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Abstract7

An extensive characterization of the flow past wall-mounted highly porous fences based on single- and multi-scale8

geometries has been performed using hot-wire anemometry in a low-speed wind tunnel. Whilst drag properties9

(estimated from the momentum equation) seem to be mostly dependent on the grids’ blockage ratio; wakes of10

different size and orientation bars seem to generate distinct behaviours regarding turbulence properties. Far11

from the near-grid region, the flow is dominated by the presence of two well-differentiated layers: one close to12

the wall dominated by the near-wall behaviour and another one corresponding to the grid’s wake and shear13

layer, originating from between this and the freestream. It is proposed that the effective thickness of the wall14

layer can be inferred from the wall-normal profile of root-mean-square streamwise velocity or, alternatively, from15

the wall-normal profile of streamwise velocity correlation. Using these definitions of wall-layer thickness enables16

us to collapse different trends of the turbulence behaviour inside this layer. In particular, the root-mean-square17

level of the wall shear stress fluctuations, longitudinal integral length scale and spanwise turbulent structure18

are shown to display a satisfactory scaling with this thickness rather than with the whole thickness of the grid’s19

wake. Moreover, it is shown that certain grids destroy the spanwise arrangement of large turbulence structures20

in the logarithmic region which are then re-formed after a particular streamwise extent. It is finally shown that21

for fences subject to a boundary layer of thickness comparable to their height the effective thickness of the wall22

layer scales with the incoming boundary layer thickness. Analogously, it is hypothesized that the growth rate23

of the internal layer is also partly dependent on the incoming boundary layer thickness.24
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1 Introduction1

Wind-tunnel testing usually requires the generation of artificially thick turbulent boundary layers (TBL). This2

is traditionally obtained by means of obstacles in such a way that their drag removes momentum from the fluid3

thickening the TBL (e.g. Counihan, 1969). Alternatively one can generate that loss of momentum by integrating4

an increased level of skin friction by means of roughness over a certain streamwise extent (e.g. Jimenez, 2004) or5

simulate it with the inclusion of freestream turbulence (Dogan et al., 2016). Whilst the two latter methods may6

present certain advantages, they require a longer streamwise extent and a more complex set-up than the former.7

Apart from the pioneering work of Counihan (1969), several other examples can be found in the literature8

considering thickening of TBL by immersion of obstacles (for a review see Hunt and Fernholz, 1975).9

In a recent work, Rodŕıguez-López et al. (2016a,b) showed that, in these cases, the way obstacles’ wakes10

interact with the near-wall region may have important implications in the length of the adaptation region.11

This region is understood as the streamwise fetch required for the obstacle’s influence to be “forgotten” and12

canonical TBL properties recovered. Whilst this state is relatively easy to be achieved in short wind tunnels if13

small trips are used (Erm and Joubert, 1991; Schlatter and Örlü, 2012); it is increasingly difficult with larger14

trips. Hence the possibility of reducing the adaptation region’s length is of interest. Rodŕıguez-López et al.15

(2016a,b) associated shorter adaptation regions with the lack of bulk recirculating fluid downstream of the16

obstacles. Furthermore, they showed that these situations are more likely to appear in cases where the wake17

of the obstacles is prevented from strongly influencing the near-wall region. This interaction is prevented for18

low-blockage (approximately 30%) obstacles in which the fluid bled through the obstacle makes it possible to19

avoid wall-normal interaction of wake and near-wall regions.20

A possible way of further studying this problem is the generation of different degrees of interaction between21

the obstacle’s wake and the wall whilst simultaneously avoiding bulk recirculation. This opens the possibility22

of using wall-mounted porous fences. These kinds of obstacles have been extensively used as a passive way23

of controlling various environmental and civil flows (e.g. Ranga-Raju et al., 1988; Li and Sherman, 2015).24

Downstream of turbulence-generating grids1 the presence of strong recirculation is controlled by their blockage25

ratio σ (σ is taken as the relationship between the solid area of the fence and the area of the smallest frame26

that can surround it). Castro (1971) offered experimental evidence showing that no recirculation appeared for27

σ . 70%. The drag coefficient of these grids, which, as mentioned above has implications for their ability as28

boundary layer thickening elements, also presents a maximum at this blockage ratio.29

Maximizing the drag coefficient is equivalent to maximizing the sheltering properties of the grid close down-30

stream of them. This is usually one of the main objectives of their engineering applications. Consequently, the31

flow past porous fences has probably been a victim of its own engineering success and a large number of studies32

has been focused on grid’s blockage of about 60 or 70% (Seginer, 1972; Ranga-Raju et al., 1988; Keylock et al.,33

2012; Li and Sherman, 2015, amongst others). However, little attention has been paid to lower porosity fences.34

Analogously, most of the studies are concentrated in a region close downstream of the grids, whereas the far35

1For readability, the terms grid or porous fence will be used equivalently throughout this paper
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field development remains an open question. Curiously, the main interest for TBL thickness control is focused1

on the far-field development of low-porosity fences.2

Following the aforementioned recommendations, it seems reasonable to fix the grids’ blockage at 30% with3

the double objective of (i) avoiding fluid recirculation and (ii) preventing wake/near-wall interaction hence4

minimizing the extent of the adaptation region. However, fixing blockage ratio is far from finalising the grids5

design, particularly if one considers the turbulent properties downstream of the fences. The way the porosity6

is distributed along the grids can significantly influence the turbulent properties in their wakes and therefore7

the way they interact with the near-wall region. A few studies have previously proposed the use of non-uniform8

profiles of blockage (Wilson, 1987) as well as multiscale based approaches (Keylock et al., 2012).9

It is precisely from this perspective that new designs can be studied. During the last decade, several10

researchers have proposed novel practical applications to fractal-based multiscale geometries (first explored by11

Hurst and Vassilicos, 2007). Some of these applications include: noise of aerodynamic spoilers (Nedić et al.,12

2012), study of wakes (Dairay et al., 2015), aerodynamic performance (Nedić and Vassilicos, 2015), stirred13

tanks (Steiros et al., 2017) or vortex shedding study (Melina et al., 2016). Furthermore, they contributed to14

the discovery of new scaling laws for the location and intensity of the turbulence intensity peak downstream of15

grids (Mazellier and Vassilicos, 2010; Gomes-Fernandes et al., 2012).16

From these examples, one can assume that multiscale-based geometries present a clear potential to modify17

turbulent properties (intensity, spectra, length scales, etc.) for a fixed blockage ratio (which is essential to18

achieve a fair comparison in terms of flow past porous fences). Thus, the present paper converges these three19

methodologies. Firstly, studies of the evolution of tripping conditions necessitate the generation of large wakes20

which may experience different degrees of interaction with the near wall region. Secondly, highly porous fences21

may result in satisfactory devices for that purpose once their blockage ratio is matched in order to ensure a fair22

comparison. Thirdly, a possible way of modifying turbulent properties for a fixed blockage ratio resides on the23

use of multiscale geometries which have been successfully applied before for a certain number of applications.24

The main aim of this study is twofold: firstly, to assess the validity of various highly porous fences as25

devices to generate a thicker TBL. This part is based on the drag characterization of the grids, which is directly26

related with the modification of the TBL momentum thickness far downstream. Furthermore, links are proposed27

between this and a previous study (Rodŕıguez-López et al., 2017) which considered the evolution of the wall28

shear stress properties downstream of the same geometries. Secondly, a comprehensive flow characterization is29

conducted paying special attention to the turbulence properties and scaling of the adaptation region. Along30

these lines, one- and two-points simultaneous hot-wire anemometry are used to provide answers about the31

scaling magnitudes of the spatially evolving TBL downstream of highly porous fences.32
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2 Experimental set-up1

2.1 The wind tunnel2

The experiments are conducted at Imperial College London in a wind tunnel of 0.91×0.91m2 section and 4.8m3

length, with freestream velocity U∞ ≈ 10m s−1. At these conditions, the incoming freestream turbulence level4

is ≤ 0.05%. The same wind tunnel has been broadly documented before (e.g. Mazellier and Vassilicos, 2010;5

Valente and Vassilicos, 2014; Rodŕıguez-López et al., 2016b).6

A wooden flat plate of thickness 16mm is mounted vertically spanning the whole wind tunnel with an elliptic7

(10:1) leading edge to avoid separation, and a trailing edge flap in order to modify the position of the stagnation8

point on the leading edge and control the pressure gradient along the plate. A strip of sand paper 20mm long9

with P40 grit size is placed at x = 80mm (immediately following the elliptic leading edge) to ensure transition10

to a TBL. A sketch of the set-up can be seen in figure 1(b); a similar experimental arrangement was used in11

(Rodŕıguez-López et al., 2017). The pressure distribution is shown in figure 1(a); although a slightly favourable12

pressure gradient is present in the central part of the plate, results in terms of mean and fluctuating wall13

shear stress show a good agreement with canonical zero pressure gradient (ZPG) TBL trends (as shown below).14

Comparisons will be performed with the ZPG TBL growing over the flat plate; note that, strictly speaking, this15

TBL is influenced by the sandpaper trip which promotes the transition from an earlier laminar state. Careful16

design of the trip, together with validation of the same experimental setting (Rodŕıguez-López et al., 2016b,17

2017) with previously published data enables us to denominate it as natural TBL to avoid further confusion.18
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Figure 1: Left column: (a) Pressure distribution along the flat plate for different configurations with or without
grid (c.f. section 2.2 for a description of the grids). The dashed black line shows the location at which the grids
were installed. (b) Sketch of the wind-tunnel arrangement (Not to scale, all dimensions in mm), flow goes left
to right. x̂ = x/h is defined as the streamwise distance from the leading edge normalized with the grid height
and x̃ = (x − xg)/h denotes the streamwise distance from the grid normalized with its height h = 100mm.
WHW symbolizes the wall hot wire and FHW the free hot wire (c.f. section 2.3 for details).

For the first part of the study, the different grids are all located at xg = 100mm where the thickness of19

the boundary layer is negligible with respect to the height of the grid. In order to study the influence of the20

incoming boundary layer thickness, the grids can also be mounted at different xg positions where the boundary21
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layer has thickness δI and momentum thickness θI .1

The coordinate system defines x as the streamwise distance downstream of the plate leading edge, y as the2

wall-normal distance from the plate, and z as the spanwise distance relative to the centreline. Mean quantities3

are denoted by a horizontal bar while the fluctuating part is shown with a superscript ′ (e.g. a(t) = ā+ a′(t)).4

The subscript rms is used to express the root-mean-square level. The mean wall shear stress is expressed by τ̄w5

and the friction velocity uτ =
√

τ̄w/ρ where ρ ≈ 1.17 kgm−3 is the fluid viscosity. The superscript + is used for6

magnitudes expressed in wall units, i.e. non-dimensionalized with the kinematic viscosity, ν ≈ 1.5×10−5m2s−1,7

and the friction velocity, uτ . In particular a wall unit is defined as δν = ν/uτ , thus y
+ = y/δν , u

+ = u/uτ and the8

time, t+ = tu2
τ/ν. Throughout the paper quantities normalized with the grid height, h, and/or the freestream9

velocity are designed by the superscript ∧, e.g. û = u/U∞, or x̂ = x/h, which is defined as the streamwise10

distance from the leading edge normalized with the grid height. x̃ = (x−xg)/h denotes the streamwise distance11

from the grid normalized with its height.12

2.2 The grids13

Four different porous fences are designed and mounted. The grids are made of two pieces of 400mm span and14

with a height h = 100mm mounted together at each side of the centreline up to a final span of 800mm (89%15

of the tunnel span). Special attention is paid to ensure the joint between the two pieces is as solid as possible.16

The total spanwise extent is obtained by the periodic repetition of the basic patterns described below; all the17

grids have the same blockage ratio σ = 30%. The grids could be mounted normal to the flat plate at several18

streamwise locations in the range 0.1 ≤ xg ≤ 3.3m by means of thin legs (threaded rods of 3mm diameter)19

which passed to the rear side of the plate where they were held by a nut. Figure 2 shows the grids’ basic patterns20

and Table 1 summarizes their main geometrical parameters. The same grids were also used by Rodŕıguez-López21

et al. (2017).22
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Figure 2: Drawings of the basic pattern of the four tested grids. Note that thickness and length of the bars is
to scale within the pictures. z = 0 corresponds to the wind-tunnel mid plane.

Att. This grid is obtained based on the attached eddy hypothesis of Townsend (1976) stating that eddy23

size would scale with its distance from the wall. The grid is designed by stacking four squares with lengths li24

(i = 0, 1, 2, 3), where li equals the distance from their centre to the wall. This produces a geometric distribution25

of squares with sizes up to fill the grid height of 100mm. A potential upper most bar is not considered in the26
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Grids
Description Symbol Att Cro Fra Reg

Height h (mm) 100 100 100 100
Blockage ratio σ (%) 30 30 30 30

Number of iterations N 4 3 3 1
Spanwise periodicity ∆z (mm) 66.6 100 100 33.3

Thickness of bars

t0(mm) 14.8 5.6 5 5
t1(mm) 4.93 2.50 2.24 -
t2(mm) 1.64 1.12 1 -
t3(mm) 0.82 - - -

Length of bars

t0(mm) 66.7 50 57 33.3
t1(mm) 22.2 25 28.5 -
t2(mm) 7.4 12.5 28.5 -
t3(mm) 3.7 - - -

Table 1: Summary of geometrical parameters for the various grids.

design in order to avoid a large blockage in the outer region of the flow which would be significantly at odds1

with the other designs and not representative of a TBL. In order to appropriately scale the bar thickness, ti this2

is kept as a constant fraction (li/ti = 4.51) of the squares’ length throughout the four iterations. Note that this3

by keeping li/ti constant, the grid does not match Townsend’s eddy hierarchy in the outer part of the boundary4

layer.5

Cro. The grid design is based on a fractal cross pattern first described by Hurst and Vassilicos (2007).6

The only free parameters to fix are the number of iterations (which is kept to 3 due to the impossibility of7

manufacturing bars of smaller thickness); the thickness of the largest bar t0 = 5.6mm and the thickness ratio8

tr = t0/t2 = 5 (relation of the largest and smallest thickness). This grid has also been employed as a turbulence9

generator for combustion of opposing jets Goh et al. (2013, 2014).10

Fra. The grid design is based on the fractal square pattern described by Hurst and Vassilicos (2007). The11

number of iterations, 3, and thickness ratio (tr = 5) are chosen to be the same as the Cro case and the thickness12

of the largest bar as similar as possible (t0 = 5mm). This parameter cannot be varied independently from the13

blockage ratio which has to be σ = 30% for every grid. Turbulent properties of this grid have been extensively14

studied in the past years (e.g Hurst and Vassilicos, 2007; Valente and Vassilicos, 2014; Melina et al., 2016,15

amongst others).16

Reg. In order to characterize the effect of different bars arrangements; a regular grid is designed matching17

the same blockage (σ = 30%) and thickness (t = 5mm) of the multiscale cases.18

2.3 Hot wire anemometry19

Two single-component hot-wire anemometers operated in constant temperature mode are employed to perform20

velocity measurements.21

A first hot wire with diameter dw = 5µm and length lw ≈ 1mm is soldered onto the prongs of a 55P0522

boundary layer probe from Dantec Dynamics. This sensor is mounted on a linear traverse enabling its positioning23

at every point of the wind tunnel in the y and z directions and 9 ≤ x̂ ≤ 43 in the streamwise direction. This24
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traverse system is composed of three endless screws moved by steppermotors and controlled by a computer. The1

system enables the hot wire to be positioned and moved automatically during the experiment with a smallest2

displacement better than 2µm for every direction. The sensor is placed in the near-wall vicinity by means3

of a microscope but the accurate wall-probe relative position is extracted from the velocity profile following4

Rodŕıguez-López et al. (2015). Using an overheat ratio OHR=1.8 and sampling at 100 kHz for 60 s and low-pass5

filtering at ff = 30 kHz enables resolving the smallest scales of the fluid estimated by 0.2 < t+ = u2
τ/(νff ) < 0.46

for the different configurations and streamwise locations. Note that, in this flow configuration, the kolmogorov7

and inner scaling may be decoupled since the grid acts as a turbulence generator, not scaling in inner units.8

This could be a limitation in order to assess the hot-wires resolution as a function of l+ for regions of the9

flow immersed in the grids’ wakes. Nevertheless, apart from the wall-shear stress measurements (which will be10

discussed below), the manuscript will only consider large-scale quantities such as the integral length scale or11

two-point correlations, which are substantially less affected by the limited resolution of hot wires. This hot wire12

is calibrated statically against a straight Pitot tube located in the freestream. This sensor will be called FHW13

(free hot wire) for brevity.14

A second sensor is built by attaching the body of a 55P01 Dantec Dynamics hot wire to a linear traverse15

mounted on the back of the flat plate. The prongs are passed through two holes and a thin coat of wax is16

applied to avoid any flow leakage. The sensor is made from a dw = 5µm Wollaston wire in-house etched to a17

length of lw = 0.82± 0.05mm. The value of lw/dw ≈ 164 is lower than the recommended value of 200 (Brunn,18

1995). A correction to this effect could be applied based on the scheme proposed by Hultmark et al. (2011)19

and Miller et al. (2014). However, this correction only modifies the measured values by a small amount (e.g.20

0.7% in the u′

rms value) hence it can be avoided since it is not the largest contribution to the error of this21

sensor. Furthermore this correction scheme cannot correct the instantaneous values of the fluctuations used for22

two-point measurements. The linear traverse enables positioning of the hot wire in the range 0.18 ≤ y ≤ 3mm23

with 10µm precision. The same values of OHR and ff are kept as in the FHW case. However, calibration of24

this device is significantly more challenging; the sensor is calibrated against the quasi-laminar boundary layer25

developing over the surface of a purpose-built small flat plate. Details of the calibration technique are given in26

the appendix A. The calibration was repeted before or after every experiment ensuring that the temperature27

drift between experiment and calibration was smaller than 0.5K. This sensor will be referred to as WHW (wall28

hot wire) for brevity.29

The set-up enables us to position both hot wires in the wall vicinity (and close to each other) such that30

simultaneous sampling of them is possible. This enables the measurement of two-point statistics both in the31

wall-normal and the spanwise directions by moving the FHW and leaving the WHW at a fixed position. To32

this effect, the inner hot wire is placed at a few wall untis from the wall and the FHW is traversed in the y33

or z directions for wall-normal or spanwise correlation respectively by means of the traverse system described34

above. Additionally, the independent traverse system of the WHW enables its positioning at various wall-normal35

locations. The points affected by the interaction of both sensors are discarded.36

Direct measurements of the mean wall shear stress τ̄w, are also available from a previous study (Rodŕıguez-37
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López et al., 2017) with an approximate accuracy of 4% on the determination of uτ . For completness, these1

values are summarized in Table 2 for the various grids and streamwise locations. These values are better than2

extrapolation from the mean velocity profile which may be ill-posed in strongly disrupted cases downstream of3

the grids. However, Rodŕıguez-López et al. (2017) show that estimations of uτ from the velocity profile using4

the method proposed by Rodŕıguez-López et al. (2015) can give reasonable estimations of uτ if no other method5

is available.6

Grid x̂ = 9 x̂ = 15 x̂ = 19 x̂ = 25 x̂ = 31 x̂ = 36 x̂ = 43
Att 0.3299 0.3035 0.3065 0.3151 0.3163 0.3301 0.3504
Cro 0.3480 0.3251 0.3253 0.3286 0.3259 0.3491 0.3557
Fra 0.3173 0.3068 0.3136 0.3167 0.3136 0.3100 0.3141
Reg 0.3341 0.3091 0.3119 0.3132 0.3042 0.3066 0.3145

Table 2: Values of the friction velocity uτ for various grids and streamwise locations extracted from Rodŕıguez-
López et al. (2017).

3 Results7

This section will be divided as follows: in the first place, the drag of the various porous fences will be studied in8

section 3.1. The turbulence properties downstream of different grids will be presented in section 3.2. The two9

layers hypothesized in section 1 are characterized in section 3.3. Later on, the validity of this scaling is tested10

for the fluctuations of the wall shear stress (section 3.4), the longitudinal integral length scale (section 3.5) and11

the spanwise turbulent structure (section 3.6). Finally, the influence of the incoming boundary layer will be12

studied in section 3.7.13

3.1 Drag of grids14

The ultimate goal of any device to thicken TBL is to precisely increase its Reynolds number for fixed freestream15

velocity, and streamwise distance. A simple analysis of the integral momentum equation for a naturally growing16

zero pressure gradient boundary layer shows that the momentum thickness θ, (and analogously the Reynolds17

number Reθ = θU∞/ν) increases as a consequence of the momentum lost by friction with the wall. The18

inclusion of obstacles (such as grids or trips) introduces an additional loss of momentum equal to their drag19

which contributes to increasing Reθ. Consequently, there is a direct link between the drag of a certain grid and20

its applicability as a device to increase TBL thickness. From another perspective, a common way to assess the21

performance of wall-mounted fences is to characterize their drag D per unit of spanwise length. This provides22

information about how much momentum is removed from the fluid and therefore it can give an estimation of the23

sheltering properties of a given fence. Hence a simple characterization in terms of drag coefficient may provide24

significant answers in terms of the fence performance, both as boundary layer modifier (in the far field) and25

also as sheltering fence (in the near field). Here, sheltering is understood as the capacity of the grids to reduce26

the flow velocity in their vicinity in order to, for instance, decrease the erosion generated by the wind (Li and27
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Sherman, 2015).1

Let us first define the drag coefficient per unit length as Cd = 2D/(ρU2
∞
h). Despite some studies (e.g.2

Good and Joubert, 1968; Ranga-Raju et al., 1988) proposing the use of the local friction velocity uτ for the3

non-dimensionalization of D for various degrees of immersion; the election of U∞ seems more adequate for low4

values of δI/h such as those tested in this study. Furthermore, it also facilitates the comparison with other5

researchers given the difficulties of finding uτ for certain experimental and atmospheric situations.6

Contrary to studies in which the drag could be measured directly (Guan et al., 2003), the drag in this paper7

will be estimated from the momentum equation. This methodology has been previously followed by several8

researchers (see, e.g. Woodruff et al., 1963; Seginer, 1972; Dong et al., 2008) under different assumptions and/or9

experimental limitations. The procedure considers the integral streamwise momentum equation over a domain10

extending from x̃1 = −1 to x̃2 = 8 in the streamwise direction and from y = 0 to y → ∞ in the wall-normal11

direction. Two hypotheses are required: (i) neglect the contribution of the pressure based on the Cp evolution12

shown in figure 1(a). (ii) Model the contribution of the wall shear stress proportional to the wall shear stress that13

would appear in a naturally growing boundary layer over the same streamwise extent (τ̄w(x) ∝ τ̄Nw (x)). There,14

the constant of proportionality being is relationship between τ̄w at the outlet of the domain in the cases with15

and without grid: τGN = τ̄w(x2)/τ̄
N
w (x2). Furthermore, we define the momentum thickness θ =

∫

∞

0
[û(1− û)]dy.16

Under these two hypotheses, we can calculate the drag coefficient as17

Cd ≈ 2

h

[

θ2 − θN2 τGN
]

; (1)

where the superindex N symbolizes the naturally growing ZPG TBL over the same domain. Complete details18

of the procedure and discussion on the hypotheses can be found in the apendix B.19

Att Cro Fra Reg

θ2 (mm) 23.4 21.2 24.2 24.2
θD (mm) 21.5 19.0 22.4 22.2

(θ2 − θD)/θ2 (%) 8.21 10.1 7.33 8.15
Cd 0.43 0.38 0.45 0.44

Table 3: Values of momentum thickness θ2, at x2 (outlet of the domain), θD =
[

θ2 − θN2 τGN
]

= hCd/2 and
drag coefficient Cd for the various grids. The grids are always located at xg = 100mm where the incoming
boundary layer thickness δI ≈ 0.

Table 3 shows the values of the momentum thickness at the outlet of the domain compared with the equivalent20

momentum thickness defined as θD =
[

θ2 − θN2 τGN
]

= hCd/2 which accounts for the contribution to the drag21

of the wall-friction. As one can see, 90% of the drag is determined by the momentum thickness at the outlet22

(which can be easily measured) hence, any possible variation on the modelling of the τ̄w(x) term will have a23

limited impact in the final determination of the drag. Note that the tests are conducted for a single velocity24

hence the variability of Cd with Re remains an open question. Nevertheless, we are in the fully turbulent regime,25

thus form drag coefficient is expected to remain constant for different U∞.26

The drag coefficients for the various grids are shown in the last row of table 3. The Cro grid presents a27
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slightly lower value of Cd than the other three grids which show a Cd ≈ 0.44. As mentioned in section 1, very1

few studies are focused on low porosity grids, hence making comparisons with other authors difficult. As a first2

approach one can calculate the fence’s drag based on the drag coefficient of individual bars; using this method3

and certain empirical correlations Hoerner (1965) estimates 0.5 / Cd / 0.6. The same result is obtained by4

using the model proposed by Taylor (1963) (whose direct measurements by free fall in a water tank report5

Cd ≈ 0.5). More recently Dong et al. (2008), using particle image velocimetry and the momentum equation,6

show Cd ≈ 0.5. Alternatively, there are a large number of studies which, without presenting results for the7

present blockage σ = 30%, show the trend followed by Cd for different porosities. Without trying to provide an8

exhaustive review, results presented in Woodruff et al. (1963); Seginer (1972); Guan et al. (2003) are consistent9

with a drag coefficient between 0.4 and 0.6 for a 30% blockage.10

There is approximately a 12% of difference between the drag coefficient of the Cro grid and the other11

three cases. It could be argued that this discrepancy is generated by the uncertainty associated to the method12

hypotheses. The described methodology relies on two assumptions, neglecting the pressure contribution and13

the approximation of the wall-friction by θN2 τGN . The former seems to hold equally well for the four grids (c.f.14

figure 1(a)) under boundary layer assumptions. However, p̄(y) = p̄w is only valid in the case |v̂| ≪ 1, which15

may not hold for every grid. In fact, (Rodŕıguez-López et al., 2016a) reported a negative mean vertical velocity16

persisting for a long streamwise extent downstream of large obstacles tripping a TBL. In the case v̂ < 0, it17

would follow p̄w > p̄(y) which would entail an underestimation of the grid’s drag. Following Rodŕıguez-López18

et al. (2016b,a), v̂ < 0 would imply a larger interaction between inner and outer regions of the boundary layer.19

This is confirmed by the spectral measurements (presented in section 3.2) showing that there is a stronger link20

between inner and outer structures for the Cro grid which could imply that boundary layer assumptions are less21

applicable in this case and this therefore could explain, to some extent, the smaller drag of the Cro grid. With22

respect to the contribution of the shear stress, a different skin friction history for x1 < x < x2 could change23

the value of the drag coefficient. However, θ2 − θD seems to be reasonably constant for the four grids; which is24

in good agreement with the similar value of τ̄w(x) downstream of these grids shown in Table 2. An alternative25

explanation can be found by considering that the aspect ratio of the bars composing the Cro grid is smaller26

than those bars for the other grids (c.f. figure 2 and Table 1). This implies that their individual drag coefficient,27

and therefore the grid’s drag would be also smaller (Hoerner, 1965). In practice, it is likely that both effects28

have a certain influence in the smaller drag of the Cro grid.29

To summarize, the drag of the present fences is correctly estimated by Cd ≈ 0.45 except for the Cro30

grid which appears to be 12% lower, most likely due to the appearance of non-zero vertical velocity and the31

smaller aspect ratio of its bars. This result is well within the experimental and theoretical scatter of results32

present in the literature. As has been reported before, we can conclude that integral properties of the grids33

are mainly dependent on their blockage with the differing distribution of porosity playing a secondary role.34

However, different sized bars do have a certain impact and they can play a more significant role in the turbulent35

properties immediately downstream of them and also influence the far-field development of the incipient TBL.36

These aspects are addressed in the next section where we will characterize the turbulence properties downstream37
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of the various grids.1

3.2 Turbulence properties2
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Figure 3: Profiles of inner-scaled turbulence level u′+
rms for various grids and streamwise locations. The grids

are always located at xg = 100mm where the incoming boundary layer thickness δI ≈ 0. The solid pink like
shows the approximate location of the outer peak related with the shear layer.

The previous section has characterized the bulk behaviour of the grids using their drag coefficient. Despite3

some differences for the Cro grid case, drag seems to be primarily determined by the porosity whereas its4

distribution plays a secondary role. However, the turbulence characteristics are more likely to be influenced by5

the different grids’ bars orientation and geometry. This section will show the one-point statistics and turbulence6

level in the lee of the various grids.7

Figure 3 shows the profiles of u′

rms for the various grids and streamwise locations. No correction is applied8

to mitigate the effect of limited spanwise resolution (downstream of the grids uτ is smaller than in the natural9

case, hence l+w is also smaller and the resolution is improved). As a consequence, the peak turbulence intensity10

(at y+ ≈ 15) increases slightly with streamwise distance for every case.11

It seems logical to assume that the disturbed rms velocity profiles in the closest location to the grid will12

evolve with x̂ until a closer resemblance to the natural case is achieved; indeed this situation is observed for13

every grid. In the closest measurement station (x̂ = 9) the profiles qualitatively follow the natural case in the14

inner region (y+ / 300) whereas they display a clear departure further from the wall. A large peak is found15

in the external layer collapsing at ŷ = 1 ↔ y+ ≈ 2000 which is most likely due to the shear layer appearing16

between the grids’ wake and the freestream. This peak decreases in magnitude with x̂; simultaneously, the17

rms level in the region 300 / y+ / 1000 increases with x̂ for every grid. The interaction between the inner18

11



region and the grids’ wake may have some similarities with a TBL flow developing under freestream turbulence.1

However, in the present case the shear layer also presents some influence in the near-wall region which would2

not be the case under freestream turbulent conditions. This topic will be further discussed in section 3.3.3

Although the grids’ wakes generate a highly turbulent fluid in their vicinity, these wakes meet and interact far4

upstream of the first measurement station where their turbulence intensity is significantly smaller. Turbulence5

decay downstream of single- and multi-scale grids has been broadly documented before (see, for instance Hurst6

and Vassilicos, 2007; Mazellier and Vassilicos, 2010). Considering the turbulence intensity downstream of grid-7

generated turbulence, the turbulence level is reported to increase with the streamwise coordinate before reaching8

a peak at x ≈ 0.4x⋆; the turbulence intensity subsequently decreases further downstream. The definition of9

x⋆ = L2
0/t0 as a relationship between the length and thickness of the largest bar appears when considering the10

meeting point of these bars’ wakes. For the grid presenting the largest x⋆ = L2
0/t0 = 650mm (Fra) and in11

the closest measurement point we have x̂ = 9 ↔ x = 1.23x⋆; which is far downstream of the peak appearance.12

Contrastingly, the turbulence level of the shear layer is maintained significantly higher much further downstream,13

probably as a consequence of the high shear which sustains the turbulence production (see figure 5 and the14

discussion below).15
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Figure 4: Inner-scaled premultiplied spectra, E11(u
′)f/u2

τ , as a function of inner-scaled length scale, λ+
x , at

y+ = 15 for various grids and streamwise locations. The grids are always located at xg = 100mm where the
incoming boundary layer thickness δI ≈ 0.

Summarizing, figure 3 at x̂ = 9 shows an inner region (y+ / 300) largely influenced by the presence of16

the wall and its mechanism of turbulence production for all grids; a second layer (300 / y+ / 2000) related17

to the grids’ bars’ wakes which presents a lower intensity as a consequence of their progressive decay and a18

strong external peak related to the shear layer appearing above the grid. Further downstream, the different19

layers progressively mix with each other until a qualitative resemblance to the natural case is obtained. Further20

explanation can be sought in the study of the spectral content of the streamwise velocity fluctuations. If the21

inner region is actually dominated by the presence of the wall, then its spectra would be expected to resemble22

that of a natural TBL in this region.23

Figure 4 shows the spectral content of the fluctuations for different grids and streamwise locations at y+ = 15,24

i.e. the location of the inner peak of turbulent intensity. The spectra are plotted against the inner scaled length25

12



scale λ+
x = λxuτ/ν = ū15uτ/(fν), where the transformation from frequency to length has been performed based1

on Taylor’s hypothesis considering the mean velocity ū15 = ū(y+ = 15) at the inner peak location. It is clearly2

observed that the spectral energy at the inner peak is primarily concentrated around λ+
x ≈ 1000. This effect has3

been broadly reported before as representative of the inner behaviour of natural TBLs (see e.g. Chernyshenko4

and Baig, 2005b; Marusic et al., 2010; Rodŕıguez-López et al., 2016b). Note that the use of Taylor’s hypothesis5

in spatially evolving flows may be challenged; however, figures 3 and 4 show that the behaviour in the inner6

region seems to closely resemeble that of a natural TBL, hence the derivatives in the streamwise direction may7

be assumed to be sufficiently small so that Taylor’s hypothesis may still be applied as commonly done in natural8

TBLs (e.g. Marusic et al., 2010).9
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Figure 5: Wall-normal profiles of outer-scaled mean velocity û for various grids and streamwise locations. The
dashed red lines in the upper three plots show the linear trends fitted to the shear layer along with their thickness
δs, for the Fra grid. The insets in the bottom row show the outer-scaled velocity defects profiles for the various
grids. The grids are always located at xg = 100mm where the incoming boundary layer thickness δI ≈ 0.

In order to assess the relationship of the outer peak with the shear layer, one should compare its wall-normal10

extent with the thickness of the shear layer δs. This thickness can be measured from the mean velocity profile11

by fitting a straight line in the vicinity of ŷ = 1 (the central point of the shear layer). The point at which the12

mean velocity profile departs from the linear trend by a specified threshold (arbitrarily taken to be 0.02U∞) is13

defined as the lower limit of the shear layer which extends until δ99. Consequently, the distance between these14

two points is the thickness δs. This is shown in figure 5 where the streamwise evolution of the mean profiles15

is studied. Whilst for the sake of brevity, the linear fit in the shear layer is only shown for the Fra grid; no16

qualitative changes are observed for the other grids. As expected, the thickness of the shear layer increases17

with the streamwise coordinate and, similarly, the intensity of the shear (dū/dy) decreases with x. For x̂ > 2418

13



the shear layer cannot be further distinguished which is consistent with the disappearance of the associated1

turbulence intensity peak for the same streamwise locations (c.f. figure 3).2

Velocity defect profiles are shown in the insets of figure 5 once the shear layer has lost its predominant effect3

(i.e. x̂ > 24). Whilst the lack of collapse with the natural case is not surprising, there is a certain tendency for4

the velocity profiles downstream of the various grids to resemble the natural case more closely for increasing x.5

In essence, it seems reasonable that eddies in the outer region (scaling in outer units) need a longer streamwise6

distance (in physical units) to recover than significantly smaller scales near the wall (scaling in viscous units).7

This may be related with a larger turnover time associated with scales of the order δ99 rather than near-wall8

structures scaling with viscous units.9
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Figure 6: Inner-scaled premultiplied spectra, E11(u
′)f/u2

τ , as a function of inner-scaled length scale, λ+
x , and

the wall-normal coordinate ŷ for various grids and x̂ = 9. Solid lines show the thickness of the shear layer δs
and dashed lines are provisionally sketched separating inner and shear layers. The grids are always located at
xg = 100mm where the incoming boundary layer thickness δI ≈ 0.

Figure 6 shows the wall-normal contours of premultiplied spectra E11(u
′)f/u2

τ , as a function of inner-scaled10

length scale, λ+
x at the first measurement station (x̂ = 9). The scaling of the inner peak is solely influenced11

by the wall with a concentration of spectral energy around λ+
x ≈ 1000 as confirmed in figure 4. The outer12

peak appearing in the u′

rms profiles is also clearly present in the spectral contours. Moreover, its wall-normal13

position and extent correspond with the thickness of the shear layer δs estimated as described above. Note that14

δs is defined by means of the departure from a linear trend in the mean profile and it is a valid scaling for the15

size of the spectral peak. This establishes a link between the shear in this region (which entails an enhanced16

production level) and the spectral content. For every grid, it is also clear that the intermediate region between17

the inner and outer peaks contains a much smaller turbulent kinetic energy as a consequence of the grids’ wake18

having decayed much faster in the absence of any mean shear which sustains the turbulence production.19

Special mention is required for the Att grid which, as opposed to the other three, shows a broader peak20

in the shear layer with a larger energy content which also extends for a greater wall-normal extent. This is21

probably due to a combination of much thicker vertical bars and open gaps whose interactions enhance the22

turbulent activity in the shear layer of this grid. Contrastingly, Fra and Reg grids present a narrower peak23

in the shear region which is undoubtedly separated from the near-wall region. This result could be predicted24

14



by looking at figure 3 in x̂ = 9 where the rms profiles for these two grids exactly follow the natural case for1

y+ < 300 as opposed to the Att case and, to a lesser extent, the Cro for which there is a larger departure.2

The large wall-normal extent and energy content of the shear layer for the Att grid may influence the near-wall3

behaviour in a different way than the other two grids. In fact, this was reported in Rodŕıguez-López et al.4

(2017) where the Att grid was observed to present up to a 10% larger wall shear stress fluctuations (τ ′+w,rms)5

than that predicted at a comparable Reynolds number. This effect is likely due to the enhanced interaction6

between inner and outer layers as a consequence of its larger energy content.7

As opposed to the other 3 grids, Cro case presents a larger energy content in the region 0.2 ≤ ŷ ≤ 0.6.8

Although this extra energy seems to be relatively independent from the shear layer; it may be assumed that it9

does not come from the wall either (the small streamwise location, x̂ = 9, makes it unlikely for the boundary10

layer to have grown up to ŷ ≈ 0.6). Hence it seems logical to hypothesize that, for the Cro case, the grid’s wake11

persist for a longer streamwise distance or, at least, presents a larger influence in the near-wall region. This may12

have some implications on other results, for instance, Rodŕıguez-López et al. (2016a) related a larger influence13

of the wake on the wall with the presence of negative wall-normal velocities. This was previously hypothesized14

in section 3.1 as a candidate for explaining the slightly different value of Cd in the Cro case.15

Summarizing, the spectral content and rms profiles provide enough evidence to suggest the appearance of16

two well-differentiated layers: (i) a wall layer as a consequence of the interaction with the wall and (ii) a second17

region related with the shear layer appearing between the grid and the freestream with a large turbulence18

activity due to the production facilitated by the high mean shear. Furthermore, one can tentatively sketch a19

qualitative separation between these two layers where the spectral contours are narrower (or even disappearing20

such as the Reg case). This separation is shown in figure 6 with a horizontal dashed line. Section 3.3 will21

propose a systematic method to establish a way to measure the separation between these layers which may have22

some implications for boundary layer scaling.23

3.3 Two layers concept24

The appearance of two layers inside the TBL such as those characterized in section 3.2 has been previously25

reported by different authors. One example of these layers, appears downstream of a sudden change in surface26

roughness. In these cases two layers are usually differentiated: one layer located far from the wall (whose prop-27

erties are set by the rough upstream boundary conditions) and a second region located close to the wall (with28

properties set by the roughness condition dowstream of the sudden change). With the streamwise distance, this29

second region progressively grows by mixing with the outer one in order to adapt to the new boundary condi-30

tion. Several examples can be found to establish a well-defined border between these two layers: for instance,31

Andreopoulos and Wood (1982) propose successive streamwise differentiation of velocity profiles. Contrarily,32

Antonia and Luxton (1971) showed that the border between these two layers could be characterized by an33

inflection in the profile û ∝ √
y. More recently, this procedure was employed by Hanson and Ganapathisub-34

ramani (2016) who additionally proposed different velocity scalings for the inner and outer layers. A further35
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methodology is proposed by Efros and Krogstad (2011), who fitted straight lines to the u′+
rms profiles.1

Apart from studies considering step changes in surface roughness; the appearance of two well-differentiated2

layers has also been identified in TBLs subject to freestream turbulence (Dogan et al., 2016) or evolution from3

strong tripping conditions (Rodŕıguez-López et al., 2016a). In this case, Rodŕıguez-López et al. (2016a) who4

defined the border between them based on a drop in the correlation level with the near-wall region below a5

certain threshold.6

The main objective of this section is to propose and validate a method being able of distinguish between7

these two regions such that it should establish a clear border between them. Furthermore, it is conjectured8

that the thickness of the inner layer would act as an effective “outer scale” for the pseudo-TBL development9

underneath and therefore several quantities could be found to scale with this thickness. A qualitative sketch of10

the two layers is presented in figure 7(a). For completeness, the shear layer and its thickness δs described in11

section 3.2 are also sketched.12

However, none of the aforementioned methods of internal layer detection can be applied, essentially because13

the flow configuration is radically different. An alternative method therefore is proposed which can be applied14

to the present flow. Given that the appearance of the two layers has been postulated by studying the velocity15

fluctuations and spectral profiles, a deeper study of the u′+
rms profile seems appropriate. In fact, note that these16

profiles (for the Fra and Reg cases) follow the natural TBL trend with surprising accuracy, despite the much17

lower Reynolds number of this case. This suggests that, in essence, one could look for a natural boundary layer18

of a Reynolds number smaller than the Grid+TBL case which presents the same u′+
rms profile in the inner region.19

However, this procedure (finding a natural case that resembles the measured profile close to the wall) requires20

an underlying assumption that may be contradictory, namely, it neglects the influence of the outer region on21

the inner layer. Whilst there is experimental evidence showing that this interaction does exist (especially the22

influence of freestream turbulence on TBLs); we might neglect it as a first approach according to the results23

presented in figure 6. One can easily observe that there is indeed a much larger separation, at least for the Fra24

and Reg cases, than the typical interaction between freestream turbulence and TBLs (see, for instance Dogan25

et al., 2016). On the other hand, some problems may be foreseen in the Att and Cro cases due to the insufficient26

separation of layers or an excessive influence of the outer layer in the near-wall region (c.f. figure 6).27

Symbol Reference min Reτ max Reτ Points Type

OS13 ◭ Örlü and Schlatter (2013) 794 2017 14 Exp (HW)
DE00 N Degraa et al. (1999) 541 10023 5 Exp (LDV)

HNMC09 ◮ Hutchins et al. (2009) 2820 18830 5 Exp (HW)
RBB16 H Rodŕıguez-López et al. (2016b) 285 1058 7 Exp (HW)
SJM13 ♦ Sillero et al. (2013) 1307 1989 6 DNS

SO10 � Schlatter and Örlü (2010) 252 1271 10 DNS
DLV17 ⋆ Dı́az-Daniel et al. (2017) 400 650 6 DNS

Table 4: Summary of experiments (Exp) and direct numerical simulations (DNS) used to fit the expression
u′+
rms = f(Reτ) given by equation (2).
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Figure 7: (a) Sketch of the δeff concept, the boundary layer properties are only influenced by the wall layer
setting δeff or δρ as the typical length scale. (b) Compilation of u′+

rms at y+ = 200 for different experiments
(filled triangles) and DNS simulations (empty symbols); see table 4 for the interpretation of the legend. The
black dots show the Reτ for Reg grid at various x based on δ99 and the green dots show their corresponding
Reeff = δeffuτ/ν. The solid line is the empirical fitting given by equation (2) and the dashed lines show the
95% confidence interval.

3.3.1 δeff definition1

δeff is defined as the thickness of an hypothetical natural TBL which would provide the same level of u′+
rms2

in the wall layer of the Grid+TBL cases. The first problem to consider is which wall-normal extent should be3

compared with the natural case. The very near-wall region (buffer layer and below) is uniquely determined by4

the presence of the wall and its boundary condition, hence a resemblance with the natural case is expected and5

very little information could be extracted from this fact. Therefore, comparison with the natural case should6

be sought further away from the wall and y+ = O(100) seems a good starting point.7

The procedure is shown in figure 7(b) and described as follows: (i) compile the values of u′+
rms at y+ =8

100, 200, 300 for several experiments and direct numerical simulations covering two decades of Reτ (blue and9

red symbols in figure 7(b)). (ii) fit an analytical expression u′+
rms|y+=i = fi(Reτ ) with i = 100, 200, 300 (solid10

black line in figure 7(b)). (iii) Use the measured level of u′+

rms,i at the three wall normal locations to find Reeff,iτ11

such that u′+

rms,i|y+=i = fi(Reeff,iτ ). As shown in figure 7(b) with black dots the Reynolds number based on δ9912

does not capture the phenomena hence we find the “effective” Reynolds which should have the same level of13

fluctuations at that particular y+ (i.e. the green dots in figure 7(b)). (iv) The effective Reynolds number would14

be the average between the results obtained at the three wall-normal locations (Reeffτ =
∑

Reeff,iτ /3). (v)15

Thus the thickness of the inner layer (so-called effective thickness) would be δeff = Reeffτ ν/uτ . The functional16

form of fi(Reτ ) is postulated as17

u′+
rms|y+=i = AiReτ +Bi logReτ + Ci

logReτ
Reτ

, (2)

where the selection of the functional form is not intended to provide any physical explanation of the phenomena18

involved. The functional dependence proposed by Marusic and Kunkel (2003) could not be employed since it is19

17



applicable only for wall-normal positions farther from the wall (y+ > 300). Furthermore, scaling based on the1

diagnostic plot (Alfredsson et al., 2011) was avoided since it does not provide any direct relationship with the2

boundary layer thickness.3

Figure 7(b) shows one example of this procedure (Reg grid at y+ = 200), other examples are similar and4

they are not shown for brevity. In this figure, one can observe the accurate fit provided by equation (2) to the5

various experiments and simulations of natural TBLs. Note that no correction for limited spanwise resolution6

has been applied to any data since this effect is expected to be negligibly small at y+ > 100 (Hutchins et al.,7

2009). Note also that, due to the lack of experimental data at very high Reτ , the uncertainty (given by the8

95% confidence interval) in this region is larger. This may present a problem for the furthest x̂ locations of9

the experiment where Reeffτ → Reτ = δ99uτ/ν ≈ 3000. The solid black dots in figure 7(b) show the Reynolds10

number based on δ99; whereas the green dots show the value of Reeffτ estimated from the measured level of11

u′+
rms. It is clearly observed that the original value of Reτ is not the correct one for scaling the turbulence12

intensity at this point.13

3.3.2 δρ definition14

Alternatively, one can follow the methodology proposed by Rodŕıguez-López et al. (2016a) who defined the15

wall layer as the region in which the correlation of the streamwise velocity fluctuations with a point located16

in the buffer layer was larger than a certain threshold ρ⋆uu = 0.3. Analogously, two-point streamwise velocity17

correlations were performed as described in section 2.3. The wall hot wire was located at a fixed point (x0, y
+

0 ≈18

4, z0) and the free hot wire was traversed in the wall-normal direction for the same x0 and z0. To account19

for the inclination of the turbulent structures a time delay η, between the two signals was applied following20

extensive experimental evidence (Brown and Thomas, 1977; Robinson, 1986; Boppe et al., 1999; Marusic and21

Heuer, 2007). In these conditions the correlation factor can be defined as22

ρuu(y) =

∫

∞

0
u′

whw(y0, t+ η)u′

fhw(y, t)dt

u′

whw,rmsu
′

fhw,rms

. (3)

The point y⋆ at which ρuu(y⋆) < ρ⋆uu = 0.3 can be taken as representative of the inner layer. For a natural23

boundary layer this occurs at approximately y/δ ≈ 1/8 (scaling with outer units, see e.g. Marusic and Heuer,24

2007; Rodŕıguez-López et al., 2016b; Dı́az-Daniel et al., 2017). Since the objective is obtaining the thickness of a25

natural boundary layer which would exhibit similar near-wall behaviour, we can define an alternative definition26

of the effective thickness as δρ = 8y⋆, where the subindex ρ symbolizes that it has been obtained from the27

wall-normal profiles of streamwise correlation. The factor of 8 is dependent on y0, the wall-normal position of28

the WHW. Note however, that it does not play any role concerning the validity of δρ as a scaling parameter29

since this is invariant to any multiplicative constant.30
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3.3.3 δeff and δρ evolution1

Figure 8 shows the streamwise evolution of these two definitions of effective thickness for the various grids2

tested. The 95% confidence interval in the determination of δeff (the two solid thin lines in figure 8) is the3

same as shown in figure 7(b). This is larger for high Re since there are less experiments at these conditions.4

Furthermore, the logarithmic trend of the curve in equation (2) makes it harder to extrapolate large Reeffτ5

from the turbulence intensity profile. The agreement between the two definitions of the inner layer thickness is6

clear and therefore it suggests the appearance of a well-defined physical mechanism in this region. The overall7

behaviour for all the grids is as expected, δeff is much smaller than δ99 close to the fences and grows by mixing8

with the grids’ wake and the shear layer until all the turbulent flow interacts with the near-wall region in the9

same manner as a TBL would do. The fact that δeff or δρ can be larger than δ99 for the furthest streamwise10

locations may be possible because of the influence of the turbulent outer fluid. In fact, a similar effect is11

observed for TBLs developing under the influence of freestream turbulence (Dogan et al., 2016) where certain12

properties of the TBL (such as the departure from the logarithmic law) are shown to be representative of a13

thicker boundary layer. Essentially, the same trend is observed here (especially for the Att grid), due to the14

large energy in the outer part of the TBL, the near-wall region behaves as a natural TBL which would have a15

thickness larger than δ99. Therefore these methods, present the potential of detecting not only the thickness of16

the wall layer but also the effective thickness generated as a consequence of an enhanced influence of the wake17

into the near-wall region.18

To summarize, after the identification of two differentiated layers in the grid+TBL flow in section 3.2; this19

section has presented two systematic procedures by which one can establish the thickness of the inner layer20

based on the u′+
rms profile (δeff ) or the wall-normal variation of streamwise velocity correlation (δρ).21
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3.4 Scaling of wall shear stress fluctuations1

The first test that these scalings should fulfil is the correct determination of the behaviour near the wall. A2

possible way to assess this behaviour is by means of the fluctuating wall shear stress τ ′+w,rms (Schlatter and Örlü,3

2010, 2012). This is shown to present a logarithmic trend with Reτ (which depends on the thickness of the4

boundary layer), hence it has potential as a diagnosis quantity for this new scaling. Rodŕıguez-López et al.5

(2017) obtained the fluctuations of the wall shear stress by means of a wall-mounted hot wire located in the6

inner region. This hot wire was calibrated against a naturally growing TBL where the wall shear stress can7

be extrapolated from the mean velocity profile as shown in Rodŕıguez-López et al. (2015). They showed that8

τ ′+w,rms in the wake of these porous fences presents an adaptation region in which τ ′+w,rms was significantly lower9

than the predictions, followed by a tendency to recover the expected value. The hypothesis is that only the10

inner layer (of thicknes δeff or δρ) contributes to those fluctuations. From there, it follows that the so-called11

adaptation region in Rodŕıguez-López et al. (2017) was just the growth of the inner layer which progressively12

resembles δ99 with the streamwise distance as shown in figure 8. This is therefore consistent with a two-layer13

structure in which the wall layer grows with x until the resemblance of a TBL since Reeffτ → Reτ for large x.14

Figure 9 presents the same results of τ ′+w,rms but now scaled with the effective thickness of the inner layer15

calculated by the aforementioned procedures. The first result is the small dispersion appearing between δeff16

calculated at the three wall-normal locations. This result is satisfactory since it ensures that the correct flow17

phenomena are captured at various wall-normal locations. Furthermore, it is strikingly clear that the so-called18

adaptation region from the grids’ disturbances presents a well-defined scaling and it is not just a simple arbitrary19

transient process to adapt to the new boundary conditions. Similarly, the thickness of the wall layer obtained20

by means of the correlation level also presents a clear agreement with δeff (as could be anticipated by their21

similarity in figure 8). Moreover, it is also a valid scaling parameter for the wall shear stress fluctuations. A side22

note is required for the Att case. The new scaling significantly improves the data’s trend (τ ′+w,rms ∝ logReeffτ ).23

However, the values appear to be shifted by a constant of approximately 0.025 with respect to the prediction24

of Schlatter and Örlü (2010). It is hypothesized that this could be related with the extraordinarily high25

intensity of the shear layer peak (discussed above in section 3.2) which enhances the fluctuations in the near-26

wall vicinity above the expected natural trend. However, the fact that the new scaling recovers the correct27

trend (τ ′+w,rms ∝ logReτ ) supports the use of this novel scaling for disrupted boundary layers.28

Whereas the correlation proposed by Schlatter and Örlü (2010) (based on DNS data, exempt from any29

measurement bias) is τ ′+w,rms = 0.298 + 0.018 logReτ ; Mathis et al. (2013) proposed shifting it by a constant30

τ ′+w,rms = 0.245 + 0.018 logReτ to account for a damping in the fluctuations due to the interaction between31

the hot-wire thermal wake and the wall substrate (Brunn, 1995; Chew et al., 1998). This attenuation appears32

independently of spanwise resolution effects (which are corrected in the present measurements as shown in33

Rodŕıguez-López et al. 2017). In any case, τ ′+w,rms = A + B logReτ can be interpreted as a constant level of34

fluctuations (likely caused by the presence of streaks Chernyshenko and Baig 2005a) plus a weak influence of the35

outer fluid (scaling with logReτ ). It has been reported that this interaction can be generated by a superposition36
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Figure 9: Wall shear stress fluctuations, τ ′+w,rms, as a function of Reτ based on different definitions of δ for
various grids and streamwise locations. Data is taken from Rodŕıguez-López et al. (2017). Solid lines show
τ ′+w,rms = 0.245 + 0.018 logReτ with 2% and 5% margins. The grids are always located at xg = 100mm where

the incoming boundary layer thickness δI ≈ 0.

and a modulation of the small near-wall structures by the large scale turbulence in the logarithmic layer (e.g.1

Mathis et al., 2011). Recovering τ ′+w,rms ∝ logReτ suggests that the physics of the flow in terms of the outer-2

inner interaction are captured by the scaling but the intensity of this effect is underestimated. This could be3

a consequence of a distinct influence of the grid’s wake on the wall region as hypothesized in section 3.2. An4

alternative interpretation of the distinct behaviour of Att grid could be given by the procedure described in5

Hanson and Ganapathisubramani (2016). In it, they specify a distinct velocity scale for the wall layer rather6

than uτ which would then recover the trend proposed by Schlatter and Örlü (2010). However this would be at7

odds with figures 3 and 4 which show uτ to be an adequate scaling for the location and magnitude of the inner8

turbulence peak. It also seems reasonable to assume that the skin-friction fluctuations scale with the local shear9

rather than with an outer-scale velocity such as U∞.10

By recovering the expected trend of τ ′+w,rms, this section has shown that the effective thickness of the inner11

layer is valid as an outer scaling for the pseudo-TBL developing underneath grid generated turbulence. The12

appearance of this scaling poses new questions regarding its applicability to other outer-scaled TBL phenomena.13

The next sections therefore will study the different length scales present in the flow and how their evolution can14

be explained in terms of this new scaling.15

3.5 Integral length scale, L1116

After having set the basis for the new scaling based on δeff , this section will study the wall-normal profiles of17

integral length scale and how their scaling may differ from that of a natural TBL. The longitudinal integral18

length scale L11 is obtained from single-component single-point hot-wire anemometry by considering the integral19

time scale T11 and the convection velocity uc: L11 = T11uc. Several studies have been focused on obtaining20

a value for the mean convection velocity across the TBL (Del Alamo and Jimenez, 2009; Geng et al., 2015)21

concluding that one can consider as a first approach the mean velocity profile uc = ū(y) (i.e. Taylor’s hypothesis)22

for wall-normal positions such that the mean velocity is ū+ & 11. Considering the autocorrelation function23

21



ρuu(η) =
(∫

u′(t)u′(t+ η)dt
)

/(u′2
rms), one can obtain T11 by numerical integration of ρuu(η). In order to1

avoid the noise appearing at low ρuu, or equivalently, large time delays η, one can fit an exponential decay for2

ρuu < 0.5. Calculation of T11 based on Fourier spectra (not shown) provided qualitatively the same results.3
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Figure 10: Profiles of integral length scale L11, for various grids and streamwise locations normalized with δ99
(first row) and with δeff (second row) and δρ (third row). The grids are always located at xg = 100mm where
the incoming boundary layer thickness δI ≈ 0.

The first row of figure 10 shows the profiles of L11 scaled with δ99. Note that δ99 includes the three-layer4

structure described above, namely, wall layer, grid wake and shear layer. However, the typical length scales5

in the near-wall region should be expected to scale with the thickness of the wall layer rather than with δ99.6

Consequently, no collapse is observed in the first row of figure 10 for any grid or streamwise location. If, in the7

contrary, we use a scaling which accounts only for the thickness of the wall layer, that is, δeff or δρ as proposed8

above. Then L11 is shown to collapse when scaled with those parameters in the near wall region (second and9

third rows of figure 10 for y/δ / 0.2). Logically, this scaling is not valid out of the wall layer since it does not10

capture the physics there, which do not depend on the thickness of the near-wall region.11

A few differences can be observed between the two proposed scaling parameters. For cases where the12

22



spectral separation of scales is less clear (Att and Cro grids), L11 seems to scale better with δρ rather than1

δeff . This is likely due to the methodology followed to obtain δeff which relies on a sufficient separation of the2

spectral behaviour. Contrastingly, for cases where the separation in the turbulence intensity profiles is larger,3

the definition of δeff provides a better collapse. Independently, note that both δeff and δρ are more valid as a4

scaling parameter for the outer region of the wall-bounded flow than δ99 which does not reflect the separation5

between the wall and wake layers.6

For Fra and Reg cases the furthest streamwise location (x̂ = 43) presents a distinct behaviour when scaled7

with δeff . Note that this is likely due to the large uncertainty in the determination of δeff for large Reτ values.8

In fact, figure 8 has shown that the point located at x̂ = 43 presents an uncertainty of approximately 50%9

which, in turn, translates into a dubious scaling for the last point. If, on the other hand, we consider smaller10

streamwise locations (or, equivalently, Reynolds numbers), the collapse is shown to hold up to y/δeff of order11

unity.12

Note also that Att case presents as good a collapse as Fra and Reg grids despite its differences in terms13

of τ ′+w,rms (c.f. figure 9). In fact, Rodŕıguez-López et al. (2017) reported that, despite its larger τ ′+w,rms value,14

the autocorrelation of the wall shear stress for the Att grid was dominated by the presence of streaks (as in15

the natural case). This fact could be linked with the recovery of the trend τ ′+w,rms ∝ logReτ which was also16

related with the presence of streaks. In light of this evidence, it seems reasonable to hypothesize that the large17

turbulent kinetic energy in the outer part of the Att grid’s wake (generated by the combination of wakes of thick18

bars and large open areas) modifies the near-wall region by modifying its upper boundary condition. That is,19

the flow in the wall region, characterized by δeff , perceives the wake of the grid as its upper limit rather than20

the freestream. Since in this particular grid, the wake is more highly energetic (c.f. for instance, figure 6), the21

fluctuations are enhanced. However, the formation mechanisms of turbulence in the wall region (streaks) and22

its length scales remain unaltered. In essence, this mechanism would be equivalent to an inner boundary layer23

of thickness δeff in which the apparent freestream is modified by the presence of the grid’s wake enhancing24

turbulent fluctuations in a broadband manner, thus not modifying the predominant L11.25

To summarize, the integral length scale has been obtained from the correlation function and Taylor’s hy-26

pothesis showing that for a natural TBL it collapses in the inner region followed by a plateau with a Reynolds27

trend in the outer region. For the disrupted cases, δ99 cannot be used as a scaling parameter since it does not28

reflect the physics of the flow in the inner region which depend on its local thickness (determined either by δeff29

or δρ). Use of this scaling enables the collapse of L11 across the inner layer. For cases with insufficient spectral30

separation between the layers (Att and Cro grids as described in section 3.3), δρ presents a better collapse of31

the L11 profiles. Alternatively, if the spectral separation is larger (Fra and Reg grids) δeff is a better scaling32

parameter except for very high Reτ due to the larger uncertainty at the last position.33
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3.6 Spanwise turbulent structure1

The streamwise characteristic lengths of the flow have been studied by means of L11 in section 3.5. However, the2

flow in the vicinity of a wall is strongly anisotropic in the spanwise direction. The spanwise organization of TBL3

flows in the near-wall region is characterized by the appearance of large or very large meandering structures4

resident in the logarithmic layer (e.g. Ganapathisubramani et al., 2005; Hutchins and Marusic, 2007a). These5

structures have also been reported to appear downstream of mild disruptions such as strong tripping conditions6

(Rodŕıguez-López et al., 2016b). Moreover, they also imprint their characteristics on the near wall region as a7

consequence of the inner-outer interaction mechanisms (Hutchins and Marusic, 2007b). As reported in Hutchins8

and Marusic (2007a), the spanwise separation of these structures clearly scales with the local boundary layer9

thickness. Hence it seems relevant to study their scaling under the influence of the grids’ wakes in terms of the10

new definitions of the internal thickness.11
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Figure 11: Profiles of the spanwise correlation of streamwise velocity ρuu(z) at the beginning of the logarithmic
region, y+ ≈ 60, y/δ99 ≈ 0.02, (main plots) and in the near-wall region, y+ ≈ 4 (insets), for various grids
and streamwise locations normalized with δ99 (first row) and δρ (second row). The grids are always located at
xg = 100mm where the incoming boundary layer thickness δI ≈ 0.

Two-point spanwise measurements are taken using both WHW and FHW simultaneously. Two heights over12

the wall are selected, one inside the very near-wall region y+ ≈ 4, which may be representative of the behaviour13

close to the wall and another one at the beginning of the logarithmic layer (y+ ≈ 60) where these very large14

24



structures are expected to appear. Correlation of the streamwise velocity in the spanwise direction is defined as1

ρuu(z) =

∫

∞

0
u′

whw(z = 0, t)u′

fhw(z, t)dt

u′

whw,rmsu
′

fhw,rms

(4)

where the minimum separation between the measurement points (given by the physical size of the hot wires) is2

approximately 4mm. A similar experimental arrangement was used in Rodŕıguez-López et al. (2016b).3

The first row of figure 11 shows the spanwise correlation of streamwise velocity for several grids and stream-4

wise locations normalized with δ99. The lack of collapse for different x̂ is clearly observed, in particular, this5

effect is more pronounced closer to the grids. Note that, for x̂ ≤ 15, ρuu drops to 0 for z/δ99 ≈ 0.05, much6

smaller than the expected value of approximately 0.3 (Hutchins and Marusic, 2007a). Furthermore, for Att and7

Cro grids, very little negative correlation is found for x̂ < 24. This contrasts with the natural TBL case, in8

which the turbulent structures of positive fluctuation are flanked by negative ones. It seems therefore reasonable9

to assume that the presence of the grids destroys this pattern. This effect is less clear for Fra and Reg grids10

suggesting that the wall behaviour is less disrupted in this case, which is in agreement with past observations11

regarding the interaction between outer and wall layers (c.f. sections 3.2 and 3.3). Both effects (rapid loss12

in correlation and lack of negative values) tend towards the expected values of a natural TBL with x, this is13

consistent with the growth of the internal layer which progressively tends to δ99. In particular, the typical14

arrangement of alternating spanwise structures is recovered for Att and Cro grids at x̂ ≈ 24, this is the same15

straemwise location where the turbulence peak related with the shear layer is lost (c.f. figure 3). From this16

evidence, it could be conjectured that the disappearance of the shear-layer peak and the appearance of the large17

structures in the logarithmic layer are related. Moreover, the geometry of the grids (figure 2) also suggests that18

Att and Cro grids should destroy the turbulent structures in the wall region more effectively as a consequence19

of the larger concentration of bars close to ŷ = 0.20

Let us now normalize the spanwise separation with the new scaling thickness δρ as shown in the second row21

of figure 11. The performance of δeff as a scaling parameter is unsusprisingly worse, since δρ is based in the22

two-point correlation hence it is more valid to describe ρuu in other directions. Thus, for the sake of brevity23

only results scaled with δρ are presented.24

One can note that the collapse of Fra and Reg grids is significantly improved with respect to the degree of25

matching presented in L11/δρ (figure 10). The important result resides not only in the fact that the curves are26

shown to collapse amongst themselves, but also in the spanwise location of the minimum of the correlation, this27

is always located close to z/δρ ≈ 0.3 as has been reported for natural TBLs (Ganapathisubramani et al., 2005;28

Hutchins and Marusic, 2007a; Rodŕıguez-López et al., 2016b). Hence, this provides consistent evidence for δρ29

being the correct scaling for the wall layer forming under the grids’ wake.30

The spanwise organization present in the logarithmic layer shows its footprint in the near-wall region. This is31

shown in the insets of figure 11, where the same correlations are plotted but this time at y+ ≈ 4. The maximum32

correlation level is unsurprisingly smaller since the initial separation between the two hot wires is kept constant33

and typical eddy sizes are expected to be much smaller in this region than in the logarithmic layer (c.f. also34

25



figure 10). However, a similar trend is observed for all the grids and streamwise locations which collapse with1

δρ.2

Summarizing, large structures flanked by opposite sign fluctuations are destroyed in the vicinity of Att and3

Cro grids to form again after approximately 24 grid heights. For streamwise distances larger than this value4

and for the other two grids (at every x̂) these large structures are detected in the logarithmic layer with a5

separation of approximately 0.3δρ (analogous to a naturally developing TBL). As expected, it is shown that δ996

cannot be used as a scaling parameter, as it does not capture the physics of the wall layer. The footprint of7

these structures is also reflected in the very near-wall region with analogous separation (∝ δρ). This constitutes8

clear evidence of the dominant scaling in the wall layer.9

3.7 Incoming boundary layer influence10

Having established the dependence of TBL properties on the thickness of the inner layer, δρ or δeff , a question11

arises regarding the potential influence of the incoming BL thickness on the flow downstream of the grids. In12

particular, note that the scaling based on δeff was severely challenged in the Cro case, where the grid’s wake13

presented a larger interaction with the near-wall region. This influence was observed as a connection between14

the inner spectral peak and the shear layer region (c.f. figure 6). Moreover, it generated further difficulties for15

the determination of δeff from the u′+
rms profile. It may be speculated that such scaling would exist even in this16

case but it cannot be detected with the present methodology. A similar effect (larger connection of the spectral17

contours between the inner and shear layers) can be obtained by the immersion of the grid in a progressively18

thicker TBL. This section therefore will study the spectra and integral length scale downstream of the various19

grids with different incoming TBLs.20

The different incoming boundary layers (of thickness δI and momentum thickness θI) are obtained by means21

of placing the grid at different streamwise locations where the TBL has grown to a larger thickness. All the22

measurements are taken at x̃ = 8, i.e. 8 grid heights downstream of the grid. Five different degrees of immersion23

are tested ranging from virtually 0 (the case studied up until now) to approximately 80% of the grid height. For24

the thickest TBL case, artificial tripping was used to deliberately overtrip the developing TBL. This trip was25

made of two rows of slender cylinders 20mm high with their axis normal to the wall placed at 160mm from the26

leading edge. Details of this experimental arrangement can be found in Rodŕıguez-López et al. (2016b,a) where27

it is also justified that the TBL properties at the considered streamwise location are sufficiently canonical and28

the trip influence seems to be forgotten (at least sufficiently for the present purpose). Two different thickness of29

the TBL can be considered, δI99 based on the mean velocity profile reaching 0.99U∞ or, alternatively, δI based30

on a fit of a composite profile to the outer layer (Chauhan et al., 2009; Rodŕıguez-López et al., 2015). Table 531

summarizes the main parameters of the various incoming TBLs.32

Increasing the thickness of the incoming TBL implies that a larger fraction of the grid is subject to incoming33

turbulence (as opposed to the original case in which almost the whole flow impacting the grid was laminar).34

Furthermore, the length scale of the turbulence inside the incoming boundary layer will also increase (scaling35

26



x̂g δI99 (mm) δI (mm) θI (mm) Reθ uτ (ms−1) Reτ
1 1 1.91 2.49 0.26 168 0.36 58

8 18.4 26.2 3.08 1891 0.40 687
19 33.2 44.7 4.22 2623 0.37 1066
36 44.6 58.2 5.81 3563 0.38 1419

2 36 59.9 78.6 8.53 5220 0.36 1805

1: Estimation from Blasius laminar BL at x̂ = 1.

2: With cylinders tripping based on Rodŕıguez-López et al. (2016b,a).

Table 5: Summary of TBL properties for various incoming TBL thickness. The friction velocity uI
τ is extrapo-

lated from the mean velocity profile (Rodŕıguez-López et al., 2015).

with its thickness, c.f. figure 12(b)). This last effect is particularly important since it is anticipated that the1

grids interact with incoming turbulence of similar lengths to their mesh size (e.g. Groth and Johansson, 1988).2

Figure 12 shows the integral length scale for the various incoming boundary layers without the grid. Figure 12(b)3

follows the expected trend for the natural TBL exhibiting a collapse for small y followed by a plateau with a4

slight Reynolds trend. This fact entails that L11 grows with respect to the grid height (and consequently any5

measurement of the mesh size) as shown in figure 12(a). One can observe that there is a clear increase in both6

the fraction of grid influenced by the incoming TBL and also the typical length scale of this turbulence. Whilst7

the near-wall region is strongly influenced by the presence of the wall, the vast majority of the grids are exposed8

to turbulence of quasi constant L̂11.9
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Figure 12: Wall-normal profile of integral length scale L11, for different incoming boundary layers as a function
of y normalized with (a) the grid height h, and (b) the local TBL thickness δI99.

The increasing proportion of the grid influenced by the incoming turbulence can also be seen in the spectral10

contours. Figure 13 shows these contours for different incoming boundary layer thicknesses. The wall-normal11

extent of the region influenced by the near-wall turbulence is clearly seen to increase for larger incoming TBL.12

Furthermore, the dashed lines show the thickness of the incoming TBL (δI , based on mean-profile fitting)13

showing a clear correlation between the extent of the near-wall influenced region and the thickness of this layer.14

The behaviour of the other three grids is not shown for brevity but they show qualitatively similar trends.15

The intensity of the peak related with the shear layer is seen to increase with δI . This may be caused16

27



by two different reasons: firstly, increasing δI implies that the highly intermittent region of the TBL appears1

at a similar height as the shear layer. This interaction may increase the fluctuations of the shear-layer peak.2

Secondly, as in every naturally growing TBL, with increasing streamwise distance the TBL thickness, δI , is3

increased and the incoming shear velocity, uI
τ , is decreased. This implies that uτ at x̃ = 8 is also smaller. Since4

the outer peak is generated by the shear layer (not scaling in inner variables), this could be reflected in an5

apparent increase of the peak’s magnitude. On the other hand, profiles of û′

rms (nondimensionalized with U∞,6

not shown) display an increasing trend of this peak with δI which suggests the first hypothesis is more likely7

than the second one.8
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Figure 13: Inner-scaled premultiplied spectra, E11(u
′)f/u2

τ , as a function of inner-scaled length scale, λ+
x , and

the wall-normal coordinate, ŷ, for various incoming boundary layers, δI , (shown with the dashed lines, c.f.
table 5). The grid is always Att and x̃ = 8.

The large turbulence intensity present in the shear layer has a further implication. As can be seen in figure 13,9

the penetration of turbulence that can be related with the near-wall behaviour seems to saturate for the largest10

δI . In other words, despite the thickness of the incoming TBL is δ̂I = 0.79; the spectral contours seem to be11

narrowest at ŷ ≈ 0.6. This might be due to the significantly stronger fluctuations of the shear layer which cover12

the near-wall behaviour. Contrastingly, the intensity of the shear-layer peak is significantly influenced by the13

presence of the thicker incoming TBL.14

In practice, the largest prevalence of the near-wall region downstream of the grid may impose some differences15

on the scaling based on δρ or δeff proposed above. The latter scaling was first suggested to represent the point at16

which the spectral contours are narrowest (i.e. the point which separates the wall and shear layer contributions).17

However, in this case, there seems to be a clear correlation between the thickness of the wall layer and the18

thickness of the incoming TBL. A possible explanation could be that the wall layer (with equivalent thickness19

δeff or δρ) is closely determined by the thickness of the incoming TBL close to the grid and it progressively20

grows with x̂ until reaching δ99. However, note that this would suggest that a larger δI implies a shorter distance21

for δeff to become δ99, which seems unlikely due to the stronger intensity of the shear-layer peak. Thus it seems22

that growth rates of δeff may change for different δI . However, due to the limited size of the wind tunnel this23

hypothesis could not be tested and remains an open question.24
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What can be easily tested with the current dataset is the scaling of wall-normal profiles of longitudinal1

integral scale. It has been proposed that the δ99 scaling fails to capture the physics in the wall layer which2

scale with its local thickness δeff . For increasing incoming TBL thickness it has also been hypothesized that3

δeff ∼ δρ ∼ δI . Thus as a first approach δeff = δI99, note that this imposes a clear problem at δI ≈ 0 where4

δeff 6= 0. However, this thickness is known from section 3.3.5
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Figure 14: Profiles of integral length scale L11, for various grids and different incoming boundary layers nor-
malized with δeff = δI99 except for the case δI ≈ 0 where δeff is calculated as described in section 3.3. The
streamwise location is always x̃ = 8.

Figure 14 shows the proposed scaling for different grids and incoming TBLs. Despite the collapse of the6

curves being slightly poorer than for other aforementioned examples, it seems plausible to conclude that the7

longitudinal integral length scale, L11, displays a satisfactory scaling with δeff = δI99. The fact that the8

δ̂I = 0.26 case shows a poorer scaling than the other cases may be explained by the same logic as for the δI ≈ 0:9

in the streamwise fetch between the grid and the measurement location (x̃ = 8) the inner layer is growing.10

As previously discussed, this growth rate can be assumed to be dependent on the initial thickness of the TBL11

(slower growth for larger δI). This implies that, for small incoming boundary layers (δ̂I . 0.2), the efective12

thickness, δeff , would be smaller than δI99 at the measurement station x̃ = 8. Contrastingly, δeff = δI99 is a13

much better approach for large incoming boundary layers δ̂I & 0.4. In fact, note that the collapse for the three14

largest incoming TBLs is strikingly better than for any other case, supporting this hypothesis.15

Summarizing, the appearance of two well-distinguished layers (dominated by near-wall and shear layer16

turbulence respectively) has been shown for different degrees of immersion of the grid in a TBL. It seems that,17

for a fixed streamwise distance downstream of the grid, the thickness of the inner layer is set by the thickness18

of the incoming TBL. However, different growth rates of this inner layer are hypothesized for different δI . This19

is also confirmed by measurements at low immersions in which δeff = δI99 does not seem to hold, probably20

because δeff has grown faster from the initially small δI99.21
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4 Conclusions1

A comprehensive flow characterization using one- and two-point hot-wire anemometry has been conducted2

downstream of single- and multi-scale wall-mounted highly porous fences. The bulk behaviour of the grids,3

studied by means of their drag, seems to be mainly dependent on their blockage ratio (which is kept the same4

for the various grids). However, slightly smaller value is detected for the Cro grid most likely due to the5

appearance of non-zero vertical velocity and the smaller aspect ratio of its bars. From another perspective,6

turbulent properties are shown to be dependent on the different distributions of blockage formed of bars of7

distinct sizes and orientations. These grids therefore generate a highly complex and inhomogeneous flow in8

their vicinity which interacts with the wall and evolves progressively towards a canonical turbulent boundary9

layer state. In this adaptation region, the turbulence of the bars’ wakes seems to decay much faster than that10

generated by either the wall or the shear layer appearing between the grid’s wake and the freestream. This is11

most likely due to the large mean shear appearing in these two regions which promotes turbulence production12

enhancing the fluctuations at these layers. Consequently the flow physics in the adaptation region are dominated13

by two different mechanisms depending on whether one considers the wall layer or the shear layer. In particular,14

spectra at large distances from the wall are shown to be clearly related with shear-layer thickness and, similarly,15

spectra in the near-wall region seem to follow the typical scaling of wall-bounded flows (λ+
x ≈ 1000).16

The appearance of this clear separation of spectral behaviour along the wall-normal coordinate has enabled17

the definition a well-differentiated wall layer of effective thickness δeff . The thickness of this layer can also18

be established as a function of the point at which the wall normal profile of streamwise velocity correlation19

falls below a certain threshold (δρ). Both scalings can provide a measurement of the thickness of the wall layer20

although the latter seems to provide a more accurate description. The thickness of the wall layer is defined as21

the thickness of a naturally growing TBL which presents the same properties of that inner layer which develops22

under the influence of the fences’ wakes. Both δρ and δeff are shown to increase with x approaching δ99 or even23

exceeding it.24

Since this effective thickness can be understood as the upper boundary condition of the wall layer; δρ25

dominates the scaling of velocity fluctuations inside this region. In particular, a satisfactory scaling in terms of26

δρ is shown to hold for root-mean-square level of the wall shear stress fluctuations (τ ′+w,rms), longitudinal integral27

length scale (L11) and spanwise turbulent structure (ρuu(z)). Furthermore, details of the spanwise turbulent28

structure has also shown that large structures flanked by opposite sign fluctuations are not present for Att and29

Cro grids before 24h. For x̂ > 24 and for the other two grids (every x) these large structures appear in the30

logarithmic layer with a separation of 0.3δρ (similar to a natural TBL).31

For cases where the incoming boundary layer was finite and comparable to the grid height h; the effective32

thickness of this inner layer is shown to scale with the thickness of the incoming TBL, δI ; at least for values of33

δ̂I & 0.4. Furthermore, it is conjectured that the growth rate of δeff is also dependent on the incoming TBL34

thickness. In particular, it seems to grow faster for smaller δI .35

Despite the length of the adaptation region and the potential recovery of canonical TBL properties down-36
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stream of it reamain an open question; it seems reasonable to hypothesize that Fra or Reg grids would perform1

better as TBL trips because of its smaller interaction between wall and wake layers and the lack of destruction2

of the spanwise structure.3

A Appendix: WHW calibration4

Calibration of wall-mounted hot wires (WHW) presents a number of significant challenges that should be5

carefully considered. Firstly, these devices may only be traversed over a limited spatial extent, which does not6

include the freestream. Secondly, in most of the cases their fragility makes it impossible to remove them from7

their position in order to use a commercial calibrator or place them in the freestream. Moreover, the relative8

orientation of the prong-wire ensemble with respect to the incoming flow should be the same for calibration and9

experiment. If accurate values of the calibration are not required, one can estimate the hot wire response by10

calibrating the WHW against another hot wire immersed in the TBL shear flow (see Rodŕıguez-López et al.,11

2016b). However, in order to obtain the true values of the velocity an alternative procedure must be followed.12
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Figure 15: (a) Sketch of the WHW calibrator device (Not to scale), flow goes left to right. Dimensions are in
millimetres. (b) Solid lines show the velocity profiles at the WHW location (measured with another hot wire).
Empty circles show the points acquired by the WHW. Inset shows the King’s law (solid black line) fit to those
points.

The present methodology consists of the manufacturing of a small calibration plate such that the boundary13

layer developing on its surface remains laminar and smaller than the largest height that the WHW can reach14

over the wall (yWHW
max ≈ 3mm). Furthermore, the WHW will always be located in the near-wall region, therefore15

the calibration should focus more on low velocity values rather than high speed. A small flat plate is made16

from a 4mm thick aluminium sheet provided with a 3d-printed elliptic leading edge and a flap to compensate17

for the blockage of the WHW’s linear traverse on the back of the plate. A sketch of the arrangement is18

shown in figure 15(a). In order to know the velocity at the WHW location, several profiles were acquired19

with another hot wire to ensure repeatability of the measurements. Figure 15(b) shows these velocity profiles20

where one can appreciate the similarity between the various acquisitions. After this velocity profile is reliably21
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known, the calibration procedure consisted of sampling the WHW for 20 s at different wall-normal locations1

(from its minimum position yWHW
0 = 0.18mm until 1.5mm in steps of 0.25mm and a further measurement at2

yWHW = 3mm). The WHW response at these locations is associated with the known velocity at the same y3

which is known from the velocity profiles acquisition. Once the response of the WHW is known, the coefficients4

A, B and C of the King’s law (E2 = A+BUC) are estimated by a least-squares fit.5

Figure 15(b) shows the values of the WHW response compared with the velocity profile measured before6

the calibration procedure. The agreement between these measurements and the velocity profiles is remarkably7

good at low velocities. However, it diverges slightly for the largest height, probably as a consequence of the8

interference of the prongs with the incoming fluid. Note that, at this position, the prong-to-prong distance is9

similar to its elevation over the wall hence some interaction may be expected. This is not expected to affect the10

results since this interference primarily affects the mean value and the current study only uses the fluctuations.11

The agreement with the King’s law is shown in the inset of figure 15(b) also displaying a remarkable agreement.12

B Appendix: Cd determination13

Let us consider a two-dimensional domain with its lower limit in the wall and the upper limit taken to be14

an undisrupted streamline far enough from the wall and the grid such that no mass or momentum cross this15

boundary. The subscripts 1 and 2 will denote the inlet (left) and outlet (right) of this domain respectively. We16

can write the mean integral momentum balance for this domain as:17

∫ y1

0

ρū2
1(y)dy +

∫ y1

0

p̄1(y)dy −
∫ y2

0

ρū2
2(y)dy −

∫ y2

0

p̄2(y)dy = D +

∫ x2

x1

τ̄w(x)dx . (5)

The selection of the region of the flow is not trivial and one should take some considerations prior to its18

determination. On the one hand taking x2 close to the grid (e.g. Dong et al., 2008) enables us to neglect the19

contribution of the shear stress term, which usually is difficult to measure or estimate. On the other hand, close20

to the grid the pressure contribution may be important and the spanwise inhomogeneities of the grid would21

make it impossible to assume two-dimensionality of the measurement domain. Seginer (1972) showed that the22

contribution of the term in p2 reduces drastically for x̂2 − x̂1 ≈ 10. Furthermore, the simplification of the 3D23

problem into a 2D domain can only be done after the spanwise inhomogeneities have dissappeared. Preliminary24

measurements (not shown for brevity) confirm that the spanwise homogeneity of the mean and rms profiles25

are significantly reduced for x̃ > 5. The downstream limit of the domain should be therefore located further26

from that location. In order to find a compromise, the selected domain will have x1 upstream of the grid and27

x2 = 8h downstream of it. Moreover, since the upper edge of the domain is taken to be sufficiently far from the28

wall, we can assume that y2 ≈ y1 for simplicity although it does not have any effect on the results.29

With respect to the upstream limit of the domain, this will be taken to be x̃1 = −1, that is, at the leading30

edge of the flat plate. At this point the momentum thickness θ1 = 0 independently of the grid being mounted31

or not.32
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For long streamwise domains (as the one considered), Seginer (1972) reported a low contribution of the1

pressure terms to the drag balance. Furthermore, under boundary layer assumptions, we could assume p̄(y) ≈ p̄w2

independent of y. Note in figure 1(a) that for x̃ = 8 ↔ x = 0.9m, the wall pressure for the various grid cases is3

approximately the same as in the natural case. Therefore, we can assume that the flow is quasi-zero pressure4

gradient since variations in Cp are always smaller than 2%. Note that, strictly speaking p̄(y) ≈ p̄w may ot hold5

in the grids’ wake. However, preliminary measurements (not shown) reported a decrease of the wall-normal6

velocity for streamwise locations x̃ > 2 which may support the use of this approximation. Hence it seems7

reasonable to neglect the contribution to the drag of the pressure difference across the domain.8

Under these assumptions, non-dimensionalizing the equations with the grid height h, and the freestream9

velocity U∞, and expressing the velocity profiles in terms of the momentum thickness θ =
∫

∞

0
[û(1 − û)]dy;10

equation (5) results:11

Cd ≈ 2

h

[

θ2 −
1

ρU2
∞

∫ x2

x1

τ̄w(x)dx

]

. (6)

Where the wall shear stress term remains unknown because measurements of τ̄w are not available for every12

x1 ≤ x ≤ x2. However, τ̄w is known at station 2 (Rodŕıguez-López et al., 2017, and Table 2). In order to13

provide a meaningful estimation for the last term, let us consider the natural TBL case (without any grid14

installed), for this case we can write
∫ x2

x1
τ̄Nw dx ∝ θN2 , where superscript N denotes the natural case and, as15

mentioned above, θN1 = θ1 = 0. Given that we have the measurement of the wall shear stress at x2, we can use16

this information to approximate the last term in equation (6) as:17

1

ρU2
∞

∫ x2

x1

τ̄w(x)dx ≈ τGN 1

ρU2
∞

∫ x2

x1

τ̄Nw (x)dx ≈ τGNθN2 , (7)

where τGN = τ̄w(x2)/τ̄
N
w (x2) is the relationship between the wall shear stress in the grid and the natural cases18

at x2. Note that the history of the wall shear stress between x1 and x2 is not known but we know the streamwise19

development of τ̄w(x) for x > x2 as shown in Table 2. There, one can see that the shear stress remains relatively20

constant along x > x2 which sustains the use of τ̄w(x2) as a control parameter for τ̄w(x < x2). In any case,21

it has been shown (Table 3) that the contribution of the wall shear stress term to the drag determination is22

smaller than 10% hence variations in the modelization of this term have a rather limited impact in Cd.23

Thus the drag coefficient of the grids can be estimated as24

Cd ≈ 2

h

[

θ2 − θN2 τGN
]

. (8)
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Rodŕıguez-López, E., Bruce, P. J. K., and Buxton, O. R. H. (2015). A robust post-processing method to28

determine skin friction in turbulent boundary layers from the velocity profile. Experiments in Fluids, 56(4):68.29
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