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In this paper a method is presented for the application of energy-dependent spatial 
meshes applied to the multigroup, second-order, even-parity form of the neutron transport 
equation using Isogeometric Analysis (IGA). The computation of the inter-group regenera-
tive source terms is based on conservative interpolation by Galerkin projection. The 
use of Non-Uniform Rational B-splines (NURBS) from the original computer-aided design 
(CAD) model allows for efficient implementation and calculation of the spatial projection 
operations while avoiding the complications of matching different geometric approxima-
tions faced by traditional finite element methods (FEM). The rate-of-convergence was 
verified using the method of manufactured solutions (MMS) and found to preserve the 
theoretical rates when interpolating between spatial meshes of different refinements. The 
scheme’s numerical efficiency was then studied using a series of two-energy group pincell 
test cases where a significant saving in the number of degrees-of-freedom can be found 
if the energy group with a complex variation in the solution is refined more than an 
energy group with a simpler solution function. Finally, the method was applied to a 
heterogeneous, seven-group reactor pincell where the spatial meshes for each energy group 
were adaptively selected for refinement. It was observed that by refining selected energy 
groups a reduction in the total number of degrees-of-freedom for the same total L2 error 
can be obtained.
© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The neutron transport equation is a partial-integro-differential equation (PIDE) based upon a linearized version of the 
Boltzmann transport equation; commonly used in the field of statistical mechanics to model the average statistical behaviour
of interacting gases of particles, atoms or molecules. The transport equation is used to model the statistical behaviour of 
neutrons interacting within a host medium such as a nuclear reactor core or a radiation shield [1]. The behaviour of the 
neutrons is described using the angular flux which is the dependent variable in the neutron transport equation. The angular 
flux is a function of a seven-dimensional phase space of independent variables consisting of three dimensions for the spatial 
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variation x, y and z; two dimensions for the angular variation θ and χ ; one dimension for the energy variation E and finally 
one variable for the temporal variation t . To accurately represent the angular flux sufficient resolution is required in each of 
the seven dimensions of the phase space. Combined with the large and geometrically complex nuclear reactor core designs 
and radiation shields the solution of this equation represents a significant challenge even for contemporary state-of-the-art 
numerical algorithms and high performance computing (HPC) architectures.

The variation of the angular flux with energy is usually very complex and represents a key challenge when solving the 
neutron transport equation. This is mainly due to the complicated variation of the interaction effects of the neutrons with 
the host media; which is represented by the neutron interaction cross sections. This complicated energy dependence of 
the cross sections leads the angular flux to have a significant dependence on energy. One common approach to discretise 
the energy variation of the neutron transport equation is to assume that the energy variation can be approximated by 
integral quantities over a number of discrete energy groups each with a prescribed upper and lower energy bound, the 
multigroup approximation. The energy range of neutrons typically spans between less than 1 eV to several MeV depending 
upon the nature of the problem being solved. Therefore, potentially a significant number of energy groups may be required 
to represent the energy variation of the physical phenomena described by the neutron transport equation [2].

Current deterministic reactor physics codes used in the industry for core and radiation shield design such as PANTHER 
[3] and ATILLA [4] utilize a common spatial mesh for each energy group in order to solve the neutron transport equation. 
However, the spatial variation of the angular flux will, in general, vary significantly with the energy of the neutrons; as a 
consequence of the energy variation of the cross sections. Therefore using the same spatial mesh for each energy group 
will not prove optimal. In order to optimise accuracy and computational efficiency it is more desirable to use different 
spatial meshes for each energy group. However, this represents another series of significant challenges for the discretisation 
scheme in terms of conservatively interpolating source and solution functions from one spatial mesh to another as well 
as preserving the exact geometry of the solution domain. The challenge of interpolating the numerical representation of a 
function between different spatial meshes is not unique to the application of the multigroup form of the neutron transport 
equation. In a wider context, function interpolation is required in a diverse range of situations; for example in the coupling 
of a reactor physics code to a computational fluid dynamics (CFD) code [5], visualisation and comparison of data sets 
computed on different spatial grids and the interpolation of a solution function onto a new grid using adaptive mesh 
refinement (AMR) [6].

The first application of group-dependent spatial meshes was by Wang et al. who presented an adaptive mesh refinement 
(AMR) scheme allowing the use of unique meshes for each energy group applied to the neutron diffusion equation [7]. 
Their approach used hierarchically refined finite element meshes from a common coarse grid. The use of a common coarse 
grid limits this approach to Cartesian geometries (or geometries consisting solely of planar interfaces) or sacrificing any 
improvements in the representation of the geometry as the mesh is refined. In Baker et al. a method allowing for the 
conservative interpolation between unstructured triangular finite element meshes was presented [2] based upon the work 
of Farrell and Maddison [8]. This approach required the generation of a ‘super-mesh’ to facilitate the transfer of information 
from one group to another. However, the two spatial meshes required no shared underlying structure. A reduction in the 
total number of finite elements required to obtain the same numerical accuracy was presented. Goffin et al. also used this 
methodology for goal-based AMR [9]. As in Wang et al., all of the research so far in this area has been demonstrated for 
Cartesian geometries only.

Isogeometric Analysis (IGA) is a generalisation of the finite element method (FEM) where the mathematical description of 
a computer-aided design (CAD) model, typically Non-Uniform Rational B-splines (NURBS), is used as the mathematical basis 
for analysis [10]. By utilising a geometry description based upon the original CAD model the mesh is exact from the coarsest 
level and further refinement to improve the fidelity of the solution does not alter the description of the geometry in either 
the parametric or real space. IGA has been extended to use locally refineable T-spline patches remedying the limitation of 
the tensor-product refinement of the standard NURBS representation [11]. IGA has been applied to a wide variety of physics 
and engineering disciplines including electromagnetics [12], computational fluid dynamics (CFD) [13,14] and solid dynamics 
[10].

In the field of reactor physics, IGA was first applied to the mono-energetic neutron diffusion equation by Hall et al. [15]. 
This work was later extended by Welch et al. who applied IGA to the multigroup form of the neutron diffusion equation for 
a quarter-core reactor geometry [16]. In these studies it was found that the exact representation of the problem geometry 
significantly improved the accuracy of the obtained solution for the same computational cost of equivalent finite element 
calculations. It was also found that the increased basis function continuity available to B-splines and NURBS significantly 
reduced the required computational effort to obtain a given level of solution accuracy. In addition to applications to the neu-
tron diffusion equation, IGA has been applied to the first-order form of the neutron transport equation with a discontinuous 
Galerkin (DG) spatial discretisation and SN angular discretisation [17].

The NURBS patches used in IGA have a series of useful properties that make them suitable for use in energy-dependent 
mesh methods. As the geometry is exact at the coarsest level (the CAD description) and further refinements do not change 
the physical geometry, a NURBS patch can be refined to suit the physics of each energy group independently with each 
representation conforming to the original geometry. In addition, as the parametric description does not change under re-
finement the projective matrices required for the function projection can be efficiently computed without the need to 
generate a physical ‘super-mesh’.
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In this work an approach for independently refined spatial meshes using tensor-product NURBS-based IGA has been de-
veloped and applied to the multigroup second-order even-parity form of the neutron transport equation with a spherical 
harmonic (PN) angular discretisation. A conservative interpolation based on Galerkin projection has been used in an identi-
cal manner to Farrell and Maddison [8]. The remainder of this paper is outlined as follows: a brief introduction to IGA and a 
description of the calculation of the projective matrices is given in Section 2. In Section 3 the multigroup form of the even-
parity equations is presented and the weak form is derived for the energy group-dependent mesh method. In Section 4 the 
numerical results of the study including verification of the rate-of-convergence using the method of manufactured solutions 
(MMS) are presented. Two test cases are studied based on a synthetic two-group pincell benchmark and a representative 
seven-group uranium-dioxide (UOX) pincell from the OECD/NEA C5G7 benchmark. Conclusions and future considerations 
are summarised in Section 5.

2. Isogeometric spatial discretisation

Isogeometric Analysis (IGA) is a generalisation of the Finite Element Method (FEM) that utilises the mathematical de-
scription of a Computer-Aided Design (CAD) model as the shape functions in numerical analysis. The prevailing technology 
for representing geometries in CAD are Non-Uniform Rational B-splines (NURBS) although the use of any exact mathematical 
basis from a CAD model can be considered in IGA.

NURBS are rational functions derived from B-spline functions. A set of B-spline functions is fully defined by a poly-
nomial order p and a knot-vector (�). The knot vector is a set of non-decreasing real numbers, for example � =
[ξ1, ξ2, ..., ξn+p, ξn+p+1] where n is the total number of basis functions. Open knot vectors (where the first and final knots 
have multiplicity p + 1) are used in this work. For a given knot vector �, B-spline basis functions N(ξ) of a given order p
can be calculated beginning with the constant functions (0th order):

N0
i (ξ) =

{
1 if ξi ≤ ξ < ξi+1
0 otherwise

(1)

where ξi is the ith knot point and ξ is a specified point in the one-dimensional parameter space. Higher-order B-spline 
basis functions can be calculated recursively using the Cox–de Boor recursion formula [10] as follows:

N p
i (ξ) = ξ − ξi

ξi+p − ξi
N p−1

i (ξ) + ξi+p+1 − ξ

ξi+p+1 − ξi+1
N p−1

i+1 (ξ). (2)

If the denominator of the fraction is zero, i.e. ξi+p = ξi or ξi+p+1 = ξi+1 then the whole fractional term is set to zero. The 
p = 0 and p = 1 basis functions are identical to standard finite element piecewise constant and piecewise linear functions 
respectively. The derivatives of B-spline basis functions are calculated from the p − 1th B-spline basis function as follows:

d

dξ
N p

i (ξ) = p

ξi+p − ξi
N p−1

i (ξ) − p

ξi+p+1 − ξi+1
N p−1

i+1 (ξ). (3)

NURBS basis functions are derived from the B-spline basis functions which span the same parametric space. The distinction 
comes that the weighting values for each control point (an additional dimension of the control grid) is required to provide 
a projective transformation, allowing NURBS to exactly represent conic-sections such as circles. In one dimension this can 
be written in the following form:

R p
i (ξ) = N p

i (ξ)wi

W (ξ)
= N p

i wi
n∑

î=1

N p

î
(ξ)wî

, (4)

where R p
i (ξ) is the resulting NURBS basis function evaluated at point ξ in the parameter space, N p

i is the B-spline basis 
function and wi are the weighting values for basis function i. It can be seen that NURBS are defined by a division by a 
B-spline creating a rational function. Two-dimensional bivariate and three-dimensional trivariate NURBS basis functions are 
derived as a tensor-product of the one dimensional B-spline basis functions for all parametric directions ξ and η in R2 and 
ξ , η and ζ in R3. They are then multiplied by the corresponding control net weight, w and the weighting function W . 
A full description of the generation of B-spline and NURBS functions is given in [10]. A NURBS surface is defined as a linear 
combination of the NURBS basis functions weighted by the corresponding control points B:

S(ξ,η) =
N∑

i=1

Ri(ξ,η)Bi (5)

where N is the total number of basis functions describing the NURBS surface. An example of a NURBS surface and the role 
the control points play in shape manipulation is shown in Fig. 1.
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Fig. 1. The shape of a NURBS patch is determined by a set of coordinates, B in physical space (highlighted in blue) that creates a control polygon. In the 
above figure three NURBS surfaces in R3 have been defined and by altering the position of a control point the surface is perturbed. In this manner and by 
increasing the number of degrees of freedom a wide variety of complex objects can be modelled exactly. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.)

Fig. 2. A parametric supermesh is formed by combining the knot vectors of the two parent patches creating subdomains over which numerical integration 
can be performed and then mapped through coordinate transformation into the physical space.

2.1. Conservative interpolation by Galerkin projection

When a NURBS patch is refined by knot-insertion or has its degree order-elevated the neither the parametric description 
of real-space geometry is modified. This property makes NURBS ideal for interpolating information between meshes of 
different refinements and constructing the projective matrices required for the energy-dependent mesh method. Fig. 2
demonstrates the construction of a parametric super-mesh allowing for the numerical integration of the product of the 
basis functions from a donor and target mesh. In this study, the projection will be used to transfer the group-to-group 
scattering source which will be solved using independently refined spatial discretisations. However, the method presented 
in this work is generally applicable for the projection of any function from one set of basis functions (the donor) onto 
another (the target).

The parametric supermesh is generated by finding the union of the knot vectors describing the target and donor patches 
(�U = �T ∪ �D) which for tensor-product NURBS meshes is a trivial operation. Fig. 2 also demonstrates how the NURBS 
patches after transformation into real space. Unlike in the work of Baker et al. [2] the physical super mesh is never generated 
(no further knot-insertion of the target or donor patches is required) reducing the computational time and overall storage 
requirements.

The following outlines the projection of a function φD (r) described by a set of basis functions R D (r) of a donor NURBS 
patch M D onto a set of basis functions RT (r) of a target NURBS patch M T . It is assumed throughout that M D and M T

describe the same physical domain and share a common parameter space:
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S(r) =
N T∑
i=1

RT
i (r)BT

i =
N D∑
j=1

R D
j (r)BD

j (6)

where BT and BD are the control points of M T and M D respectively.
When projecting a function from a donor patch onto a target patch it is desired that:

φT (r) = φD(r) (7)

The weak form of Equation (7) can be generated by multiplying by a set of test functions from the target mesh (R T (r)) and 
integrating over space.∫

V

RT
i (r)φT (r) =

∫
V

RT
i (r)φD(r) (8)

The functions φT (r) and φD(r) can be expanded in terms of the basis functions from the target mesh and the donor mesh 
respectively by:

φT (r) =
∑

j

RT
j (r)dT

j and φD(r) =
∑

k

R D
k (r)dD

k (9)

where dT and dD are the expansion coefficients from the target and donor mesh respectively. These expressions can be 
substituted into Equation (8) giving:∫

V

∑
j

RT
i (r)RT

j (r)dT
j dV =

∫
V

∑
k

RT
i (r)R D

k (r)dD
k dV (10)

Equation (10) can be written in matrix form as:

MT T dT = MT DdD (11)

where MT T is the standard mass-matrix assembled over the target mesh and MT D is the projective mass matrix from the 
donor to target mesh. The interpolation will be conservative if the function space that the basis functions span contains the 
constant function [8]. The individual entries of the projective mass matrix are evaluated by:

MT D
i j =

∫
V

RT
i (r)R D

j (r)dV (12)

These integrals are evaluated utilising the parametric super-mesh to split the parametric domain into areas for numerical 
integration. An example of the selection of the quadrature points is shown in Fig. 2. The use of the parametric super-mesh 
ensures that the numerical integration is performed over C∞-continuous functions. The required basis functions for evalua-
tion from both the target and donor meshes can be identified using the mesh connectivity information and the patch knot 
vectors.

The projection matrix calculated in Equation (12) is needed to project the function described by the basis of the donor 
mesh onto the basis of the target mesh. In this application the expansion coefficients of flux (dD ) from one energy group can 
be multiplied by this matrix to compute the scattering source to another energy group. The values of dT are never explicitly 
computed. However, if the expansion coefficients of the projected function are required Equation (11) can be solved by:

dT = (MT T )−1MT DdD (13)

where the calculated expansion coefficients can be used to accelerate the calculation of a refined mesh calculation by 
supplying a projected initial guess from a previous, coarser mesh calculation.

3. Discretisation of the multigroup, even-parity equations

The multigroup, even-parity form of the time-independent neutron transport equation with isotropic scattering can be 
written as:

−	̂ · ∇ 1



g
t (r)

	̂ · ∇ψ+,g(r, 	̂) + 

g
t (r)ψ+,g(r, 	̂) =

G∑
g′=1



g′→g
s (r)φg′

(r) + qg(r) (14)

where ψ+,g(r, 	̂) is the even-parity angular flux (with units cm−2 s−1 Sr−1 MeV−1), φg(r) is the scalar neutron flux (with 
units cm−2 s−1 MeV−1), 
g

t (r) is the macroscopic total cross-section (cm−1), 
g′→g
s is the macroscopic differential scattering 

cross-section (cm−1) and qg(r) is a prescribed extraneous (or fixed) isotropic source (with units cm−3 s−1 MeV−1) [1].
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The full neutron angular flux has been split into its even and odd-parity components using Vladimirov’s transformation 
[18]:

ψ g(r, 	̂) = ψ+,g(r, 	̂) + ψ−,g(r, 	̂) (15)

Isotropic scattering has been assumed for simplicity; the exclusion of more complex scattering models does not impact the 
analysis of the group dependent mesh method. In this study the even-parity equations have been discretised in angle using 
spherical harmonics (the PN method) by approximating the flux by:

ψ+,g(r, 	̂) =
∞∑

l=0,2,4...

m=2l∑
m=−2l

Y m
l (	̂)�

g
l,m(r) (16)

where Y m
l (	̂) are the spherical harmonic basis functions and � g

lm(r) are the corresponding spatially dependent flux mo-
ments. In the PN method the series expansion of the spherical harmonic basis functions is truncated at l = (N − 1)/2. The 
symmetry in angle of the even-parity flux requires only moments with even l to be retained in the expansion. By substitut-
ing the expansion of the even-parity flux shown in Equation (16) into Equation (14) and integrating over 4π Steradians (Sr) 
the angularly discretised even-parity equations are obtained.

−
∑
α

∑
β

(
Aαβ

∂

∂xα

1



g
t (r)

∂

∂xβ

)
� g(r) + 


g
t (r)� g(r) =

G∑
g′=1

Sg′→g�g′
(r) + qg(r) (17)

where the indices α and β run across the spatial dimensions (x, y and z in three dimensional Cartesian geometry). Aαβ

is an angular matrix for the combination of spatial dimensions α and β while � g = [ψ00, ..., ψN−1,N−1] is a vector of the 
corresponding flux moments. The components of the angular matrices are defined by:

Alm,l′m′
αβ =

∫
4π

Y m
l (	̂)	α	β Y m′

l′ (	̂)d	̂ (18)

As only isotropic scattering is included the higher-order terms of the scattering kernel and the external source vector are 
set to zero by:

Sg′→g = diag[
g′→g
s,0 (r),0, ...,0] and qg = diag[qg

0(r),0, ...,0]. (19)

The even-parity flux moments are discretised using the NURBS basis functions describing the spatial mesh utilising the 
isoparametric concept and for a given angular moment this is expressed as:

� g(r) =
N∑

i=1

R g
i (r)dg

i (20)

where dg
i is a vector of a single spatial expansion coefficients for all moments in the spherical harmonic expansion. As 

each energy group is discretised using an individual spatial mesh, a unique set of NURBS functions are selected for the 
discretisation. This is in contrast to traditional methods where a single set of spatial functions is used in the discretisation 
for all energy groups. By substituting Equation (20) into Equation (17) and following the standard Bubnov–Galerkin method 
of multiplying by a set of selected test functions, applying the divergence theorem to the streaming term and integrating 
over space the following weak form is obtained:

∑
α

∑
β

Aαβ

(
∂

∂xα
ug,

1



g
t

∂

∂xβ

vg

)
+ (ug,


g
t vg) =

G∑
g′=1

(ug,Sg′→gvg′
) + (ug,qg) (21)

where ug and vg are vectors of the test and shape functions of group g for all moments respectively. (u, v) ≡ ∫
V u(r)v(r)dV

is defined as the inner product of two functions over the spatial domain. In this work, reflective external boundary condi-
tions are prescribed and are applied by constraining boundary degrees-of-freedom of selected spherical harmonic moments 
[19].

The evaluation of the first and second terms on the left hand side of Equation (21) yield the standard partial stiffness 
matrices and the standard mass matrix.

K g,αβ

A,B =
(

∂ R g
A

∂xα
,

1



g
t

∂ R g
B

∂xβ

)
(22)

and

M g = (R g
,


g
t R g

). (23)
A,B A B
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The fixed source vector is evaluated as:

f g
A = (R g

A,qg). (24)

However, the evaluation of the term (ug, S g′→g
lm v g′

) requires the evaluation of the product of two basis functions from two 
different spatial discretisations to form the projective scattering mass matrix required to interpolate the scatter source from 
one energy group to another.

W g′→g,lm
A,B = (R g

A, S g′→g
lm R g′

B ) (25)

It can be seen that Equation (25) is identical to the form of Equation (12) and can be evaluated in an identical manner as 
detailed in Section 2.1. For eigenvalue calculations, the projection of the fission source between energy groups can be done 
in the same manner. The assembled linear system for a single angular moment (lm) of energy group g is given by:

⎡
⎣∑

α

∑
β

Alm,lm
αβ Kg

αβ + Mg

⎤
⎦dg

lm =
⎡
⎣∑

l′

∑
m′

G∑
g′=1

Wg′→g
l′m′ dg′

l′m′ + qg −
∑

l′

∑
m′

∑
α

∑
β

Alm,l′m′
αβ Kg

αβdg
l′m′

⎤
⎦ (26)

The moments can then be iteratively solved until a prescribed convergence criteria is met via the standard source iteration 
method. Each of the matrices are assembled and stored in a sparse format using distributed parallelism within the PETSc 
library [20] and solved using the preconditioned conjugate-gradient (CG) method. As each basis function for a given mesh 
has compact support the portion of the domain where basis functions from two meshes overlap will also be compact as 
shown in Fig. 2. For flexibility a multigroup solver class was developed containing a two-dimensional array of pointers to 
the projective matrices (one entry per group to group pair) used to calculate the scattering source contributions. The use of 
pointers allows for the same solver to be used for both single-mesh calculations and energy dependent mesh calculations. 
For example using the same spatial mesh for all the fast energy groups and a different spatial mesh for the thermal energy 
groups significantly reduces the total amount of system storage required.

In contrast to the standard methodology where a single spatial mesh is shared between all energy groups, the use of 
unique meshes for each energy groups requires the calculation and storage of up to G2 projective matrices, where G is the 
total number of energy groups used in the multigroup approximation. For realistic calculations, that may require in excess of 
100 energy groups which then may require the storage of up to 10,000 projective matrices depending on the structure of the 
scattering kernel. The total number of projective matrices can be reduced by almost a factor of two by taking advantage of 
the fact that (MT D)
 = MDT . Depending on the future direction of computational hardware development, while the explicit 
storage of all projective matrices may be prohibitive with contemporary memory systems it may become a feasible approach 
either to store each matrix or to recompute when required. In calculations containing large multigroup cross-section sets 
it is likely that many energy groups will produce similar flux profiles. By either heuristically or adaptively banding energy 
groups into subsets and using an optimised mesh for each, the overall memory requirement could be significantly reduced, 
at the cost of not obtaining the most efficient spatial meshes.

4. Numerical results

To study the efficiency of the IGA-based conservative interpolation scheme a series of test cases have been studied. Firstly, 
the scheme implementation and rate-of-convergence are verified using the Method of Manufactured Solutions (MMS) [21]. 
Secondly, a series of two-group pincell test cases have been studied where the physics of the transport process in the two 
energy groups is increasingly different to determine the accuracy of interpolating increasingly complex functions. Finally, 
a seven-group, heterogeneous Uranium-Oxide (UOX) pincell from the OECD/NEA C5G7 benchmark [22] is considered to 
provide a representative pincell geometry and set of multigroup cross-sections. In this final case the energy groups selected 
for refinement were chosen adaptively based on the L2 error calculated using a highly refined reference solution. Pincell 
geometries were built using five, bi-quadratic NURBS patches. At each level of refinement, the same uniform knot vectors 
have been used in both parametric dimensions.

4.1. Method of manufactured solutions

The MMS has been used to verify the code implementation and to determine the rates of convergence of the scheme. For 
simplicity, a two-group problem with a P1 (diffusion) angular approximation has been considered. The two-group neutron 
diffusion equation can be written in matrix form as:

[−D1∇2 + 
1
r −
2→1

s
−
1→2 −D2∇2 + 
2

][
φ1(x, y)

φ2(x, y)

]
=

[
s1(x, y)

s2(x, y)

]
(27)
s r
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Table 1
Rates of convergence of the L2 error with respect to h where M2 = M1.

Polynomial 
order

Cartesian mesh Pincell mesh

Rate (Group 1) Rate (Group 2) Rate (Group 1) Rate (Group 2)

1 2.0002 2.0000 N/A N/A
2 2.9985 2.9943 3.0045 2.9943
3 3.9989 3.9957 4.0148 3.9938
4 4.9993 4.9973 4.9963 4.9972

Table 2
Rates of convergence of the L2 error with respect to h where M2 = 2 ∗ M1.

Polynomial 
order

Cartesian mesh Pincell mesh

Rate (Group 1) Rate (Group 2) Rate (Group 1) Rate (Group 2)

1 2.0002 2.0000 N/A N/A
2 2.9985 2.9986 3.0045 3.0009
3 3.9989 3.9989 4.0148 4.0073
4 4.9993 4.9989 4.9963 5.0026

where D g is the neutron diffusion coefficient (cm) and 
g
r = 


g
t − 


g→g
s is the macroscopic removal cross-section (cm−1). 

For simplicity, material cross-sections have been chosen such that D1, D2, 
1
r and 
2

r are unity. Only downscatter is 
considered leading 
2→1

s to be set to zero. The resulting set of equations are therefore:[−∇2 + 1 0
−1 −∇2 + 1

][
φ1(x, y)

φ2(x, y)

]
=

[
s1(x, y)

s2(x, y)

]
(28)

The MMS tests were performed for two cases, one where the donor group is used as part of the source term for a more 
complicated target and vice versa. In both test cases a Cartesian mesh and pincell-like mesh have been considered. The 
rates of convergence are compared to the mesh size h which is taken to be 1/

√
N where N is the total number of spatial 

elements in the mesh.

4.1.1. Case 1
In the first MMS test case solutions of the form:

φ1(x, y) = cos(πx) cos(π y) + 2 (29)

and

φ2(x, y) = cos(2πx) cos(2π y) + 2 (30)

are manufactured giving rise to the following source terms:

s1(x, y) = (2π2 + 1) cos(πx) cos(π y) + 2 (31)

and

s2(x, y) = (8π2 + 1) cos(2πx) cos(2π y) − cos(πx) cos(π y). (32)

The source terms are evaluated at the same quadrature points (12 per parametric direction per element) used for numerical 
integration of the shape and test functions. The form of φ2(x, y) was chosen to have a frequency twice that of φ1(x, y)

therefore it is expected that a mesh twice as refined (M2 = 2 ∗ M1) would yield an identical discretisation error for both 
groups.

Table 1 details the obtained rates-of-convergence of the case where both energy groups use a single spatial mesh 
(M2 = M1) while Table 2 details the obtained rates-of-convergence for the case where the second energy group utilises a 
mesh twice as refined as the first group (M2 = 2 ∗M1). It can be seen that for both cases the observed rates-of-convergence 
are very close to the theoretical values (p + 1) for both the Cartesian meshes and pincell-type meshes. Fig. 3 plots the com-
bined L2 error for both energy groups of the MMS problem against the total number of spatial elements in both energy 
groups. It can be seen that the scheme that utilises a more refined mesh for the second energy group requires fewer total 
elements to obtain the same level of accuracy.

4.1.2. Case 2
A second MMS test case was studied where the manufactured solution for the first energy group (the donor mesh) was 

more complex than the second energy group (the target mesh). Solutions of the form:

φ1(x, y) = cos(2πx) cos(2π y) + 2 (33)

and
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Fig. 3. Convergence of the combined L2 error against the total number of elements for the first MMS test case.

[

Table 3
Rates of convergence of the L2 error with respect to h where M1 = M2.

Polynomial 
order

Cartesian mesh Pincell mesh

Rate (Group 1) Rate (Group 2) Rate (Group 1) Rate (Group 2)

1 2.0000 2.0002 N/A N/A
2 2.9943 2.9986 2.9943 3.0048
3 3.9957 3.9989 3.9938 4.0148
4 4.9973 4.9993 4.9972 4.9963

Table 4
Rates of convergence of the L2 error with respect to h where M1 = 2 ∗ M2.

Polynomial 
order

Cartesian mesh Pincell mesh

Rate (Group 1) Rate (Group 2) Rate (Group 1) Rate (Group 2)

1 2.0000 2.0002 N/A N/A
2 2.9986 2.9985 3.0009 3.0045
3 3.9989 3.9989 4.0073 4.0148
4 4.9990 4.9989 5.0026 4.9963

φ2(x, y) = cos(πx) cos(π y) + 2 (34)

are manufactured giving rise to the following source terms:

s1(x, y) = (8π2 + 1) cos(πx) cos(π y) + 2 (35)

and

s2(x, y) = (2π2 + 1) cos(2πx) cos(2π y) − cos(2πx) cos(2π y). (36)

Table 3 details the obtained rates of convergence for the case where M2 = M1 while Table 4 details the obtained rates of 
convergence when M1 = 2 ∗ M2. Again, it was observed that in both cases the obtained rates-of-convergence are close to 
the theoretical value of p + 1. Fig. 4 plots the convergence of the total L2 error against the total number of elements used 
for both energy groups for the second MMS test case. The L2 error of φ2(x, y) is not a perfect indicator of the accuracy 
of the function interpolation as the construction of the source term s2(x, y) depends on φ1(x, y). However, the reduction 
in total elements (in both the target and donor meshes) indicates that for this specific problem it is more computationally 
efficient to utilise meshes of different refinement than a single spatial mesh.

4.2. Two-group pincell test cases

A series of two-group pincell test cases have been selected to study the effect of interpolating increasingly complex 
functions between a donor and target mesh. A total of eleven test cases are considered, the first six with increasingly 
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Fig. 4. Convergence of the combined L2 error against the total number of elements for the second MMS test case.

Fig. 5. Geometry of the pincell used for the two-group study.

Table 5
Pincell macroscopic nuclear cross-sections (Cases 1–6).

Case 
1
T ,mod 
1→1

S,mod 
1
T , f uel 
1→1

S, f uel q1 
2
T ,mod 
2→2

S,mod 

T , f uel
2 
2→2

S, f uel 
1→2
S, f uel q2

1 1.0 0.95 2.0 1.9 1.0 1.0 0.95 2.0 1.9 1.0 0.0
2 1.0 0.95 2.0 1.9 1.0 1.0 0.95 5.0 4.75 1.0 0.0
3 1.0 0.95 2.0 1.9 1.0 1.0 0.95 10.0 9.5 1.0 0.0
4 1.0 0.95 2.0 1.9 1.0 1.0 0.95 20.0 19.0 1.0 0.0
5 1.0 0.95 2.0 1.9 1.0 1.0 0.95 50.0 47.5 1.0 0.0
6 1.0 0.95 2.0 1.9 1.0 1.0 0.95 100.0 95.0 1.0 0.0

complicated target functions and a final five with increasingly complicated donor functions. The pincell geometry consisted 
of a circular pin of radius 1.0 cm centred inside a cell of width 4.0 cm as shown in Fig. 5. The material properties for the 
first six test cases are detailed in Table 5 while the material properties for the final five test cases are shown in Table 6. As 
the second energy group has no fixed-source an error will be introduced into the solution if the scatter source from the first 
energy group is either not resolved or not accurately projected. A P11 angular approximation was used to capture transport 
phenomena while second-order (p = 2) NURBS basis functions have been chosen for the spatial discretisation.

Fig. 6 plots the convergence of the L2 error of the first six two-group pincell test cases studied. It can be seen that when 
the solutions of the two energy groups are similar (for the case when 
2

T , f uel = 2) to obtain an accurate solution in the 
second energy group sufficient resolution of the source term (by resolving the first energy group) is required. As 
2

T , f uel is 
increased and the solution function of the second energy group becomes significantly more challenging to represent it can 



J.A. Welch et al. / Journal of Computational Physics 347 (2017) 129–146 139
Table 6
Pincell macroscopic nuclear cross-sections (Cases 7–11).

Case 
1
T ,mod 
1→1

S,mod 
1
T , f uel 
1→1

S, f uel q1 
2
T ,mod 
2→2

S,mod 

T , f uel
2 
2→2

S, f uel 
1→2
S, f uel q2

7 1.0 0.95 5.0 4.75 1.0 1.0 0.95 2.0 1.9 1.0 0.0
8 1.0 0.95 10.0 9.5 1.0 1.0 0.95 2.0 1.9 1.0 0.0
9 1.0 0.95 20.0 19.0 1.0 1.0 0.95 2.0 1.9 1.0 0.0
10 1.0 0.95 50.0 47.5 1.0 1.0 0.95 2.0 1.9 1.0 0.0
11 1.0 0.95 100.0 95.0 1.0 1.0 0.95 2.0 1.9 1.0 0.0

be seen that the coarser approximations to solution of the first energy group can be used without impacting the accuracy 
of the second energy group.

Fig. 7 plots the convergence of the L2 error for the final five two-group pincell test cases in which an increasingly 
complex spatial function is interpolated and used as a source term for a more simple function (
2

T , f uel = 2). It can be seen 
that when the donor function is similar in complexity the required number of degrees-of-freedom in the donor mesh is 
similar to the number required to represent the target function. As the complexity of the donor function is increased it can 
be seen that fewer degrees-of-freedom are required in the target mesh as the dominant source of errors comes from the 
representation of the donor function. When 
1

T , f uel = 100 the optimal refinement route to reduce the L2 error of the target 
function is just to refine the donor mesh to resolve the complex source term.

4.3. Seven group pincell

In engineering reactor analysis it is common that a significant number of energy groups are required in the multigroup 
approximation to adequately model the energy dependent physics of the reactor. For this test, the UOX pincell from the 
OECD/NEA C5G7 LWR benchmark [22] was selected to provide a representative geometry and set of macroscopic nuclear 
cross-sections for the materials. The pin has a radius of 0.54 cm centred inside a cell of total width 1.26 cm and is described
by five, uniformly refined, biquadratic NURBS patches. As analytical solutions to complex, multigroup problems are not 
readily available a highly refined isogeometric reference was calculated and used to compute the L2 errors. A P5 spherical 
harmonic expansion has been used for the angular discretisation. While in this study a pre-calculated, resolved solution has 
been used to drive the mesh adaptivity the procedure could be driven by heuristic error metrics or goal-based adaptivity
[23].

Fig. 8 plots the convergence of the L2 errors for all seven energy groups along with the combined L2 error when a single, 
common spatial mesh is used for all neutron energy groups. The combined L2 error (εc) is defined as:

εc =

√√√√√ 7∑
g=1

ε2
g (37)

where εg is the computed L2 error of group g . Fig. 9 plots the ratio of the L2 errors for all energy groups against that of 
the thermal energy group (g = 7).

Fig. 10 plots the convergence of the L2 errors for each energy group and the combined L2 error compared to the total 
number of degrees-of-freedom used for all energy groups. Compared to the scheme which used a single spatial mesh for all 
energy groups it can be seen that by selecting only the energy groups with the highest L2 errors for refinement the error 
in all energy groups can be reduced at a similar rate. Fig. 11 plots the proportion of degrees-of-freedom in each energy 
group as the adaptive procedure is run. As was observed in Fig. 9 the thermal (g = 7) group was the least resolved by the 
single-mesh scheme, while using the adaptive it accounts for 27% of the total degrees-of-freedom. This is in contrast to the 
fifth energy group which now only uses approximately 6% of the total degrees-of-freedom.

Figs. 12 and 13 plot the convergence of the combined L2 error and the error in Keff for the adaptively selected refinement 
scheme respectively. It can be seen that a reduction in the combined L2 error (approximately 60%) is observed in the results 
of the simulations. However the obtained Keff is less accurate than the single-mesh scheme. The reduction in the L2 error is 
expected as this has been the refinement indicator. The reduction in accuracy for Keff indicates that the L2 error can not be 
used to select specific energy groups for refinement to improve accuracy for this quantity of interest (QoI) and goal-based 
adaptive refinement would be required [9].

Table 7 compares the L2 errors obtained for each energy group in the single-mesh and adaptive refinement schemes for 
the same number of total degrees-of-freedom at the final adaptive step compared to the equivalent error for each energy 
group in the single-mesh scheme for the same number of degrees-of-freedom. It can be observed that for groups one to six 
the obtained group wise L2 error is close to the error obtained from the single-mesh scheme. However, the thermal energy 
group has a noticeably higher L2 error. This difference is due to the inexact interpolation of the scatter sources from the 
coarser donor meshes onto the more refined target mesh introducing an error. Figs. 14 and 15 show the final meshes for 
group 5 and group 7 respectively. It can be seen that the group 7 mesh is significantly more refined than the group 5 mesh 
as the solution function is more complex and requires more elements to resolve to the same precision as group 5. Each of 
the five NURBS patches used to describe the pincell geometry have the same number of elements. This results in the four 
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Fig. 6. Convergence of the L2 error of group 2 for the first six test cases. A bold black line has been plotted indicating the refinement path an adaptive 
procedure may take to select the optimal combination of mesh refinements.

moderator patches being more dense than the single patch used to model the circular pin. In future studies the optimality 
of the individual energy group meshes will be studied. The group-to-group projection method outlined in this work only 
requires for each patch to share a common parametric description between parent and donor meshes, allowing for each 
mesh to be uniquely refined.
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Fig. 7. Convergence of the L2 error of group 2 for the final five (7–11) test cases. A bold black line has been plotted indicating the refinement path an 
adaptive procedure may take to select the optimal combination of mesh refinements.
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Fig. 8. Convergence of the L2 error for all seven energy groups of the UOX pincell when each group uses an identical spatial mesh. In addition the total 
error in all energy groups is also plotted and it can be seen that the total error is dominated by the error in the thermal group (7).

Fig. 9. Convergence of the ratio of the L2 error for each group compared to the L2 error in the thermal group (7). It can be seen that the group 2 error is 
the highest of the remaining energy groups, approximately two times smaller. The fifth energy group has the smallest error, more than 20 times smaller 
than group 7.

Fig. 10. Convergence of the L2 error for all seven energy groups and total L2 error of the UOX pincell when the energy groups are adaptively selected for 
refinement.
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Fig. 11. Evolution of the proportion of the number of degrees-of-freedom utilised in each energy group as the adaptive algorithm proceeds.

Fig. 12. Convergence of the total L2 for both the single-mesh and adaptively selected scheme.

Fig. 13. Convergence of keff for both the single-mesh and adaptively selected scheme.
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Table 7
Comparison of individual L2 error for adaptive and single-mesh refinement schemes.

Group DOFS (final adaptive step) L2 error (adaptive) L2 error (single-mesh)
1 628 1.41E−005 1.41E−005
2 1009 1.77E−005 1.78E−005
3 521 1.65E−005 1.66E−005
4 628 1.59E−005 1.59E−005
5 337 1.81E−005 1.80E−005
6 872 1.72E−005 1.71E−005
7 1480 1.98E−005 1.92E−005

Fig. 14. Final mesh for group 5 after adaptive refinement based on the L2 error.

Fig. 15. Final mesh for group 7 after adaptive refinement based on the L2 error.

5. Conclusions

A method for energy dependent spatial meshes for the multigroup, second-order even-parity form of the neutron trans-
port equation has been developed and studied based on conservative interpolation by Galerkin projection. Tests performed 
using the method of manufactured solutions (MMS) have demonstrated that the theoretical rates of convergence are pre-
served when interpolating source terms between different mesh and basis function representations. The method was then 
applied to a series of synthetic, two-group reactor pincell calculations where it was observed that a significant reduction in 
the total number of degrees-of-freedom is obtainable if the variation in the spatial dependence of the two solution functions 
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is large. Finally, the method was applied to the seven group, UOX pincell from the OECD/NEA C5G7 LWR benchmark. It was 
demonstrated that when the meshes for each energy group were selected for refinement adaptively then a significant re-
duction in the total number of degrees-of-freedom for the same total L2 error can be obtained. However, it was found that 
the computed eigenvalue was less accurate than for the single-mesh scheme. The use of the L2 error to adaptively select 
the energy groups for refinements under resolves energy groups important to accurate calculation of the eigenvalue. Using 
goal-based error metrics energy groups could be selected for refinement based on the chosen quantity of interest (QoI), for 
example Keff.

The use of a spatial description based on NURBS patches allows for each energy group to be independently refined while 
maintaining a shared parametric domain description between all groups. This property allows for efficient implementation 
and calculation of the projection operations while avoiding the complications of matching different geometric approxima-
tions faced by traditional finite element methods. While this paper has used conforming, tensor-product NURBS patches any 
geometrical description that provides a single parametric domain may be employed, including T-splines or locally-refinable 
B-splines. The use of a locally-refined spatial mesh for each energy group could potentially yield a significant reduction 
in the total number of degrees-of-freedom to be solved where localised space and energy dependent features must be 
resolved.

While the projection operation in this work has been used to interpolate the scattering source between energy groups 
the algorithm can be used in general to project any function between uniquely refined spatial meshes. A potential extension 
of this work would be to apply the same method and solve each of the angular flux moments on a uniquely refined spatial 
mesh. In addition, in industrial analysis there is often the need to pass information between simulation codes solving 
different physics of the same physical problem. For example, transferring the power profile computed using a neutron 
transport code to a computational fluid dynamics (CFD) code to determine the temperature profile which can then be used 
to update the material properties of the neutron transport code [5]. The use of IGA would allow for physics-dependent 
features such as the boundary layers in the CFD simulation to be resolved without requiring the neutronics mesh to be 
refined in the affected region while the common parametric description would simplify the solution transfer between codes.
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