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Abstract This paper investigates cell proliferation dynamics in small tumor
cell aggregates using an individual based model (IBM). The simulation model
is designed to study the morphology of the cell population and of the cell
lineages as well as the impact of the orientation of the division plane on this
morphology. Our IBM model is based on the hypothesis that cells are incom-
pressible objects that grow in size and divide once a threshold size is reached,
and that newly born cell adhere to the existing cell cluster. We performed
comparisons between the simulation model and experimental data by using
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several statistical indicators. The results suggest that the emergence of par-
ticular morphologies can be explained by simple mechanical interactions.

Keywords Cell proliferation · Individual based model · energy minimization ·
lineage morphology

1 Introduction

Cancer cells proliferate at a high rate and can be considered as a dynamic
population of agents that grow and divide without constraints [1] (at least
in the early phase of avascular growth). In the present work, we aim to in-
vestigate this preliminary stage of a tumor growth. As such, this study could
also help in understanding the development of 3D microtumours. Here, we
examine a population initially composed of several tens of cells that prolif-
erate to reach several hundreds of cells within a few days. In this situation,
the experimental model consists of cancer cells grown in a culture medium
containing all the necessary nutrients for their growth and division. The pro-
liferation of the population is restricted to a single layer, which permits the
use of simple two dimensional simulation models for the comparisons. In the
proposed simulation model we do not include a detailed description of the
cell cycle and mitosis events. Instead we focus on the role of the orientation
of the cell division planes in the morphology of the tumor cells cluster. We
aim to investigate how the orientation of cell divisions influences the struc-
ture of the cell lineages. In particular, we would like to determine whether cell
lineages break up and whether they have different morphologies according to
their initial position in the cell population. The impact of the orientation of
the division plane on the organization of the population has been suggested
from recent studies. In particular, the influence of the geometry of the cell,
the influence of neighboring cells and the role of external mechanical forces on
the determination of the orientation of the division plane have been studied in
[2–9]. In [10], the authors studied a model in which mitotic spindle has random
orientation and they compare it with a model in which division is subsequent
of an attraction mechanism. Recent results also suggest that the orientation
of the division plane plays a role in the differentiation of stem cells [11,12].
It has been experimentally observed that oriented cell division can generate
cellular diversity and that tissue morphogenesis depends on the control of the
direction of cell division. In other words, orientation shapes tissues. Moreover,
recent discoveries tend to establish a link between cancer and disorientation
of the division plane [13]: dysfunction in cells can lead to disorientation and,
conversely, disorientation can promote the development of cancer. The above
observations lead us to focus on two main questions related to the organization
of a growing tumor cell population: what is the impact of the multiplication
of cells on the global organization of the entire cell population? Does the ori-
entation of the division plane influence the evolution of the cell population
and the organization of its lineages? The comparison of a mathematical model
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with biological experiments performed in this work shows that indeed a rela-
tion exists between division and organization and that lineages are strongly
influenced by the initial position of the parental cell inside the population.

There exists a large number of mathematical models in the literature de-
scribing cell proliferation and tumor growth. Some recent review papers can be
found in [14–17]. Among the different ways of representing cells, one usually
distinguishes between discrete models and continuous models. In a discrete
model [18–30], each element is treated as a separate entity. This makes the
comparison with experiments easy but the main drawback of this viewpoint
is the huge computational cost when dealing with a large number of agents.
On the other hand, continuous models [31–36], which typically deal with an
average density of cells, are more efficient when the system contains a large
number of particles. However, it is difficult to establish direct links between
the model parameters and the physical measures [37]. Comparisons between
the two approaches can be found in [38–40], while hybrid models which employ
both approaches at the same time can be found for instance in [41–45].

Many models of the literature tend to be exhaustive in the description
of the biological, physical and chemical phenomena. This leads to the intro-
duction of many empirical parameters and makes the interpretation of the
results difficult. Our approach is opposite: it relies on a simple mathemati-
cal model which focuses on few determinants and attempts to explore some
specific questions through comparisons with experiments. This approach per-
mits to explore the influence of any single modeling choice more efficiently and
to formulate hypotheses about which mechanisms are associated with given
observations. We follow a bottom-up strategy which starts from simple rules
and gradually adds complexity into the model until a good fit with the ex-
periments is reached. Rather than quantitative agreement, we look for similar
trends between the model and the experiments when some key parameters
are varied. Here, we show that the sole growth and division mechanisms are
not sufficient to explain the observed lineage morphologies and that additional
phenomena must be taken into account in the model in order to reproduce the
experimental results. The biological situation we wish to investigate is a small
population composed of 20 up to about 500 cells in which proliferation and
movement are restricted to a two-dimensional plane. For this specific situation,
the best modeling choice is an Individual Based Models (IBM) (see [46–50] for
example). This permits to make the mathematical model reproduce the ex-
periment and to consider objects moving only in a two-dimensional plane. In
addition, since we seek to study the impact of the growth of cells and the
influence of the orientation of division on the organization of the population,
we need to be able to track individual entities. Indeed, a continuous model will
not give access to such information. On the other hand, a discrete model on a
grid [51–53] could introduce artificial bias on the organization of the cells and
it will not allow us to explore orientation issues in depth, since the number of
possible orientations is limited by the underlying grid [33,37,54].

The mathematical setting chosen is finally the following: cells aggregate
spontaneously, grow and divide. After each growth or division event, a mechan-
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ical equilibrium between aggregation and cell-cell non overlapping is supposed
instantaneously reached and gives the instantaneous configuration of the pop-
ulation. Thus motion arises from stresses between neighboring cells [55–58].
This approach is different from more classical models based on introducing
a repulsion potential between the cells [10,39,46]. Indeed, the temporal scale
associated with cell (quasi)-incompressibility is much faster than that involved
in the growth of the tumor as a whole. Modelling cell-cell non-overlapping via
a repulsion potential requires making these two scales closer than they are in
reality (to ensure numerical stability), thereby introducing a bias in the nu-
merical solution. In a forthcoming work [59], we intend to document precisely
the differences between these two approaches. Since cell-cell non-overlapping
is associated with a faster scale than growth an approach based on realizing
a mechanical equilibrium at every time step permit to bypass the numerical
stability issue. During the time evolution of the system different lineages are
tagged and compared with experimental data as done for instance in [60].
Comparisons between the mathematical model and the biological experiments
show that a relation exists between geometric determinants of cell, division,
and the organization of the cell population and that lineage shapes are strongly
influenced by the initial position of the parental cell inside the population.

The paper is organized as follows. In Section 2 we discuss the mathemati-
cal model and the numerical method adopted. We also discuss the statistical
indicators used to measure the results of the numerical simulations, the experi-
mental protocol and the image processing. In Section 3 we resume the principal
results of the simulations and a first series of comparisons between the model
and the experiments are presented and discussed. In Section 4 improvements
introduced to the model and new comparisons with the data are analyzed. In
Section 5 conclusions are drawn and future investigations are discussed.

2 Mathematical model and experimental protocol

2.1 Mathematical model: general description

Since the roles of division and growth in the lineage organization are at the
center of this study, we must be able to track individual cells during time. In
order to do that, we use an agent based mathematical model in which each
cell is represented by a discrete entity. In this model, a cell/agent is defined
by its center, its radius and its orientation. Only the plasma membrane is
described. The details of the intracellular phenomena are omitted. The cell
shape is chosen to be a two-dimensional disk which is incompressible and
continuously growing in time. The notion of preferred orientation, linked to
the alignment of chromosomes during mitosis, necessary to define the division
plane, is not inherently modeled by the shape of the agent. Instead it is an
internal parameter owned by each agent which may vary with time depending
on the chosen division strategy and detailed next. The cell evolution is deter-
mined only by the growth and the division laws, respectively describing the
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interphase and the mitotic steps of a cell cycle. To reproduce the experimental
setting, cells are free to move and have access to all the required nutrients. Cell
cycle phases of growth and division alternate continuously; cell cycle check-
points, G1 phase variability between cells and temporary cell cycle exits are
excluded. The interphase is constituted solely of the cell growth phase: G1-,
S- and G2-phases are combined into a single no-division phase during which
growth is assumed to be linear in time. The mitosis trigger occurs as soon as
the cell reaches a critical size, which is the only control condition. Conserva-
tion of the volume is imposed during the division process. Agents interact by
minimizing at each time the global mechanical energy of the system subject
to a non-interpenetration constraint modeling the fact that living cells cannot
intermingle. This dynamic causes global as well as individual cell movement,
which is thus the product of the combined actions of growth and division on
the one hand, and the non-overlapping constraint on the other hand. Growth is
modeled as a continuous phenomenon except at the time of division, which oc-
curs when a cell reaches approximately twice the volume of a newborn daughter
cell. A uniform probability distribution is added to the growth increment over
a time-step to introduce some randomness in the cell division starting time.
When this process starts the mother cell deforms itself in a dumbbell shaped
geometry to give birth to two identical daughter cells. Deformation occurs with
total volume kept constant. The duration of mitosis is short compared to the
interphase (around one over thirty units of time). Thus, when a division oc-
curs, the other cells stop growing, i.e. we consider mitosis as an instantaneous
phenomenon. During division an equilibrium between the mechanical adhesion
forces and the non-overlapping constraint determines the state of the system
at each instant of time. In order to explore the influence of the orientation
of the division plane onto the lineage organization, we consider three different
possibilities: divisions occur in 1) a random direction, 2) in the direction of the
line joining the origin and the mother cell (radial direction) 3) in the direction
orthogonal to the radial direction (tangential direction). Note that we only
consider the case where all cells make the same orientation choices for division
(i.e. either all choose random, or all choose radial, or all choose tangential
direction). We leave the investigation of the more complex case where some
cells choose a certain orientation and others a different one for future investi-
gations. Furthermore, in addition to the different division planes, we consider
two different strategies. 1) Free orientation strategy: orientation is chosen at
the beginning of the division but is free to change during the deformation
into a dumbbell-like shape and finally into two daughter cells. This change of
orientation is only due to the interactions with neighboring agents through
the energy minimization procedure which defines the new configurations. 2)
Constrained orientation strategy: Orientation is chosen at the beginning of
the division and remains fixed up to the end of the division process. The first
strategy, freedom for the orientation plane to change during division, models
the situation in which the orientation of the plane of division is a consequence
of the instantaneous state of stress at which cells are subjected. The second
strategy, fixed orientation during the division, models the fact that in some
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situations it has been proved that cells are capable to detect their position and
consequently to choose their orientation [61]. At each time step, a minimum of
this mechanical energy subject to the non-overlapping constraint is computed.
At the beginning of the next time step, cells radii grow and divisions may
arise. This induces a disruption of the mechanical equilibrium and thus a new
minimum of the energy is computed. The time unit is chosen in such a way
that the mean duration of a cell cycle is 24 time units which corresponds to
the 24 hours of the real mean duration of a cycle for the type of cells exper-
imentally considered. The final time of the simulation is 72 time units which
corresponds to an average of three cell cycles. The time step between two new
equilibrium configurations is 0.25 time units. This leads to a radius growth
of 1/100 in one time step with respect to its initial size. This means that the
change in configuration of the cellular aggregate changes very slowly in one
time unit. Fig. 1 (c) and (d) show a typical result of the simulation of the
described model. To ease the interpretation of the results, the spherical cell
shape is replaced by a polygonal one following a Voronöı tesselation of the cell
centers, detailed in Section 2.4. This simplifies the definition of the geomet-
rical characteristics of the cellular aggregates and facilitates the localization
of the neighboring cells. Figs. 1 (a) and (b) illustrate the initial and the final
phases of the proliferation and monitoring of the lineages. The cells tracking
procedure is described in section 3.

2.2 Detail on the model

Rules for cells positioning. As already stated, each cell is described by a 2D
incompressible disk with a center positioned at

Xi(t) = (xi(t), yi(t)),

a radius Ri(t) > 0 and an orientation ωi(t) ∈ S1 (the set of two-dimensional
vectors with unit length) depending on time t. In this setting, we use ξ(t)
to denote the vector whose elements are the positions of the cells, i.e. ξ(t) =
(X1(t), X2(t), .., XN(t)(t)), while ρ(t) is the vector whose elements are the radii
of the cells, i.e. ρ(t) = (R1(t), R2(t), .., RN(t)(t)). The number of cells at time
t is denoted by N(t). Each cell belongs to a lineage `i which defines the devel-
opmental history of a given initial mother cell and which does not evolve with
time. What evolves in time is the number of cells N`i(t), belonging to a given
lineage `i, due to mitosis.

The impenetrability condition between two cells i and j is expressed by an
inequality constraint φij with a suitable function φij which expresses the fact
that two cells should not overlap. Thus an admissible configuration A(t) for
the system is a set of positions ξ(t) such that φij(ξ(t), ρ(t)) ≤ 0 for all possible
indices i and j:

A(t) = {ξ(t) ∈ (R2)N(t) | ∀i, j ∈ [1, N(t)],

i 6= j, φij(ξ(t), ρ(t)) ≤ 0}.
(1)
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Fig. 1 Monitoring of cell lineages in a proliferating cell population. Top images (a) and (b)
are experimental data obtained through video-microscopy monitoring of a HCT116 colon
cancer cells population at time 0 (a) and 72h (b). Lineages are identified with colorful stickers
that have been added after image segmentation and time-lapse analysis. Bottom images (c)
and (d) illustrate numerical results: an example of the results of a numerical simulation,
(c) initial state and (d) final state. Cells are represented by using the Voronöı diagram
which permits an easier definition of the concept of neighboring cells and periphery of the
population and of the single lineage. The same color indicates cells of the same lineage.

a

c

b

d

The global adhesion potential is expressed by a function

W : (X1(t), X2(t), .., XN(t)(t))→
N(t)∑
i=1

V (Xi(t)) (2)

where Xi(t)→ V (Xi(t)) is a convex function on R2. The instantaneous config-
uration at time t is then given by a minimum ξ∗(t) of the potential W under
the constraint that ξ∗(t) belongs to the set of admissible configurations A(t),
i.e.

ξ∗(t) = argminξ(t)∈A(t)W (ξ(t)). (3)

In this setting, the non-overlapping condition is defined by φij(ξ(t), ρ(t)) =
(Ri(t) +Rj(t))

2− |Xi(t)−Xj(t)|2, where |Xi(t)−Xj(t)|2 = (xi(t)−xj(t))2 +
(yi(t) − yj(t))2 is the Euclidean distance on R2 between cell located at Xi(t)
and cell located at Xj(t). The potential function models the trend of the cells
to regroup themselves isotropically around a given position chosen to be the
origin of the coordinate system. The potential function we consider is quadratic
VQ(Xi(t)) = x2i (t) + y2i (t). This choice models the situation in which at the
center of the cellular aggregate cells are more necrotic and consequently they
are probably less able to build up connection bridges with their neighbors.
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Une cellule mère Deux cellules filles

Fig. 2 Different steps of the division process. From one mother cell on the left, at initial
time t = τ0, up to two daughter cells on the right at the end of the process t = τf .

τ0, Mother cell τ1 τf−1 τf , Daughter cells

Growth law. We introduce the size of a new born cell Rmin, the size of a
cell just before mitosis Rmax and TG the mean duration of the growth phase.
Even though the model is two dimensional, we consider cells as tridimensional
structures whose volumes grow linearly in time. Thus the growth law of the
i-th cell is given by

R3
i (t) = R3

min + (1 + γ)
R3
max −R3

min

Tg
t (4)

where γ is a random variable sampled from an uniform distribution with sup-
port on [−α, α]. Once a cell reaches a radius R(t) ≥ Rmax it starts to divide
into two daughter cells. Eq. (4) is discretized in small time steps ∆t. After
a time step cell growth leads to the violation of non overlapping constraints.
Thus a new energy minimum must be computed through (3) resulting in a
repositioning of the cells. Then a new growth step is performed followed by a
repositioning step. The cycle of growth and repositioning is repeated until one
cell starts to divide.

Division rules. The initial orientation ωi0 of the division plane of the cell
Ci is random, radial or tangential. The radial and tangential directions are
computed relative to the origin supposed to be the center of the tumor. The
division process starts when a cell Ci reaches a size Ri0(t) ≥ Rmax at time t.
The process is considered as discrete in time and at each time step the disk
which describes the mother cell stretches apart in a peanut like shape until the
final separation in two daughter cells as shown in Fig. 2. During this process the
volume is kept constant equal to the volume of the mother cell. At each discrete
instant of time, τk, k ∈ [1, f ] (where f is the total number of intermediate steps
in the division process) a new equilibrium of the whole system is computed
by solving (3) with a modified set of admissible configurations A(τk) (at step
τk) as described below. When the mitosis comes to an end, each daughter cell
has reached half the size in volume of the mother cell. Moreover, they have
the same size and shape and their position is symmetric with respect to the
division plane. The orientation of the division plane is described by the unit
vector ωi(τk), ∀i. Since the division process is much faster than the cell cycle,
we make the hypothesis that two cells cannot divide at the same time and
that during division the other cells do not grow.
Let ωi0(t) the orientation of the division plane of the mother cell when the
division starts, (xi0(t), yi0(t)) its coordinates and `i0 its lineage. Then, initially,
the two daughter cells occupy the same location in space as the mother cell,
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i.e. (x+(τ0), y+(τ0)) = (x−(τ0), y−(τ0)) = (xi0(t), yi0(t)); they share the same
orientation ω+(τ0) = ω−(τ0) = ωi0(t) and they belong to the same lineage
`+(τ0) = `−(τ0) = `i0 , where the upper indices + and − refer to the two
daughter cells and the i0 index to the mother cell. During division the lineage of
the two daughters remains unchanged while the two radii R+(τ) and R−(τ) are
functions of the time during division τ (which is rather a degree of completion
of the division process), and are such that the initial volume of the mother
cell is preserved in time. During the division process the real time variable t is
kept constant. In particular, at the end of the process the two radii are such
that R+(τf ) = R−(τf ) = Ri0(t)/ 3

√
2. The transformation is parametrized by a

function h̃(τk) = Ri0 − k
Ri0
f where for each step τk, the R±(τk) are obtained

by solving the following equation

R±(τk)3 − 3h̃(τk)2

4
R±(τk) +

h(τk)3

4
−
R3
i0

(t)

2
= 0,

which expresses the conservation of volume during the division process since
the volume of a daughter cell is

V±(τk) =
π

3
(R±(τk)3)− 3h̃(τk)2R±(τk) + h̃(τk)3)

at time τk while Vi0(t) = 2V±(τk) with Vi0(t) the volume of the mother cell
at time t before the division starts. This value then defines the new positions
through {

x±(τk+1) = x+(τk)+x
−(τk)

2 ± (R±(τk)− h̃(τk)) cos(ω(τk))

y±(τk+1) = y+(τk)+y
−(τk)

2 ± (R±(τk)− h̃(τk)) sin(ω(τk)),

since the two new born cells are placed along the normal vector direction to
the plane of division at the distance R±(τk) − h̃(τk) from this plane. Once
the new positions are computed, the non overlapping constraint is likely to be
violated. A new minimal energy configuration ξ∗(τk+1) must be computed at
step τk+1 solving (3). Here the definition of the set of admissible configuration
is different from (1) and incorporate equality constraints φ̃ij associated with
the maintenance of the peanut shape when the pair (i, j) corresponds to two
daughter cells, i.e. (i, j) = (i+, i−). In addition in the case of fixed orientation
strategy another constraint is added to the system which imposes ω±(τk+1) =
ω±(τk), ∀k, which means that the dividing cells do not change their orientation
during the re-positioning. By contrast, in the free orientation case, ω±(τk+1) 6=
ω±(τk), i.e. no constraint is imposed on the new orientation at step τk. This
new constraints are defined in 2.3.

2.3 Numerical solution of the model

We now detail the numerical method used to solve our model. The general
structure of the algorithm is the following
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a) Initialization
b) At each time step

i) Growth step.
ii) Test on size of the cell, cell by cell. If the threshold size is reached a

division occurs.
iii) For each mitosis up to the final division

1) Partial division.
2) Positioning step.
3) If necessary, depending on the chosen orientation strategy, orienta-

tion update.
iv) Positioning step.

c) Statistical quantifiers computation.

The computation of the statistical quantifiers is detailed in the next Section.

Positioning step. We discuss now step b)-(iv). In order to find a solution to
the minimization problem ξ∗(t) = argminξ(t)∈A(t)WQ(ξ(t)), where WQ is the
global adhesion potential relative to the quadratic choice of the potential func-
tion VQ, we construct a method based on the Uzawa algorithm [62]. Given N(t)
cells, the number of constraint functions φij(ξ(t), ρ(t)) due to the non overlap-
ping condition is M = N(t)(N(t)− 1)/2. Then, the algorithm consists in find-
ing a saddle point of the Lagrangian function LQ(ξ(t), λ(t)) : (R2)N(t)×RM →
R defined by

LQ(ξ(t), λ(t)) = WQ(ξ(t))

+
∑

1≤i≤j≤N(t)

λij(t)φij(ξ(t), ρ(t)), ∀(ξ(t), λ(t)), (5)

where the λij are called the Lagrange multipliers. The algorithm constructs
a sequence of approximate values (ξ(t)(p), λ(t)(p))p such that ξ(t)(p) → ξ(t)∗,
when p→∞. Starting from an initial guess (ξ(t)(0), λ(t)(0)), the method reads
as 

ξ(p+1) = X(p) − β∇xLQ
(
ξ(p), λ(p)

)
,

φ
(p+1)
ij = φij

(
ξ(p+1)

)
, ∀ i, j ∈ [1, N ], i < j,

λ
(p+1)
ij = max

(
0, λ

(p)
ij + µφ

(p)
ij

)
,∀ i, j ∈ [1, N ], i < j,

where β and µ are numerical parameters and where the dependence on t has
been omitted for simplicity and will also be omitted in the sequel of this para-
graph if not strictly necessary for comprehension. After some computations,
the first equation of the above system can be rewritten for k ∈ [1, N ] as

X
(p+1)
k = (1− 2β)X

(p)
k + 2β

N∑
j=1

λ
(p)
kj

(
X

(p)
k −X(p)

j

)
,

which clarifies the role of the numerical parameter β in the scheme, it is related
to the displacement of the cells during the search of an equilibrium position.
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Two stopping criteria, which need to be satisfied at the same time, are used in
order to advance to the next step. They are based on measuring the following
quantities

ε
(p+1)
φ = max

1≤k≤N
1≤l≤k−1

(φ
(p+1)
lk ),

ε
(p+1)
W =

∣∣∣∣∣W
(p+1)
Q (ξ)−W (p)

Q (ξ)

W
(p)
Q (ξ)

∣∣∣∣∣ .
Then new equilibrium state is considered to be valid if ε

(p+1)
φ < tolφ and

ε
(p+1)
W < tolW where tolφ and tolW are two tolerances the values of which are

given below. These criteria permit to control the largest overlapping permitted
between the cells and to exit the algorithm when two consecutive values of the
total mechanical energy of the system are very close to each other, indicating
that a saddle point is likely to have been reached. Finally, the parameter µ is
related to the speed at which the constraints are updated.
In order to reach a solution to the minimization problem as fast as possible, an
adaptive β has been chosen which depends on the number of cells considered.
In practice, β = 3 10−4 for 1 ≤ N ≤ 100, β = 3 10−5 for 100 ≤ N ≤ 300 and
β = 6 10−6 for 300 ≤ N ≤ 500, while µ is kept fixed to µ = 100. This reflects
the observation that the Lagrange multipliers values grow with the number of
cells N . Consequently the value of β should diminish when N grows in order
to avoid too large displacements of the cells which may lead to saddle points
very far from the initial configuration and thus unrealistic. However, it may
happen that when constraints are strongly violated, these choices for β are not
sufficient to prevent ejection of cells from the aggregate. This is measured by
computing the distance traveled by a cell between two consecutive steps (p)
and (p+ 1) of the minimization algorithm. If this distance goes beyond a fixed
tolerance tolX , this is repaired by repeating the positioning algorithm with a
choice of β which avoids too large displacements. Details on the value used for
tolX are given below.

Growth step. Step (i) consists of the simple implementation of the growth law
discussed in the previous Section. Given the parameters Rmin, Rmax, γ, TG
and the time step ∆t, we just sample a random number u between [−α, α] and

we compute Ri(t) =
(
R3
min + (1 + γ)

R3
max−R

3
min

Tg
∆t
)1/3

. After the growth, in

general, an overlapping between cells is produced which is resolved by the
repositioning step described in Section 3.1.

Division step. We assume that the cell Ci0 is ready to start the division,
i.e. Ri0(t) ≥ Rmax. For each simulation, we fix the number of steps of the
division process k = [1, f ], the initial direction ωi0(t) of the division plane and
the division strategy. As soon as the cell begins its division, the cell Ci0 is
replaced by two new cells. The algorithm can be summarized as follows. For

each τk, k ∈ [1, f ], compute h̃(τk) = Ri0(t) − kRi0 (t)f , the radii R±(τk), the
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new positions (x±(τk+1), y±(τk+1)), where the variable t is fixed during all
the division process. This series of actions causes the cells to partially overlap
with their neighbors. This is corrected by a new application of the positioning
algorithm.
The additional constraints imposed by the mitosis are, for both free and fixed
orientation strategies, the change in the non overlapping constraint between
the cells is changed into an equality constraint between the two daughter cells
(indexed by i+, i−) which, for the iteration (p) of the minimization algorithm
relative to the generic division step τk, reads as follows:

φ
(p)
i+i− = 4(Ri0 − h̃)2 − (x

(p)
i+ − x

(p)
i− )2 − (y

(p)
i+ − y

(p)
i− )2,

while the corresponding Lagrange multiplier is updated accordingly to λ
(p)
i+i− =

λ
(p−1)
i+i− +µφ

(p)
i+i− and where the dependences on τk and t have been omitted for

simplicity. In the constrained strategy case, two additional constraints should
be added to the positioning algorithm to take into account that ω±(τk) remains
constant equal to ωi0(t) for all k ∈ [1, f ]. They read
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while the new positions of the two daughters cells take into account these

constraints through the corresponding Lagrange multipliers λ
(p)
1 and λ

(p)
2 as

follows: {
x̃
(p+1)
i± = x

(p+1)
i± ∓ β(λ1 ∓ λ2) sin(ω±),

ỹ
(p+1)
i± = y

(p+1)
i± ± β(λ1 ± λ2) cos(ω±),

where x
(p+1)
i± and y

(p+1)
i± are the positions computed during the iteration (p+1)

of the positioning algorithm without divisions and where once again depen-
dence on τk and t are omitted.

Initialization and numerical parameters. The initialization is done by inserting
N0 cells in the computational domain with radius Rmin, at a random location,
each cell defining a different lineage elli, i = [1, N0]. Then, a positioning step
finds a first saddle point of the Lagrangian function LQ(ξ(t = 0), λ(t = 0))
which furnishes the initial positions of the cells in the tumor.
We list now all numerical values given to the parameters. We distinguish the
model parameters listed in Table 1 from the numerical parameters listed in
Table 2. In particular, considering Table 1, the choice of N0 represents the ef-
fective number of initial cells used in average in the experiments. In the same
spirit, TG and Tmax are also chosen to be as close as possible to experimental
values. The HCT116 line used in the experiments has a cycle of an average
duration of 24 hours and they are typically tracked up to three generation
times. Then cell cycle can vary from 18 hours to 30 hours which justifies the
choice of γ. The value Rmin sets a reference value. This choice fixes conse-
quently Rmax. The ratio between the minimal and the maximal radii assumed
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Parameter Value Meaning
N0 50 Number of initial cells
TG 24 Mean duration of the cell cycle
Tmax 72 Duration of the simulations
α 0.25 Support of the uniform distribution
Rmin 1 Minimal radius of a cell

Rmax
3
√

2 Larger value assumed by a cell
f 8 Number of discrete mitosis steps

Table 1 Model parameters

Parameter Value Meaning
∆t 0.25 Time step

β O( 1
N2 ) Cell displacement rate

µ 100 Lagrange multipliers change rate
tolW 0.25 Energy minimum tolerance
tolφ O( ρ

10
) Overlapping tolerance

tolξ 2 Cell displacement tolerance

Table 2 Numerical parameters

by the cells corresponds to the average ratio of the HCT116 line. Finally, the
value f (number of steps during the division process) is chosen to avoid too
large cell overlapping during the division process. Concerning the numerical
parameters, the time step is chosen to guarantee small enough cell size incre-
ments which avoids too large cell overlapping before repositioning. The values
assigned to β have been already discussed in Section 3.2 together with µ. The
value chosen for tolW is directly related to the values of β. The tolerance tolφ
is chosen to permit only very small overlaps (of the order of 5×10−2 for values
of the radius R between Rmin and Rmax). The value of tolX detects too large
displacements of cells (of the order of twice the radius Rmin). For the choice
of the numerical parameters, we refer to [66] where an extensive study is re-
ported. Since minima of the mechanical energy subjected to non-overlapping
constraints are not unique, the numerical parameters are chosen such that the
algorithm selects the closest configuration to that of the previous time step.

2.4 Statistical indicators

To get insight into both the experimental and the numerical results, we develop
several indicators to measure the characteristics and the morphologies of the
single lineages or of the whole population.

The Voronöı diagram. In Fig. 3 is reported a typical result of a simulation.
The left picture shows the initialization after the first positioning phase, with
N0 = 50 cells, while the right picture shows the solution at Tmax which corre-
sponds to a situation with about N = 400 cells. This representation of the so-
lution has several limitations due to the difficulty in defining the notions of cell
neighborhood, perimeter and area. In order to overcome this problem we use a
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Fig. 3 Left (initial step) and middle left (final step): typical result of a simulation without
the Voronöı diagram. Middle right(initial step) and right (final step): Representation of the
solution by the Voronöı diagram.

modified Voronöı diagram representation. This representation is introduced for
statistical analysis purposes only. It does not play any role in the cell dynamics.
This approach is frequently used in the context of growing cell populations,
see for instance [63–65] where this method is used to determine the interaction
forces between two cells. We recall some basics about the Voronöı diagram in
the present setting. A Voronöı site is defined as a point pi belonging to a pre-
defined subset S = {pi|1 ≤ i ≤ n} of R2. A Voronöı region relative to the site
pi ∈ S is a subsetRi of R2 such thatRi = {x ∈ R2|∀j 6= i,d(x, pi) ≤ d(x, pj)},
where d(·, ·) denotes the Euclidean distance on R2. A Voronöı diagram for S is
the set of regions Ri for pi ∈ S, i.e. ∪ni=1[Ri]. Thus, given a set of sites S, the
Voronöı diagram partitions the plane by which site is the closest. Two sites pi
and pj are considered as neighbors if Ri and Rj share a common edge. The
intersection of three regions, if not empty, is called a Voronöı vertex or node.
In order to use this representation in our model, we define the Voronöı sites
as being the cell centers, i.e. S = {Xi|1 ≤ i ≤ N}. But this leads to a problem
at the boundary of the cellular aggregate, since the tumor does not occupy
the entire plane. The Voronöı regions corresponding to these outer sites are
consequently unbounded. To overcome this problem, we add fictitious sites on
the borders of the population. These additional sites are located on the poly-
gon whose boundaries are the edges of the convex hull of the tumor slightly
enlarged by dilation. More precisely, given a small δ > 0 and P the polygon
obtained by enlarging the boundaries of the convex hull by an increment δ, we
place n additional sites equally spaced along the segment of P, where n corre-
sponds to the number of outer sites. The result of this procedure leads to Fig.
3 on the middle right and right where the Voronöı diagram has been traced for
the same situation as on the left and middle left. In this Figure the Voronöı
regions related to the fictitious sites are not represented. Now, the definitions
of area, perimeter and neighborhood of cells or groups of cells are easier even
if it should be stated that these quantities in the passage from the sphere
representation to the Voronöı one do not remain constant. We will use the
same Voronöı approach for the experimental data to have similar definitions
of neighborhoods, areas and perimeters in the experimental and numerical
results.

Diagnostic definitions. One of the main questions we address is the influence
of the orientation of the division plane during mitosis on the morphology of
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the lineages. We consider all descendants of a given ancestor cell present at
the initial time and store this information in the lineage `i, i = [1, N0]. Thus,
if cell Ci is present at the initial time then `i = i, otherwise when a cell is
created its `i becomes the lineage of its mother cell. To define diagnostics, we
use several concepts of graph theory. We briefly recall them. A graph G is an
ordered pair comprising a set of points or vertices and a set of edges or links
where an edge is related with two vertices and two vertices of the graph may
or may not be connected by a link. A chain in G is a finite sequence of vertices
connected by links with possible repetitions. A cycle is a closed chain. We are
now ready to introduce some definitions:
Neighboring cells. Two cells Ci and Cj are said to be neighbors if their
Voronöı regions Ri and Rj share a common edge.
Graph of N cells. The set of all cells is a graph where the vertices are the
cells centers.
Connected set of cells. The cells Ci1 , Ci2 , .., Cip are said to be connected
when the sub-graph induced by these cells is a connected graph.
Connected component of a lineage. A connected component of a lineage
is a connected component of the subgraph generated by the cells of the same
lineage.
Cell cycle. A cell cycle is a finite sequence of cells corresponding to a cycle
in the graph. In other words, for all k ∈ [1, p+ 1], Cik and Cik+1 are neighbors
and Cip+1

= Ci1 .
Cell polygon associated with a cell cycle. Let p ≥ 3 and a cell cycle
Ci1 , Ci1 , .., Cip+1 . The line passing from the centers of the cellsXi1 , Xi2 , .., Xip+1

forms a polygon which is called the cell polygon associated to Ci1 , Ci1 , .., Cip+1 .
Boundaries of a set of connected cells. Given a set of connected cells, the
boundary is defined as a cell cycle whose associated cell polygon contains all
cells of the connected set. This polygon is called the boundary polygon.
Perimeter and area of a set of connected cells. Let us consider a set
of connected cells with p ≥ 1 and its boundary denoted by Ci1 , Ci1 , .., Cip+1 .
The perimeter of this array of cells is defined as the perimeter of the cell poly-
gon associated to Ci1 , Ci1 , .., Cip+1

. It is given by P =
∑p
k=1 d(Cik , Cik+1

).
The area of this set is defined as the area of the cell polygon. It is given by
A = 1

2

∣∣∑p
k=1(xikyik+1

− xik+1
yik)

∣∣.
Convex hull of a set of cells. The convex hull a set of cells is defined as
the convex hull of the point cloud consisting of all the cell centers.
We are now ready to define the statistical indicators used for studying the
morphology of the cellular aggregate.
(1) Sphericity of the population: ratio between the area and the perimeter
squared of the entire cell population: R1 = 4πA

P2 where R1 ∈ [0, 1]. R is one
when the boundary of the population is a perfect circle.
(2) Convexity of the population: ratio between the area A of all cells
and Aconv, the area of their convex hull: R2 = A

Aconv
, R2 ∈ [0, 1]. Its value is

one when the boundary of the population coincides with the boundary of its
convex hull.
(3) Sphericity of a lineage: for each connected component (of at least two
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Fig. 4 Sketch of ellipses of inertia (not-to-scale) representing the inertia matrices for three
different lineages (dotted lines). Major axes of inertia for the three different lineages (con-
tinuous line).

cells) of a lineage, ratio between the area and the perimeter squared of this
connected component: R3 = 4πA

P2 where now P and A are respectively the
perimeter and area of the boundary polygon of the considered connected com-
ponent.
(4) Lineage fragmentation: number of connected components in which a
lineage is split: R4. It permits to understand whether the cells of the same
lineage tend to remain grouped or to scatter.
(5) Size of the fragments of a lineage: Size of a connected component of
a lineage. It counts the number of cells in a connected component of a given
lineage (R5).
(6) Lineage orientation. Orientation direction for a given lineage R6. The
main direction of orientation is computed by using the inertia matrix of the
cells composing the lineage.
Inertia Matrix. Let p ≥ 2 and for k ∈ [1, p], Xik = (xik , yik). Denoting

XG = (xG, yG) the barycenter of Xik : XG =
∑p
k=1

Xik
p , the inertia matrix of

the cloud is defined by

E =
1

p

p∑
k=1

(Xik −XG)(Xik −XG)T .

Assuming that the Xik are not aligned, this matrix is symmetric and positive
definite with strictly positive eigenvalues. Thanks to these values we can mea-
sure the angle θ2 formed by the semi-major axis of the inertia ellipse and a
reference direction, and the angle θ0 formed by the line joining the origin to
the barycenter of the lineage this a reference direction. The angle θ2 is the an-
gle which measures the direction of the eigenvector v2 associated to the larger
eigenvalue λ2 . We then measure the quantity R6 = θ2 − θ0 − π

2 where the
shifting of π

2 is done in order to have an angle always between −π2 and π
2 . In

Fig. 4 is reported an example where the main direction of the ellipse (contin-
uous line) representing the inertial matrix together with the ellipse (dotted
line) are shown for three different lineages.
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Fig. 5 Example of segmentation. Left: initial tracking time. Right: final tracking time.
The figure reports the nuclei of the cells. The black lines and the gray zones correspond to
corrections done after the automatic segmentation procedure. Same experiment as in Fig. 1
(a) and (b).

2.5 Experimental protocol

In order to generate reference experimental data to which mathematical mod-
eling can be confronted, we set up the following protocol. The experiments are
performed on cells of the colon adenocarcinoma HCT116 cell line, modified by
lentiviral transduction to express a histone H2B fused with the mCherry flu-
orescent protein. This allows visualizing by fluorescence microscopy the nuclei
of the cells. The cells are seeded in culture chambers (Lab-Tek, Dutscher) at
a density of 7500 cells / cm2 in an OPTIMEM medium supplemented with
3% of fetal calf serum (FCS) and penicillin / streptomycin. After 48 hours,
the chosen cell density provides in the bottom of the chamber a culture of
islets composed of about 50 cells, isolated from one another. This allows fol-
lowing the individual cell evolution in real time by an inverted fluorescence
microscope. Before making microscopy acquisitions, isolated groups of cells
are selected and the bottom of the culture chamber manually processed, to
prevent neighboring cells to join the main group. Acquisitions are performed
on an Axiovert microscope (Zeiss) fitted with a CoolSnap HQ camera (Roper
Scientific) and piloted by the MetaView software. For every acquisition, sev-
eral individual groups are followed in parallel by videomicroscopy (1 image
every 10 minutes). The images are processed using Metamorph and Image J
before being analyzed.

The data post-processing consists of the following steps repeated for each
single cell culture. Cells are selected at the initial time and the filiation tracked
manually through direct labeling. Fig. 1 (a) and (b) shows an example of this
procedure. Segmentation is first performed automatically thanks to the level
of fluorescence, then checked and, if necessary, results are corrected by post-
processing the data manually. This is possible thanks to the fact that the
analysis is made on a relatively small number of cells. A segmentation result is
shown in Fig. 5. A post-treatment is performed after the segmentation proce-
dure. It consists of identifying each single lineage. The result is shown in Fig.
6 where the same experiment as in Figs. 1 (a) and (b) and 5 is considered.



18 Mathieu Leroy-Lerêtre et al.

Fig. 6 Representation of the experimental data after segmentation. Left: initial tracking
time. Right: final tracking time. The same experiment as for Figs. 1 (a) and (b) and 5 is
considered. The pixels corresponding to nuclei are in white while the others are in black.
The nuclei corresponding to a lineage which will be tracked are colored.

Fig. 7 Representation of cells by discs. Left: initial tracking time. Right: final tracking time.
The colored discs correspond to the cells whose lineage is tracked. The same experiment as
for Fig. 1 (a) and (b) and 5 is reported.

We describe now how the experimental data are processed. The areas detected
during segmentation correspond to the nuclei of the cells. For each of these
areas, the coordinates of the center of mass and the equivalent circular di-
ameter, i.e. the diameter of the disc that has the same surface as the area of
interest, is computed. This permits to have a first representation of the data
by discs (Fig. 7), similar to that used in the simulations. However, this gives
large gaps between some disks and overlapping between others and it does not
correspond to the observed experiments. Indeed, this is only an artifact of the
representation because cells are stuck together and do not overlap. We then
choose to represent the population by the same adapted Voronöı diagram as
that used for the simulations. This result is reported in Fig. 8.
The lineages used for the comparisons with the simulations are either at the
periphery of the aggregate or in the central region. A lineage is considered as
peripheral if, at initial time, the progenitor cell is situated at the periphery of
the aggregate, while it is considered as central if, at initial time, there are at
least two cells between the progenitor cell and the boundary of the tumor. The
data at our disposal are based on fourteen cellular cultures. This corresponds
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Fig. 8 Representation of cells by the Voronöı diagram. Left: initial tracking time. Right:
final tracking time. The colored Voronöı regions correspond to the cells whose lineage is
tracked. The same experiment as in Fig. 1 (a) and (b) and 5 is reported.

directly to the size of the samples which has been used in the first and the
second diagnostic. In these fourteen experiments we have followed twenty-two
central and fifty-four peripheral lineages which corresponds to the size of sam-
ples used in diagnostics 4 and 6. The twenty-two central lineages split up into
fifty-three connected components, while fifty-four peripheral lineages divided
into one hundred and fifteen connected components which correspond to the
size of samples for diagnostics 3 and 5.

3 Simulation results and comparisons with the experimental data

3.1 Identification of the different morphologies

Since we have chosen three possible orientation planes and two division strate-
gies, for each of the six possible situations we perform 100 numerical simula-
tions and we compute the values of the statistical indicators R1 up to R6.
Concerning the study of the lineages, we extract two lineages, one in a cen-
tral position and one on the boundaries of the cell population for which the
different diagnostics are computed. This choice of the different position of the
lineages is done in order to highlight the strong disparity between the behav-
iors of internal and external cells. This disparity which is one of the major
results of this work is also confirmed by in vitro experiments as detailed next
and not known before. The difference between the central and peripheral lin-
eages is an information which is extrapolated from diagnostics R3 up to R6.
In the appendix we report the detailed results of the simulations. In this part,
we summarize the principal results. 1) Presence of larger numbers of lineage
fragments at the periphery, typically of smaller sizes. This can be explained
by the fact that, as cells are farther from the center, their contribution to
the total energy of the system grows. Thus, when they are pushed from the
interior of the cellular aggregate because of the growth, they preferably move
in tangential direction not to excessively increase the energy of the system.
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This result in an intercalation of new cells coming from the interior between
originally neighboring cells. 2) Preferred tangential orientation of the lineages
at the periphery. An interpretation of this phenomenon is that far from the
center, the potential energy obliges cells to place themselves on an equipoten-
tial energy curve, i.e. along a single shell, all other equilibrium states being
unstable. 3) In the central zone, except for the constrained radial division strat-
egy, there are no privileged directions for the lineages. This suggests that in
the central area, the division rule, when radial, plays a more important role
than the positioning rule, this feature being opposite for the other division
rules. 4) In general all strategies which leave freedom to the division plane
orientation to change during division have a very small impact on the overall
population shape as well as on the shape of a single lineage. On the contrary,
the constrained strategy has much more influence on the shape of the entire
population and of single lineages. 5) Concerning the global population, only
the constrained strategy permits to detect differences between the radial and
tangential directions of the division plane. The boundaries of the growing cell
population are smoother for this second choice. 6) With the constrained radial
orientation strategy for the division plane, the lineages in the center of the
population are radially oriented with few fragments of large sizes.

3.2 Results of the experiments

The same diagnostic analysis done for the mathematical model is performed
on the experimental data. The results can be summarized as follows.
1) Circularity of the lineages is very low compared to that of the entire popula-
tion (the average value of R1 ∈ [0, 1] is R1 = 0.56. 2) Lineages are filamentous
(the average value of R3 ∈ [0, 1] is very small, around 0.12). Central lineages
are more filamentous than peripheral lineages: there is a larger number of lin-
eages with R3 = 0 in the central part compared to the periphery. 3) There
is a strong disparity (measured by R4) between the central and the peripheral
zones which is expressed by a stronger fragmentation of the central lineages
compared to the peripheral ones. In the central zone, the number of lineages
divided in one, two or three pieces is almost the same while on the periphery
the number of lineages divided in two and in three parts is lower than the
number of lineages which did not divide. 4) The central lineage fragments,
measured by R5, are much smaller than those of the periphery. 2/3 of the frag-
ments are composed of one or two cells in the center while on the periphery
they are around 40%. 5) Half of the central lineages have a direction very close
to the radial one, while in the periphery no preferred orientation seems to arise
(this value is measured by R6).

3.3 Comparisons with the experimental data

The comparisons between the simulation results and the experimental out-
comes lead us to the following conclusions shown in Fig. 9. In this Figure the
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Fig. 9 Comparison between the numerical simulations (the results of the different orien-
tation strategies are averaged and reported on a single plot) and the experimental data. In
red a lineage from the central zone and in black a lineage from the periphery. Left images
show numerical results (a), (c), (e), (g), right images report experimental data (b), (d), (f),
(h). Figures (a), (b), (c), (d) summarize the analysis of sphericity of the lineage (x-axis R3,
y-axis frequency of the connected components with a given ratio area/perimeter). Figures
(e), (f), (g), (h) summarize the analysis of the fragmentation of a lineage (x-axis R4, y-axis
frequency of the number of connected components per lineage).
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e f

g h

results for all the different orientation strategies used in the numerical simula-
tion are summarized, i.e. the results of the different simulations are averaged
and a cumulative distribution is reported. 1) Regarding the first two diagnos-
tics, i.e. R1 and R2, which are not reported in the Figure and which study the
entire cell population, the experimental values are on average slightly lower
than those obtained by the numerical simulations. In experiments cells organi-
zation is less regular. In particular boundaries are less smooth and the shapes
are less round. This is likely due to the fact that real cells are less regular than
the perfect disks chosen in the mathematical model. However, the results for
these two diagnostics are qualitatively comparable and the choice of perfect
disks does not seem to affect other results. 2) Both simulations and experi-
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ments highlight a difference between center and boundaries of the growing cell
population. However, this disparity is expressed differently (indicator R6): in
the experiments, no preferred tangential orientation of the lineages appears at
the periphery of the population (or more precisely only a slight preference for
the tangential direction), while a clear preferred tangential orientation is ob-
tained in the numerical simulations for all the different orientation strategies
considered. On the other hand, a preferred radial orientation is visible for the
central lineages in the experiments, which is very close to the results obtained
when the constrained radial orientation strategy is used for the numerical
simulations. 3) In the mathematical model, the peripheral lineages are more
filamentous more fragmented into smaller fragments than the corresponding
central lineages, while in the experiments the situation is reversed: peripheral
lineages are less fragmented with larger size fragments than those in the center
(from diagnostic R4 and R5). Globally we can conclude that the initial choices
done for constructing the mathematical model permit to reproduce some of
the observed features but they are not sufficient to correctly describe all the
cells behaviors measured in the experiments. In particular, the difference ob-
served at center of the aggregate between the data and simulations especially
in diagnostic R4 (lineages fragmentation) suggests that some additional mech-
anism is responsible for the displacement of the central cells to the periphery.
This mechanism disrupts the organization of the cells and makes central lin-
eages more fragmented and filamentous. In the next Section we propose such
mechanism and show that it results in simulations being closer to experimental
data.

4 Improved model: bounded confinement force and cell-cell
interchange

Here, we propose additional mechanisms to reconcile the simulation results
with the experimental data. The Section is divided into three parts, in the
first part we discuss two improvements to the model. In the second part we
detail the modifications of the algorithm necessary to take into account these
modifications. In the third part, we discuss comparisons between the new
results and the experimental data.

4.1 Model improvements

The first modification consists of the possibility for two adjacent cells to switch
their positions. The second modification consists of modifying how the inter-
action potential depends on the distance from the center of the tumor. The
first mechanism permits to switch the position between a new born cell and
a neighboring cell. Indeed we hypothesize that compression by the other cell
may induce deformations of the cell membrane and that the so deformed cell
may be able to migrate into the extra-cellular medium. The random switch
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between two cells is a way to model this migration favored by cell deforma-
tion. We only allow newborn cells to shift their position with a neighboring
cell because newborn cells have the smallest size and are more likely to find
a migration path in the extra-cellular medium than mature cells. Finally, we
only allow cells from the central region to perform this switch because cells
from outer regions are subject to lower compression and weaker deformations
which decreases their ability to migrate. We consider the possibility for a cell
Ci to switch if its position is inside a disk defined by

d(0, Xi) ≤ Cint max
0≤j≤N

(d(0, Xj))

with Cint ∈ [0, 1] a modelling parameter. The permutation rule is then as
follows: after a division of a progenitor which lies inside this disk, one of
the two daughter cells has the possibility to switch its position with one of
its neighbors. The decision to switch is modeled by a probability following a
Bernoulli distribution of parameter p: with probability p a newborn cell inside
the sphere switches its position with a neighboring cell.
The second additional mechanism consists of applying a weaker attractive
potential to the cells which are far from the center of the aggregate. With
this aim, the quadratic potential is replaced by a linear potential when the
tumor reaches a critical size and the linear potential applies only to cells which
are farther than a critical distance. This reflects the hypothesis that cells are
submitted to a lower mechanical compression at the periphery of the aggregate.
However, for small-sized aggregates, we hypothesize that the adhesion forces
between the cells are stronger (since a strong grouping enhances the survival
chances of the cells) which motivates the use of a quadratic potential. The
positioning rule is consequently modified as follows: as soon as the number of
cells reaches a critical value NC , a linear potential is used for the remote area
while the same quadratic potential as defined in Section 2 is used for the other
cells. The modified global adhesion potential is

WL(ξ(t)) =
∑

j,|Xj(t)|≤Rc

|Xj(t)|2 +
∑

j,|Xj(t)|≥Rc

|Xj(t)|,

where Rc = CL max0≤j≤N(t)(d(0, Xj(t))) while the remote area is defined as
the set containing the remote cells and consequently a cell at position X(t) is
said remote if

d(0, X(t)) ≥ CL max
0≤j≤N(t)

(d(0, Xj(t)))

with CL ∈ [0, 1] a modelling parameter.

4.2 Algorithm adaptation

The new structure of the numerical algorithm is the following

a) Initialization
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b) At each time step
i) Growth step.

ii) Test on size of the cell, cell by cell. If the threshold size is reached a
division occurs.

iii) For each mitosis up to the final division
1) Partial division.
2) Modified positioning step.
3) If necessary, depending on the orientation strategy chosen, orien-

tation update.
iv) Permutation step.
v) Modified positioning step.

c) Statistical quantifiers computation.

We discuss the modified positioning step and the permutation step. The mod-
ified positioning step consists in finding a saddle point of the new Lagrangian
function LL(ξ(t), λ(t)) : (R2)N(t) × RM → R defined by

LL(ξ(t), λ(t)) = WL(ξ(t))

+
∑

1≤i≤j≤N(t)

λij(t)φij(ξ(t), ρ(t)), ∀(ξ(t), λ(t)),

Thus, starting from an initial guess (ξ(t)(0), λ(t)(0)), the method reads, as in
the previous case, as

ξ(p+1) = X(p) − β∇xLL
(
ξ(p), λ(p)

)
,

φ
(p+1)
ij = φij

(
ξ(p+1)

)
, ∀ i, j ∈ [1, N ], i < j,

λ
(p+1)
ij = max

(
0, λ

(p)
ij + µφ

(p)
ij

)
,∀ i, j ∈ [1, N ], i < j,

where β and µ are the same numerical parameters as those discussed in Section
3. After some computations, the first equation of the above system can be
rewritten for all cells in the remote region, i.e. |Xj | > Rc, as

X
(p+1)
k =

(
1− β

|X(p)
k |

)
X

(p)
k + 2β

N∑
j=1

λ
(p)
kj

(
X

(p)
k −X(p)

j

)
.

The same stopping criteria are used for this new positioning algorithm. During
the research for a saddle point, it may happen that a cell close to the boundary
between the central and the remote regions changes zone. Since, this displace-
ment is typically very small, we choose not to change the potential energy to
which this cell is submitted during the minimization procedure.
The permutation algorithm consists simply in choosing with probability p if a
newborn cell performs a switch. In order to do that, denoting by CI the cell
which has decided to perform a switch, we first determine all the neighboring
cells of CI and then we pick randomly one of them with uniform distribution
and we perform the switch. The values of the new parameters added to the
model are summarized in Table 3. The value of CL is chosen so that the central
region coincides with the definition of a central lineage in the experiments.
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Parameter Value Meaning
p 0.1,0.15,0.25 Probability of permutation
Cint 0.5 Interior lineages delimitation
Ns 100, 200 Threshold for linear potential
CL 0.5 External lineages delimitation

Table 3 Numerical parameters for the modified algorithm.

4.3 Comparisons between the experiments and the improved numerical model

We first analyze separately the impacts of the two modifications introduced in
the model. We start discussing the effect of the switch. The results for diag-
nostic R4 (lineage fragmentation) and R5 (size of the fragments of a lineage)
are reported respectively in Fig. 10 and 11 for three different values of the
permutation probability p: p = 0.1, p = 0.15, p = 0.2. They show that the
larger the switching probability, the more fragmented the lineages are and the
smaller the fragments are. Cell switching even though it is performed only
in the central region has also an influence on the peripheral region. However,
the impact of these changes is low and we do not report it. The direction of
lineages computed with diagnostic R6 does not change noticeably with the
switching.

Now, we consider the influence of the change in the attractive potential.
The results for diagnostics R4 and R5 for two different values of the parameter
Ns, i.e. Ns = 100 and Ns = 200 are reported in Fig. 12 and 13. They show the
effect of this additional mechanism at the periphery of the tumor. In particular,
we observe that the smaller Ns is, the less segmented the lineages are and the
bigger the fragments are at the periphery. The change in the potential energy
has also an effect in the central zone, where the lineages are becoming less
fragmented. Finally, regarding the direction of the lineages with diagnostic
R6, we do not observe noticeable compared to the quadratic potential.

We finally observe the results obtained while combining the two modifica-
tions. As shown in Fig. 14, the simulated results obtained with the two model
improvements are more similar to experimental results, both in the central
zone and at the periphery. In the Figure, the results of the Diagnostics 4 and
5 are reported. For these tests a switching probability for a daughter cell of
p = 0.2 and a threshold of N = 200 to pass from a quadratic to a linear
potential have been chosen. These parameters permit the best fit between the
simulations and the data. We conclude that these modifications improve the
match between the model and the experiments. The distributions of fragments
number and size of lineages obtained with the modified model match those of
the experimental data remarkably well.

5 Conclusions

This work represents a step towards understanding the impact of division pa-
rameters on the growth of a cell population via comparison of mathematical
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Fig. 10 Diagnostic R4: fragmentation of a lineage in the central region with cell switch
mechanism for different values of the switching probability p. Left: p = 0.1. Middle: p = 0.15.
Right: p = 0.2. The more p increases, the more the distribution shifts to the right: the lineages
are separated into a larger number of fragments.
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(c) p = 0,25

Fig. 11 Diagnostic R5: number of cells per connected component of a given lineage in the
central region with cell switching mechanism for different values of the probability p. Left:
p = 0.1. Middle: p = 0.15. Right: p = 0.2. The more p increases, the more the values are
concentrated on the left of the distribution: the number of small connected components
increases. A piecewise linear interpolation of the cumulative distribution is depicted in blue
color. The values of this piecewise linear interpolation are indicated in the graph.
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(b) N = 200
Fig. 12 Diagnostic R4: fragmentation of a lineage with the modified potential at the pe-
riphery for different values of the threshold number Ns which performs the switch from the
quadratic potential to the modified one. Left: Ns = 100. Right: Ns = 200.

models and experiments. The approach consists of a bottom-up strategy where
the behavior of a growing population of cells and the structure of the associ-
ated lineages is modeled through simple interaction rules of mechanical type
between cells. After observing that these simple rules could not explain the
morphology of the cell population alone, we introduced additional phenomena,
which, at first were considered negligible. This process of gradually increasing
complexity was repeated until a good fit between experiments and simulations
is obtained. This approach permits to assess which key mechanisms are more
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(b) = 200
Fig. 13 Diagnostic R5: number of cells per connected component of a given lineage with
the modified potential law at the periphery for different values of the threshold number Ns
which performs the switch from the quadratic potential to the modified one. Left: Ns = 100.
Right: Ns = 200. A piecewise linear interpolation of the cumulative distribution is depicted
in blue color. The values of this piecewise linear interpolation are indicated in the graph.

likely to be underlying the observed phenomena without introducing too many
empirical parameters. From the mathematical point of view, the energy min-
imization considered here is motivated by the observation that physical prin-
ciples are often expressed in variational forms. Our results suggest that this
variational approach seems also at play here. Our numerical and experimental
results show a wide disparity between central and peripheral lineages. Periph-
eral lineages are more fragmented and slightly tangentially oriented. With the
simplest model, some differences between simulations and experimental data
are found: experiments show that cells in the central region move over larger
distances than in the model. We thus introduced the possibility for cells to
switch positions inside the cell population. We also lowered the aggregation
force at the periphery of the cellular aggregate to model weaker aggregation of
peripheral cells. The corresponding numerical results match the experimental
data very convincingly. Another interesting experimental observation is that in
the central area, a preferred radial direction of the lineages emerges and that
a similar feature can be found in the model if a radial division plane orienta-
tion is imposed. The analysis suggests that the disparity between the center
and the periphery, found experimentally and verified numerically, could be ex-
plained by the simple hypotheses made in the model. More quantitative work
is needed to understand the role of the division orientation on the observed
emerging structures and on lineage shape and orientation. In the future, larger
populations should be considered. On the other hand, considering very small
populations permits to ignore the role played by nutrients, growth factors and
oxygen, and to consider simple two dimensional settings for both the model
and the experiments. This also made the image processing easier and more re-
liable avoiding problems related to the tracking of cells in a three dimensional
structure and it allowed for the use of cpu-effective agent based model which
would be too costly in three dimensions. However, these simplifying choices
lead to a model with restricted validity and questionable applicability to three
dimensional structures. In the experimental setting considered, cells move on
a plane. Thus, our two dimensional model is a valid representation of the bio-
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Fig. 14 Comparison between the numerical simulations and the experimental data. In red
a lineage from the central zone and in black a lineage from the peripheral zone. Left images
report original numerical results (a), (d), (g), (l) center images report experimental data
(b), (e), (h), (m) right images report numerical results with the modified model (c), (f),
(i), (n). Top and middle top, fragmentation of a lineage (x-axis R4, y-axis frequency of the
number of connected components per lineage). Middle bottom and bottom, number of cells
per connected component (x-axis R5, y-axis connected component cumulative frequency).
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logical situation. However, we may expect the results to be different in a fully
three-dimensional experiment and not well accounted for by a two dimensional
model. In particular, we may expect that the differences between the internal
and the peripheral lineages that we observe in the two dimensional case will
be even stronger in the three dimensional situation as the scale ratio between
the surface of the periphery of the spheroid to its internal part will change To
understand the role of the orientation of the division plane future experiments
which track cells during mitosis would permit to further explore the biology of
tumor aggregates and provide a better benchmark for the validation of three
dimensional models. Another direction of research is to explore the impact of
mechanical confinement on cell proliferation. Recent experiments [67] showed
that proliferation gradients within mechanically confined spheroids are differ-
ent from those in spheroids grown in suspension. This discovery strengthens
the hypothesis of mechanical forces playing a central role in the morphologies
of the lineages and requires further studies.
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A Detailed results of the simulations

We analyze here the detailed results of the simulations.
Diagnostic 1. Sphericity of the population R1: for all different cases tested, the dis-
tribution of R1 shows a Gaussian profile with mean value approximately around 0.7. These
distributions are illustrated in Fig. 15. This result suggests that the tested orientation di-
visions have a very limited impact on the overall shape of the population, in other words
the positioning rule has much stronger impact on the overall shape of the population that
the division law. However, some differences clearly emerge from the results. In particular we
can observe that the differences in sphericity between the three orientation directions are
much stronger when the constrained strategy is employed. This is expected since in the free
strategy case the cells have more freedom to adapt to reduce the energy of the system. In
addition, when the tangential direction strategy is used larger sphericity values are obtained
than with the radial orientation strategy. This can be explained by the fact that a cell at
the boundary which divides radially generates more irregularity compared to the tangential
division. This irregularity increases the perimeter of the population keeping the area almost
fixed.
Diagnostic 2. Convexity of the population R2: results are consistent with the ones of
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Fig. 15 Box diagram for the indicator R1. Left picture: free orientation strategy. Right
picture: constrained orientation strategy. (A) random direction, (R) radial direction and
(T) tangential direction of the division plane.

the previous diagnostic. Whatever the strategy and division direction chosen, the values of
R2 are very similar, around a mean value of 0.94, as reported in Fig. 16. Giving a closer look
at the results, we see that the differences between the three division orientations are more
pronounced when the constrained strategy is employed. In particular we can state that, if
the free strategy is adopted no difference between the three orientations of the division plane
is observed. In the constrained case, results show larger R2 values for the tangential direc-
tion, which can be interpreted by saying that the shape of the boundaries is more regular
when the division plane has tangential direction.
Diagnostic 3. Sphericity of the lineage R3: in Fig. 9 (a) and (c) we plot the distri-
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Fig. 16 Box diagram for the indicator R2. Left picture: free orientation strategy. Right
picture: constrained orientation strategy. (A) random direction, (R) radial direction and
(T) tangential direction of the division plane.
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bution of connected components of a given lineage as a function of R3. On the left picture
the results for a lineage situated close to the center of the tumor are shown while on the
right picture those for a lineage at the periphery of the tumor are displayed. All the different
adopted strategies are averaged together. The results clearly evidence differences between
the center and the peripheral zones on the morphology of the lineages. The sphericity of the
lineages is much lower at the periphery than in the central region. In particular, almost half
of connected components have R3 = 0 at the boundary of the aggregate while only one third
of the components have R3 = 0 in the central region. We can conclude that the lineages are
more likely to remain grouped in the central region. This is true for all the tested division
orientations and strategies. For each of these, the results are reported separately in Fig. 17.
Diagnostic 4. Lineage fragmentation R4: the number of connected component for
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Fig. 17 Area-perimeter squared ratio for connected component of a lineage. x-axis: R3; y-
axis: frequency of connected components. Left: random division orientation (a), (d), (g), (l).
Middle: radial division orientation (b), (e), (h), (m). Right: tangential division orientation
(c), (f), (i), (n). Figures (a), (b), (c): free orientation. Figures (d), (e), (f): constrained
orientation. Figures: (g), (h), (i) free orientation strategy. Figures (l), (m), (n): constrained
orientation. Figures (a)-(f): lineages which lie at the center of the tumor. Figures (g)-(n):
lineages which lie at the boundary of the tumor.
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central and peripheral lineages R4 is reported in Fig. 9 (d) and (e) for all the different
strategies averaged together. The main result we can draw is that a strong disparity occurs
between the central and peripheral lineages. In particular, almost all lineages are divided



Are tumor cell lineages solely shaped by mechanical forces? 31

0 2 4 6 8
0

0.2

0.4

0.6

0 2 4 6 8
0

0.2

0.4

0.6

0 2 4 6 8
0

0.2

0.4

0.6

0 2 4 6 8
0

0.2

0.4

0.6

0 2 4 6 8
0

0.2

0.4

0.6

0 2 4 6 8
0

0.2

0.4

0.6

0 2 4 6 8
0

0.2

0.4

0.6

0 2 4 6 8
0

0.2

0.4

0.6

0 2 4 6 8
0

0.2

0.4

0.6

0 2 4 6 8
0

0.2

0.4

0.6

0 2 4 6 8
0

0.2

0.4

0.6

0 2 4 6 8
0

0.2

0.4

0.6

Fig. 18 Number of connected components of a lineage R4. x-axis: R4; y-axis: frequency
of connected components. Left: random division orientation (a), (d), (g), (l). Middle: radial
division orientation (b), (e), (h), (m). Right: tangential division orientation (c), (f), (i), (n).
Figures (a), (b), (c): free orientation. Figures (d), (e), (f): constrained orientation. Figures:
(g), (h), (i) free orientation strategy. Figures (l), (m), (n): constrained orientation. Figures
(a)-(f): lineages which lie at the center of the tumor. Figures (g)-(n): lineages which lie at
the boundary of the tumor.
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from one up to four connected components in the central region and from one to five con-
nected components when at the periphery. In the central region around 57% of lineages
remain connected while 33% of the lineages are separated into two connected components.
On the periphery of the tumor, the proportions are 33% and 34% respectively. We can con-
clude that lineages are more fragmented at the periphery. This is probably due to the fact
that divisions inside the aggregate push cells farther from the central region which results
in their intercalation between cells of the lineages of the periphery. The complete set of
data for all the studied different strategies is reported in Fig. 18. We can notice that two
cases give clearly remarkable results: in the central region, the radially constrained division
orientation presents lineages that are divided almost always in one or two components. On
the other hand, at the periphery, the constrained tangential orientation of the division plane
presents many lineages divided in four or five components.
Diagnostic 5. Fragment sizes of a lineage R5: the number of cells for the connected

components of the central and peripheral lineages is reported in Fig. 14 (g) and (l). The
Figure shows the cumulative distribution of connected components as a function of the



32 Mathieu Leroy-Lerêtre et al.

number R5 of cells of the connected component. The Figure reports also the profile of this
distribution between five zones: from zero to one cell, from one to two, from two to seven,
from seven to eight cells and from eight to larger connected components. This profile is
obtained by computing the linear interpolation lines of the cumulative distribution between
the ends of these five zones. On the periphery of the cellular aggregate, there are 50% of
small connected components and 16% of large connected components. By contrast, in the
central region, there is a higher percentage (almost 30%) of small connected components
and a similar percentage (34%) of large connected components. In the central and peripheral
regions, the percentage of lineages of medium size (three to seven cells) is almost identical
(around 7.5%). There is a sort of phase transition from small to large connected components.
It can be concluded that, at the periphery, the connected components are more numerous
and composed of a fewer number of cells. In other words, more cells are isolated from their
lineage. Full data, strategy per strategy, are shown in Fig. 19. From this Figure, we can
observe that the free division strategy for the three considered division directions give very
similar results, whereas the fixed strategy enhances the differences between the different pos-
sible orientations of the division. Two situations are remarkable. The first one is the radially
constrained strategy which causes the formation of many large connected components in the
central region. The second remarkable situation is obtained for the constrained tangential
orientation strategy. For this situation, on the boundary of the aggregate we obtain many
isolated cells separated from the rest of their lineage.
Diagnostic 6. Lineage orientation R6: in Fig. 20 we report the cumulative distribution

of lineages as a function of |R6|. A concentration of the frequencies near 0 indicates that
the main direction of the lineages is tangential while a concentration close to π/2 indicates
a radially oriented lineage. At the periphery there is a high percentage (almost 50%) of
lineages the orientation of which is in the tangential direction. In the central region, no
direction seems privileged. The tangential direction is strongly favored by the lineages at
the periphery probably because of the influence of the positioning rule. The complete data
are shown in Fig. 21. From this Figure, we can observe that for the free strategy the three
orientations of the division plane give very similar results whereas for the constrained strat-
egy differences become more visible. Moreover, for the radially constrained division strategy
the results depart significantly from those of the other strategies. In the central region, this
orientation gives 50% of lineages whose direction angle is less than 25◦. At the periphery,
for tangential or random division orientations, the three-quarters of the lineages exhibit a
difference with respect to the tangential direction of less than 35◦, while a similar result is
only reached for the radial division strategy when considering all the lineages until the value
of 60◦.
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Fig. 19 Number of connected components of a lineage R5. x-axis: R5. y-axis: cumulative
distribution of connected components. A piecewise linear interpolation of the cumulative
distribution is depicted in blue color. The values of the slopes of this linear interpolation
are reported in each subgraph. Left: random division orientation (a), (d), (g), (l). Middle:
radial division orientation (b), (e), (h), (m). Right: tangential division orientation (c), (f),
(i), (n). Figures (a), (b), (c): free orientation. Figures (d), (e), (f): constrained orientation.
Figures: (g), (h), (i) free orientation strategy. Figures (l), (m), (n): constrained orientation.
Figures (a)-(f): lineages which lie at the center of the tumor. Figures (g)-(n): lineages which
lie at the boundary of the tumor.
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Fig. 21 Deviation of the main orientation of the lineages from the tangential direction |R6|.
x-axis: |R6|. y-axis: cumulative distribution of connected components. Left: random division
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(d), (e), (f): constrained orientation. Figures: (g), (h), (i) free orientation strategy. Figures
(l), (m), (n): constrained orientation. Figures (a)-(f): lineages which lie at the center of the
tumor. Figures (g)-(n): lineages which lie at the boundary of the tumor.
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