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Reconfigurable architectures are becoming mainstream: Amazon, Microsoft and IBM are supporting such
architectures in their data centres. The computationally intensive nature of atmospheric modelling is an
attractive target for hardware acceleration using reconfigurable computing. Performance of hardware
designs can be improved through the use of reduced-precision arithmetic, but maintaining appropriate
accuracy is essential. We explore reduced-precision optimisation for simulating chaotic systems, targeting
atmospheric modelling, in which even minor changes in arithmetic behaviour will cause simulations to
diverge quickly. The possibility of equally valid simulations having differing outcomes means that stan-
dard techniques for comparing numerical accuracy are inappropriate. We use the Hellinger distance to
compare statistical behaviour between reduced-precision CPU implementations to guide reconfigurable
designs of a chaotic system, then analyse accuracy, performance and power efficiency of the resulting
implementations. Our results show that with only a limited loss in accuracy corresponding to less than
10% uncertainty in input parameters, the throughput and energy efficiency of a single-precision chaotic
system implemented on a Xilinx Virtex-6 SX475T Field Programmable Gate Array (FPGA) can be more

than doubled.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Climate and weather prediction are computationally intensive;
even with high-performance computing resources, it is typically
impossible to resolve important convective cloud systems in global
models [1]. Numerical models of weather and climate show sig-
nificant model error due to limited resolution and complexity,
necessitating a need for even more resource-intensive models.
Performance and power requirements for running such models
with hard time constraints, for example in operational weather
forecasts, have led to the exploration of hardware accelerators
such as GPUs and FPGAs to obtain greater throughput and power
efficiency [2,3].

With reconfigurable architectures becoming more prominent
and increasingly accessible for running accelerated computation,
we choose to investigate how designs may be customised to take
advantage of the characteristics of climate simulations. A common
approach to enhance throughput of hardware designs is to reduce
precision of calculations so that additional hardware resources can
be employed to increase parallelism. Excessive precision reduction
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however, reduces calculation quality and usefulness, so a trade-off
must be made between performance and accuracy.

Lorenz showed that weather forecasting involves the prediction
of a chaotic system [4]. This implies an exponential growth of
errors in any perturbation of the model, such as a slight change in
initial conditions; significant divergence between a CPU and hard-
ware implementation is expected simply due to implementation
differences, and is not in itself an indicator of error. Diagnostics
that rely on solution convergence between implementations for
validation are no longer appropriate.

Weather and climate models are known to show significant
limitations due to limited resolution or insufficient complexity
in the representation of the Earth system. Short-term forecasts
will be perturbed by uncertainty in initial conditions due to the
nature of measurements and data assimilation. If the model setup
is changed, e.g. by a change of software/hardware implementation,
model parameters or model forcing (such as CO, concentration), it
is almost impossible to predict the response of the model due to the
chaotic nature of the system and numerical simulation is necessary
to identify the impact.

A reduction in precision will reduce computational cost and
resource usage but will also alter arithmetic behaviour and in-
fluence model simulations. However, given the model limitations
that are outlined above, one may consider a reduction in precision
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appropriate so long as the behaviour change introduced is insignif-
icant compared to those introduced by other factors. The resources
saved through precision reduction may then facilitate an increase
of design throughput or permit more complex designs.

To this end, we investigate the reduction of precision in chaotic
systems using the Lorenz 1996 model (a.k.a. Lorenz 1995 and
referred to hereafter as Lorenz '96), designed by Lorenz [5] to study
interactions of atmospheric processes with non-linear, chaotic dy-
namics. Our analysis has applicability beyond this model — scale
interactions within the Lorenz "96 model resemble scale interactive
behaviour of various parts of numerical atmosphere models that
is typically difficult to capture in idealised systems. Similar scale
interactions are also important for turbulent energy cascades rele-
vant to most applications in CFD (computational fluid dynamics).

The Lorenz '96 model has been used in extensive studies in
the literature to investigate new methods for data assimilation,
the propagation and representation of model error and improved
numerical algorithms involving dynamical systems [6-10].

This paper contributes and presents:

e the hardware architecture of a two-scale Lorenz '96 simula-
tion using Runge-Kutta time-stepping;

e a demonstration of how it is possible to make trade-offs
between precision and throughput for a system where nu-
merical divergence is expected;

e ananalysis of the impact of varying the precision of variables
at different scales in the Lorenz '96 implementation using
error metrics appropriate to chaotic systems (the Hellinger
distance);

e performance, precision and power consumption compar-
isons of reduced and single-precision FPGA implementa-
tions.

This paper is an extended version of work presented at the
23rd IEEE International Symposium on Field-Programmable Cus-
tom Computing Machines in 2015 (FCCM’15) [11]. Additional con-
tributions and content include:

e a more detailed presentation of the chaotic properties of
Lorenz '96 and the effect of arithmetic precision and param-
eter changes on the evolution of the system (Section 4.1);

e a detailed overview of the methodology we used to deter-
mine the value representations we chose to use for hard-
ware builds (Section 4.3);

e the application of the same methodology with fixed-point
representations, and the presentation of power, precision
and performance results for the resulting builds (Section 4.7
&6);

e a more detailed performance analysis of hardware builds,
including calculations of arithmetic throughput and band-
width utilisation (Section 6.2).

2. Field Programmable Gate Arrays as specialised accelerators

Field Programmable Gate Arrays (FPGAs) are integrated circuits
whose architecture can be reconfigured. FPGAs are achieving in-
creasing visibility as an accelerator architecture, present in Mi-
crosoft, Amazon and IBM data centres — a major benefit being a
high compute-to-power ratio. Microsoft’s Project Catapult has de-
ployed FPGA accelerators into Microsoft data-centre servers where
a performance improvement of 95% in search engine scoring was
obtained relative to a software implementation running on 12-core
Intel Sandy Bridge CPUs but with a maximum power overhead
of only 22.7 W [12]. A revised accelerator architecture is now
being deployed at hyperscale in Microsoft’s production datacentres
worldwide [13].

Alternative accelerator architectures include GPUs (Graphics
Processing Units) and the Intel Xeon Phi. Performance and power
comparisons typically show highly application-dependent results
with arithmetic intensity and regularity of data access being im-
portant factors [14,15]. Given the significant power requirement
for executing climate models, our work primarily focuses on
power efficiency rather than the computational throughput of a
given device. High-performance GPUs typically have large power
requirements [16], but can be power-efficient when high compu-
tational throughput is achieved e.g. for operations such as matrix-
multiply [15]. However, finite difference computations like those
used in many weather models are typically bandwidth bound and
may only achieve a fraction of peak performance. In situations
where near peak performance of a GPU cannot be attained, FPGAs
can provide a significant advantage over GPUs in terms of energy
efficiency [16].

FPGAs typically contain reconfigurable logic blocks, random
access memory elements (Block RAM) totalling tens of MBs and
DSP (digital signal processing) elements which provide efficient
implementation of various numerical primitives. Through config-
uration of the programmable logic, arbitrary designs can be placed
on the chip provided that resource, routing and timing constraints
can be satisfied.

Conventional CPU cores contain pipelines designed for the ex-
ecution of general purpose calculations where operations in a
pipeline are dependent on an instruction stream that is unknown
until execution of a program. Although it is possible to materialise
similar architectures on FPGAs, most efficient utilisation occurs
when the architecture chosen is customised to the computation
being performed.

In an architecture designed for a specific problem, the pipeline
will only involve steps required for the calculation. Since the
pipeline is intended solely to execute a specific calculation, there is
typically no need for a fetch-decode-execute cycle or techniques
such as branch prediction or out-of-order execution which are
frequently employed in general purpose architectures. Obtaining
effective performance from an FPGA thus depends on the creation
of an architecture that can perform a given computation efficiently
rather than mapping it to a pipeline chosen in advance.

Optimised FPGA architectures typically make extensive use of
pipeline parallelism, and for compute intensive workloads, may
perform thousands of operations per cycle. This extensive par-
allelism enables FPGAs to achieve significant throughput despite
having lower clock frequencies (typically hundreds of MHz) than
conventional CPU architectures. Key to achieving efficiency is also
the choice of number representation — real numbers need not
be represented as IEEE floating-point values and using reduced-
precision floating or fixed-point representations can significantly
reduce resources, making it possible to place higher throughput
designs on a device. We exploit the ability for FPGAs to use custom
number representations in this work, by choosing representations
that possess only the precision necessary to perform calculations of
interest. In contrast, a conventional CPU is only capable of perform-
ing calculations efficiently with representations chosen during its
design.

FPGAs have previously been applied to Limited Area Models
such as BOLAM [17] and the global shallow water equations [18]
using finite difference schemes though such work has considered
short-term simulations that show only limited propagation of
model errors due to the chaotic dynamics of the atmosphere. In
this work, we consider the influence of reduced precision on a
long-term diagnostic for a system with strong chaotic behaviour.
Furthermore, the Lorenz '96 model allows us to choose the level of
precision reduction to apply at different scales, which we also ex-
plore. Previous explorations have been limited to software-based
simulations which could only be run at much smaller scale [19,20].
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The potential for FPGAs to provide highly power efficient ac-
celeration has led us to explore techniques whereby a design may
be customised to take advantage of the numerical properties of
chaotic systems that occur in climate modelling. Climate modelling
is both power and computation intensive, and effective use of FPGA
architectures could provide a significant benefit in terms of power
and cost.

3. The Lorenz '96 equations

The two-scale Lorenz '96 model was designed by Lorenz as a
simple model to study predictability in a chaotic system. Despite
its simplicity, Lorenz '96 possesses important properties of nu-
merical atmosphere models such as scale interactions and chaotic
behaviour. This makes Lorenz '96 useful for initial investigation of
techniques before application to actual climate models and other
chaotic systems [6-10]. Also, its numerical implementation has
significant similarities to widely used CFD finite difference models
in terms of the discrete grid point representation and time stepping
schemes.

The model is defined by a set of coupled equations involving K
global-scale variables (X;<x<x ), each of which is associated with a
set of J local-scale variables (Yi<j<j k):

J
ka hc
T = X = X)) = X+ F - ; Yk (1)
dy; k hc
T: = —cbYj1k(Yjrok — Yjim1,k) — Y + ka (2)
where F is a forcing term, h is the coupling constant, b is the spatial-
scale ratio and c is the time-scale ratio. Often h = 1, F = 20,
b = 10and ¢ = 4orc = 10. A time-unit in Lorenz '96,

hereafter referred to as a Model Time Unit (MTU), is considered
equivalent to 5 atmospheric days due to a comparison by Lorenz
which matched the error doubling rate to Lorenz '96 to global
circulation models [5].

Global and local-scale variables are arranged circularly (Fig. 1)
such that Xy = Xj.«, Yik = Yk and Yjk = Yj_j k1. For clarity
we show a small system; in practice we look at how to scale J
and K to hundreds of thousands. We explore how to scale both
J and K, but only run simulations with relatively small values of
J (144) since local-scale values only influence global-scale values
through a summation so larger values of J result in statistically
similar behaviour.

For simplicity we use explicit time stepping. All simulations are
temporally discretised using classical fourth-order Runge-Kutta —
a higher-order scheme that is frequently used in standard models.
It achieves high polynomial accuracy through the combination of
multiple intermediate estimates of the future model state.

The choice of time-stepping scheme can significantly impact
accelerator design. Runge-Kutta has fourth-order accuracy but
requires significantly more operations compared to less accurate
schemes. In Runge-Kutta the intermediate estimates are only used
for advancing a single timestep, and are not useful otherwise. In a
hardware design, calculation and consumption of these interme-
diate values can be pipelined, so they never need to be explicitly
stored, which could only be done off-chip. Hence, adopting Runge-
Kutta in a hardware implementation makes it possible to increase
the arithmetic intensity of a calculation without increasing band-
width requirements. By contrast, Adams-Bashforth (another ex-
plicit higher-order scheme) reuses system states from previous
timesteps in multiple future calculations which would likely force
them to be saved off-chip, increasing bandwidth requirements.

4. Precision analysis

In this section we discuss the chaotic properties of Lorenz '96
(Section 4.1), how we evaluate the correctness of a given Lorenz '96
implementation (Section 4.2), our methodology for choosing the
precision of hardware designs (Section 4.3), the implementation of
the analysis (Section 4.4), and the analysis results for the hardware
designs built in this paper (Sections 4.5, 4.6 & 4.7).

4.1. Chaotic behaviour in the Lorenz '96 system

Lorenz '96 exhibits complex wave-like and chaotic be-
haviour [21]. In chaotic systems, the trajectories of two simulations
that only differ by a small perturbation in the initial conditions will
diverge, with the mean distance between their trajectories increas-
ing exponentially in time. Eventually, the two trajectories become
uncorrelated and the mean distance will no longer increase and
converges towards a certain value that is a property of the system.

Despite this, observing the divergence rate for short-term sim-
ulations allows us to explore the sensitivity of a simulation to
changes in initial conditions, and the relative magnitude of the
effects caused by different sources of perturbation.

In this section, we will compare the divergence rates for simu-
lations with perturbations from two different sources:

1. The use of slightly perturbed model parameters.
2. The use of reduced numerical precision in one of the model
setups.

We study (1) since weather and climate models (next to many
other shortcomings such as limited resolution and complexity
and unknown initial conditions) are based on numerous model
parameters that are not known exactly such that simulations of
future weather will inevitably diverge.

To characterise the impact of this effect, we run our C++
Lorenz '96 implementation (Section 4.4) with different precisions
of floating-point variables corresponding to half, single, double,
x86-extended, quadruple and octuple precision. We run each sys-
tem from the same initial state derived by running a simulation in
double precision for 2000 iterations (1 MTU).

The average forecast error E(t) at time t for Ny simulations is
the average mean difference between the global-scale variables of
each model and a reference x™':

Nk

1 )
B0 = oy 3O X ) - ximecele)) (3)

j=1 k=1

For our experiment we choose Ny = 1 and choose K =
1000 to increase the number of variables we average over. We
cannot execute an infinite-precision reference, so we simulate in
floating point with 489-bit mantissas used for local and global-
scale quantities; we conjecture that a 489-bit mantissa would
correspond to the precision obtained by using sexdecuple precision
(64-byte) values, were they to be defined by IEEE 754. In practice,
little hardware support exists for number representations beyond
double precision. Results are shown in Fig. 2.

The precision differences result in exponential increases in er-
ror from the reference simulation. Errors reach a peak when the
two simulations being compared no longer have any correlation to
each other. Although increasing precision does reduce divergence,
this demonstrates that numerical divergence is not a useful metric
for evaluating the precision of long-term simulations of chaotic
systems.

We plot the forecast error when the Lorenz '96 parameters ¢ and
F are scaled by various values in Fig. 3. These values are chosen
to be close to one to correspond to systems where parameters
can only be estimated to within a known degree of certainty.
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Fig. 1. Visualisation of a two-scale Lorenz '96 system with ] = 8 and K = 6. Global-scale values (X} ) are updated based on neighbouring values and a reduction applied to the
local-scale values (Y] x) associated with that value. Local-scale values are updated based on neighbouring values and the associated global-scale value. The neighbourhood

topology of both the local and global-scale values is circular.

le+10
1 ,/): e % o “J;,,JJ‘”"’* ==
1e10 [ e 1
= e-10 P
= "
g le20 e 1
gn o -—
2 1e30f - 1
o
% le-40 | /ﬂxeiiy/ﬁxaxre ]
A o
< 1e50 b o7 1
g les0 P 11 (half) ——
2 y o 24 (single) ——
1e-60 F o 5 1
P 52 (double
Pt 64 (x86-extended
1e-70 ¢— 113 (quadruple) —e— 7
237 (octuple) —e—
le-80 1 1 1 1 L
0 5 10 15 20 25 30

Time (MTUs)

Fig. 2. Forecast error for Lorenz '96 run with different mantissa sizes for both
local and global quantities. ] = 120, K = 1000, F = 40,b = 10 and ¢ = 10.
All systems were initialised from the same starting state derived by spinning up
the system for 2000 iterations (1 MTU) in double precision. Divergence between
simulations increases exponentially for all precisions, so we cannot determine what
is an acceptable level of numerical precision based on this metric.

Again we use 489-bit mantissas for representing local and global-
scale quantities. Parameter uncertainties are known to be large for
atmospheric applications and 10% uncertainties are not unreason-
able [22].

We find that the rate at which forecast error increases due
to parameter variation is much greater than that due to changes
in arithmetic precision for most of the representations used in
Fig. 2. For example, after 1 MTU the forecast error of the Lorenz '96
simulation with c and F scaled by 1— 107 is 7.48e —2, whereasiit is
8.84¢ — 6 for the single-precision implementation with unaltered
parameters. This suggests that we can significantly reduce the
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Fig. 3. Forecast error for Lorenz '96 run with parameters ¢ and F multiplied by
various coefficients. All systems were initialised from the same starting state de-
rived by spinning up the system for 2000 iterations (1 MTU) in double precision. In
comparison to Fig. 2, the rate of divergence caused by changes in system parameters
is significantly higher. Note that both the x and y scales are different from Fig. 2 due
to the higher rate of increase and magnitude of the divergence. Simulations were
performed using 489-bit mantissas for both the local and global quantities (once
spin-up was complete).

precision at which a Lorenz '96 simulation is run below that of
double or single-precision arithmetic with a change in behaviour
comparable to that attributable to parameter uncertainty.

We will consider it acceptable for Lorenz '96 simulations to
diverge numerically to the extent attributable to parameter uncer-
tainty. Since Lorenz '96 exhibits non-linear behaviour, the average
forecast error is only useful for evaluating short term simulation
quality. To evaluate longer term behaviour, we use the Hellinger
distance, described in the next section.
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4.2. Comparing the long-term dynamics of Lorenz '96 simulations

We use a metric based on the long-term statistical behaviour
of the system to compare the similarity of Lorenz '96 simulations
in the remainder of this paper. This metric is based on the clima-
tology of Lorenz '96 which is typically defined as the probability
density function (PDF) of the X variables, averaged over a long run:
10,000 model time units, equivalent to more than 100 atmospheric
years [5]. We note that at least 30 years of weather statistics
are typically considered necessary to assess climate and that one
Lorenz 96 MTU is considered to correspond to 5 atmospheric days
(Section 3). The short term behaviour and correlation of model
fields in time will not be considered in such an evaluation. How-
ever, we found that results for metrics of short term simulations,
such as the forecast error from the previous section, were consis-
tent with metrics that are based on the climatology. For assessing
simulation accuracy, we compare the PDFs of both local and global-
scale variables since we wish to optimise representations for both
of these quantities.

We note that the PDF may at first appear to be an overly
simple metric for determining whether the long-term dynamics of
aprecision-reduced Lorenz '96 system are correct. Although Lorenz
’96 is only an idealised model to study atmospheric dynamics, the
simulation still corresponds to a time-discretised approximation
of a continuous system described by a set of partial differential
equations. In both Lorenz '96 and real atmospheric simulations,
each successive state is highly correlated with the previous one,
and we know by construction that each state is derived through
application of the Runge-Kutta discretised Lorenz '96 equations.
Hence the modified system being compared is fundamentally
constrained and the mechanisms whereby such a system could
manifest the correct PDF yet be functioning incorrectly are highly
limited.

The PDFs of the global-scale variables of a Lorenz '96 system
can only be constructed through sampling large numbers of un-
correlated system states, and so is a characterisation of long-term
dynamics. We note that the PDF of Lorenz '96 is therefore an
emergent property of the system. Most importantly, the PDF of
Lorenz 96 is non-trivial to construct — it does not correspond to
a Gaussian or simple geometric function [6]. This, combined with
the non-linear and chaotic behaviour of Lorenz '96, would magnify
any changes in short-term dynamics and makes it extremely im-
probable that any alteration in either short or long term dynamics
would not manifest in changes to the PDF of global-scale values.

The PDFs of global-scale values in Lorenz '96 are considered to
be a useful metric for determining correct dynamics in the climate
modelling community. To this end, they are often used to analyse
veracity of new approaches to parametrisation techniques that are
studied in Lorenz '96. Parametrisation techniques approximate the
effects of unresolved variables in terms of larger-scale, resolved
variables e.g. replacing the summation of Y in Eq. (2) by some
function of the X variables to avoid having to store or compute on Y
(see for example [6]). In contrast, we do not go as far as altering the
Lorenz 96 equations themselves, only the precisions of the values
used.

A metric often used to compare PDFs is the Hellinger distance
(see for example [23]). We adopt the Hellinger distance metric for
comparing simulations of Lorenz '96. For two probability distribu-
tions p and q, the Hellinger distance H is defined as:

HEp. ) = \/ 5 [ (V0 - Vaw) @)

Calculating the Hellinger distance between two simulations
allows us to quantify the statistical similarity between them. Since
the Hellinger distance is a comparison of long-term dynamics, we

expect two simulations with differing initial conditions but the
same parameters to have a Hellinger distance close to zero.

In practice, an empirical measurement of the Hellinger distance
between two simulations with identical parameters but differing
initial conditions will be non-zero. We use this value as a baseline
for estimating when two simulations exhibit the same statistical
behaviour.

By varying the parameters of Lorenz '96, we can also calculate
Hellinger distances that correspond to the change in behaviour
due to changes in parameters to the system. Measurement of
real-world parameters for weather modelling are limited by the
accuracy and availability of observations from weather instrumen-
tation and therefore subject to uncertainty. By varying Lorenz '96
parameters and measuring the increase in Hellinger distance, we
can quantify the change in statistical behaviour that might be
considered as being insignificant in comparison due to parameter
uncertainties that generate significant model error.

In the following, we will compare Hellinger distances for simu-
lations with reduced precision against Hellinger distances for sim-
ulations with parameter changes and differing initial conditions.

4.3. Precision reduction methodology

Reducing calculation precision enables the reduction of hard-
ware resource utilisation, permitting instantiation of additional
functional units for increasing throughput. For the Lorenz '96 sim-
ulations, we wish to determine the extent to which we can increase
throughput while maintaining an acceptable level of accuracy.

We consider both reduced-precision floating point and fixed
point. We do not attempt to optimise each intermediate value in
our pipeline; rather, we investigate the effects of precision reduc-
tion on terms associated with the global and local-scale quantities
of Lorenz '96. Diiben et al. have shown for an atmosphere model
that the precision to calculate small-scale dynamics can be reduced
much further than the precision for large-scale dynamics with a
smaller influence on model results and forecast quality [20].

We show our methodology in Fig. 4. Each step corresponds to
this paper as follows:

1. We modify a CPU implementation of Lorenz '96 to sup-
port alternative representations for real values. We describe
these changes in Section 4.4.

2. We use the modified Lorenz '96 implementation to profile
exponent ranges for local and global-scale quantities. This is
described in Section 4.5.

3. We use the original CPU implementation to determine what
Hellinger distances we expect between uncorrelated Lorenz
'96 simulations with the same parameters, and between
Lorenz '96 simulations with altered parameters. This is de-
scribed in Section 4.6.

4. We run CPU-based simulations of Lorenz '96 with local
and global-scale values represented using different value
representations. For fixed point, we use the exponent ranges
to choose the binary point offset. From these simulations, we
produce a mapping between different value representations
and the expected Hellinger distance from a reference simu-
lation. This is described in Sections 4.6 and 4.7.

5. We use the Hellinger distances calculated in step 2 to choose
what precisions to use for hardware builds (Sections 4.6
and 4.7).

6. We evaluate the performance and power utilisation of our
hardware builds and compare Hellinger distances against
those estimated in step 2 (Section 6).

Please cite this article in press as: F.P. Russell, et al., Exploiting the chaotic behaviour of atmospheric models with reconfigurable architectures, Computer Physics

Communications (2017), http://dx.doi.org/10.1016/j.cpc.2017.08.011.




6 F.P. Russell et al. / Computer Physics Communications I (1HEN) IRI-EER

Convert
to arbitrary
precision

Lorenz '96 CPU
implementation

Profile
value

Arbitrary precision
Lorenz’96

ranges

L

Compute
Hellinger
distances

Acceptable
Hellinger distances

Exponent range
histogram

!

Build
hardware
designs

Hardware builds

Precision, power and
performance results

Simulate
using different
value
representations

Value-precision to
Hellinger distance
mapping

Fig. 4. Our methodology for determining the precision of Lorenz '96 hardware builds. CPU-based simulations are used to determine acceptable Hellinger distances and the

expected Hellinger distances of hardware builds at various levels of precision.

4.4. Implementation

We extended the Lorenz '96 C++ implementation to support re-
duced precision in floating and fixed point. To match the hardware
implementation of floating point, we require behaviour equiva-
lent to IEEE 754 with round-to-nearest, no denormalised value
support and non-standard mantissa lengths. We originally used
an arbitrary precision library but required higher performance for
long runs so we approximated reduced precision with round-to-
nearest, tie-to-even behaviour through bit manipulation of double-
precision values. Since we have no access to the “sticky” bits
of the underlying implementation, we will sometimes invoke tie
behaviour when a correct implementation would round. We note
that the rounding mode has significant impact on the behaviour
of this model at low precisions. Using truncation resulted in larger
Hellinger distances at lower precision. A previous implementation
used round-to-nearest, tie away from zero rounding behaviour
(which is not an IEEE 754 rounding mode but is unbiased and was
efficiently implementable). However, this resulted in generation of
NaNs (not a number) due to the magnitude of coefficients being
repeatedly increased via rounding and therefore could not be used
for simulations.

For fixed point, we emulate round-to-nearest behaviour with
ties rounding away from zero. We note that this behaviour is sig-
nificantly less problematic for fixed-point implementations than
floating-point ones — larger values are less affected by rounding
than smaller ones due to the non-normalised representation. If we
attempted to optimise the fixed-point representation used at the
granularity of each intermediate value we expect we would need
to correctly emulate tie behaviour.

Since the hardware and reduced-precision CPU implementa-
tions differ in order and implementation of arithmetic operations,
the results from each will diverge. Also, the chaotic nature of
Lorenz '96 causes even tiny perturbations to lead to divergence.
However, we can use the CPU implementation as a tool to analyse
the effect of different local and global-scale value mantissa widths
on the Hellinger distance.

4.5. Exponent profiling

Runtime profiling of floating point exponent values in the CPU
simulation was performed for 8000 time-steps (Fig. 5). Results
suggest that base-2 exponent values of up to 10 and 11 are required
to capture the largest global and local-scale values, respectively.

For our floating-point hardware implementation, the distribu-
tion indicates that exponent widths of 5-bits for both global and
local-scale values can represent the majority (> 99.999%) of values
generated during a simulation. Exponents for custom floating-
point types in our hardware design are represented in a biased
manner similar to those in IEEE 754, so an exponent field of width
5 can represent exponents in the range —14 to 15, inclusive. As
in IEEE 754, the lowest exponent is reserved for representing zero
(denormal numbers are unsupported by our hardware synthesis
toolchain) and the highest exponent used for representing NaNs
and infinities.

We also use these analyses to determine the ranges of the fixed-
point representations. In hardware, fixed-point values have a two’s
complement representation with a shifted binary point. We choose
offsets (the number of bits to the left of the binary point excluding
the sign bit) of 11 and 12 for the global and local-scale values,
respectively, which provides leeway for representing double the
maximum magnitudes observed in the CPU simulations.

4.6. Floating point analysis

We plot the Hellinger distances between the PDFs of the el-
ements of the global and local-scale states against a double-
precision implementation (Fig. 6). We see expected behaviour
— that reduced precision leads to greater error. Although the
probability distribution of global-scale values appears minimally
affected by the use of small (< 8 bits) mantissas for local-scale
values, this is misleading since the probability distribution of local-
scale values has been significantly altered. The results also confirm
previous work [20] which concludes that the precision of values at
different scales can be optimised independently, which is impor-
tant for scaling our analysis to more complex models.

To determine the extent to which precision can be reduced, we
must choose an acceptable Hellinger distance. We vary ¢ and F in
order to determine the Hellinger distances that correspond to a
chosen levels of uncertainty in the model parameters. The abstract
nature of Lorenz '96 means that parameters cannot be compared
directly to a full atmospheric circulation model so it is necessary
to make estimates regarding what constitutes realistic levels of
uncertainty.

The coupling parameter ¢ can be interpreted as an internal
model parameter that is responsible for the coupling between pro-
cesses (such as the surface layer drag in climate models). Parameter
F can be interpreted as boundary condition (such as CO, forcing
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Fig. 5. Exponent (base-2) distributions for global and local-scale values derived
from CPU simulation with F = 40, b = 10 and ¢ = 10. The profile includes all
intermediate values calculated in the specified precision.

Table 1

Hellinger distances (4 significant figures) between a double-precision simulation
and the same with different initial conditions (averaged from five runs) and altered
parameters.

Run H (global) H (local)

Changed initial conditions 2.788e—3 1.939e—4
¢ x0.99,F x 0.99 4.605e—3 1.505e—3
¢ x 1.01,F x 1.01 5.042e—3 1.719e—-3
cx09Fx09 4.047e—2 1.625e—2
cx1.1,Fx 1.1 3.620e—2 1.415e—2

Simulations were run for 3,750,000 timesteps with ] = 144 and K = 2000.

in the atmosphere or the heating rate of a combustion engine
in Computational Fluid Dynamics). Parameters b and h remain
untouched in our tests to keep the complexity of the tests lim-
ited. It is a realistic assumption that some model parameters will
be uncertain (e.g. viscosity and cloud parameters in atmospheric
models) while other parameters are known with high certainty
(e.g. heat capacity).

We calculate Hellinger distances between the double-precision
reference, the same with changed initial conditions, and with ¢ and
F altered by 1% and 10% (Table 1). For reduced-precision floating
point we estimate minimum mantissa widths (Table 2). We assume

Table 2
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(a) Global-scale distance.
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0.00
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(b) Local-scale distance.

Fig. 6. Hellinger distances (smaller is better) for X and Y state values between a
double-precision CPU implementation and the CPU implementation using reduced-
precision floating point for local and global-related values. F = 40, b = 10, ¢ = 10,
J = 64, K = 2000 and the simulation was run for 3,750,000 time-steps with the
state sampled every 1000 time-steps. In Lorenz '96, local-scale values only influence
global scale values via summation, which is why the Hellinger distance for global-
scale values does not increase significantly when local-scale values use mantissa
widths less than 10 bits, despite the loss of correct local-scale dynamics.

that a change of c is a good representation for parameter uncer-
tainties while a change of F is a good representation for uncer-
tainties in boundary conditions. We consider 1% to be realistic for
most numerical models in Computational Fluid Dynamics where
uncertainties are low and 10% to be reasonable for atmospheric
applications where uncertainties are large due to the complexity
of the Earth system [22].

4.7. Fixed point analysis

In order to perform the fixed-point analysis, we must first
choose the binary point offsets of the fixed-point representations
used for local and global-scale values. We require that the binary
point offsets are sufficient to allow the largest local and global-
scale values to be represented. The largest values we have observed

Estimated minimum floating point mantissa sizes for local and global scale values required to produce a similar Hellinger distances to the corresponding simulations in

Table 1.

Corresponding run Estimated H (global)

Estimated H (local)

Estimated min.mantissa (global) Estimated min.mantissa (local)

Changed initial conditions 2.772e—-3 1.587e—4
¢ x 0.99,F x 0.99 3.153e-3 7.094e—4
¢ x 1.01,F x 1.01 3.153e—3 7.094e—4
cx09Fx0.9 3.612e—2 1.108e—2
cx1.1,Fx1.1 3.612e—-2 1.108e—2

15 12
13 10
13 10
11 9
11 9

We estimate minimum mantissa widths required to produce a simulation with smaller global and local-scale Hellinger distances than those in Table 1. Where multiple
combinations of global and local-scale mantissa lengths satisfy the requirements, we choose the configuration with the smallest combined mantissa length. The Hellinger
distances shown are our estimates of those that will be produced by the corresponding hardware build.
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Table 3

Estimated minimum fixed point significand width for local and global scale values required to produce similar Hellinger

distances to the corresponding simulations in Table 1.

Run H (global) H (local) Est. min. bits (global) Est. min. bits (local)
Changed initial conditions - - - -

¢ x 0.99,F x 0.99 3.589e—3 3.957e—4 24 26

¢ x 1.01,F x 1.01 3.589e—3 3.957e—4 24 26

¢ x09Fx0.9 3.589%e—3 3.957e—4 24 26

cx1.1,Fx1.1 3.589e—3 3.957e—4 24 26

We estimate minimum fixed point mantissa widths required to produce a simulation with smaller global and local-scale
Hellinger distances based on the results from CPU simulation. Where multiple combinations of global and local-scale
significand lengths satisfy the requirements, we choose the configuration with the smallest combined significand length.
The Hellinger distances shown are our estimates of those that will be produced by the corresponding hardware build.
Even our highest-precision fixed-point simulation (64-bits for local and global-scale significands) does not satisfy the
requirement of lower global and local-scale Hellinger distances than those in Table 1 for a simulation with changed
initial conditions.
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0.24
0.12
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I
&
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(a) Global-scale distance.
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0.45
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local-scale width (bits)

20 30 40 50 60

global-scale width (bits)

(b) Local-scale distance.

Fig. 7. Hellinger distances (smaller is better) for X and Y state values between a
double-precision CPU implementation and the CPU implementation using fixed-
point representations for local and global-related values. F = 40, b = 10, ¢ = 10,
J = 64, K = 2000 and the simulation was run for 1,875,000 time-steps with the
state sampled every 1000 time-steps.

for local and global scale exponents are 11 and 10, respectively.
We increase these by two to account for both representation of
the implicit bit in floating point, and to provide some room for
representing values outside the range observed. Unlike for floating
point, we have no means to detect that an overflow situation has
occurred. In a more robust implementation we might signal the
host system to handle overflows in software.

In the same manner as the floating-point analysis, we plot
Hellinger distances between the PDFs of the elements of the global
and local-scale states against a double-precision implementation
(Fig. 7). Similar to the floating-point simulations, there is a clear
range of representations at which behaviour of the system entirely
breaks down.

Using our fixed-point CPU simulations, we estimate the number
of bits required for each value type in order to achieve various
Hellinger distances (Table 3). In contrast to the floating-point case,
we find that above the range that behaviour breaks down, adding
additional bits does not strongly correlate with improved Hellinger
distances. Corresponding, we end up choosing the same significant
widths for all potential fixed-point designs.

Since we have not attempted to optimise fixed-point represen-
tations at the level of intermediate values, the width of significand
required is primarily a function of value range rather than preci-
sion. We theorise that above 26 bits, wider significands are con-
tributing useful precision to only the smallest values represented
in the simulation.

Although we fail to find a fixed-point representation for which
we consider the simulation to have identical or greater precision
to the reference simulation, we note that the desired Hellinger
distances are of similar magnitude to the estimated Hellinger dis-
tances of the design we choose to build.

5. Architecture
5.1. System overview

The entire Lorenz '96 Runge-Kutta update is moved to a hard-
ware accelerator. The system state is copied from host memory to
the accelerator’s off-chip memory prior to computation. Arbitrary
numbers of Runge-Kutta updates can be performed with the sys-
tem state sent back to the host when needed.

All computations are moved to hardware, but host involvement
remains during updates. Memory controller commands are sent by
the host to the accelerator during computation since data access
patterns for multiple iterations (Section 5.6) are expensive to com-
pute in hardware. The data-volume is small, so transfer time is not
a limiting factor.

The structure of our design is shown in Fig. 8. The padding/
stripping steps add/remove padding needed to satisfy mem-
ory controller constraints on read/write sizes. The deinter-
leave/interleave steps split/combine the X and Y state so that
sending an X element can be synchronised with sending the first
element of the associated Y state. Each Runge-Kutta step is imple-
mented by a single kernel, computing the updated partial X and Y
states and intermediate values.

5.2. In-memory representation

We treat the state of a Lorenz '96 system as a matrix (Fig. 9).
The matrix is flattened to memory in column-major order so
that all Y values associated with a particular X value are located

Communications (2017), http://dx.doi.org/10.1016/j.cpc.2017.08.011.
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Fig. 8. The hardware structure of a Runge-Kutta time-step for Lorenz '96. X" and

Y" represent the state of the system at time-step n. kf‘ and k,.Y represent the ith
Runge-Kutta increment for the X and Y states, respectively. Expressions containing
the factor g represent intermediate values in the computation of X"*! = X" 4
BUkY +2k5 +2k5 + k) and Y"1 = B(kY +2KkY + 2k% + kY). All other expressions
are Runge-Kutta estimated slopes. Note that the pipeline is linear flow, and that the
snaking nature of the figure is solely to maximise space utilisation.

contiguously in memory. We interleave the Y and X state such that
each X-value is located before the associated Y values.

5.3. Data path
For clarity, we describe the Runge-Kutta method for calculating

Yn+1 from y, given the function f that calculates the gradient of y
at t such that % =f(t,y):

h
Ynt1 =Yn + 6(k1 + 2k + 2k3 + ky) (5)
where:
kl :f(tna yn)
ky = f(ty + 0.5h, y, + 0.5hk;) ©
ks = f(ty + 0.5h, y, + 0.5hk;)
ky = f(ty + h, yn + hk3).

The kernels for each Runge-Kutta step are similar but differ in
the number of inputs and outputs (e.g. all steps except the first
take an input containing intermediate values of X"*! and Y"*1).
Each step is specialised to avoid unnecessary computation and
communication. X and Y remain deinterleaved during processing,
but are synchronised so that each X entry is sent/received by
kernels simultaneously with the first element of the associated Y-
values.

In our design, all values are stored in off-chip memory as IEEE
754 single-precision floating-point values. Global and local-scale
quantities are converted to and from lower precision in the “dein-
terleave” and “interleave” kernels, respectively (Fig. 8).

All intermediate values such as derivatives and slope estimates
are maintained in the same precision as the associated X or Y

X1 Xy - Xk
0 0 o 0
Yip Yip -+ Yigk
You Yoo -0 Yog
Yo Yo - Yk

Fig. 9. State of the Lorenz '96 system arranged as a matrix. Each column contains
a single X element and all Y elements associated with the X element. Each column
may contain zero or more padding elements after the X element due to vectorisation
(Section 5.5).

state. For the summation of Y elements needed by the X-derivative,
we use an accumulator of the same type as the X elements for
improved precision.

5.4. Boundary conditions

Calculation of the X and Y derivatives both involve stencil oper-
ations with circular boundary conditions. These are problematic to
implement since a value to be computed may require information
from both the start and end of a stream.

The most significant impact on the design is caused by the X
stencil, which requires access to elements from X;_, to X1 to
update X;. Since X and Y are coupled (and interleaved), anything
that causes buffering of an element of X; will require buffering of
the column Y, x which is undesirable for large J.

The Lorenz '96 state can be visualised as a matrix (Fig. 9)
containing both X and Y. We will call the previous Lorenz '96 state
S and the new state S’. Three types of value propagate through the
Lorenz '96 hardware pipeline — the original state (S), the partially
computed value of S’ and the Runge-Kutta increments. For ease
of reference, we will call the composite intermediate state which
enters each Runge-Kutta hardware block ST. In practice, S* is
carried by multiple streams between hardware blocks. For the first
Runge-Kutta hardware block, ST = S and consists of two streams
carrying X and Y, but for later blocks multiple input streams are
used and each element of S* logically corresponds to a tuple of
values. Hence, buffering a column of S* corresponds to buffering Jn
values where n depends on the particular Runge-Kutta hardware
block in question.

Handling of stencils in our design is done via two strategies:

5.4.1. Buffering

Since the calculation of dX; has a dependency on Xj.; (which
will be read after Xp), the value of dX; cannot be output until this
value has been received. To ensure that X and Y remain in sync
throughout the pipeline (Fig. 8) this requires each Runge-Kutta
hardware block to buffer a column of S*.

5.4.2. Pre-reading

The calculation of dX}, also has dependencies on X}_; and X;_»
(which will be read before X; ). If we start reading the system state
at k = 1, then the first result we can output will be for k = 3
since we do not have access to the values Xx_; and X to calculate
dX; and dX;. As a consequence of this, each Runge-Kutta hardware
block induces a “rotation” of the system in K of size 2. Hence,
an entire Runge-Kutta update causes the Lorenz '96 system to be
rotated by a factor of 8. Since the system is circular, this has no
impact on the calculation and can be undone by the host after the
system state is copied back.
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This rotation to the system means that the values dependent on
dX; and dX; appear at the end of the stream after the first Runge-
Kutta intermediate update. Again, to ensure that X and Y remain
in sync, this would appear to require each Runge-Kutta hardware
block to buffer two columns of S*. Instead we implement a strategy
of pre-reading, whereby we read some of the initial columns of the
system state twice.

Each Runge-Kutta hardware block requires that two columns
be read twice, meaning that an entire Runge-Kutta update requires
that 8 columns be pre-read. On the first read, each Runge-Kutta
hardware block discards the Y-associated components of S, and
S;7,. The second time S;", and S, are received, they are used for
computation.

The first Runge-Kutta block receives S/, ...S, Sy, .5 5.
The second receives S/, ...S7 ., S, ...} ;. The final receives S,
S5 S, ...S}g and produces S g, ...S] . S, ...S. . Each hard-
ware block produces 2 less columns of S™ than it receives. Hence,
all Runge-Kutta blocks receive more data than strictly necessary
but the final block produces output of the correct size.

5.5. Vectorisation

To maximise throughput we vectorise handling of the Y state
(by creating multiple in-kernel data-paths). Alternatively we could
have replicated the Runge-Kutta pipeline, but the vectorisation
approach has a number of benefits (described later).

Our design is constructed such that we can choose an arbitrary
vector length v, representing the number of elements read from a
Y-related stream in a single cycle (though the memory controller
places limitations on this since only certain read sizes are efficient).
We enforce the requirement thatJ is a multiple of v,.

The arithmetic required to implement the Y-derivative calcula-
tion is duplicated v, times. Since we do not duplicate the pipeline,
we generate no additional counters nor communication channels
between kernels. Most importantly, the sizes of the buffers re-
quired to store and delay Y-related values are nearly independent
of v, so increasing v, has minimal effect on on-chip memory usage.

Calculation of the X-derivative involves a summation over each
column of Y. We implement an accumulator that accepts one
element per cycle, which is relatively costly in terms of adders.
With vectorisation we avoid duplicating the accumulator; instead
we use another v, — 1 adders to sum the vector elements for input
to the accumulator.

One overhead incurred is that each X-state element must be
padded to v, elements. For an arbitrary system, this means that the
fraction of padding of an in-memory representation of the system
will be “";11 . For a typical value of ] = 128, a system where v, = 8
will consist of 5.4% padding and where v, = 16, it will have 11.6%
padding.

5.6. Multiple iterations

We can perform multiple Lorenz '96 time-steps with only a sin-
gle invocation from the host machine. As described in Section 5.4,
a “pre-read” region is read at both the start and end of a time-step
update. Therefore, the pre-read region cannot be overwritten until
it has been read both times.

The memory controller requires all reads and writes to have
sizes and occur at addresses which are multiples of a burst size (384
bytes). During a time-step update, the new state is written starting
at the first burst that does not contain any pre-read data, causing
the start of the Lorenz '96 state to move forward in memory each
time-step.

The Lorenz '96 state is padded to the memory controller’s burst
size and circular addressing is used so that the flattened represen-
tation of the system state (including padding) “rotates” in memory

start of system
padding

Before Iteration

G [ % [C]C [ - [ko|%k1]% I

pre-read regions

After Iteration HCK | Cy | Coy 1\04 | Cs | Cg | C7 |[

start of updated system

padding

Fig. 10. Rotation of the Lorenz '96 system state caused by a single time-step update.
We show a rotation by 3 columns rather than the actual 8. Shaded areas indicate the
pre-read regions. Dashed lines indicate burst size aligned addresses. The updated
state is written in front of the pre-read region causing the flattened state to rotate
in-place. The size of the pre-read region is the minimum burst size multiple capable
of holding the number of columns to be pre-read.

by multiples of the burst size; rotation is undone by the controller
on state transfer to the host. Fig. 10 illustrates the memory layout
transformation caused by the first time-step.

6. Results

Hardware simulations' were performed on a Maxeler MAX3A
Vectis Dataflow Engine (DFE) which contains a Xilinx Virtex-
6 SX475T FPGA and 24 GB of DDR3 RAM (distinct from CPU-
accessible memory). The SX475T has approximately 4.7 MB of
dedicated on-chip memory. Connection to the host was via PCI
express. All designs were compiled to run at 150 MHz. All designs
were written using the Maxeler’s Max] language and compiled
with version 2013.2.2 of Maxeler’s MaxCompiler.

The host machine for the MAX3A card (denoted “System 1”) was
a hyper-threaded four-core Intel Core i7 870 running at 2.93 GHz
with 8 MB L3 cache, 16 GB RAM and a single MAX3A Vectis card.
Total idle power consumption of 93 W.

Four floating-point and two fixed-point DFE designs were built
for benchmarking and precision analysis. For floating point, de-
signs were built at single precision, one at the precision estimated
necessary for similar accuracy to single precision and two at the
precision level estimated to have errors of the same order of magni-
tude as those caused by 1% uncertainty in the input parameters. For
fixed point, two designs were built at the precision level estimated
to have errors of the same order of magnitude as those caused by
1% uncertainty in the input parameters.

The vector width (v,) of a build controls how many Y-related
elements we can read and write per tick. Aside from resources,
vy is also constrained by the memory controller. An individual
stream to/from DRAM can read/write a maximum of 192 bytes
per cycle. Other read and write sizes are possible, but must be
perfectly divisible into 192 for there not to be a massive increase in
design complexity. We store values in 32-bit floating point, so are
constrained to vector sizes that are perfectly divisible into 48.

Our architecture requires that J be chosen to be a multiple
of the vector width. To enable comparison with the Hellinger
distances in Table 1, designs FLOAT3 and FIXED1 were built with a
reduced vector width. FLOAT3 and FIXED1 can be run with ] = 64
permitting comparison with the CPU simulations but FLOAT4 and
FIXED2 cannot since 64 is not divisible by the vector width (24).

All designs (except FLOAT3 and FIXED1) were compiled with
the maximum supported vector width (Table 4). The notation
float(e, m) denotes a floating-point type with an e-bit exponent
and m-bit mantissa, including the implicit bit. The notation Q(n,

1 Throughout this section we use the term “simulation” in the scientific sense.
All timing and power utilisation results were collected through execution on actual
hardware.
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Table 4

Precision, vector widths and resource utilisation of Lorenz '96 DFE builds.

Build Global-scale Local-scale Vector Utilisation (%)
type type width
Logic DSP BRAM
FLOAT1 float(8, 24) float(8, 24) 8 55.00 48.16 2425
FLOAT2 float(6, 15) float(5, 12) 16 69.85 32.84 28.67
FLOAT3 float(5, 13) float(5, 10) 16 64.28 32.84 27.63
FLOAT4 float(5, 13) float(5, 10) 24 79.15 47.92 33.74
FIXED1 Q(11,12) Q(12,13) 16 41.87 63.00 28.95
FIXED2 Q(11, 12) Q(12, 13) 24 49.31 93.15 36.61
Table 5 Table 6
Hellinger distances (4 significant figures) against a double-precision CPU Speed-up factors.
implementation. Build Speedup (3 significant figures)
Build ] =64 J =144 FLOAT1 (DFE, single precision)
H (global) H (local) H (global)  H (local) FLOAT1 1.00
Changed initial cond.  2.788e—3  1939%e—4  7.029e—3  6.291e—4 FLOAT2/FLOATS/FIXED1 1.90
¢ % 0.99, F x 0.99 4605e—3  1505e—3  1.399e—2  1.726e—3 FLOAT4/FIXED2 246
¢ x 1.01,F x 1.01 5.042e—3 1.719e—3 1.067e—2 1.861e—3 Speed-up factors relative to a single-precision DFE implementation. ] = 144 and
cx09Fx09 4.047e—2 1.625e—2 1.167e—1 1.487e—2 K = 819,200.
cx1.1,Fx 1.1 3.620e—2 1.415e—2 8.826e—2 1.236e—2
FLOAT1 2.934e—3 2.881e—4 7.472e—3 1.180e—3
FLOAT2 2.776e—3  2707e—4  4320e-2  2.443e-3 We note that for the case | = 144, FIXED1 and FIXED2 have
i tgﬁi ;-/2/:376—3 ‘;/7:23_4 ;-igze—g }-gége—g identical Hellinger distances in contrast to FLOAT3 and FLOAT4
404e— .005e— . . . ) .
FIXED1 3123e—3  2361e—4  2321e—2  1885e—3 whlch do.not. C.hangmg.the vector w1d.th of a Lorenz '96 ﬂoqtl.ng—
FIXED2 N/A N/A 2321e—2  1.885e—3 point design will cause it to produce different results, even if it is

F = 40,b = 10,c = 10,J] = 120, K = 2000 and the simulation was run for
3,750,000 time-steps with the state sampled every 1000 time-steps. Results are
provided for both | = 64 (as in Table 1) and J = 144. Since | must be a multiple of
the vector width we cannot calculate Hellinger distances for FLOAT4 where ] = 64.

m) denotes a fixed-point format with n integer bits (excluding the
sign bit) and m fractional bits so that Q(11, 12) corresponds to a
fixed-point type represented by 24 bits.

The maximum value of | each design could support was re-
duced to 512 since larger values are of minimal interest to climate
scientists and this improves the chances of routing. FLOAT2 was
compiled with a 6-bit exponent for global-scale values due to
restrictions on mantissa-exponent size combinations imposed by
the Maxeler tools. We compiled a design using float(5,13) for both
global and local-scale values with a vector width of 16 and a
maximum value of ] of 128,000, demonstrating we can scale ] much
higher if necessary.

6.1. Precision

We calculate the Hellinger distances for the local and global-
scale state variables between each DFE implementation and a
double-precision CPU implementation (Table 5).

For ] = 64, FLOAT1 and FLOAT2 have Hellinger distances
similar to those seen between double-precision simulations with
changes to the initial conditions. FLOAT3, which has the lowest
precision, exhibits a Hellinger distance comparable to that caused
by a 1% variation in ¢ and F (Table 1). FIXED1 (which has the
same throughput as FLOAT3) exhibits lower Hellinger distances,
particularly for local-scale values.

We also show Hellinger distances for ] = 144 (the least
common multiple of vector widths used that is > 128). For FLOAT4
our Hellinger distances are outside those expected by varying input
parameters by 1% (we expect larger distances due to having opti-
mised for a different J) but within those expected by 10% variation.
FIXED2 shows significantly lower Hellinger distances compared to
FLOAT4 in the case that] = 144. Whilst these are larger than those
expected by varying the input parameters by 1%, they have similar
magnitudes and are much less than those expected by varying the
input parameters by 10%.

built at the same precision, due to the non-associativity of floating-
point addition. Changing the vector width of a Lorenz '96 fixed-
point design will not change the result since the associativity of
addition is preserved with the fixed-point representation.

Although our fixed-point design has improved accuracy com-
pared to a floating-point design with the same throughput and
similar resources, it is difficult to make claims regarding the suit-
ability of fixed point versus floating point for chaotic models. Un-
like floating point, where the value bit-width correlates with pre-
cision, the width of the fixed-point implementation most strongly
correlates with value range since we do not have the ability to
optimise each fixed-point value to the dynamic range of the values
it represents.

We do observe in the floating-point implementation that in-
creased mantissa sizes lead to improved Hellinger distances. In
contrast, in the fixed-point implementations, once the width of
fixed-point values are sufficiently high for the system to not behave
incorrectly, increased width does not appear to reduce Hellinger
distances further.

6.2. Performance

We compare performance between different DFE builds
(Fig. 11) with computational throughput and bandwidth shown in
Table 7 and speedup factors shown in Table 6. FLOAT3 is excluded
since FLOAT4 has the same precision but also higher throughput
-FLOAT3 was built to enable a Hellinger distance comparison with
the original CPU-based estimates which used ] = 64 which FLOAT4
does not support due to its vector width.

For reporting arithmetic throughput, we calculate the number
of operations required to perform a single time-step of Lorenz '96
using Runge-Kutta time-stepping as: JK(15m + 23a) + (19m +
23a)K + 21m, where a and m represent performed additions and
multiplies.

6.3. Power consumption
We measure the power requirements of the FPGA imple-

mentations on system 1. Total workstation power consumption
was measured when running each implementation in different
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Table 7
Computational and memory throughput (3 significant figures) for CPU and DFE implementations.
Build Throughput (elements/s) GFLOPS Valuable Band-width (GB/s) Actual Band-width (GB/s)
FLOAT1 (System 1) 1.14e9 43.5 9.16 9.54
FLOAT?2 (System 1) 2.17e9 82.7 17.4 19.1
FLOAT4/FIXED2 (System 1) 2.81e9 107 225 25.9

Actual bandwidth refers to the combined rate of communication to and from DRAM. Valuable bandwidth refers to the rate of communication assuming that the amount of
data communicated is twice the system size (one read, one write). Valuable bandwidth on the FPGA is reduced compared to actual bandwidth due to the need for padding.

Table 8

System throughput, total power consumption and efficiency (3 significant figures) for CPU and DFE implementations.
Build Throughput (elements/s) Power (W) Efficiency (elements/]) Relative Efficiency
FLOAT1 (System 1) 1.14e9 137 8.35e6 1.00
FLOAT2 (System 1) 2.17e9 143 1.52e7 1.82
FLOAT4 (System 1) 2.81e9 146 1.92e7 2.30
FIXED2 (System 1) 2.81e9 144 1.95e7 233

Throughput is specified in updated elements per second where an element is a single scalar from the Lorenz '96 state

produced by a full Runge-Kutta update.

Relative efficiency uses FLOAT1 (the single-precision DFE implementation) as the baseline.

4.5 x 10° ‘ ‘
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FPGA (FLOAT1
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e
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Fig. 11. Throughput of DFE implementations in elements/second for ] = 144 and
varying values of K. We use the term element to refer to a single scalar from the
Lorenz 96 state produced by a full Runge-Kutta update. The DFE simulations were
compiled using the configurations in Table 4.

configurations (Table 8). We subtract the static power require-
ments of the unused Maxeler cards from our reported figures (the
average reported static power requirement per card was 19.6 W).

In terms of computation per Watt, the reduced-precision de-
signs achieve power efficiency of up to 2.3 times higher than
a single-precision DFE implementation. We do not observe any
significant difference in power requirements between compara-
ble fixed and floating-point builds. Assuming perfect scaling (not
unreasonable considering the need in weather forecasting to cal-
culate ensembles) System 1 could reach a relative efficiency of 3.7
times over a non-precision optimised FPGA implementation if it
contained three fully utilised MAX3A cards.

7. Conclusion and future work

We designed a hardware architecture for the chaotic two-scale
Lorenz '96 system. We built FPGA implementations at different
precision levels, guided by our CPU-based analysis of Hellinger
distances and showed that acceptable behaviour can be achieved
at precision significantly lower than single precision. We demon-
strated how to reduce precision of a chaotic system to improve
throughput of a hardware implementation.

The performance improvements achieved have enabled climate
scientists to substantially increase the scales of analyses involv-
ing the Lorenz '96 system with and without reduced precision.

Previous work in this area was limited to using simulations to
explore the latter [20].

We note that Lorenz '96 was chosen as a system primarily to
study the effects of precision reduction on chaotic systems and
evaluate the ability to exploit reconfigurable hardware for simu-
lating such systems.

Our results indicate that exploiting chaotic behaviour and pa-
rameter uncertainty in numerical simulations can facilitate more
effective resource utilisation in hardware designs, leading to im-
proved performance and power efficiency.

Impact of future hardware developments

Given the rapid evolution of accelerator technology, we attempt
to address the question of how the applicability and effectiveness
of our techniques will be impacted by future hardware changes.
Although it is difficult to predict future hardware changes, we
consider two recent developments: GPU support for half-precision
arithmetic and improved FPGA support for single-precision arith-
metic.

Computation characteristics can significantly affect the power
efficiency and performance comparisons between FPGAs and
GPUs [15]. In addition, improvements in fabrication technology
also affect power efficiency and resource availability.

This initial work with Lorenz '96 does not explore the gran-
ularity at which reduced precision can be applied, nor range of
precisions that might be necessary in order to reduce computation
requirements of a more physically meaningful model while retain-
ing fidelity. Both will have a significant impact on the performance
that may be achieved on a GPU or FPGA.

We note that half precision has a 10-bit mantissa and 5-bit ex-
ponent, which happens to match the lowest fidelity representation
we explore in this work. If we happened to require slightly higher
precision on the GPU, we would need to switch to single precision.
In contrast, the reconfigurable nature of the FPGA enables a far
more fine-grained approach to precision reduction which may
prove beneficial.

We note that GPUs are typically only competitive with FP-
GAs in terms of power efficiency for compute-bound applications
whereas finite difference computations tend to be bandwidth lim-
ited. Using half precision on the GPU makes it possible to improve
throughput by reducing data-transfer requirements, but we expect
that the choice between FPGAs and GPUs will still largely depend
on current deciding factors such as how efficient a parallel solution
can be mapped to a given architecture.

More recent FPGAs such as the Intel Arria 10 and Stratix 10
families have hardened floating point blocks that provide support
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for IEEE 754 single-precision floating point. By incorporating this
support directly into DSP (digital signal processing) blocks, single-
precision floating point becomes significantly more attractive in
terms of performance and power efficiency.

We foresee that improved FPGA single precision support will
complement our techniques so long as it is possible to perform
reduced-precision arithmetic using the hardened DSP blocks. The
primary concern is that of double rounding, but such issues can
be avoided provided the interface to the DSP blocks is sufficiently
flexible, or can be worked around so long as the DSP blocks provide
the appropriate IEEE 754 flags [24].

Even with hardware single-precision arithmetic support, wider
floating-point types also impact designs in terms of increased
routing resources which lead to congestion and the inability to
meet timing constraints. Therefore, we expect reduced precision
to still provide benefits for hardware designs.

Methodology extension

Current and future work includes extending our methodology
to more physically meaningful systems such as a C-grid shallow
water or primitive equation model. In principle, the same analysis
that was performed for Lorenz '96 in this paper could be repeated
for a more realistic model. However, in order to evaluate the effect
of reduced precision on Lorenz '96, we had to use statistical mea-
sures that were very compute intensive to evaluate. Performing a
similar analysis for more complex systems may require an analysis
at every single grid point. The CPU-emulated reduced precision
analysis used in this paper is almost certainly impractical for such
an analysis due to the overhead of simulating reduced precision.

An alternative approach would be to construct FPGA implemen-
tations in which the precision of values can be altered after build
time, but prior to execution of the scientific simulation. This would
significantly mitigate the cost of the precision analysis phase which
requires large numbers of samples be collected in order to produce
meaningful statistics.

An interesting research question for atmosphere and ocean
models is whether numerical precision can be adjusted locally in
both weather and climate simulations in a way that is dependent
on, for example, local Reynolds numbers or uncertainties in initial
conditions to achieve an even stronger reduction in numerical
precision. If it is determined that numerical precision should vary
in different regions during a simulation, it will be necessary to
investigate efficient runtime reconfiguration of FPGAs in order that
load balancing can be performed with reduced precision.

In practice, it is useful to have evidence that the simulation
has not been adversely affected by precision reduction. Molecular
dynamics (MD) simulations also possess chaotic behaviour that
causes precision reduction to significantly alter particle trajecto-
ries after only a few collisions. An implementation of reduced-
precision MD on FPGAs has adopted the approach of monitoring
invariants such as the total energy of the system in order to per-
form runtime validation [25]. A similar approach would allow us to
validate simulation behaviour, but also potentially enable switch-
ing to a higher-precision implementation when it is detected that
additional precision is required.

Increasing model complexity

We foresee the development of new tools to be an important
aspect of future research. In particular, the ability to automatically
generate new hardware designs from high-level descriptions of
equations will significantly accelerate progress towards imple-
menting more complex systems on reconfigurable hardware. If
designs can be generated from high-level descriptions, it opens
the possibility of automating modifications to those designs for

performing precision-related profiling and automated numerical
analysis of model components.

As model complexity increases, the hardware resources re-
quired to implement the model increase also and it may not be
possible to synthesise a design containing a complete model im-
plementation. Additionally, some aspects of climate simulations
may be impractical to implement in a hardware design. We suggest
ways to address both these issues.

Various strategies may be employed to address limited FPGA
resources. If the computation can be expressed as a pipeline, mul-
tiple FPGAs can be directly connected together so that each one
can perform a phase of the computation without data needing to be
written to memory. As an example, the FPGA boards we use manu-
factured by Maxeler provide a ring interconnect called “MaxRing”.
In addition, as described in Section 2, many data centres now
support multi-FPGA accelerators, so we envisage that large models
can be partitioned and processed by multiple FPGAs effectively as
long as overheads in communication among them are minimised.

A second strategy is partial reconfiguration. This technique al-
lows subsets of the FPGA design to be reconfigured at run-time.
In this way, FPGA resources for one calculation can be re-used for
another, but both calculations cannot occur simultaneously. Run-
time reconfiguration incurs overhead, but provides an additional
way to support more computation stages than having them pro-
cessing data simultaneously in an FPGA.

Lastly, if some aspects of a model cannot be efficiently imple-
mented using an FPGA architecture, it makes more sense to use a
hybrid approach. While this could take the form of a conventional
CPU-based system connected to an FPGA board, devices such as
Intel’s Stratix 10 SoCs contain hard quad-core ARM processors,
facilitating power-efficient computation for aspects of the simu-
lation that will not benefit from FPGA acceleration.
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