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Aims It is generally accepted that post-MI heart failure (HF) changes a variety of aspects of sarcoplasmic reticular Ca2þ

fluxes but for some aspects there is disagreement over whether there is an increase or decrease. The commonest
statistical approach is to treat data collected from each cell as independent, even though they are really clustered
with multiple likely similar cells from each heart. In this study, we test whether this statistical assumption of inde-
pendence can lead the investigator to draw conclusions that would be considered erroneous if the analysis handled
clustering with specific statistical techniques (hierarchical tests).

....................................................................................................................................................................................................
Methods
and results

Ca2þ transients were recorded in cells loaded with Fura-2AM and sparks were recorded in cells loaded with Fluo-
4AM. Data were analysed twice, once with the common statistical approach (assumption of independence) and
once with hierarchical statistical methodologies designed to allow for any clustering. The statistical tests found that
there was significant hierarchical clustering. This caused the common statistical approach to underestimate the
standard error and report artificially small P values. For example, this would have led to the erroneous conclusion
that time to 50% peak transient amplitude was significantly prolonged in HF.

Spark analysis showed clustering, both within each cell and also within each rat, for morphological variables. This means
that a three-level hierarchical model is sometimes required for such measures. Standard statistical methodologies, if used
instead, erroneously suggest that spark amplitude is significantly greater in HF and spark duration is reduced in HF.

....................................................................................................................................................................................................
Conclusion Ca2þ fluxes in isolated cardiomyocytes show so much clustering that the common statistical approach that assumes

independence of each data point will frequently give the false appearance of statistically significant changes.
Hierarchical statistical methodologies need a little more effort, but are necessary for reliable conclusions. We
present cost-free simple tools for performing these analyses.
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1. Introduction

Changes in cellular Ca2þ handling are agreed to play a key role in the
pathophysiology of heart failure (HF).1 The standard experimental

model, established for half a century is left anterior descending coronary
artery ligation in the rat.2 At the whole organ level, there is broad agree-
ment between experimenters on the pattern of haemodynamic and
echocardiographic variables.34–8
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At the cellular level, however, there is more controversy. Changes in

Ca2þ transient amplitude and kinetics have been widely reported to con-
tribute to organ dysfunction.1,9 However, the 18 studies that report on
changes in Ca2þ transient kinetics show considerable conflict (Table 1).
On even smaller scales, Ca2þ spark measurements also show convincing
changes, again in conflicting directions (see Supplementary material
online, Table S1). This is not a peculiarity of the rat: mouse studies too
show the same conflicts (see Supplementary material online, Tables S2
and S3).

The accepted paradigm is that reduced Ca2þ transient amplitude con-
tributes to reduced myocardial contractility.10 However, the cellular
data do not consistently fit this. For example, Ca2þ transient amplitudes
in HF cells are reported as significantly increased in more studies than
decreased (Table 1). Moreover, the two studies that reported changes
in SR Ca2þ content indicated opposite directions of change (Table 1).
In other variables, studies conflict between showing convincing changes
and convincing absence of change (Table 1).

There is also no apparent time-dependent shift in variables following
MI as would be expected for variables that change from a ‘compensated’
to ‘de-compensated’ cellular phenotype.

Authors have proposed explanations including a compensated phase
following MI,5 or differences in other elements of the myocyte (e.g. myo-
filaments) overriding the effects of enhanced Ca2þ transients. When one
study found enhanced Ca2þ amplitudes simultaneously with reduced
myocyte contractility, the proposed explanation was a reduction in myo-
filament sensitivity to Ca2þ.11

Rarely considered is the possibility that our statistical methods may
have left us open to changes appearing falsely statistically significant. The
studies in the field generally used standard statistical tests designed to be

valid for independent data points, because these tests are widely avail-
able and straightforward to implement.

The challenge we face is that when we take n cells from each of m ani-
mals we do not truly have n�m independent data points.12 We have m
clusters, each containing n data points. The data points in each cluster
(i.e. the cells from a single animal) will tend to be more similar to each
other than they are to points in the other clusters (Figure 1). There are
well-established statistical techniques for handling data that shows such
clustering. Whether using cluster based analysis produces different
results from our field’s standard statistical tests, has never been tested.

When analysing such a set of n�m data points, investigators tend to
take one of two approaches. The more conservative approach is to cal-
culate a mean for each of the m animals and treat these m mean values as
the only data points. This approach is not popular because it treats the
sample size as only m and therefore, reduces the ability to detect
changes.

The far more popular approach is to ignore the clustering and treat all
n�m data points as though they are independent. The attraction of this
approach is that when the standard statistical tests are performed, the
large number of data points lead to the standard error being very small
and therefore differences appear to be more statistically significant.13 In
fact the term ‘pseudoreplication’ has been coined for this.14 Studies
rarely specify which of these two approaches have been taken but the
sample sizes reported generally appear consistent with the latter
approach.

A third approach, rarely used, is to recognize the clustered (hierarchi-
cal) structure of the data. And use statistical methods designed for this
situation.15 Hierarchical statistical methods test for clustering and, if
present, correct for this when performing significance testing.

..............................................................................................................................................................................................................................

Table 1 Summary of changes in electrically evoked Ca2þ transients and SR load assessment in studies of rats with post-MI HF.
Arrows refer to whether variables (evoked Ca2þ transient amplitude and decay time, SR Ca2þ content and diastolic [Ca2þ]i)
were found to be significantly reduced (#), the same ($), or increased (") in myocytes isolated from post-MI animals compared
with control animals in the post-MI rat HF model

Publication Wks post-MI Ca21 transient amplitude Transient decay time SR Ca21 content Diastolic [Ca21]i

Cheung et al.4 a 3 $
Huang et al.6 3 "
Zhang et al.7 3 $ $ $
Anand8 6 $ $
Sande et al.29 6 $
Holt et al.9 6 # " "
Soppa et al.5 6 " " " "
Lee et al.30 7 $ " $ $
Maczewski and Mackiewicz31 8 $ " $
Kaprielian et al.32 8 " $ $
Loennechen33 8 " " "
Yoshida et al.34 8 $ $ $
Cheng et al.11 8 " "
Saraiva et al.35 9 # $
Loennechen et al.36 13 " " "
Lyon et al.3 16 "
Lyon et al.37 16 " #
Ait Mou et al.38 18 # "
Total 3 5 5 0 6 11 1 3 1 0 4 4

aAt physiological Ca2þ (increased decay time at supraphysiological Ca2þ of 5 mM).

2 M.B. Sikkel et al.
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..In this study we test the application of a hierarchical statistical
approach to data from myocytes from the post-MI rat HF model. We
examine whether (i) it makes a difference to the conclusions drawn, (ii)
whether it is necessary, and (iii) whether it can be implemented conven-
iently by experimenters.

2. Methods

2.1 Rat HF model and myocyte imaging
The chronic rat HF model was produced surgically via LAD ligation3

with an 8 week delay before echocardiography, culling and biometric
measurement as described previously.16 Briefly, rats were anesthetized
with 2% isoflurane, intubated, and ventilated after preoperative bupre-
norphine (0.03 mg/kg SC) injection. Loss of righting reflex and pain
responses confirmed dequate analgesia and anaesthesia before operating
and tying off the LAD with 6-0 prolene. All animal surgical procedures
and peri-operative management were carried out in accordance with
the Guide for the Care and Use of Laboratory Animals published by the
US National Institutes of Health (NIH Publication, 8th Edition, 2011)
under assurance number A5634-01. Imperial College Ethical Review
Committee authorized the project licence.

Echocardiography and biometric measurements showed a reduced
ejection fraction compared with control animals (40 ± 2.2% vs.
83 ± 2.1%, P < 0.0001), as well as a significant increase in heart weight:
body weight ratio (3.28 ± 0.1 vs. 2.79 ± 0.1, P < 0.0001) confirming estab-
lished HF (see Supplementary material online, Figure S1).

Rats were culled by cervical dislocation and cells were isolated
8 weeks following ligation. Cells were loaded with Fura2-AM and imaged
using ratiometric techniques as described.17 Ca2þ transients were
recorded at 1 Hz in control (76 cells from 10 isolations) and HF cells (79
cells from 10 isolations) using the ratiometric dye Fura2-AM. The ratio
of the isosbestic point for Fura2 (360 nm) to the unbound form
(380 nm) was used as a measure of [Ca2þ]i. Several variables were
assessed using automated transient analysis in IonWizard (Ionoptix Inc.)

including diastolic ratio, peak systolic ratio, transient amplitude (peak
ratio/diastolic ratio), time to 50% peak, time to 50% decay (TD50), and
tau of decay.

In a separate set of experiments isolated cardiomyocytes were loaded
with fluo4-AM as described previously17 and spontaneous Ca2þ sparks
were assessed using confocal microscopy. All experiments were per-
formed at 37 �C in NT solution containing 2 mM Ca2þ. The control
group consisted of myocytes isolated from age-matched controls. Data
were viewed using Ionwizard and ImageJ (NIH) and analysed with a com-
bination of custom-built macros and Sparkmaster. Amplitude and mor-
phology of five Ca2þ transients per cell were averaged to give final result
for that cell. Sparks were treated as separate data points.

2.2 Statistical analysis
Data were analysed using IBM SPSS Statistics in two ways. Firstly, using
our field’s common statistical approach of treating all data points as
though they were independent. For each variable, an independent sam-
ples t-test was performed comparing all the cells from HF hearts against
all the cells from control hearts.

The second analysis used hierarchical statistical techniques. These
techniques are designed for situations where values may be clustered,
with a possibility of similarity within each cluster.13 We have designed
cost-free methods which we have made available for the reader to use
for similar analyses (see Discussion section).

2.2.1 Quantifying clustering
The amount of clustering can be quantified by the intraclass correlation
coefficient (ICC). This varies between 0% for data showing no clustering,
and 100% for intensely clustered data (i.e. each cluster contains multiple
identical values, but different clusters have different values). This meas-
ure represents the proportion of total variability in an outcome measure
that is attributable to the isolation of origin. Illustrative datasets with
high, moderate, and low values are shown in Figure 2. The method of cal-
culation is shown in Supplementary material online.

Figure 1 Hierarchical structure of data attained from studies of isolated cardiomyocytes. Multiple cardiomyocytes originate from each isolation.
Differences in the animals from which the myocytes originate, as well as slight variations in quality of isolation or experimental conditions on any one day,
may result in measurements taken from the myocyte from one rat being more closely related to each other than to measurements from a different isola-
tions. That is, measurements in cell A are more likely to be similar to those in cell B vs. those in cell C in the diagram. A fundamental condition of common
statistical tests (e.g. t-tests), that of independence of data points, is therefore contravened. An example of a further level of hierarchy is shown for the middle
rat with multiple individual sparks recorded from each cell.

Hierarchical statistics in myocyte studies 3
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2.2.2 Correction of the analysis based on ICC
If the data show no clustering, then the hierarchical model works effec-
tively identically to the commonly used statistical test, treating all the
data points as independent. If, on the other hand, the data are tightly
grouped within each cluster, with relatively large separation between
clusters (as might happen when each day’s isolation was internally homo-
geneous but differed from other days) then a relatively large correction
would need to be applied. The hierarchical test quantifies the amount of
clustering and applies the appropriate correction to the statistical signifi-
cance test (Figure 3), further explanation of hierarchical testing is shown
in Supplementary material online (see Supplementary methods and
Figure S2).

2.2.3 Effective sample size
The hierarchical approach also provides a simple method of augmenting
conventional sample size calculation to explain the fact that with m cells
from each of n rats the true sample size is less than n�m but more than
n. The correction required depends on the degree of clustering as quan-
tified by the ICC. With low levels of clustering, where each cell’s behav-
iour is independent of the animal it has come from, effective sample size
approaches n�m. With high degrees of clustering, where all cells from a

single animal behave identically, effective sample size approaches n. The
calculation of effective sample size is as follows:

For n animals, each with m cells

Effective Sample Size =
n � m

1þ ðm� 1Þ � ICC

For example, with 10 animals and 20 cells from each, with an ICC of
50%, effective sample size is neither 200 nor 10, and is calculated as
follows:

Effective Sample Size =
200

1þ ð19Þ � 0:5
� 19

This has important implications for the interpretation of conventional
power calculations in the context of hierarchical data. Power calculations
are used to work out the appropriate sample size for experiments given
a working knowledge of likely effect size and variance obtained from
pilot data. In the context of a hierarchical data structure, the sample size
given by such power calculations should be considered to be the
Effective Sample Size. A rearrangement of the above equation would give
the true sample size required:

n � m = Effective Sample Size � ð1þ ðm� 1Þ � ICCÞ

2.2.4 Testing whether the hierarchical statistical model
significantly improved the fit
We tested whether the hierarchical statistical model produced a signifi-
cantly better fit to the data than the commonly used statistical approach,
using the v2 test of the change in -2 Log Likelihood (v2-2LL). This is the
recommended method for comparisons of this kind.18–20

2.2.5 Transforming non-normal distributions
Initial exploration of data showed that whilst variables pertaining to
Ca2þ transients were symetrically distributed, spark morphological varia-
bles were skewed as has been shown previously.21 The logarithmic
transformations of morphological characteristics were therefore used to
improve this lack of symmetry (see Supplementary material online, Figure
S3). These transformed variables are referred to as LogAmp,
LogFWHM, LogFDHM for the logarithm of spark amplitude, full width at
half maximum (FWHM), full duration at half maximum (FDHM).

2.2.6 Running the two analysis approaches
Ca2þ transient and spark measures were the dependent variables in the
statistical models. The only independent variable was the presence or
absence of HF. Each model used was assessed for validity by ensuring
predicted values closely corresponded to those observed. Residuals
were assessed for normality and symmetry. Estimated marginal means
were used to assess significance between control and HF groups.

3. Results

Ca2þ transient variables were measured from 76 cells from 10 control
rats and 79 cells from 10 HF rats. Ca2þ spark variables were measured in
344 sparks from 17 cells from 7 control rats and 352 sparks from 22 cells
from 5 HF rats.

Figure 2 Intraclass correlation in cardiomyocyte studies. Examples
of data with high, moderate, or low intraclass correlations (ICCs).
Intracellular calcium concentration ([Ca2þ]i) from individual cells (red
dots) is clustered into histograms making up the data distributions in
individual rat hearts. In the top panel, there is a high ICC with data clus-
tered tightly in each heart. In the middle panel, there is an intermediate
ICC and in the bottom panel there is a low ICC with a high proportion
of the overall variability coming from each individual heart. A larger cor-
rection to common statistical techniques is required in data with a high
ICC.

4 M.B. Sikkel et al.
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3.1 Multiple cells from each of several rats:
Ca2þ transient morphology
For all Ca2þ transient morphology variables, the hierarchical model pro-
duced a statistically significantly better fit than the commonly used analy-
sis method (Table 2). The magnitude of the intraclass correlation (degree
of clustering) varied between 12 and 47% (Table 2, ICC column).

For all the comparisons between HF and control, the commonly used
analysis method reported a more statistically significant difference than
the better-fitting hierarchical analysis. The mechanism of this was that
the commonly used statistical method produced a smaller value for the
standard error of the difference between HF and control (Table 2).

Figure 4 shows the 95% confidence interval calculated, by the two
approaches, for the difference in time to peak between HF and control.
The commonly used analysis method gives a different conclusions
because it has an artificially small 95% confidence interval, causing the
data to meet the criteria for statistical significance.

3.2 Multiple sparks from each of multiple
cells from multiple rats
For sparks there is potential for an additional level of clustering, because
the multiple sparks from each cell could be more similar to each other
than the sparks from other cells of the same rat.

The hierarchical analysis was carried out twice (Table 3): once allowing
only for clustering at the animal level and once allowing for clustering at
both the cell and the animal levels. We tested whether the incorporation
of the additional (cell) level improved the fit as defined by the v2-2LL.
Where the fit was improved significantly, the additional level was incor-
porated into the analysis (methods shown in Supplementary appendix).

The P-values were substantially different between the commonly used
method and the hierarchical analyses. Again, the hierarchical analyses fitted
better for each variable. The cause of the difference in P values was that
the hierarchical models calculated larger values for the standard error.

Even minor clustering made a substantial difference to the P value. For
example, for logFWHM, even with only 8.5% clustering (as quantified by
the ICC), the conventional approach which assumes no clustering reports
a P value of 0.02, whereas the hierarchical model reports a P value of 0.78.

LogAmp showed significant clustering both within each cell and within
rats (Table 3, Figure 5A, B). Figure 5C shows the 95% confidence interval
calculated, by the two approaches, for the difference in LogAmp
between HF and control. The artificially small confidence interval
produced by the common test makes the difference between the groups
appear highly significant, but when the hierarchical data structure is taken
into account, there is no significant difference.

Looking at the best-fitting analysis method (Table 3, defined by v2-2LL
criterion), it emerges that none of the spark variables is in fact signifi-
cantly different between HF and control. LogAmp and LogFDHM
appeared to be different between HF and control using the commonly
used analysis approach, but this was because of an artefactually small
standard error through failing to account for clustering.

Figure 3 Correction for clustering produced by hierarchical tests.
Description of correction to the confidence interval for the difference
between control and HF for clustered data that is produced using hier-
archical tests.

........................................................ .............................................................

..............................................................................................................................................................................................................................

Table 2 Analysis of Ca2þ transient morphology variables using standard and hierarchical statistical tests

Clustering

of data

(ICC) (%)

Common test of HF vs. control Hierarchical test of HF vs. control Comparison of

goodness of fit

(common vs.

hierarchical)

Std error of

difference

P-value Std error of

difference

P-value

Diastolic ratio 27 0.0120 0.248 0.0203 0.623 <0.001***

Peak systolic ratio 23 0.0396 0.004** 0.0653 0.046* 0.002**

Transient amplitude (F/F0) 21 0.0306 <0.001*** 0.0493 0.010* 0.006**

Time to 50% peak (ms) 12 0.520 0.018* 0.716 0.109 0.021*

Time to 50% decay (ms) 44 4.86 0.444 98.2 0.400 <0.001***

Tau (ms) 47 8.55 0.535 17.7 0.424 <0.001***

Elements of the analysis of each variable are shown. The independent-samples t-test is shown as the common test used to compare cellular data. The clustering of data measured
by calculating the intraclass correlation (ICC) is shown for each variable. The hierarchical technique is more appropriate with each variable as indicated by better goodness of fit
(as measured by v2-2LL test). When using the more appropriate hierarchical test the standard error increases and the P values also increase making significant differences less likely.
For the time to 50% peak this results in a change from a significant test to a non-significant test. Note that the change in standard error is greatest where the ICC is larger.
*P < 0.05.
**P < 0.01.
***P < 0.001. There were 76 cells from 10 control rats and 79 cells from 10 HF rats.
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Figure 4 Clustering of time to 50% peak transient amplitude. (A) Clustering of time to peak is shown with the time to 50% peak for transient in each cell
(grey dots) shown for each rat in HF and control. The mean and standard error bars are shown for each rat. By eye the data appear clustered and this is con-
firmed by the statistical testing in Table 2. (B) The mean difference and confidence interval for the difference are shown which indicates why the difference
between HF and control becomes non-significant with the corrected confidence intervals of the hierarchical test (green bars) compared with the uncor-
rected confidence intervals of the common test (red bars). There were 76 cells from 10 control rats and 79 cells from 10 HF rats.

.................................................................................................................................

................................................................................................................................................................................................................................

Table 3 Spark data analysed by hierarchical vs. standard statistical tests

Clus-tering of

data (ICC) (%)

Common method Two-level hierarchy Three-level hierarchy Comparison

of goodness of fit

(common vs.

hierarchical)

Standard error P-value Standard error P-value Standard error P-value

Variables that have a single value per cell, and have clustering within animal.

Spark freq (sp/100mm/s) 24 0.537 0.886 0.664 0.540 N/A N/A 0.048*

Variables that have a single value per spark, and show clustering within cell and within animal.

LogAmp (DF/F0) 58 9.00� 10-3 <0.001*** 0.0320 0.001** 0.0641 0.239 <0.001***

Variables that have a single value per spark, and show clustering within cell. There is minimal additional variability between rats such that analysis at cell level hier-

archy is most appropriate. Here a comparison of goodness of fit between common and two-level test is significant (P < 0.05) but the same comparison

between the two-level hierarchy and three-level hierarchy is not significant (P > 0.05).

LogFDHM (ms) 8 0.0168 0.023* 0.0289 0.778 N/A N/A <0.001***

LogFWHM (mm) 7 0.0113 0.381 0.0185 0.782 N/A N/A <0.001***

Analysis using the common test vs. hierarchical methods is shown. Analysis using a rat-level hierarchy is most appropriate for spark frequency as only a single value is available for
each cell. For variables describing spark morphology either an analysis that accounts for both cell-level and rat-level hierarchy is appropriate (as for spark amplitude) or where there
is little additional variability per rat, and the goodness of fit is not further improved by a three-level hierarchy, analysis with a cell-level hierarchy is most appropriate (as for FDHM
and FWHM). The hierarchical test out-performs the common test for each variable.
*P < 0.05.
**P < 0.01.
***P < 0.001. There were 344 sparks from 17 cells from 7 control rats and 352 sparks from 22 cells from 5 HF rats.
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4. Discussion

Different studies of Ca2þ fluxes in HF cells have given opposite results
for aspects of Ca2þhandling in isolated cardiomyocytes. The usual inter-
pretation of this is that the direction of the effect may vary with choice of
HF model and species. Our present study, however, shown in Table 1
and Supplementary material online, Tables S1–3 that even within a single
HF model, studies already show opposite direction of effects.

Our study suggests that that these contradictory directions of effect
could be a manifestation of the subtle but important defect in our con-
ventional statistical analysis, whereby we assume that all the data points
are independent with no significant clustering. In reality for many biologi-
cal variables, repeated measurements (e.g. of sparks) from the same cell

are more similar than those of other cells, and measurements from mul-
tiple cells of the same animal are in turn more similar than measurements
from different animals. The consequence is when we have multiple
measurements we have less meaningful data than the simple number of
data points would suggest. This problem, the ability of large sample
numbers to deceive us when we do not recognize clustering, has been
previously identified in the field of neuroscience.12,14

While this study focuses on the clustering of transient data from differ-
ent myocytes isolated from the same rat, as well as the clustering of
spark data within each cell, this should not be seen as a reason to limit
the use of hierarchical statistics to these settings. We have found signifi-
cant clustering in other aspects of isolated myocyte properties, such as
cell size.22 We have also found that these techniques are essential for

Figure 5 Multi-level clustering of spark logAmp. (A) Clustering of spark LogAmp is shown within each of five cells tested from a single rat heart. Each individual
spark’s logAmp is shown as a grey dot. The mean and standard error bars are shown for each cell. By eye the data appear clustered at this level and this is con-
firmed in Table 3. (B) Spark data may also be further clustered within individual rats. Here sparks are shown grouped by rat. As confirmed in Table 3 there is also
clustering at the level of the rat. (C) With two levels of clustering to correct for with a large ICC (58%) a large correction to confidence intervals is required. With
the common test there is a highly significant difference comparing logAmp in HF and control (red bars). With the appropriate correction to confidence interval
(green bars) it is clear there is no significant difference. There were 344 sparks from 17 cells from 7 control rats and 352 sparks from 22 cells from 5 HF rats.
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.
robust analysis of other models. For example in a recent study where
multiple cardiac slices were taken from each dog, significant clustering of
slice contractility data meant that data were most appropriately analysed
using hierarchical techniques.23 It would be safest, therefore, for the
investigator to assume that any data with a hierarchical structure should
be analysed in this way unless the hierarchical tests show non-significant
clustering. We have made such testing freely available (below).

4.1 Hierarchical analysis exposes false
positive findings
The transients of an individual cell are known to be almost identical and
therefore, it is already conventional to recognize this clustering by treat-
ing the entirety of transient data from one cell as a single data point by
averaging data from several transients.

Sparks, on the other hand, vary a great deal from one to the next
within the same cell. This stochastic behavior results from the subcellular
physiology of ryanodine receptors, which are present in variable configu-
rations with variable opening probabilities and dynamics. The convention
in our field has therefore been to not average spark data into a single
value per cell, but consider each spark as a separate data point.

Our study indicates that the spark data show strong clustering at the
cell level, which means that it is wrong to count the individual sparks for
statistical purposes as though they were independent.

Strikingly, although the degree of clustering (ICC) varied from one
variable to another, it was always significant for all of the variables.
Moreover, even small values of the clustering measure (ICC) turn out to
be surprisingly important. For example, spark logFDHM, which has an
ICC of just 8.5%, changed its result from being clearly significant with the
common analysis (P = 0.023), to being not at all significant (P = 0.778)
with the hierarchical analysis. Many variables had far higher degrees of
clustering (Tables 2 and 3), which means they are correspondingly even
more susceptible to false positive results from the common analysis.

We were surprised to find that, after recognizing the clustering using
hierarchical analysis, the only significant difference between HF and con-
trol is a higher Ca2þ transient amplitude. This is due to increased systolic
Ca2þ without increase in diastolic Ca2þ. If we had used standard t-tests
alone the conclusion of this study would have been that Ca2þ transients
in HF exhibited both higher amplitude and a longer time to peak and that
these changes might result from sparks (the elemental subunits of transi-
ents) which were more prolonged and of greater amplitude, giving a
mechanistic explanation for our finding of higher transient amplitude
which is not supported by the data.

4.2 Cruder alternatives to hierarchical
statistics—aggregation and disaggregation
Because hierarchical statistics are sometimes considered difficult to
implement, some workers have tried the two alternative approaches.

Aggregation is the approach of lumping multiple data points into one,
typically by averaging. This is already done routinely for Ca2þ transients
at the cell level but not the rat level. The disadvantage is that applying
this approach universally is excessively conservative, and would require
very large studies to test hypotheses that could be tested more frugally if
hierarchical statistics were used. For example, the 696 sparks in our
study would have been collapsed into just 12 averages, one for each rat,
if we had indiscriminately aggregated.

Results of aggregated statistical analysis in this study are shown in
Supplementary material online, Tables S4, S5 and are similar to the

outcomes of the hierarchical tests but with overestimation of P-values
and standard errors.

Disaggregation is the opposite approach, splitting the data so that
each data point is considered to be independent. This is the commonest
approach used in our field but has the scientific disadvantage that the sta-
tistics conducted assuming this independence give a falsely small standard
error, falsely small confidence interval and therefore falsely small P value
for the difference between groups.

An example of the catastrophic effect of disaggregation is that in our
data the hierarchical model shows only 2 of 10 comparisons between
HF and control to be statistically significant; in contrast the commonly-
used approach (disaggregation of data) shows five comparisons to be
statistically significant: a 150% overstatement.

A further challenge is that in the cellular laboratory there can be ‘good
isolation days’ and ‘bad isolation days’. On good days large numbers of
healthy cells are available for experimentation but on bad days smaller
numbers of less healthy cells are available. If we aggregate, we give exces-
sive weight to the likely unhealthier cells from the bad days. If we disag-
gregate, we give excessive weight to the likely healthier cells from the
good days because they are more numerous.

The social sciences have long known of this problem and developed
standardized approaches to avoid wasting resources pursuing false
leads.13,24,25 We describe a similar problem in studies of isolated cardiac
myocytes but we also describe a solution and provide cost-free simple
tools which can be used to produce robust statistical results for compar-
isons involving clustered data.

4.3 Hierarchical tests are not merely a
method of P-value adjustment
There is a general focus on the P-value as the only important outcome of
significance testing in the biological literature.26 This approach leads to
an overreliance on the apparent binary outcome of P < 0.05 vs. P > 0.05.
In addition, the P-value gives the reader no indication of the magnitude of
the effect and therefore its biological (rather than statistical) significance.
An emphasis on point estimates and their precision (e.g. mean and 95%
confidence interval) can prevent these issues.

If the hierarchical data structure is not considered, the 95% confi-
dence intervals of an estimated mean are excessively narrow.
Appropriate corrections can be made when performing hierarchical
analysis. The magnitude of the required correction, as with other aspects
of hierarchical testing, depends on the ICC. The estimated mean and
95% confidence intervals for each variable tested in this study, with and
without hierarchical correction, are shown in Supplementary material
online, Tables S6 and S7.

4.4 A simple, cost-free, open source
solution for statistical testing in
cardiomyocyte studies
There are commercial software packages such as IBM SPSS Statistics,
SAS (SAS Institute), STATA (StataCorp) which can do these hierarchical
statistics very well. Readers can download the scripts which we show
in Supplementary material online, Supplementary methods section.
However, some readers may not have a particular commercial software
package available or may be working with collaborators who do not.

We therefore present simple steps that any researcher can use with-
out cost to perform these hierarchical statistics.

Step 1. Download the relevant files from Supplementary material
online into a single working directory. These should include: ratonly.Rmd,
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.
ratandcell.Rmd, Hierarchical Transient analysis with Rat-Level Clustering.xlsx,
and Hierarchical Spark analysis Cell & Rat-Level Clustering.xlsx.

Step 2. Modify the relevant Microsoft Excel file. If the data have the
potential for clustering only at one level, for example, at the rat level, use
the layout in Supplementary material online, Hierarchical Transient analysis
with Rat-Level Clustering.xlsx. For data such as spark values, which has
potential for an additional (e.g. cellular) level of clustering, use the layout
in Hierarchical Spark analysis Cell & Rat-Level Clustering.xlsx.

Cells should be numbered sequentially even if they come from differ-
ent rats, that is, if cells 1–10 come from rat 1, then cells from rat 2 should
be numbered from 11 upwards and so on.

Column titles can be changed to reflect what your relevant hierarchi-
cal structure is—for example, dogs and heart slices or cell line and cul-
ture number.

Step 3. Download and install R for Windows, Mac, or Linux from
https://www.r-project.org/ (14 August 2017, date last accessed).

Step 4. Download and install RStudio from https://www.rstudio.com/
products/rstudio/download/ (14 August 2017, date last accessed)—this
is a more user-friendly interface for R. Choose RStudio Desktop—Open
Source License.

Step 5. Run RStudio and install the two extra packages we will need
(‘lmerTest’ for the statistical tests and ‘readxl’ for reading in the Excel
spreadsheets). This can be done using the ‘Tools! Install packages’
option in RStudio, and typing ‘lmerTest, readxl’ (first letter of lmer is
lower case ‘L’) in the ‘Packages’ field, or by typing the following com-
mands in the ‘Console’ window (R Console) and pressing Enter after
each command:install.packages(‘lmerTest’)
install.packages(‘readxl’)

Step 6. Open the code corresponding to the Excel file you are work-
ing with in RStudio by clicking File menu and Open File. Open
ratonly.Rmd if working with clustering at one level and ratandcell.Rmd if
working with clustering at two levels.

Step 7. In the top right hand corner of the window in which the code
has opened there is a Run command. Click this and then select Run All.

Step 8. Once the code has run, which may take several minutes,
scroll down to the bottom of the same window where three tables
(for ratonly.Rmd) or five tables (for ratandcell.Rmd). These tables show
the following:

(1) The first table shows the outcomes of the common test (P value and
standard error for the difference), the degree of clustering (ICC), the
equivalent outcomes for the hierarchical test, and whether the hier-
archical test is a better fit for the data under the column ‘Superior fit’. If
the P value in this column is < 0.05, there is sufficient clustering to
make hierarchical techniques necessary. For ratandcell.Rmd, both
cell-level hierarchical test (labelled group-level) and rat-and-cell
level hierarchical test (labelled Parentgroup-group level) results are
shown.

(2) The second table shows the point estimate, that is, the estimated group
mean when taking into account the hierarchical data structure, as well
as the standard error and the lower and upper confidence intervals for
each variable for each condition (HF and control).

(3) The third table shows the pairwise comparisons. If there are only two
conditions (e.g. HF and control) the P-values in this table are the same as
the first table. This table becomes particularly relevant if there are >2
conditions since comparisons each pair of groups (A vs. B; B vs. C; A vs.
C) may be desired. As with an ANOVA, these group-wise comparisons
are only relevant if the overall test shown in the first table is significant.

(4) The fourth and fifth tables are only output by ratandcell.Rmd and are
the equivalent of the second and third tables but for the rat-and-cell
level hierarchical test.

The scripts we provide are sufficient to perform the analyses in this
paper. Once readers are comfortable doing this, they can extend the R
script to allow more levels of clustering or to include other variables
such as gender, animal weight, or cell size.

Moreover, these scripts are equally suited outside the cardiomyocyte
arena and even to clinical data.

For users who do not have R or RStudio installed, but who wish to
view the source code and sample output, we have supplied two supple-
mentary HTML (ratonly.nb.html and ratandcell.nb.html) files which can
be opened in any browser and serve as manuals to the analyses.

4.5 Limitations
Even though the hierarchical test describes the data much better
(as shown by the v2-2LL criterion), we should not assume that they are
the ideal solution. It is merely a significant improvement for which we
provide a straightforward method for implementation. Ideally research-
ers would engage with an expert statistician at an early phase of study
preparation. Alternative models for performing hierarchical statistics are
available including Generalized Estimating Equations (GEE), although we
favour Mixed Models (with random coefficients) as this gives greater
flexibility in the modelling process and is better at handling missing data.

Data transformations are frequently necessary, such as log transfor-
mation for the spark data which have a marked positive skew. In addition,
even following valid transformation the meaning of the original data must
be questioned. For example, some of the skewed distribution relating to
variables describing spark morphology relates to the confocal line-
scanning technique which is likely to miss the center of each spark, thus
artefactually increasing the number of smaller sparks.21,27,28

5. Conclusions

The conventional approach used in our field to analyse cardiomyocyte
data has a marked tendency to overstate the statistical significance of dif-
ferences. This could be why some studies shows significant results in one
direction and other studies show equally convincing significant results in
the other direction.

We present simple steps that any researcher can implement to
identify and allow for clustering, at the rat and cell level if need be,
permitting them to use all their data points and yet obtain statistically
valid results.

Supplementary material

Supplementary material is available at Cardiovascular Research online.
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