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In an FPGA system-on-chip design, it is often insufficient to merely assess the power consumption of
the entire circuit by compile-time estimation or runtime power measurement. Instead, to make better run-
time decisions, one must understand the power consumed by each module in the system. In this work, we
combine measurements of register-level switching activity and system-level power to build an adaptive on-
line model that produces live breakdowns of power consumption within the design. Online model refinement
avoids time-consuming characterisation while also allowing the model to track long-term operating condition
changes. Central to our method is an automated flow that selects signals predicted to be indicative of high
power consumption, instrumenting them for monitoring. We named this technique KAPow, for ‘K’ounting
Activity for Power estimation, which we show to be accurate and to have low overheads across a range
of representative benchmarks. We also propose a strategy allowing for the identification and subsequent
elimination of counters found to be of low significance at runtime, reducing algorithmic complexity with-
out sacrificing significant accuracy. Finally, we demonstrate an application example in which a module-level
power breakdown can be used to determine an efficient mapping of tasks to modules and reduce system-wide
power consumption by up to 7%.
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1. INTRODUCTION
In a world increasingly dominated by systems-on-chip (SoCs), power efficiency is of
ultimate concern due to the dark silicon effect [Esmaeilzadeh et al. 2011]: more tran-
sistors can be placed on a die than can be continuously switched. Designers put a large
amount of effort into managing this challenge up-front, but many things can change
once a system is manufactured and deployed; to simply assume worst-case behaviour
incurs significant performance penalties under average conditions. For example, a sys-
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tem may be produced where, due to variation [Stott et al. 2013], some of its constituent
components are more power-efficient than others. An intelligent, self-aware system
might independently control the power consumption of some or each of them using
dynamic frequency scaling. Tasks could then be mapped to these modules in a way
that delivers the best overall performance given the constraints of the power budget,
available hardware and work to be done.

Such runtime techniques would be particularly useful for FPGAs, where the short-
ened design cycles reduce the time available for offline analysis. FPGAs’ reconfigurable
hardware makes it more difficult to implement well established techniques, such as
power gating, but also offers great opportunities for runtime adaptation. Unfortu-
nately, the self-awareness necessary to deliver this vision is currently missing from
the power consumption toolbox: we can measure system-wide power consumption at
runtime and forecast per-module contributions at compile-time, but we cannot deter-
mine such a breakdown online.

The term module is used throughout this article. By module, we mean the hard-
ware constituting an IP block, accelerator, kernel, etc. of granularity typically seen in
FPGA-SoC designs. While designers have complete freedom to choose what constitutes
a module, and thereby set the granularity of power estimation, in this work a module
is always an individually addressable memory-mapped hardware accelerator.

1.1. Per-module Online Power Modelling
While power measurement at supply pins is common, manufacturing SoCs with per-
module power domains is often impractical due to increased metal and pad costs. A
more feasible approach is to instead monitor the switching activity within each mod-
ule, since activity is a key indicator of dynamic power. Models that forecast power con-
sumption based on predicted or simulated switching activity are well established for
use at compile-time; however, inaccuracies inevitably arise from assumptions made
regarding data patterns and operating conditions. Some of these assumptions can
be avoided by training a model during commissioning but, unless the external con-
ditions are static and all the possible system behaviour is captured by the training
programme, such a model would be running blindly and errors will begin to accumu-
late. Instead, a means to calculate a runtime power breakdown without relying on an
open-loop model susceptible to becoming stale is needed.

Figure 1 illustrates the benefits of an online, activity-based power model, described
in this article, used to estimate power consumption. The plot shows the error between
modelled and externally measured power for a system module as its supply voltage
is lowered, comparing an online model to an offline version based on ordinary least
squares, simulating such a model being set at commissioning. As the operating condi-
tions deviate from their nominal values, the error in the offline power model’s output
increases, while the online model quickly adapts. Although voltage is controlled in this
case, which, as with any other source of variation, could have been trained for offline,
any offline model is necessarily incomplete in any real environment. The effects of dif-
ferent classes of input data, operating modes and exogenous conditions, such as tem-
perature, voltage and degradation [Stott et al. 2010], can all be captured online, with
the resulting model being far more useful for runtime control in a dynamic setting
than an offline counterpart. Note that while Figure 1 is included here for motivational
purposes, the system from which its data was obtained is that introduced in Section 5.1
using the online algorithm described in Section 4.

Using an adaptive online model in an embedded system is more practical than ever
thanks to readily available general computing resources. FPGA-SoCs with hardened
multicore CPUs are ideal platforms to use since the general-purpose processors can
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Fig. 1: Error accumulations in online- versus offline-generated signal activity-to-power
models under voltage scaling. Here, a train-once use-forever model is shown to esti-
mate inaccurately when faced with conditions for which it has not been trained.

carry out infrequent incremental model updates and optimise the computationally in-
tensive tasks that run on the FPGA.

In this article, we describe the first runtime modelling framework capable of provid-
ing a per-module power breakdown for an FPGA-based system, making the following
novel contributions:

— We describe an automated tool flow enabling the appropriate selection and instru-
mentation of signals within arbitrary RTL for runtime activity monitoring.

— We apply system identification to allow an activity-to-power model for any modular
design to be trained and updated at runtime.

— We experimentally quantify the relationships between model accuracy and the in-
curred hardware and software overheads for 15 benchmark modules arranged across
two multi-module systems.

— We demonstrate a simple yet effective signal pruning strategy capable of significantly
reducing online modelling complexity without corresponding reductions in accuracy.

— We show how knowledge of per-module behaviour can facilitate the power-efficient
mapping of tasks to hardware, leading to a power reduction of up to 7%.

An earlier version of this work appeared in the proceedings of the 24th IEEE
International Symposium on Field-programmable Custom Computing Machines
(FCCM) [Hung et al. 2016]. This article expands on the material presented therein
by including results and analysis for a wider range of exemplary modules as well as a
verified technique for reducing runtime complexity without significant loss of accuracy.

2. BACKGROUND
The power consumed by a CMOS integrated circuit can be split into static and dynamic
components: static power consumption is a property of the process technology and op-
erating conditions, while dynamic power originates from the charging and discharging
of circuit nets due to switching activity. Both components can vary at runtime and need
to be considered by a model. Equation 1 describes the relationship between power and
its static and dynamic components, the latter being dependent upon switching activ-
ity ai on net i, operating frequency f , effective capacitance Ci—determined by circuit
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topology and process technology—and supply voltage V .
Ptotal = Pstatic + Pdynamic

= IleakageV +
∑
i

aifCiV
2 (1)

Power estimation tools are widely used at compile-time to ascertain whether designs
will meet their power specifications and to inform decisions on packing, thermal man-
agement and power supply capacity. These tools initially estimated power consumption
by simulating circuits with typical test vectors and later using vectorless, probabilistic
techniques [Najm 1994]; the latter style has been further applied to FPGAs to facili-
tate power-aware compilation [Anderson and Najm 2004]. As the complexity of FPGA
applications has increased, so too has the need for high-level power estimation models
for modular systems [Lakshminarayana et al. 2011]. These statistical, learning-based
models are trained using activity and power estimates as well as resource utilisation,
allowing implementations to be compared without performing placement and routing.

Prior work [Najem et al. 2014] proposed the evaluation of system-wide power con-
sumption through a dynamic power monitoring approach using activity counters.
Therein, signals were automatically selected for monitoring and an offline model was
developed through simulation to relate these counts to power; realtime activity mea-
surements facilitated runtime power estimation. Because the model was trained of-
fline, however, the results were found to have up to 15% error. Moreover, observation
of only overall system power does not provide sufficient information to deploy adaptive
strategies such as dynamic voltage and/or frequency scaling, task migration or power
gating on a module-level basis.

The use of ring oscillators coupled to frequency counters woven through applica-
tion circuitry to infer intra-die variations in phenomena including power consumption
has also been proposed [Zick and Hayes 2010]. For the establishment of module-level
power, however, such indirect measurement would suffer from differences in logical
and physical mapping; while modules tend to be separated by design, in practice they
merge, making the task of assigning power to each more complicated. The work also
required that application circuitry be halted as part of the measurement procedure.

3. TOOL FLOW
Our automated tool flow comprises two main stages: signal selection, which identifies
nets likely to be correlated with high dynamic power consumption, and instrumen-
tation, which adds logic to them to allow their behaviour to be monitored online. In
this work, we monitor only synchronous events on these signals, rather than those
introduced asynchronously by glitches; the online model we use will, however, auto-
matically compensate by adding more weight to signals that are prone to glitching.
We target systems composed of multiple modules described in RTL and assembled in
Altera’s QSys system integration tool. These are transparently instrumented in order
to report their own switching activity while remaining functionally identical. We as-
sume a master CPU-slave accelerator model, corresponding to the typical use of newer
FPGA-SoC devices: in this work, specifically the Altera Cyclone V SoC family.

The most straightforward approach to instrumenting a module would be to analyse
(or simulate) its RTL in order to determine signals with high activity before augment-
ing it with counters. Three issues exist with this method: firstly, estimating the power
consumption of individual signals based solely on behavioural RTL can be inaccurate
since neither physical resources nor the data that exercise them are considered [Lak-
shminarayana et al. 2011]; secondly, signals specified in RTL invariably differ from
those present in the resulting gate-level netlists; and, thirdly, augmentation of RTL
with instruments would likely cause circuit mapping to be different, thereby altering
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Fig. 2: KAPow tool flow.

the very thing one wishes to observe. The latter problem is similar to that faced when
inserting timing [Levine et al. 2012] or debugging infrastructure [Hung and Wilton
2015], both of which are even more sensitive to any circuit perturbations. Our flow,
shown in Figure 2, overcomes these issues to some extent by performing signal selec-
tion and inserting instrumentation using placed and routed netlists.

Before compilation, some minor preprocessing must be performed on each of the M
modules to be instrumented: each is modified to accommodate six additional words
within its address space for instrumentation control. Following this, the modules’ RTL
is compiled and the resultant netlists extracted as Verilog Quartus Mapping (VQM)
files [Murray et al. 2013]. In order to identify the signals that will best indicate dy-
namic power consumption, each module is fed through Altera’s compile-time power
analysis tool, PowerPlay, as described in Section 3.1. Selected signals are augmented
with activity counters (detailed in Section 3.2) by modifying the VQMs, which are then
substituted for the modules’ original RTL within QSys. In order to minimise structural
disturbances, some signals are excluded from monitoring: we do not instrument those
added only to route through LUTs to access register inputs (so-called ‘feeders’), nor
signals that form carry chains. Finally, the system is compiled as normal: importantly,
with VQM primitive preservation enabled.

3.1. Signal Selection
The purpose of signal selection is to identify nets in the design that are strongly in-
dicative of their modules’ power consumptions. We do this by using PowerPlay to re-
port nets with high estimated switching activity. Unlike the authors of prior work [Lee
et al. 2015], we do not restrict ourselves to selecting only modules’ primary inputs or
outputs for monitoring; hence, our selections lead to sets of internal nets with strong
first-order relationships between activity and power. Signals may exist that exhibit
more complex (potentially non-linear) switching-to-power relationships, such as con-
trol nets, and their specific exploitation is an area we leave to future work.

Switching forecasts come from one of two sources: in vectored mode, switching rates
are derived from a simulation, while in vectorless mode, they are estimated using sta-
tistical methods instead [Lamoureux and Wilton 2006]. A vectorless estimation starts
from primary inputs and propagates switching rates through all nets by considering
the Boolean functions that associate them. Although vectorless estimation is known
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Fig. 3: Simplified view of a Cyclone V ALM. Its uppermost register has been exploded
to demonstrate the use of its internal multiplexer in forming the first flip-flop within
each instrument’s LFSR.

to be less accurate than its vectored counterpart, we adopt this method for signal se-
lection because it is general-purpose: it is applicable to any circuit, even those without
source or testbench code or indicative test vectors. We leave the switching rate for
primary inputs at its default value of 12.5%.

Since we only use PowerPlay to identify signals to monitor, the absolute accuracy of
those signals’ estimated activities is essentially irrelevant as they will be measured at
runtime. What is of concern, however, are the relative accuracies of those estimates,
since these determine the ordering. The tool produces a file containing switching rates
for all signals, from which we select the N—a user-selectable parameter—most active.
PowerPlay’s estimates of power consumption are inherently inaccurate and do not cap-
ture any dynamic shifts brought about through changing input data or environmental
conditions. However, for the purposes of identifying the ‘hot’ signals at compile-time
this is unimportant since their coefficients will be determined and tuned at runtime.

3.2. Instrumentation
At the heart of any instrumentation that accumulates events is an efficient counter
structure. We use linear-feedback shift register (LFSR)-based counters because they
are smaller and faster than arithmetic counters [Xilinx 1996]: up to four LFSR bits
can be placed in each adaptive logic module (ALM) of the Cyclone V architecture we
target as opposed to two binary counter bits due to the presence of only two full adders.
Output values are not consecutive; however, since each counter needs relatively few
bits (justified in Section 6.1), the decoding is easy to perform in software via lookup.

A low-overhead single-bit scan chain is sufficient to read out the activity counts
since the required sampling rate is low. Reading out the counters’ contents also shifts
zeroes into the head of the scan chain: an efficient reset method. An advantage of the
Cyclone V architecture is that register resources each have two data input ports [Altera
2016], as shown in Figure 3: within the first register of each LFSR we use one to
capture the next state of the counting logic while the second forms the scan chain
input, avoiding the use of a soft multiplexer.

Figure 4 shows the full, scan-capable activity counter. In counting mode, when a
positive edge is detected and the instrument is enabled (Enable = 1, Scan enable = 0),
the LFSR’s clock enable is driven high, causing it to advance to its next state. When
the scan chain is in operation (Enable = 1, Scan enable = 1), the LFSR does not shift
into its next state, but takes on the value at its scan input instead.

Scan chain read-back is accomplished through a FIFO instantiated as part of a tem-
plate, shown in Figure 5, which augments each module. Clock domain crossing, if re-
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head grounded to cause reset during read-back of counter values. Six registers within
the module’s address space must be reserved for instrumentation control.

quired, is handled automatically by the FIFO and handshaking for control signals. To
take an activity measurement, the counters are enabled for a period dictated by an
adjustable measurement timer, after which the contents of the scan chain can be read
out across the system bus via the FIFO. To maximise dynamic range while guarantee-
ing no overflow, the timer’s period should equal 2

(
2W − 2

)
cycles of the module’s clock,

where W is the width of each activity counter in bits. Since the measurement timer
operates on the system bus’ clock domain rather than the module’s, the period must be
scaled by the ratio of bus-to-module clock frequencies.

While we have optimised our design for a particular device family, similar activity
counters and read-back infrastructure could be implemented in alternative FPGAs.
Similarly, although our flow was built upon Altera tools, a Vivado-based version tar-
getting Xilinx devices would be largely equivalent in structure. While significant en-
gineering effort would be required to port KAPow to alternative devices and tools, our
principles of measurement (and modelling) would remain the same.

4. SYSTEM IDENTIFICATION
Signal activity can be translated into a power estimate using a weighted linear model,
with partial system behaviour used to dynamically update the coefficients via methods
of system identification [Ljung 1998]. Figure 6 shows a typical system identification
setup in which an input vector, a, is fed into both a black box—‘black’ since this tech-
nique has no, nor needs any, understanding of the system’s internals—and its model.
Coefficient vector x̂ is an estimate of x, the latter containing the ‘true’ coefficients of
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the system. Outputs of the system and model, y and ŷ, respectively, are used to form an
error, e; an adaptive algorithm seeks to tune x̂ in order to drive e towards zero for the
latest observation as well as those that preceded it. We assume a linear relationship
between signal activities a and measured system power y, as shown in Equation 2.

y = aTx̂ (2)

In prior work [Najem et al. 2014], a non-adaptive offline model requiring multiple
(a, y) observation pairs for training was used. A vector of y and matrix of a were
formed from these pairs, allowing Equation 2 to be solved in the least-squares sense
to find x̂, which remained fixed during runtime. By contrast, the identification algo-
rithm we use is recursive least squares (RLS) [Gauss 1821] [Plackett 1950], which
iteratively updates x̂ as new measurements arrive. The RLS update function is of the
form x̂[t] = x̂[t− 1] + f(e[t], k[t]), as defined in Equations 3, 4 and 5. k is the gain
vector, containing factors determining the scaling of each coefficient, P the inverse co-
variance matrix, capturing the partial correlations between input variables, and λ the
forgetting factor, a parameter determining the memory of the algorithm. λ = 1 means
that all prior observations are given equal weighting (infinite memory) and is used
for describing time-invariant systems, whereas lesser values allow prior samples to be
assigned exponentially decaying contributions.

k[t] =
λ−1P [t− 1]a[t]

1 + λ−1a[t]
T
P [t− 1]a[t]

(3)

P [t] = λ−1P [t− 1]− λ−1k[t]a[t]
T
P [t− 1] (4)

x̂[t] = x̂[t− 1] + e[t]k[t] (5)

Note that choices made for the model update period and forgetting factor must be
tailored on a per-application basis: model adaption that is too slow will prohibit com-
pensation for fast-acting effects such as changes in operating modes, while overly fre-
quent sampling could lead to overfitting. Changes to model update rates also impact
upon the power overhead of our technique. As a result, we leave these settings as knobs
to be tuned by developers to suit their application requirements.

4.1. Power Breakdown
With a linear model, it is straightforward to compute the power contribution ŷm of
each module m since the model’s coefficients can be partitioned between modules and
its individual power estimates computed as shown in Equations 6, 7, 8 and 9. Scalars
as and x̂s represent the ‘activity’ and coefficient, respectively, for the device’s static
power, which, for us, also includes the dynamic power consumed by resources that are
not correlated with module activity, such as the SoC bus. We keep as constant, allowing
the model to tune x̂s over time. The dynamic power consumed by the activity counters
themselves will be included within the respective modules’ estimates since their own
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switching is dictated by the behaviour of the module to which each is connected.

a =
[
as a

T
0 aT

1 . . . aT
M−1

]T
(6)

x̂ =
[
x̂s x̂

T
0 x̂T

1 . . . x̂T
M−1

]T
(7)

ŷm = aT
mx̂m (8)

ŷ = asx̂s +

M−1∑
m=0

ŷm (9)

5. BENCHMARK SYSTEMS
Two multi-module systems, each assembled in QSys and compiled as explained in Sec-
tion 3, were designed to assess KAPow’s effectiveness; these are described in detail
in Sections 5.1 and 5.2. Each module was individually exercised with data fed from
a coupled RAM. We targetted the Altera Cyclone V SX SoC development board [Al-
tera 2015] for all experiments performed in this work, with Quartus II 64-bit 15.0.0
used for compilation. At the development board’s core lies a 5CSXFC6D6F31C6 FPGA-
SoC, consisting of two hard ARM Cortex-A9 cores tightly coupled to a 42k-ALM FPGA
manufactured on a 28nm low-power process. The board also features two Linear Tech-
nology LTC2978 power supply regulators [Linear Technology 2009]—one each for the
CPU cores and FPGA—the latter of which we used for taking runtime power mea-
surements. The SoC bus and instrumentation controllers ran at 50MHz throughout
all experiments conducted in this work and, aside from the experiment performed for
Section 1.1, FPGA core voltage remained fixed at 1.1V.

System identification was implemented in software on the SoC’s hard CPU cores,
clocked at their default 925MHz and running Ubuntu 14.04. Communication with
hardware modules and their instruments was accomplished through memory-mapped
registers accessed from Linux using mmap(). Experimentation revealed that P [0] =
1000I from starting coefficients x̂[0] = 0 gave good results and we found λ = 0.999 to
work well in allowing the algorithm to adapt to changing operating conditions.

While versions of both systems were created with various combinations of N and
W for area and power comparisons, N = 512 counters, each W = 9 bits wide, were
embedded per module used during the experiments described in later sections. Unin-
strumented systems, i.e. those with N = 0, were also created for baseline comparison.
Where experiments demanded lower N and/or W , however, only the top (in terms of
estimated switching activity) N counters were used, while the measurement period
could be lowered to simulate reduced W . If W = 3 were required, for example, the
period was reduced from 2

(
29 − 2

)
= 1020 module clock cycles to 2

(
23 − 2

)
= 12.

5.1. FIR Filters
The first SoC implementation developed consisted of seven functionally identical (in
terms of throughput and latency) FIR filters, each operating on 240 × 160 8-bits-per-
pixel greyscale images and with 5× 5 Q4.8 fixed-point convolution kernels. Each filter
formed an independently addressable module within the design. Heterogeneity was
introduced by forcing each to map a different proportion of its multipliers, from all to
none, to LUTs rather than DSP blocks; consequently, each module exhibited different
power characteristics and, therefore, had instruments attached to different signals.
The FIR modules had between 2384 and 2715 signals each, with a total of 17802 can-
didate signals in the whole system. The uninstrumented system occupied 24% of the
available ALMs, spread out over 62% of the FPGA’s logic array blocks (LABs), along
with 94% of block RAMs and 80% of the available DSPs. All modules met timing at
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200MHz, however each was independently clocked by a shared runtime-adjustable
PLL, allowing frequency to be changed dynamically on a per-module basis.

At runtime, each filter could be exercised differently by selecting a random combi-
nation of input data sets, from a group of nine, and one of ten sets of coefficients. The
former was achieved using a RAM that fed each filter cyclically after being filled with
data from the host CPU, while the latter was facilitated by streaming coefficients into
the filter modules: a facility provided by our design. Input data, both real and syn-
thetic, consisted of two checkerboard (alternating minimal and maximal values) and
two gradient (increasing values) patterns of differing periodicities, two sets of uniform
random values and separate frames of red, green and blue colour values of Lena. The
coefficient sets used were all-zero, identity, two 3 × 3 edge detection kernels, two box
blurs (one 3× 3 and the other 5× 5), two Gaussian blur kernels (also in 3× 3 and 5× 5
variants), 3 × 3 sharpen and 5 × 5 unsharpen. The combination of input data, coef-
ficients and clock frequency—selected at random between 10 and 200MHz—for each
module therefore allowed each to exhibit a wide range of power behaviours.

5.2. Arithmetic Toolbox
The second system consisted of eight separate modules: single-precision floating-point
exponential, logarithm, power and division blocks, 32-bit fixed-point CORDIC mod-
ules for calculating (co)sine and arctangent transforms and two 8-bit fixed-point FIR
filters with 16- and 32-bit coefficients. As for the system described in Section 5.1,
each was independently clocked and stimulated. Modules were based around arith-
metic cores selected from Altera’s IP library and were all able to be clocked at up
to 100MHz. This arithmetic system had a total of 22215 candidate signals, spread
much less evenly across its modules than for the FIR system: the largest (arctangent-
calculating CORDIC) had 8080, while the smallest (16-bit-coefficient FIR) had just
214. The uninstrumented system occupied 64% of the device’s ALMs across 96% of the
LABs, 78% of its block RAM resources and 71% of the available DSP blocks.

Modules were stimulated using synthetic random data taken from a range of
distributions—two uniform ranges (one wide and the other narrow), triangular, expo-
nential, Gaussian and binomial Gaussian—and formatted appropriately for the mod-
ule being targetted, written into a RAM connected to each module. For fixed-point
data of width α bits, narrow uniform values were selected from

[
0, 2α/2 − 1

]
while

wide values were chosen from the range [0, 2α − 1]. Uniform single-precision floating-
point data was limited to either [−1, 1] (narrow) or

[
−264, 264

]
(wide). Triangular val-

ues were bounded within [0, 2α − 1] for fixed-point data and
[
−264, 264

]
for floating

point, with symmetry around the midpoints of those ranges, while the exponentially
distributed data had mean µ = 2α−1 (for fixed point) and µ = 1000 (for floating point).
Finally, Gaussian distributions had µ = 2α−1, standard deviation σ = 2α−3 and µ = 0,
σ = 216 for fixed and floating point, respectively, while binomial Gaussian values were
selected from distributions with µ = 2α−2 or 2α−1 +2α−2 with σ = 2α−4 (for fixed point)
and µ = 2−16 or 216 with σ = 216 (for floating point) with 50:50 likelihood between
the two µ. Clock frequencies (selectable between 10 and 100MHz) and stimuli could be
changed at any time, with data freshly generated when required.

6. POWER BREAKDOWNS
We performed experiments to investigate how model accuracy—specifically, the abso-
lute difference between modelled and measured module-level power consumption—
changed as we modified parameters N , the number of activity counters per module,
and W , the width of each counter in bits, for both benchmark systems.
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Fig. 7: Mean per-module absolute error for FIR filter benchmark system by counters
per moduleN with counter widthW = 9. Dotted lines represent the end of each model’s
building phase after 7N + 1 coefficient updates.

Experiments were conducted in iterations, during each of which a different sys-
tem workload—a random clock frequency and selection of input data (and coefficients,
for the FIR filter system) for each module—was applied, following which activity and
system-wide power measurements were taken and used to update the model. A true
power breakdown was established on every tenth iteration by successively clock gat-
ing single modules and repeating power measurements, from which per-module power
consumptions could be derived for comparison against the model’s output.

The power estimation errors we report henceforth are always absolute. Beyond con-
sistency, we opted for this presentation for two reasons. Firstly, as exhibited in Fig-
ures 9 and 12, our experiments caused rapid and wide variations in both intra- and
inter-module power consumptions. Secondly, the accuracy of our reference power mea-
surements, as touched upon in Section 6.1, was found to be magnitude-insensitive.

6.1. FIR Filters
Figure 7 shows how the absolute error between estimated and measured power con-
sumption varies with counters per module N , with W fixed at 9. Each point is an
average of errors across the system’s seven modules, with 50-point uniform moving-
average windowing applied in order to reduce noise and highlight the models’ trends.
In all cases in Figure 7 (and Figures 8 and 9 that follow), data collected for the first
7N +1 (the model’s order) iterations are not shown since the model cannot converge on
a single solution for x̂ during this period. Larger values of N tended to result in lower
relative error but took longer to converge, as one would expect since RLS adapts dy-
namically; absolute errors accurate to 10mW were seen with small N (8), while 5mW
absolute accuracy was achievable with larger values (≥ 256).

Figure 8 shows how the absolute error varied with the counter width, W , with 50-
point averaging used as in Figure 7. Analysis across the range of N tested suggests
that the choice of counter width has a significant effect on steady-state error, but
not necessarily the rate of convergence. These results indicate that reducing N had
a smaller impact on error than decreasing W by the same factor to achieve a similar
area gain for this benchmark system.

The scatter plots in Figure 9, in which each data point represents an experimental
iteration with an associated power breakdown measurement, show the close corre-
lations obtained between modelled and true per-module power consumptions for the
system with N = 8 and W = 9. Once the model-building period had elapsed, the mean
absolute error between modelled and measured per-module power consumption was
found to be 9.8mW. There was some variation between the different filter implementa-
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Fig. 8: Mean per-module absolute error for FIR filter benchmark system by W .

tions: the best (module 4) achieved a mean error of 8.3mW while the worst (module 6)
was 13mW. For all of the modules, errors were small compared to the ranges in power
consumed over their different operating modes. Static power tracking was particularly
good, achieving mean absolute error of 4.0mW.

Repeatability experiments on the power breakdown measurements showed devia-
tions in the 5mW range: the mean absolute measurement noise was 3.9mW, with out-
liers as large as 14mW. The observed model errors were therefore as low as the mea-
surement noise, indicating that model accuracy was able to meet the limits of what
could be measured with our test setup.

Figure 10 provides side-by-side comparisons of compile-time vectorless power fore-
casts from PowerPlay, true measurements and runtime estimates from KAPow. Mea-
surements and runtime estimates were taken from a single, randomly chosen iteration
during the experiment in which N = 8 and W = 9. Comparing the ‘Vectorless’ and
‘Measured’ bars, we can observe that vectorless estimation predicted approximately
equal power behaviour across the modules, while measurement revealed significant
variation. Looking now at the ‘Modelled’ bar, it can be seen that our online modelling
was much closer to the measured data: KAPow successfully accounted for implemen-
tational and operational differences unforeseen by vectorless analysis.

6.2. Arithmetic Toolbox
Figures 11 and 12 are the equivalents of Figures 7 and 9 for the arithmetic-module
system detailed in Section 5.2. 50-point averaging was again applied to the values in
Figure 11, with data collected during the first 8N + 1 (the model’s order) iterations
discarded. The scatter plots in Figure 12 used data from the system with N = 32,
rather than 8 as in Figure 9, due to this system’s relatively poor performance with
only eight counters per module. This benchmark set reached an accuracy ceiling at
N = 32, while the FIR filters showed (decreasing) benefits for every N ≥ 32, suggesting
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Fig. 9: Estimated versus true powers for FIR filter system with N = 8 and W = 9.

that fewer signals need to be monitored within this system to achieve comparable
accuracy. Conversely, performance was found to be worse with N < 32 than for the
multi-FIR system, indicating a wider spread of the most significant signals. These
results highlight that the choice of an optimal N will depend on the specifics of the
application being instrumented. While we cannot say that a particular choice of N will
be ‘good enough’ for a given application, we can give the most counters, and hence the
highest estimation accuracy, for given area and/or power constraints.

6.3. Static Power Compensation
An experiment was performed to verify KAPow’s ability to compensate for changes in
static power consumption, a determining factor of which is temperature. We used the
system described in Section 5.1 with N = 8 and W = 9 and a temperature control rig
consisting of a thermoelectric effect heat pump, water cooler and resistance thermome-
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Fig. 11: Mean per-module absolute error for W = 9 arithmetic-module system by N .

ter, allowing the setting and maintenance of device package temperature over a wide
range. Random workload changes were applied as described in Section 6.1, with static
power estimated using our model and measured after clock gating all modules. Tem-
perature was held at 25◦C for the first 300 iterations, after which it was increased by
5◦C every 150 iterations until reaching the device’s upper temperature corner of 85◦C.
The results of the experiment, without averaging, are shown in Figure 13, demonstrat-
ing close tracking between model-predicted and measured static power consumption.
No correlations were seen between dynamic power estimates and temperature. Notice
that the static power was always underestimated: this was expected since large step
changes in power occurred frequently. While such frequent temperature changes are
unusual under normal operating conditions, RLS forgetting factor λ could be decreased
to allow the model to adapt more quickly if such behaviour were anticipated.

7. OVERHEADS
We used the FIR benchmark system described in Section 5.1 as a representative ex-
ample to demonstrate how KAPow’s application and changes to its parameters, N and
W , impact upon system overheads.

7.1. Hardware and Design Overheads
Figure 14 shows the overheads in area (ALMs and LABs), compilation time and power
incurred through adding our instrumentation. As expected, the number of ALMs re-
quired increased with N , but the relationship between N and the number of LABs
was less clear since the latter is determined by a packing heuristic. Compilation time
appreciated with N , with N = 512 proving especially difficult to compile since it ap-
proached the limits of device capacity. The compilation time figures exclude that for
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Fig. 12: Estimated versus true powers for arithmetic toolbox with N = 32 and W = 9.

initial VQM generation since, if incorporated with a production tool, this would be in-
tegrated into a single pass. System power consumption increased with N , reflecting
the small structural disturbances and additional loading caused by adding activity
counters. These results, coupled with those in Section 6.1, indicate that N = 8 and
W = 9 can offer a reasonable tradeoff between absolute error (10mW) for area (ALM)
and power overheads of 8.9% and 3.6% (53mW), respectively, for this system.

The total power overheads shown were taken with activity counters disabled. Ex-
perimentation revealed that system-wide measurements could be taken at up to 91
samples per second; with the counters operating at this rate, the average power for
N = 512, W = 9 was found to increase by a further 3.7%, from 1.70W to 1.76W. With
fewer counters (e.g. N = 8) and/or slower sampling (e.g. 1Hz)—more typical values—
such additional increases were too small to measure. With modules operating at their
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Fig. 13: Static power estimation within power breakdown during temperature sweep
for FIR filter benchmark system with N = 8 and W = 9.
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maximum frequency of 200MHz and 9-bit activity counters being sampled at 91Hz,
instruments counted for approximately 0.05% of the time.

7.2. Software Overheads
The complexity of the RLS algorithm across various N is captured in Figure 15, the
values of which represent the times needed to update the model with a new activity
count and power measurement pair. With N = 8, each system-wide update required
690µs to complete, representing around 5% of total CPU time at the maximum sam-
pling rate of 91Hz. Note, however, that sampling rates need not ordinarily be this high.

8. SIGNAL PRUNING
The differences in error observed across the range of counters per module N tested in
Section 6 suggest that it is not necessary to monitor many of the signals selected via
the rankings generated as described in Section 3.1. In order to verify this hypothesis,
we modified the RLS algorithm described in Section 4 so that, after each model update,
it identified signals with low contribution to the overall power estimate. The algorithm
did this by selecting the coefficients in x̂ whose absolute values were some factor—in
our case, 104—smaller than the maximum, henceforth excluding those signals from
modelling. We found starting this process after 1000 model updates to work well.
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Fig. 15: System identification execution time for FIR filter benchmark system by N .

While the pruning proposed here does not directly result in area or FPGA power
savings, it is nevertheless considered to be a worthwhile exercise since RLS update
time—shown in Section 7.2 to be correlated with N—can be reduced by removing sig-
nals from consideration. While update periods are short for our benchmark systems
when N is small, larger systems with tens or hundreds of modules may benefit dra-
matically from this reduction in complexity. Potentially, the instruments described in
Section 3.2 could be modified to allow counter-level enabling and disabling, feasibly
via the scan chain, thereby enabling power reductions as well. Information gleaned
through pruning could also be used in a subsequent hardware revision, or following
simulation with pruning, to enable N to be intelligently reduced.

8.1. FIR Filters
Figure 16’s upper plots show the difference in results of the experiment described in
Section 6.1 performed on the seven-FIR filter system detailed in Section 5.1 with and
without signal pruning enabled, with positive values indicating deteriorations in mod-
elling accuracy. 50-point averaging was applied to each plot, with each beginning after
7N + 1 iterations, as before. Only minor increases in per-module error were observed
for each N under pruning despite the low proportions of signals retained for monitor-
ing, shown over time in the central plots of Figure 16. In the most extreme case, for
N = 512, the total number of monitored signals was reduced from 7×512 = 3584 to just
44: a reduction nearing 99%. Even for N = 8, model accuracy was maintained despite
half of the signals being excluded from modelling. Figure 16’s lower plots show the cor-
responding reductions in modelling complexity, expressed as a proportion of the time
required to update the model with pruning disabled. For N = 512, our model was able
to update some 3700× faster after pruning conducted until the end of the experiment.

It is interesting to note that N = 512 achieved lower post-pruning error than N = 16
despite a smaller set of signals—44 (down from 3584) versus 58 (from 112)—remaining
monitored in the former case. This is an example in which the most power-indicative
signals are too far down in the rankings derived from PowerPlay’s activity estimates
to be captured by embedding so few (in this case, 16) counters within each module.

8.2. Arithmetic Toolbox
The experiment detailed in Section 6.2 was also repeated with signal pruning enabled,
the results of which are shown in Figure 17. Again, examination reveals no significant
degradation in accuracy across the range of N tested, with even higher proportions of
signals pruned as found for the FIR filter benchmark system and, thus, greater reduc-
tions in modelling complexity. These experiments validate the hypothesis regarding
signal ranking—that it is not necessary to monitor many of the selected signals—and,
consequently, motivate future work on improved design-time signal selection.
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Fig. 16: Deteriorations in mean per-module absolute error by counters per module N
with counter width W = 9 for FIR filter benchmark system under signal pruning. The
central plots show, for each N , the proportion of the total signals still modelled af-
ter each update, with the corresponding proportions of the original (pruning disabled)
model update times shown in the lower plots.

9. TASK MAPPING
We now demonstrate an application in which KAPow was employed to guide the map-
ping of tasks to modules for system-wide power optimisation. Since the device used for
this experiment contained 112 DSP blocks, short of the 175 that would be needed to
implement an all-DSP version of our FIR benchmark system, a case for task mapping
existed; we wished to make best use of the available resources given the particular
work to be done. Seven different filtering tasks (combinations of input data and co-
efficients), representing a range of complexities and, consequently, power behaviour,
were specified to be executed simultaneously by the seven-module system described in
Section 5.1, one per module. Recall that the modules were functionally identical but
implementationally different, thus the task→ module mapping chosen influenced the
system-wide power consumption. Clock frequency remained fixed at 200MHz. The set
of all possible mappings contained 7P7 = 7! = 5040 permutations; a histogram (with
2mW bins) of their power consumptions is given in Figure 18. This data suggested
that an average mapping would result in system-wide power consumption of 1410mW,
with best and worst cases of 1358 and 1471mW, respectively.

Figure 19 shows the results of an experiment run using a simple closed-loop con-
troller that attempted to minimise total power consumption. Prior to RLS model ini-
tialisation, the tasks were rotated across the modules in seven steps in order to build
a 7× 7 activity table containing an activity vector, am, for each task-module pair. This
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Fig. 17: Deteriorations in mean per-module absolute error by counters per module N
with counter width W = 9 for arithmetic-module system under signal pruning.
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Fig. 18: System power for all task→ hardware mappings, with 2mW bins, used in the
task-mapping experiment. The red line marks the median.

was necessary since the modules were structurally different and, thus, had counters
attached to different signals. The model-building phase—57 updates in this case, since
M = 7 and N = 8—proceeded next, with a random task → module mapping applied
during each iteration. Once building had completed, the controller used the RLS coef-
ficients, x̂, to exhaustively forecast the system-wide power consumption for all 7! map-
pings (340ms in software) using sets of am taken from the activity table in each subse-
quent iteration, the optimal of which was applied to the hardware. Activity counts and
power measurements were taken as normal and used to update the model during the
building and optimisation stages of the experiment.
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Fig. 19: Task-mapping experiment results for FIR benchmark system with N = 8,
W = 9. The modelled power chart shows the estimated breakdown during each iter-
ation, with per-module powers arranged in order above static power, shown in dark
blue. Each additional colour represents the task mapped to the related module in each
iteration. The measured power plot includes lines for the minimum, maximum (both
green) and median (red) system powers.

Figure 19—a zoomed version of which can be found in Figure 20—shows that, for
around the first 100 iterations, the model continued to adapt before converging on
what it believed to be the optimal mapping. In this case, the controller was able to find
a mapping that consumed 1373mW of power on average: 37mW (2.6%) lower than the
median—whence the best possible improvement was 52mW (3.7%)—and 98mW (6.7%)
lower than the worst case. Note that averaging was not applied to these results.

10. CONCLUSION
In this article, we presented KAPow, a technique that combines hardware instrumen-
tation with software system identification to estimate per-module breakdowns of power
consumption within FPGA designs. Our approach is based around the monitoring of
influential signals within each module, determined at compile-time through vector-
less power analysis. We demonstrated that low-overhead activity-counting logic can be
mapped automatically, transparently and elegantly to FPGAs.

Rather than estimating system-wide power consumption, as in prior work, we mea-
sured it directly and applied system identification to train and continuously update a
linear power model online. Once running, the model adapts to changes in operating
conditions in ways that offline models cannot. Our approach facilitates runtime power
optimisation without having to pre-characterise individual devices or applications and
greatly improves upon the accuracy achievable with a one-size-fits-all model. Further-
more, the ability to establish power consumption breakdowns provides the foundation
for a new field of runtime performance optimisation techniques, allowing challenges
including process variation and dark silicon to be addressed.

We evaluated KAPow on two multi-module systems to establish its accuracy, adapt-
ability and suitability to inform runtime task mapping for system-wide power opti-
misation. Absolute module-level power estimates were shown to be accurate, within
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Fig. 20: Task-mapping experiment results, zoomed to show the first 100 iterations only.

5mW of true measurements and thus meeting the limits of measurement accuracy
within our experimental setup. We proposed a simple signal pruning algorithm capa-
ble of dramatically reducing the number of signals modelled at runtime while having
no discernible impact on accuracy. In our task-mapping experiment, power consump-
tion improvement of up to 7% was achieved with incurred power and area overheads
of sub-4% and 9% (or ∼2% of the device), respectively.

KAPow’s largest limitation at present—and, we believe, the most promising avenue
for future work—lies in signal selection. Choosing signals to monitor based solely upon
vectorless analysis-predicted activity ignores the fact that some may not be indicative
of high power consumption and that others may be highly correlated. As shown by our
signal pruning experiments, the former is indeed a limitation with our methodology at
present: many counters can often be eliminated with little effect on model accuracy.

10.1. Future Work
In the future, we would like to experiment with different signal selection methods, in-
cluding vectored (simulation-based) approaches [Najm 1994] and by analysing circuit
structure using centrality techniques [Hung and Wilton 2013]. We will also evaluate
the use of asynchronous counters to explicitly capture glitches and explore methods
enabling the reduction of instrumentation overhead. For example, it may be possible
to specify that instrumentation be given lower priority over FPGA resources than the
user circuit, perhaps by using incremental compilation techniques to constrain it to
leftover resources alone [Levine et al. 2012]; alternatively, by building custom tools to
employ latency-insensitive design techniques [Hung et al. 2014] that may allow activ-
ity counters to respond a few clock cycles late, for example, if they can improve overall
performance. Finally, we envisage that a higher-level runtime management layer, in
place of the simple controllers used in this work, may allow estimates from KAPow to
be combined with application-specific parameters—kernel selection and achieved out-
put accuracy for our FIR filter system, for instance—to enable finer-grained control.
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