 + 𝑔𝑧3)

2

𝑉1
+3 = (𝑓1𝑧1(1 − 𝛽1𝑓1)

2 − 𝛽1𝑓1(1 − 𝛽1𝑓1)𝑔𝑧2 − 𝛽1𝑓1𝑔𝛽2𝑧2 − 𝛽1𝑓1𝑔𝑧3 + 𝑔𝛽2
2𝑧2 + 2𝑔𝛽2𝑧3)

2 (30) 

Computing the squares in (30), regrouping the terms in a similar way to (27), and simplifying 

common factors we obtain: 

𝑧1
2(1 − 𝛽1𝑓1)

2(1 + 𝜀1 + 𝜀2) < 𝑧1
2(1 + 𝜀1 + 𝜀2)

𝑧2
2(𝛽2

2 − 𝛽1𝑓1𝛽2 − 𝛽1𝑓1(1 − 𝛽1𝑓1))
2(1 + 1/𝜀1 + 𝜀3) < 𝑧2

2(𝛽2 − 𝛽1𝑓1)
2(1 + 1/𝜀1 + 𝜀3)

𝑧3
2(2𝛽2 − 𝛽1𝑓1)(1 + 1/𝜀2 + 1/𝜀3) < 𝑧3

2(1 + 1/𝜀2 + 1/𝜀3)

 (31) 

which hold for some 𝜀1, 𝜀2, 𝜀3 > 0, ∀(𝑧1, 𝑧2, 𝑧3) ∈ ℜ
3  if |1 − 𝛽1𝑓1| < 1, 𝛽2

2 + (𝛽1𝑔)
2 < 1,

|2𝛽2 − 𝛽1𝑓1| < 1. From the last part of (31) choosing 𝛽2 = 𝛽1𝑓1/2 < 1 results in 𝑧3 converging to 

zero in one step if 𝛽1
2(𝑓1

2/4 + 𝑔2) < 1. Generalising to the case 𝑁 > 1 we can infer that a suitable 

choice of the parameter 𝛽2 for the closed-loop system (2)-(10) assuming that 𝑔+ ≅ 𝑔, 𝑓1
+ ≅ 𝑓1 is 

𝛽2 = 𝛽1𝑓1/𝑁. This is in agreement with the fact that the relative weight of the corrective term in (13) 

increases with the input delay, as pointed out in Remark 2. Notably, different values of 𝛽2 from the 

ones proposed are possible: in particular, setting 𝛽2 = 0 recovers the standard predictive control 

[18], in a similar way in which [2] is recovered as a special case of [19]. Furthermore, Lemma 1, 

does not pose constraints on the sign of 𝛽2 : for instance, choosing 𝛽2 = −𝛽1𝑓1  for 𝑁 = 1 also 

satisfies (27) as long as the remaining inequalities in Proposition 1 are verified. 

Remark 7: It follows from (27) and (31) that introducing in the control law the corrective term (13) 

with 𝛽2 ≠ 0 gives a further degree of freedom in shaping the dynamics of 𝑧2: for instance, choosing 

𝛽2 = 𝛽1𝑓1 in (27) achieves the convergence of 𝑧2  to zero in one step. Conversely, with 𝛽2 = 0 this 

is only possible if 𝛽1 = 0 , which would however prevent the convergence of 𝑧1  to zero. This 

represents an advantage of the proposed approach in comparison to more traditional predictive 

control algorithms [18]. 

For comparison purposes, the counterpart of Proposition 1 is detailed for the control law (14) 

considering the case 𝑁 = 2. 

Proposition 2: Consider closed-loop system (2)-(14) with input delay 𝑁 = 2 under Assumption 1-3 

and 𝑢 = 𝛾(𝑥, 𝜃∗) that stabilizes the un-delayed system with known parameter 𝜃∗ (𝑁 = 0, 𝜃 = 𝜃∗) 

according to a Lyapunov function candidate 𝑉1 = 𝑘𝑥2 ≥ 0 so that 𝑉1
+ ≤ 𝜆𝑉1, 0 < 𝜆 < 1. 
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i. The errors 𝑧1, 𝑧2, 𝑧3 are bounded and converge to zero for some (𝛽1, 𝛽2) ∈ ℜ
2 that satisfy 

the inequalities |1 − 𝛽1𝑓1| < 1, |𝛽2| < 1 

ii. If in addition |𝑓1
+2| < |𝑓1|, |𝑔

+2𝛽2| < |𝑔|, then the closed-loop system (2)-(14) is stable, the 

system state is bounded and converges to zero  

Proof: To prove the first claim we choose the Lyapunov function candidate (20) and compute the 

difference over one time step. In particular, substituting (14) into (8) we observe that the dynamics 

of 𝑧1 is decoupled from 𝑧2, 𝑧3. 

𝑉2
+ − 𝑉2 = 𝑧1

2(1 − 𝛽1𝑓1)
2 + 𝑧3

2 + 𝑧2
2𝛽2

2 − (𝑧1
2 + 𝑧2

2 + 𝑧3
2) ≤ 0 (32) 

The above inequality is verified for some (𝛽1, 𝛽2) ∈ ℜ
2 ,|1 − 𝛽1𝑓1| < 1, |𝛽2| < 1. Consequently, 

𝑧1, 𝑧2, 𝑧3 are bounded and converge to zero. 

To prove the second claim we employ the Lyapunov function candidate (28). Substituting (14) into 

(2) and then into (28) we obtain: 

𝑉̅1 = 𝑉1 + 𝑉1
+ + 𝑉1

+2 = 𝑉1 + (𝑓1𝑧1 + 𝑔𝑧2)
2 + (𝑓1

+𝑧1 + 𝑔
+𝑧3)

2 ≥ 0 (33) 

Computing (33) at the next time step, gives: 

𝑉̅1
+ ≤ 𝜆𝑉1 + (𝑓1

+𝑧1 + 𝑔
+𝑧3)

2 + (𝑓1
+2𝑧1 + 𝑔

+2𝛽2𝑧2)
2 (34) 

Comparing (33) and (34) we observe that the term 𝑉1
+2  is common to both, while 𝜆𝑉1 < 𝑉1by 

hypothesis. Computing the squares in the remaining term and simplifying common factors in a 

similar way to (27), we obtain: 

𝑧1
2(𝑓1

+2)2(1 + 𝜀) < 𝑧1
2𝑓1

2(1 + 𝜀)

𝑧2
2(𝑔+2𝛽2)

2(1 + 1/𝜀) < 𝑧2
2𝑔2(1 + 1/𝜀)

 (35) 

which holds for some 𝜀 > 0, ∀(𝑧1, 𝑧2) ∈ ℜ
2 for which |𝑓1

+2| < |𝑓1|, |𝑔
+2𝛽2| < |𝑔|. From (35) we 

conclude that 𝑉̅1
+ < 𝑉̅1, which concludes the proof ■ 

Remark 8: Similarly to Proposition 1, the stability of the closed-loop system (2)-(14) for 𝑁 > 1 can 

be proved by induction based on the case 𝑁 = 2 (ref. Remark 5). Notably, if 𝑔 is constant the 

condition on 𝛽2 simplify to |𝛽2| < 1 regardless of 𝑁. Finally, the fact that 𝑧1 is not incremented in 

(33), (34) is a consequence of 𝜃+ only being updated once at each time step within (14). 

5. Pneumatic Drive 

While nonlinear systems with input delay and disturbances are ubiquitous, the specific 

scenario that motivated this study is the control of a pneumatic drive for percutaneous intervention 

under MRI-guidance [20]. The main challenges associated with this type of devices are the input 

delay due to the long supply lines, and the high friction forces. A simplified discrete-time model of 

a pneumatic cylinder based on the one proposed in [18] is: 

{
 
 

 
 
𝑥1
+ = 𝑥1 + 𝑥2𝑇                                                                                   

𝑥2
+ = 𝑥2 +

1

𝑚
(𝑦1𝐴 − 𝜃1𝑥2 − 𝜃2sign(𝑥2) − 𝜃3δ(𝑥2) − 𝑝0𝑎)𝑇

𝑦1
+ = 𝑦2                                                                                                …
𝑦𝑁
+ = 𝑢                                                                                                 

 (36) 
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The states 𝑥1, 𝑥2  are the position and the velocity of the piston, while 𝜃1, 𝜃2, 𝜃3  represent the 

unknown viscous friction coefficient, the Coulomb friction coefficient, and the stiction coefficient. 

The functions sign(∙), δ(∙) are defined as: 

sign(𝑥2) = {
−1
   0
   1

𝑥2 < 0
𝑥2 = 0
𝑥2 > 0

    δ(𝑥2) = {
1
0

𝑥2 = 0
𝑥2 ≠ 0

 (37) 

The delayed control input 𝑦1 corresponds to the pressure relative to atmosphere acting on one side 

of the piston, while 𝑝0 is the pressure acting on the opposite side. For notational simplicity the areas 

𝐴, 𝑎 of the piston and the mass 𝑚 of piston and payload are assumed unitary and are omitted in 

what follows. Furthermore, the pressure 𝑝0 is set constant as in [21]. Finally, 𝑇 is the sampling 

period (typically 𝑇 = 10−3 seconds, hence 𝑇 ≪ 1 ), which is much smaller compared to the 

dynamics of the system (typical closed-loop bandwidth < 10 Hz), while the input delay 𝑁𝑇 is in the 

range of tens of milliseconds. Comparing (36) with system (2) we have that 𝑔(𝑥) = 𝐴𝑇/𝑚  is 

constant, and 𝜃𝑓1(𝑥) = (−𝜃1𝑥2 − 𝜃2sign(𝑥2) − 𝜃3δ(𝑥2))𝑇/𝑚, is the sum of a linear term and two 

switching terms. The control aim for system (36) is tracking a prescribed trajectory (38) which at 

any instant is known 𝑁 time steps in advance: 

{
𝑥1𝐷
+ = 𝑥1𝐷 + 𝑥2𝐷𝑇

𝑥2𝐷
+ = 𝑥2𝐷 + 𝑥3𝐷𝑇 

 (38) 

The terms 𝑥1𝐷 , 𝑥2𝐷 ,𝑥3𝐷  in (38) represent the desired position, velocity and acceleration. It is 

straightforward to show that Assumptions 1-3 are satisfied for system (36): the sampling interval is 

constant for microcontrollers, while the input delay can be calculated knowing the length of the 

supply pipes; considering the bandwidth of the pneumatic drive (< 10 Hz) and the magnitude of the 

input delay (< 30 × 10−3  seconds), the disturbances can be considered constant over the input 

delay; from [18], a suitable control law for the un-delayed version of system (36) with known 

friction coefficients (𝑁 = 0, 𝜃1 = 𝜃1
∗, 𝜃2 = 𝜃2

∗, 𝜃3 = 𝜃3
∗) that satisfies Assumption 3 is: 

𝑢 = 𝜃1
∗𝑥2 + 𝜃2

∗sign(𝑥2) + 𝜃3
∗δ(𝑥2) + 𝑝0 + 𝑥3𝐷 + 𝑐1(𝑥2𝐷 − 𝑥2) + 𝑐2𝑆 (39) 

The variable 𝑆 represents a combination of position and velocity errors [22] and is defined as: 

𝑆 = 𝑐1(𝑥1𝐷 − 𝑥1) + (𝑥2𝐷 − 𝑥2) (40) 

The terms 𝑐1, 𝑐2 > 0 in (39),(40) are design parameters defining the responsiveness of the system 

(i.e. larger values result in a more responsive control action). Assumption 3 is verified considering 

the Lyapunov function candidate 𝑉1 = 𝑘𝑆
2 ≥ 0, with |1 − 𝑐2𝑇| < 1:  

𝑉1
+ = 𝑘(𝑐1(𝑥1𝐷 − 𝑥1) + 𝑐1𝑇(𝑥2𝐷 − 𝑥2) + (𝑥2𝐷 − 𝑥2) + 𝑥3𝐷𝑇

− (𝑢 − 𝜃1
∗𝑥2 − 𝜃2

∗sign(𝑥2) − 𝜃3
∗δ(𝑥2) − 𝑝0)𝑇)

2 = 𝑘𝑆2(1 − 𝑐2𝑇)
2 < 𝑉1 (41) 

Proceeding to the control design for system (36) with 𝑁 = 1 , which is characterised by 

multiple disturbances, the terms 𝑧1, 𝑧2, 𝑧3, 𝑧4 are defined as: 

 

𝑧1 = (𝜃1 + 𝛽1
−𝑥2) − 𝜃1 

𝑧2 = (𝜃2 + 𝛽2
−𝑥2) − 𝜃2 

 

𝑧3 = (𝜃3 + 𝛽3
−𝑥2) − 𝜃3  

 

𝑧4 = 𝑦̃1 − 𝑦1                     

 (42) 
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The derivation of the adaptation law is reported in the Appendix and results in the following 

expression: 

𝜃1
+ = 𝜃1 + 𝑐3𝑇𝑥2(𝑦̃1 − (𝜃1 − 𝑐3𝑥2

2)𝑥2 − (𝜃2 − 𝑐3|𝑥2|)sign(𝑥2) − 𝑝0) + 𝑐3𝑥2(𝑥2 − 𝑥2
−) 

𝜃2
+ = 𝜃2 + 𝑐3𝑇sign(𝑥2)(𝑦̃1 − (𝜃1 − 𝑐3𝑥2

2)𝑥2 − (𝜃2 − 𝑐3|𝑥2|)sign(𝑥2) − 𝑝0)

+ 𝑐3𝑥2(sign(𝑥2) − sign(𝑥2
−)) 

𝜃3
+ = 𝜃3 + 𝑐3𝑇δ(𝑥2)(𝑦̃1 − 𝜃3δ(𝑥2) − 𝑝0) − 𝑐3𝑥2δ(𝑥2

−) 

𝑢 = 𝑦̃1
+ − 𝛽4𝑧4   

(43) 

By analogy with (10), (13) the control law for system (36) with 𝑁 > 1 and with respect to the 

tracking problem (38) is: 

     𝑦̃1
+𝑖 = (𝜃1

+𝑖 − 𝑐3(𝑥2
+𝑖)

2
) 𝑥2

+𝑖 + (𝜃2
+𝑖 − 𝑐3|𝑥2

+𝑖|)sign(𝑥2
+𝑖) + 𝜃3

+𝑖δ(𝑥2
+) + 𝑝0 + 𝑥3𝐷

+𝑖 +

𝑐2𝑆
+𝑖 + 𝑐1(𝑥2𝐷

+𝑖 − 𝑥2
+𝑖)  

 𝑦̃𝑖+1
+ = 𝑦̃1

+𝑖 −∑𝛽4
𝑖+1−𝑗

(
𝑖!

(𝑗 − 1)! (𝑖 − 𝑗 + 1)!
)

𝑖

𝑗=1

𝑧𝑗+3   

      𝑢 = 𝑦̃1
+𝑁 −∑𝛽4

𝑁+1−𝑖 (
𝑁!

(𝑖 − 1)! (𝑁 − 𝑖 + 1)!
)

𝑁

𝑖=1

𝑧𝑖+3                     

(44) 

where 1 ≤ 𝑗 ≤ 𝑖 ≤ 𝑁 and the predicted values of the states 𝑥1
+𝑖, 𝑥2

+𝑖 are computed recursively from 

their current values 𝑥1, 𝑥2. 

In order to define tuning guidelines for 𝛽4, the following Lyapunov function candidate is chosen for 

𝑁 = 1 in accordance with Proposition 1, here adapted for the tracking problem (38): 

𝑉̅1 = 𝑉1 + 𝑘(𝑆
+ − (1 − 𝑐2𝑇)𝑆)

2 > 0 (45) 

Substituting (44) into (45) we obtain: 

𝑉̅1 = 𝑉1 + 𝑘𝑇
2(−𝑧1𝑥2 − 𝑧2sign(𝑥2) − 𝑧3δ(𝑥2) + 𝑧4)

2 (46) 

Evaluating (46) for the next time step, substituting (43), and neglecting the terms in 𝑇2 since 𝑇 ≪ 1, 

we obtain: 

𝑉̅1
+ = 𝑉1

+ + 𝑘𝑇2(−(𝑧1(1 − 𝑐3𝑇𝑥2
2) − 𝑧2𝑐3𝑇|𝑥2| + 𝑧4𝑐3𝑇𝑥2)𝑥2

− (−𝑧1𝑐3𝑇|𝑥2| + 𝑧2(1 − 𝑐3𝑇sign(𝑥2)
2) + 𝑧4𝑐3𝑇sign(𝑥2))sign(𝑥2)

− (𝑧3(1 − 𝑐3𝑇δ(𝑥2)
2) + 𝑧4𝑐3𝑇δ(𝑥2))δ(𝑥2) + 𝑧4𝛽4)

2
 

(47) 

We can split (47) according to (37) and regroup the terms as: 

𝑥2 = 0 

𝑥2 ≠ 0 

𝑉̅1
+ = 𝑉1

+ + 𝑘𝑇2(−𝑧3(1 − 𝑐3𝑇) + 𝑧4(−𝑐3𝑇 + 𝛽4))
2  

𝑉̅1
+ = 𝑉1

+ + 𝑘𝑇2(−𝑧1(1 − 𝑐3𝑇𝑥2
2 − 𝑐3𝑇)𝑥2 − 𝑧2(𝑐3𝑇|𝑥2|𝑥2 + (1 − 𝑐3𝑇)sign(𝑥2))

+ 𝑧4(𝛽4 − 𝑐3𝑇𝑥2
2 − 𝑐3𝑇))

2
 

(48) 

Observing the coefficients of 𝑧4  suggests 𝛽4 = 𝑐3𝑇(1 + 𝑥2
2) as suitable value for this design 

parameter. Considering that |𝑥2| ≪ 1, the above value can be further simplified as 𝛽4 = 𝑐3𝑇 with 

𝑐3𝑇 < 1. Drawing a parallel to Remark 6, we infer 𝛽4 = (𝑐3𝑇)/𝑁 for the general case 𝑁 > 1. It is 
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Fig. 1  Step response (A): dashed red line refers to control scheme (44); solid blue line refers to 

control scheme (49); green centreline refers to standard predictor (𝛽4 = 0, 𝑐3 = 0); reference 

position 𝑥1𝐷 is in dotted black. Corresponding disturbance estimate (B) for control scheme (44): 

solid blue line refers to 𝜃1 (viscous friction); red dashed line refers to 𝜃2 (Coulomb friction); cyan 

centreline refers to 𝜃3 (stiction); the cumulative disturbance is in dotted black. 

important to highlight here the effects of the sampling period: a larger 𝑇 requires smaller values of 

𝑐3, 𝛽4 in order to ensure 𝑐3𝑇 < 1; finally, larger errors are introduced within the Lyapunov function 

𝑉̅1
+ (47),(48) where all terms in 𝑇2 and higher order have been neglected. 

For comparison purposes, the control law (14) is implemented for system (36) resulting in: 

    𝑦̃1
+𝑖 = (𝜃1 − 𝑐3𝑥2

2)𝑥2
+𝑖 + (𝜃2 − 𝑐3|𝑥2|)sign(𝑥2

+𝑖) + 𝜃3δ(𝑥2
+𝑖) + 𝑝0 + 𝑥3𝐷

+𝑖 + 𝑐2𝑆
+𝑖 +

𝑐1(𝑥2𝐷
+𝑖 − 𝑥2

+𝑖) 

𝑢 = 𝑦̃1
+𝑁 − 𝛽4𝑧2 

(49) 

Differently from (44), the parameters 𝜃1, 𝜃2, 𝜃3  are only updated once at each time step. 

Additionally, the parameter |𝛽4| < 1 can be chosen independently of 𝑁 (ref. Remark 8). Finally, the 

difference between (44) and (49) vanishes if 𝑁 = 1.  

6. Simulation Results 

System (36) was simulated in Matlab® with 𝑇 = 0.001 seconds. The parameters 𝑐1, 𝑐2, 𝑐3 

were tuned on the un-delayed system in order to achieve a settling time shorter than 0.2 s with an 

overshoot smaller than 0.5% (i.e. 𝑐1 = 25, 𝑐2 = 40, 𝑐3 = 30). Two versions of the proposed control 

law were compared considering an input delay representative of the application (𝑁 = 20,𝑁 = 25): 

control scheme (44) with 𝛽4 = 𝑐3𝑇/𝑁; control scheme (49) with 𝛽4 = 0.3. The disturbances were 

chosen in accordance with experimental data from needle insertions in silicone phantoms [21] as: 

𝜃1 = 2𝑥2;  𝜃2 = 0.2sign(𝑥2); 𝜃3 = 0.5δ(𝑥2).  

Simulations were conducted using a step signal with 𝑁 =20 (Figure 1) and a ramp trajectory 

with 𝑁 =25 (Figure 2). The plots show that omitting the adaptive disturbance compensation (i.e. 

𝑐3 = 𝛽4 = 0), which corresponds to the standard predictive control [2], results in large tracking 

errors that increase with the input delay. Conversely, the adaptive algorithms (44) and (49) both 

achieve superior performance. In particular, the algorithm (44) results in higher responsiveness 

which makes it the most appropriate for tracking tasks. Nevertheless, in all cases the piston 
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Fig. 2  Response to ramp trajectory (A): dashed red line refers to control scheme (44); solid blue 

line refers to control scheme (49); green centreline refers to standard predictor (𝛽4 = 0, 𝑐3 = 0); 

reference position 𝑥1𝐷  is in dotted black. Corresponding disturbance estimate (B) for control 

scheme (44): solid blue line refers to 𝜃1 (viscous friction); red dashed line refers to 𝜃2 (Coulomb 

friction); cyan centreline refers to 𝜃3 (stiction); the cumulative disturbance is in dotted black. 

trajectory becomes less smooth with increasing input delay and larger values of 𝑇 suggesting that a 

less aggressive tuning of 𝑐1, 𝑐2, 𝑐3  would be required in the latter case as pointed out in [2]. 

Conversely, the performance improves for smaller 𝑇 and smaller 𝑁 while the difference between 

(44) and (49) vanishes. Since the friction forces are additive in (36), the adaptation law (43) 

attempts to compensate their cumulative effect and consequently the individual estimates might 

differ from the real values during the transient. Differently from the un-delayed case, while the 

Coulomb friction coefficient 𝜃2 converges to the correct value 𝐹𝑎, the estimate of the stiction 𝜃3 can 

differ from 𝐹𝑚 and become larger in the presence of input delay. This effect is a direct consequence 

of the adaptation law (43) for the parameter 𝜃3 , which consists of an integrative term that is 

incremented until the piston is set in motion. 

7. Conclusions 

This paper presented a new adaptive algorithm for a class of nonlinear discrete-time system in 

strict feedback form characterised by disturbances and input delay. The control law was constructed 

using the I&I approach which is employed to compensate the disturbances and to correct the 

prediction error, resulting in a recursive algorithm. Additionally, a compact form of the control law 

particularly suitable for the implementation on digital microcontrollers was derived. The stability of 

the closed-loop system was analysed with Lyapunov functions and guidelines for tuning the design 

parameters were outlined. Incidentally, the traditional predictive algorithm is recovered as a special 

case of the proposed control scheme, which conversely provides additional flexibility in shaping the 

dynamics of the estimation errors. The control scheme was applied to the tracking problem of a 

pneumatic drive with multiple disturbances consisting of viscous friction, Coulomb friction, and 

stiction. The design of the adaptive algorithm was outlined and the effectiveness of the proposed 

approach was demonstrated with simulations. In particular, two versions of the control law were 

considered for comparison purposes. Future work will extend the current results to systems with 

both input delay and state delays and to systems for which only a subset of states are measurable. In 
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parallel, the control of continuous-time systems with input delay and disturbances will be 

investigated. Finally, the results will be validated experimentally with a prototype representative of 

the chosen application. 

8. Appendix 

Derivations of the adaptation law for system (36) 

Computing (42) for the next time step in a similar fashion to (4) we obtain: 

𝑧1
+ = 𝛽1𝑇(𝑦̃1 − 𝑧4 − (𝜃1 + 𝛽1

−𝑥2 − 𝑧1)𝑥2 − (𝜃2 + 𝛽2
−𝑥2 − 𝑧2)sign(𝑥2)

− (𝜃3 + 𝛽3
−𝑥2 − 𝑧3)δ(𝑥2) − 𝑝0) + 𝜃1

+ + 𝛽1𝑥2 − 𝜃1 

𝑧2
+ = 𝛽2𝑇(𝑦̃1 − 𝑧4 − (𝜃1 + 𝛽1

−𝑥2 − 𝑧1)𝑥2 − (𝜃2 + 𝛽2
−𝑥2 − 𝑧2)sign(𝑥2)

− (𝜃3 + 𝛽3
−𝑥2 − 𝑧3)δ(𝑥2) − 𝑝0) + 𝜃2

+ + 𝛽2𝑥2 − 𝜃2 

𝑧3
+ = 𝛽3𝑇(𝑦̃1 − 𝑧4 − (𝜃1 + 𝛽1

−𝑥2 − 𝑧1)𝑥2 − (𝜃2 + 𝛽2
−𝑥2 − 𝑧2)sign(𝑥2)

− (𝜃3 + 𝛽3
−𝑥2 − 𝑧3)δ(𝑥2) − 𝑝0) + 𝜃3

+ + 𝛽3𝑥2 − 𝜃3 

                   𝑧4
+ = 𝑦̃1

+ − 𝑢   

(A.1) 

where 𝛽1, 𝛽2, 𝛽3 are nonlinear functions of the state to be defined. Extending (5) to the case of 

multiple disturbances, the update law 𝜃1
+, 𝜃2

+, 𝜃3
+ and the control law 𝑢 are chosen as: 

𝜃1
+ = 𝜃1 − 𝛽1𝑇(𝑦̃1 − (𝜃1 + 𝛽1

−𝑥2)𝑥2 − (𝜃2 + 𝛽2
−𝑥2)sign(𝑥2) − (𝜃3 + 𝛽3

−𝑥2)δ(𝑥2) − 𝑝0)

+ (𝛽1
− − 𝛽1)𝑥2 

𝜃2
+ = 𝜃1 − 𝛽2𝑇(𝑦̃1 − (𝜃1 + 𝛽1

−𝑥2)𝑥2 − (𝜃2 + 𝛽2
−𝑥2)sign(𝑥2) − (𝜃3 + 𝛽3

−𝑥2)δ(𝑥2) − 𝑝0)  

+ (𝛽2
− − 𝛽2)𝑥2 

𝜃3
+ = 𝜃3 − 𝛽3𝑇(𝑦̃1 − (𝜃1 + 𝛽1

−𝑥2)𝑥2 − (𝜃2 + 𝛽2
−𝑥2)sign(𝑥2) − (𝜃3 + 𝛽3

−𝑥2)δ(𝑥2) − 𝑝0)

+ (𝛽3
− − 𝛽3)𝑥2 

𝑢 = 𝑦̃1
+ − 𝛽4𝑧4 

(A.2) 

In order to prove the convergence of (A.1) to zero, the following Lyapunov function candidate is 

chosen: 

𝑉2 = 𝑧1
2 + 𝑧2

2 + 𝑧3
2 + 𝑧4

2 ≥ 0 (A.3) 

Computing (A.3) for the next time step and substituting (A.1),(A.2) gives: 

𝑉2
+ = (𝑧1(1 + 𝛽1𝑇𝑥2) + 𝑧2𝛽1𝑇sign(𝑥2)+𝑧3𝛽1𝑇δ(𝑥2) − 𝑧4𝛽1𝑇)

2

+ (𝑧1𝛽2𝑇𝑥2 + 𝑧2(1 + 𝛽2𝑇sign(𝑥2))+𝑧3𝛽2𝑇δ(𝑥2) − 𝑧4𝛽2𝑇)
2

+ (𝑧1𝛽3𝑇𝑥2 + 𝑧2𝛽3𝑇sign(𝑥2)+𝑧3(1 + 𝛽3𝑇δ(𝑥2)) − 𝑧4𝛽3𝑇)
2
+ 𝛽4

2𝑧4
2 ≥ 0 

(A.4) 

Exploiting the structure of (A.4) and introducing the constant parameter 𝑐3 > 0 , the nonlinear 

functions 𝛽1, 𝛽2, 𝛽3 are chosen as: 

 

𝛽1 = −𝑐3𝑥2             
𝛽2 = −𝑐3sign(𝑥2) 

 

𝛽3 = −𝑐3δ(𝑥2)       
 (A.5) 
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Substituting (A.5) back into (A.4), and since δ(𝑥2)𝑥2 = 0;  δ(𝑥2)sign(𝑥2) = 0, ∀𝑥2 ∈  ℜ , we 

obtain: 

𝑉2
+ = (𝑧1(1 − 𝑐3𝑇𝑥2

2) − 𝑧2𝑐3𝑇|𝑥2| + 𝑧4𝑐3𝑇𝑥2)
2

+ (−𝑧1𝑐3𝑇|𝑥2| + 𝑧2(1 − 𝑐3𝑇sign(𝑥2)
2) + 𝑧4𝑐3𝑇sign(𝑥2))

2

+ (𝑧3(1 − 𝑐3𝑇δ(𝑥2)
2) + 𝑧4𝑐3𝑇δ(𝑥2))

2 + 𝛽4
2𝑧4

2 ≥ 0 
(A.6) 

In accordance with (37), we can split (A.6) in two cases: 

𝑥2 = 0 

𝑥2 ≠ 0 

𝑉2
+ = (𝑧1)

2 + (𝑧2)
2 + (𝑧3(1 − 𝑐3𝑇) + 𝑧4𝑐3𝑇)

2 + 𝛽4
2𝑧4

2 

𝑉2
+ = (𝑧1(1 − 𝑐3𝑇𝑥2

2) − 𝑧2𝑐3𝑇|𝑥2| + 𝑧4𝑐3𝑇𝑥2)
2 + (𝑧3)

2 

+(−𝑧1𝑐3𝑇|𝑥2| + 𝑧2(1 − 𝑐3𝑇) + 𝑧4𝑐3𝑇sign(𝑥2))
2
+ 𝛽4

2𝑧4
2 

(A.7) 

Computing the squares in (A.7), regrouping the terms and simplifying common factors we obtain: 

𝑥2 = 0 

𝑥2 ≠ 0 

𝑉2
+ ≤ 𝑧1

2 + 𝑧2
2 + 𝑧3

2(1 − 𝑐3𝑇)
2(1 + 𝜀0) + 𝑧4

2(𝛽4
2 + 𝑐3

2𝑇2(1 + 1/𝜀0))  

𝑉2
+ ≤ 𝑧1

2((1 − 𝑐3𝑇𝑥2
2)2(1 + 𝜀1 + 𝜀2) + 𝑐3

2𝑇2𝑥2
2(1 + 1/𝜀4 + 1/𝜀5)) + 

+𝑧2
2((1 − 𝑐3𝑇)

2(1 + 𝜀4 + 𝜀6) + 𝑐3
2𝑇2𝑥2

2(1 + 1/𝜀1 + 𝜀3)) + 𝑧3
2 + 

+𝑧4
2(𝛽4

2 + 𝑐3
2𝑇2𝑥2

2(1 + 1/𝜀3 + 1/𝜀2) + 𝑐3
2𝑇2(1 + 𝜀5 + 1/𝜀6)) 

(A.8) 

which holds ∀𝜀0, 𝜀1, 𝜀2, 𝜀3, 𝜀4, 𝜀5, 𝜀6 > 0, ∀(𝑧1, 𝑧2, 𝑧3, 𝑧4) ∈ ℜ
4. Considering that 𝑇 ≪ 1, (A.8) can 

be further simplified neglecting all terms in 𝑇2:  

𝑥2 = 0 

𝑥2 ≠ 0 

𝑉2
+ ≤ 𝑧1

2 + 𝑧2
2 + 𝑧3

2(1 − 𝑐3𝑇)
2(1 + 𝜀0) + 𝑧4

2(𝛽4
2)  

𝑉2
+ ≤ 𝑧1

2(1 − 𝑐3𝑇𝑥2
2)2(1 + 𝜀1 + 𝜀2) + 𝑧2

2(1 − 𝑐3𝑇)
2(1 + 𝜀4 + 𝜀6) + 𝑧3

2 + 𝑧4
2(𝛽4

2) 
(A.9) 

Comparing the corresponding terms in (A.3) and (A.9) gives: 

𝑥2 ≠ 0
𝑥2 ≠ 0
𝑥2 = 0
∀𝑥2

      

𝑧1
2(1 − 𝑐3𝑇𝑥2

2)2(1 + 𝜀1 + 𝜀2) < 𝑧1
2

𝑧2
2(1 − 𝑐3𝑇)

2(1 + 𝜀4 + 𝜀6) < 𝑧2
2

𝑧3
2(1 − 𝑐3𝑇)

2(1 + 𝜀0) < 𝑧3
2

𝑧4
2(𝛽4

2) < 𝑧4
2

 (A.10) 

which is satisfied for some 𝜀0, 𝜀1, 𝜀2, 𝜀4, 𝜀6 > 0 and for |1 − 𝑐3𝑇| < 1, |1 − 𝑐3𝑇𝑥2
2| < 1, |𝛽4| < 1, 

and proves the convergence of (A.1) to zero. Given that the speed of the pneumatic drive for the 

application considered is typically low |𝑥2| ≪ 1 (i.e. |𝑥2| < 0.05 m/s), the above limits for the case 

𝑁 = 1 can be further simplified to 𝑐3 > 0, 𝑐3 < 1/𝑇, |𝛽4| < 1. 
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