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Abstract—Six degree-of-freedom (DoF) pose feedback is
essential for the development of closed-loop control techniques
for microrobotics. This paper presents two methods for depth
estimation of transparent microrobots inside an Optical Tweez-
ers (OT) setup using image sharpness measurements and model-
based tracking. The x-y position and the 3D orientation of
the object are estimated using online model-based template
matching. The proposed depth estimation methodologies are
validated experimentally by comparing the results with the
ground truth.

I. INTRODUCTION

Examining cells on an individual basis provides insights
into their mechanical behaviour since properties such as
Young’s modulus are useful in determining cell pathology
[1]. Precise cell manipulation could also improve procedures,
such as in-vitro fertilization. OT are capable of highly precise
and multi-point actuation. However, direct cell manipulation
with the laser can cause photodamage. To avoid this problem,
microrobots can be fabricated to handle the cell indirectly.

Three-dimensional visual feedback of microrobots is ne-
cessary in order to develop microrobotic systems with mani-
pulation capabilities comparable to that of large-scale robotic
systems. Depth estimation techniques proposed for the macro
scale cannot be directly applied to the micro-scale due to
the difference in the projection model that describes the
microscope-camera system. In addition, in most microscope
set-ups only one camera view is available.

Model-based approaches, using the microrobot’s geomet-
rical design for reference, estimate the microstructure’s pose
for assistance in microassembly [2], [3]. Shape estimation
for haptic feedback has also been considered in [4]. A
CAD-based optimization solution is proposed in [5] for
intraocular microrobot localization. In [6], the velocity of
helical micro-swimmers along the microscope z-axis is es-
timated for surface reconstruction using prior calibration of
the microrobot’s velocity along the z-axis. Depth recovery
has been investigated for set-ups inside a Scanning Electron
Microscope (SEM) [7]. Cui et al. [8] have proposed a method
for estimating the 3D position and the rotation on the x-
y plane. In [9], estimation of multiple depths for objects
in different heights within the scene is performed using
the sharpness measurements locally in the image. Other
applications include depth recovery of microgrippers and
Carbon Nanotubes (CNT) for automation purposes using
variance-based sharpness calculations [10].

One difference between the SEM and the optical mi-
croscope set-up is that object transparency is visible in
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the latter. The transparency issue cannot be overcome by
3D-printing opaque objects since modifying the fabrication
properties with respect to transparency has an impact on
the relative refractive index between the object and the
medium. As a result, features from within the micro-object
are observable and therefore the sharpness measurement
is a combination of overlapping depths. Hence, in optical
micromanipulation the relative refractive index is directly
connected to the amplitude of the grasping force by the laser
beam. A transparent object complicates the pose estimation,
nonetheless and crucially, less transparent or opaque objects
hinder trapping force due to the refractive index.

In this paper, two methods for depth estimation of 3D-
printed transparent microstructures within an OT set-up is
proposed, which incorporates position tracking and model-
based 3D orientation estimation. Two methods are presented;
I) using the overall sharpness of the image frame which
corresponds to features in multiples depths from within the
object and II) utilizing the local sharpness around distinct
features for single depth recovery at specific regions of
the object. The first method aims to provide an overall
measurement for the z-displacement of the object, while
the second takes into account local changes of sharpness
which might be attributed to object 3D rotation rather
than displacement along the microscope z-axis. The second
method takes into account the estimated orientation of the
microstructure as proposed in [11]. The motivation for the
global and the local approach stems from the fact that the
overall sharpness measure can not infer directly the depth of
a 3D microstructure in case of simultaneous 3D translation
and rotation. The proposed methodology is validated through
experimental results which are compared with ground truth
data.

II. DEPTH ESTIMATION
A. Framework Overview

This section presents an overview of the proposed method-
ology for recovering the 3D pose of optically transparent
laser-driven microrobots in an OT set-up. The main issues
that are addressed are the unobservable motion along the
z-axis and object transparency.

The first method presented in Section II-C describes a
strategy for recovering the z-translation of a co-ordinate
frame attached to the microstructure with respect to the focus
plane. This strategy requires calibration for estimating the
global sharpness model as a function of a single depth value
that describes the object displacement along the microscope
z-axis (Section II-C.1). By the term global sharpness model,
we refer to the function that maps a sharpness value to



the corresponding object z position relative to the focus
plane approximated by a sum of Gaussian curves. The object
depth is reconstructed by the set of functions derived from
the calibration routine as explained in Section II-C.2. This
method gives a depth estimation that describes the overall
object displacement.

The second method attempts to estimate a local sharpness
model for single features. By the term local sharpness,
we denote the approximation of the mapping function that
relates a single sharpness value to the corresponding depth
of an individual object feature by one Gaussian curve. A
calibration routine is also performed in this case for a number
of object features (Section II-D.1). The corresponding local
depths are estimated by solving an optimization problem as
described in Section II-D.2.

The motivation for developing these two methods is that
the first method does not tackle the problem of interfering
object features at different depths that are visible due to trans-
parency. In addition, a holistic focus measurement cannot
distinguish whether changes in the sharpness are cause by
displacement along the z-axis or by 3D object rotation, as
this motion also results to parts of the object being focused
or defocused.

B. Projection Model

The projection of a 3D point on the image plane by
the microscope-camera system is described by the parallel
projection model. We assume a known CAD model for the
object. Let Py;; € R3, i = 1,..,N be the iy, vertex of
the registered geometrical model expressed with respect to a
fixed global co-ordinate frame and P, € R?, i =1,... N
be the corresponding projection of the 7;, point on the image
plane. Hence, the projection Py, is equal to

P., = K P(RPy, +t) (1)

T
0 py 01 0

with K the intrinsic parameters of the microscope-camera
system, P the projection matrix, R € R3*3 the rotation
matrix that describes the object’s orientation and t € R3
the object’s translation with respect to the global frame. As
seen from the third column of matrix P in (2), the translation
along the z-axis is not observable.

In the Sections II-C and II-D, the depth information
is estimated using image sharpness measurements and the
information derived from the model-based orientation es-
timation. It is worth noting that the transparency of the
object must be taken into consideration when using sharpness
measurements to recover the three-dimensional position of
the microrobot in an OT environment.

C. Depth estimation using global sharpness model approxi-
mation

The first method aims to reconstruct the overall z-
displacement of the object by using a global representation
of the sharpness model. The full image feed is used for the
sharpness calculation.
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Fig. 1. Sharpness measurement and ground truth trajectory used in

calibration for mapping function approximation

In order to estimate the translation along the z-axis of
the object, the mapping between the sharpness measurement
for each image frame and the corresponding z-position of
the object must be established. The focus measure ¢ that is
used in this case is the Gaussian Derivative [12]:
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1) Global sharpness model approximation and calibra-
tion: A calibration routine is performed to approximate the
mapping function between the sharpness and the displace-
ment along z given a set of image frames and the correspond-
ing ground truth z-translations of the piezo stage for each
image frame. The calibration data is used to approximate
the sharpness model as a function ¢(z) of the overall object
displacement z by fitting a sum of N Gaussian curves (Fig.
2 - top)
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where «; the maximum amplitude of the i;;, Gaussian term,
b; the depth at which the sharpness is maximum and c¢; the
standard deviation of the i;;, Gaussian curve. An indicative
set of calibration data is shown in Fig. 1, which include
the depth measurements (orange), the image sequence and
the corresponding sharpness values for each frame (blue).
The calibration trajectory corresponds to scanning the mi-
crostructure along its height on an upwards and a downwards
trajectory.

2) Global depth reconstruction: The global sharpness
approximation as a function of the depth cannot be used
directly to reconstruct the z-displacement as the Gaussian



functions are not invertible. In particular, it can be seen that
two different depths can correspond to the same sharpness
value (Fig. 2 - top). For this reason, the sinusoidal calibration
trajectory can be divided in two sections to which a sum of
one-sided Gaussian curves can be fitted (Fig 2 - Data sets
1 and 2 (top)). The corresponding inverted functions z; =
f~1(¢) are depicted in Fig. 2 (bottom) (here i = 1,2). The
depth at which the data is divided corresponds to the depth
zs at which the approximated sharpness function is changing
slope. The switching between the curves z; and 2o (Fig. 2 -
Fitted lines 1 and 2) is determined by a number of conditions.
In particular, these switching conditions are defined by the
sign of the rate of change of the focus measurement A¢, the
sign of the update rate of the estimated depth Az and the
range at which the estimated depth belongs to (Data Set 1 or
2). Continuous switching can be ensured since a continuous
z-trajectory is assumed and high alterations of the depth
cannot be performed. Therefore, the switching conditions are
given as follows
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where Zest,,,, »Zestyre, the current and previous estimated
depth and ¢y,..,,....¢m,.., the current and previous sharpness
value respectively.

D. Depth estimation using local sharpness model approxi-
mation

The previous approach is sufficient for depth reconstruc-
tion when the sharpness function has a dominant peak that
can describe the object displacement along the z-axis. Due
to object transparency, the features below or above the focus
plane contribute to the total sharpness measurement when us-
ing as input to the calculations the whole image frame. This
is also indicated by the fact that the sharpness measure for the
whole image is approximated by a sum of Gaussian terms. In
the propose methodologies, it is assumed that each Gaussian
curve corresponds to a dominant depth (or object feature).
This implies that the contribution of the dominant features
of the microstructure to the single sharpness measurement
can correspond to different depths. In addition, during 3D
rotation, different parts of the object become defocused,
resulting to changes in the overall sharpness measurement.
Hence, the overall sharpness measurement cannot identify
whether defocusing occurs only locally at the object due to
rotation or if it is uniform due to translation along the z-axis.

In order to get the corresponding depth of single features,
smaller windows around single features of the object are
obtained. The centres of the local windows are obtained
by the projection of the registered 3D points of the CAD
model on the image frame. The 3D orientation of the object
is estimated as presented in [11]. Estimating the orientation
and the 2D position of the object is necessary to obtain a
window that contains only the feature of interest.
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Fig. 2. Global sharpness model approximation from calibration (top).
Inverse sharpness models (bottom)

1) Local sharpness model approximation and calibration:
Similarly to the first method, a calibration routine is per-
formed in order to establish the mapping between the sharp-
ness and the depth of a single feature without interference
by neighbouring features. It is shown that when the window
is sufficiently small and contains single depth features, the
sharpness model can be approximated with one Gaussian
curve (Fig. 3). In this experiment, the features which are
selected for the calibration are the corners of the teeth of
the microgears. A square window of 15x15 pixels, which
corresponds to 1.1 g m?, around the feature was created
assuming that the interference from the neighbouring features
is small (Fig. 3). It can be seen that there is a minor overlap
between the corner and the edge features of the micro-gear
teeth. However, the overlapping is sufficiently small so that
the local sharpness can be approximated by a single Gaussian
term. The focus measure which is used in this case is the
Gray-Level Normalized Variance [13]. It is selected because
a normalized measure is needed in order to have the same
reference among all the fitted functions. In addition, the
Gaussian Derivative is less sensitive to individual smaller
peaks caused by the interfering object features.

2) Optimization based local depth reconstruction: After
the local sharpness models are established, the estimated
local depth 2; for the iy, feature is determined by minimizing
the distances between the measured sharpness on the local
window ¢,,, and the expected sharpness value from the
derived Gaussian curve:

_(z=bp)?
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Z; = argmin
z

Pm,

By using this optimization method, the individual curves
don’t need to be inverted. Moreover, by expanding the
window more features are included and the right hand side



04 04

0.3
@

* Focus measurement N\
Fitted curve o

5o Ky

+ Focus measurement
Fitted curve

£
QDZ

- Focus measurement 0.8
Fitted curve ik

ottt amit

06 ®  Top corners
@ Bottom corners

-10 -8 6 4 -2 0 2

Sharpness

AZ(um)

Sharpness

' ' “
Fitted curve | \ 350

10 8 -6 -4 2 0 2 150 200 250

350

300
X (pixel)

AZ(um)

Fig. 3.
sharpness values as calculated for each of the selected features (right)

of the equation can be expressed as a sum of Gaussians,
using the functions defined for the known features in the
calibration procedure.

E. 2D position derivation and 3D model-based orientation
estimation

As mentioned, the object position on the x-y plane and
the 3D orientation are derived as presented in [11]. A brief
overview of the methodology is described in this section.

1) Contour based 2D position derivation: The 2D posi-
tion of the object is calculated using the extracted contour of
the object. The centroid of the contour is used as the object
2D position for convex objects. Alternatively, for non-convex
objects, the 2D position can be calculated with respect to
another point within the extracted 2D contour.

2) Optimization based 2D to 3D registration: The mi-
crostructure 3D model is registered with its 2D projection
on the image frame by manual selection of visible feature
points. Since the initial point correspondences are known,
the initial orientation Ry and translation to of the object are
derived by solving the following optimization problem:

Ry, to = argmin||Peg; — K P (RPy, +t)|| (8)
Rt
S.t RTR = 13933

3) 3D model-based orientation estimation: The 3D orien-
tation of the microstructure is estimated using online gene-
rated model-based templates. Model-based template match-
ing is preferred because the initial point correspondences do
not need to be tracked in every subsequent image frame. The
templates are generated from a number of possible relative
rotations by an angle step Af# with respect to the current
orientation of the microstructure. The generated templates
are matched with the filled extracted object contour on the
current image frame. Kalman filtering is also performed in
addition to the method presented at [11].

III. EXPERIMENTAL RESULTS

The proposed methodologies are evaluated and compared
to the ground truth data. The object motion is generated by

Local sharpness model approximations using one Gaussian curve, the selected local windows and the corresponding object pose (left). The

translating the piezo stage along the z-axis and keeping the
camera position fixed. The piezo stage trajectory is used as
the ground truth data for the experimental validation.

A. Experimental Setup

The components of the hardware experimental setup in-
clude an Acoustic-Opto Deflector (AOD) Optical Tweezers
(Elliot Scientific, UK) and an integrated 3D micromanipula-
tion piezo stage which is used to simulate the object trajec-
tories. The laser source is a 1070 nm fiber laser (Ytterbium
Fiber Laser, IPG Photonics, USA) with 10 W maximum
output power. A CCD camera (Basler AG, Germany) and
an immersion oil lens optical microscope (Nikon Ti) with
100x magnification are used to capture the live feed during
the experiment. The experimental set-up is shown in Fig. 4.

B. Microstructure fabrication

The structures used in the experiments are 3D-printed
micro-gears. The height of the structure is 11.2 pm. The
microstructures were printed using the Nanonsribe 3D-
printer (Nanoscribe, Germany) and the IP-L photoresist. The
printing power was set to 25 %. The structures were printed
on a glass substrate, placed in deionized water and kept fixed
on the glass substrate.

C. Depth estimation using global sharpness approximation
model

1) Results and discussion: The depth of the 3D-printed
microstructure in a different object trajectory is estimated by
using the sharpness approximation model obtained from the
calibration. In this case, a triangular trajectory was chosen
but alternative motions could also be performed. The focus
measurement of the new sequence is calculated and the
resulting sharpness for each frame is shown in Fig. 5. The
calculated sharpness values are used to estimate the depth
using the inverse switching model as described in Section II-
C. As shown in Fig.6, the estimated depth trajectory follows
the ground truth stage trajectory. It is worth noting that the
reconstruction error is similar for all three phases as the
object trajectory is periodic.
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Fig. 4. The experimental set-up used in the experiments (left). The glass
slide with the printed microstructures is placed above the microscope-camera
system. The microstructures are printed in the middle of the glass slide
(top right). The CAD model with the object dimensions are also displayed
(bottom right)

D. Depth estimation using local sharpness approximation
model

1) Results and discussion: To confirm that the proposed
method can estimate the relative depth of the local features
on the microstructure, the translational stage is moved by
following a sine wave trajectory. For each local feature, a
depth relative to the initial position is estimated by using the
calibrated parameters of the 1D Gaussian model. As shown
in Fig.7 (top), a set of local windows are cropped around
the corner features in each image frame. The estimated
relative depth follows the reference stage movement as long
as the sharpness of the window changes. If the sharpness
value does not change, which indicates the focus plane does
not intersect with the microstructure, the proposed method
assumes that the object is static. This could also be attributed
to limitations of the used optimization method, which was the
Quasi-Newton optimization algorithm. When the focus plane
intersects the microstructure again (i.e. part of the object is
in focus), the relative depth of the feature can be estimated,
as shown in Fig.7.

It is worth noting that the calculated sharpness measures
for each individual feature can also reveal information about
the object orientation. In particular, Fig. 3 (right) depicts
the selected features as projected on the image and their
corresponding sharpness values. It is shown that the features
on the left of the microgear are at lower depths compared to
the features on the right. This can also be visually verified
since the left features are more blurry than the ones on the
right. This information can be fused with the results from
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Fig. 6. The reconstructed trajectory (blue) and the ground truth trajectory
of the piezo stage (orange)

the 3D estimation component of the framework to account
for misalignments in the orientation or detect the out of
focus parts of the microstructure. Therefore, the local depth
estimation relates the local z-displacements of the object
features to the estimated orientation.

E. 2D position and 3D model-based orientation estimation

1) Results and discussion: The corresponding orientation
of the microstructure was estimated using the method de-
scribed in Section II-E. As indicated by the local depth
estimation, the 3D orientation of the object is not parallel to
the focus plane but the object is slightly rotated around the
X and Y axis of the global frame. The estimated orientation
with respect to the global frame and the 2D position of the
object are equal to:

R = R.(—2.2081°) R,(2.1893°) R,(—0.6422°)  (9)
t, = 320.3724, t, = 275.8510 (10)

The corresponding matched template and the extracted con-
tour are shown in Fig. 8.

IV. CONCLUSIONS

In this paper, two depth estimation methods are presented
for transparent, laser-driven microrobots. A global and a local
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Fig. 7. An example of local feature depth estimation using the optimization
based approach. A set of local windows located at a corner feature (top) are
used to calculate the sharpness (middle) of the windows. The estimated and
stage relative depth (bottom) shows that the proposed method can be used
to estimate local depth information as long as the changes of sharpness can
be detected.

method of depth estimation of the transparent microstructure
are described. These methods aim to derive an estimation for
the sharpness model with respect to the overall z-translation
of the object and depth changes of individual features of the
microstructure. The calibration methods presented for both
methodologies are object and lighting condition specific and
need to be performed prior to the depth estimation routine.
The combination of these two methods aims at distinguishing
the cause of image sharpness variations. These variations can
be attributed either to object translation along the microscope
z-axis detected by the global approach or to 3D rotation
detected by the local approach. Hence, the local method is
capable of identifying which parts of the microstructure are
in and out of focus in combination with the 3D estimated
orientation. The global sharpness can be approximated by a
sum of Gaussian curves for interfering features at different
depths due to transparency. The local sharpness model is
approximated by one Gaussian curve for distinct object
features. The local method can reveal information about
the object orientation and can be potentially combined with
the model-based approach to estimate 3D orientation. By

Fig. 8.
generated from the orientation estimation component

The extracted contour and the corresponding matched templated

combining the two methods, the framework can account
either for errors that occur from the template matching or
the local depth estimation.
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