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Model-Free Precise in-Hand Manipulation with a
3D-Printed Tactile Gripper

Benjamin Ward-Cherrier, Nicolas Rojas, and Nathan F. Lepora

Abstract—The use of tactile feedback for precision manipula-
tion in robotics still lags far behind human capabilities. This study
has two principal aims: 1) to demonstrate in-hand reorientation
of grasped objects through active tactile manipulation; and 2) to
present the development of a novel TacTip sensor and a GR2 grip-
per platform for tactile manipulation. Through the use of Bayesian
active perception algorithms, the system successfully achieved in-
hand reorientation of cylinders of different diameters (20, 25, 30,
and 35 mm) using tactile feedback. Average orientation errors
along manipulation trajectories were below 5◦ for all cylinders
with reorientation ranges varying from 42◦ to 67◦. We also demon-
strated an improvement in active tactile manipulation accuracy
when using additional training data. Our methods for active tac-
tile manipulation with the GR2 TacTip gripper are model free,
can be used to investigate principles of dexterous manipulation,
and could lead to essential advances in the areas of robotic tactile
manipulation and teleoperated robots.

Index Terms—Dexterous manipulation, force and tactile sensing,
grippers and other end-effectors.

I. INTRODUCTION

IN-HAND and precision manipulation in humans relies
strongly on tactile feedback [1]. Similarly in robots, tac-

tile information is likely essential for any fine manipulation
task [2], as it provides clues to the shape, texture, in-hand po-
sition and orientation of a grasped object. Many tactile sensors
have been developed for integration with robot hands [3]; how-
ever complex tactile manipulation (i.e. in-hand repositioning
and reorientation of objects through the use of tactile feedback)
is still an area in which humans vastly outperform robots.

Our aims in this study are two-fold: 1) To demonstrate in-
hand tactile reorientation of grasped objects through in-hand
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Fig. 1. The GR2 gripper with integrated TacTip sensors.

manipulation. 2) To present the novel integration of a tactile
sensor and gripper system for tactile manipulation.

The first aim of tactile reorientation is tested by manipulating
cylinders of different diameters along a trajectory of target ori-
entations. Tactile data allows for localization of the object along
the manipulation trajectory, while active perception algorithms
control the object’s orientation, effectively following an in-hand
manipulation trajectory.

The second aim of developing a hardware platform for tactile
manipulation consists of a novel tactile sensor based on the Tac-
Tip [4] which recently demonstrated sub-millimetre localization
of objects [5], [6]. Two TacTip sensors are integrated into the
GR2 (grasp-reposition-reorient) gripper [7] (Fig. 1). The GR2
gripper is controlled through a shifting position-torque control
system and simultaneously repositions and reorients grasped
objects. This platform has the potential to investigate principles
for dexterous in-hand manipulation.

Overall, we found that accurate reorientation of objects along
complex trajectories was successfully achieved through active
tactile manipulation (average error in trajectory was below 5◦

for cylinders of diameters 20, 25, 30 and 35 mm). The amount
of training data was also found to influence active manipula-
tion accuracy. For the 20 mm cylinder, average angular error
along the manipulation trajectory was eθ = 5.0◦ for 1 training
set and eθ = 3.4◦ for 10 sets. Our approach is based on an initial

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/



WARD-CHERRIER et al.: MODEL-FREE PRECISE IN-HAND MANIPULATION WITH A 3D-PRINTED TACTILE GRIPPER 2057

training phase rather than an explicit model of the sensor, grip-
per or sensor-object interactions, allowing for straightforward
generalization to other objects and tactile manipulation tasks.
Our methods for model-free active tactile manipulation with the
GR2 TacTip gripper can be used to investigate principles of dex-
terous manipulation and could lead to essential advances in the
areas of robotic tactile manipulation and tele-operated robotics.

II. BACKGROUND AND RELATED WORK

The importance of tactile sensing in human manipulation [1],
as evidenced by decreased performance in individuals with a
lack of tactile feedback as well as the substantial overlap be-
tween neural populations involved in tactile sensing and manip-
ulation tasks [8] has led to an interest in tactile sensing in the
fields of robotics [9] tele-taction [10] and prosthetics [11]; the
aim being to inform human models of perception and perform
manipulation tasks with robots. Alongside new hardware devel-
opments for tactile sensors [2], the development of perception
frameworks such as Bayesian perception [12] have led to control
strategies for manipulation inspired by humans [13].

A large number of robotic hands and grippers for manipu-
lation have been developed [14], many of which tend to in-
volve high manufacture costs and complex control systems. The
grippers and robotic hands from Yale OpenHand Project [7],
[15]–[17] combine a simple fabrication procedure with elegant
mechanics to create ideal platforms for investigating in-hand
manipulation. Takktile sensors [18] have been integrated in the
i-Hy hands [19] for the purpose of object identification [20],
however tactile feedback was low resolution (5 taxels per digit)
and was not used as a means to affect control of the hand in
that study. Previous work by Ward-Cherrier et al. [21] inves-
tigated the use of a TacThumb, a modified TacTip, on the M2
gripper [17] for the localization of grasped objects. This study
aims to extend that work by demonstrating reorientation of a
grasped object through in-hand tactile manipulation on a GR2
gripper [7] with integrated TacTips.

The TacTip sensor is an optical, 3d-printed open source tactile
sensor developed at Bristol Robotics Laboratory [4]. It differs
from previous optical tactile sensors by adopting and tracking
biomimetic pins on its inside surface. The compliance of the
TacTip is an intrinsic part of its transduction mechanism and
renders it ideal to investigate manipulation, as soft sensors have
been demonstrated to be more effective than rigid sensors at
grasping [22], as well as accurately detecting phase changes in
manipulation tasks while maintaining grip [23], [24]. Although
studies using model-based approaches to soft finger sensing
have been performed [25], we opted for a non-model based
method based on running a training phase to construct a likeli-
hood model, following other work on using biomimetic active
touch to perceive and explore objects [26], [27].

III. METHODS

A. Hardware

The GR2 TacTip is a version of the TacTip that has been
miniaturised and adapted for use with the Raspberry Pi 3

Fig. 2. Design of the GR2 TacTip. The pins on the inside of the base’s rubber
membrane are illuminated by the LED circuit. These pins are displaced during
object contact, and are tracked by an Adafruit Spy Camera with a fisheye lens
mounted in the base.

(Raspberry Pi, Model 3B) and the GR2 gripper [7]. The
hardware setup is an improvement and extension to the Tac-
Thumb/M2 Gripper system [21] which now allows for move-
ment of the fingers with integrated TacTips, has a strongly
reduced form factor and is integrated on a gripper designed
for more elaborate movement [7]. After reviewing the fabrica-
tion method and function of the TacTip sensor’s design, we list
these improvements in more detail below.

1) TacTip Design Principles: The original TacTip is an op-
tical tactile sensor developed in 2009 at Bristol Robotics Labo-
ratory [4]. It operates by using a camera to track the deflections
of biomimetic pins on the inside surface of its outer membrane.
These deflections are interpreted as tactile feedback, and are de-
pendent on the contact location, force applied, object shape and
texture. The design of the TacTip, like the current GR2 adapted
version is comprised of 4 main elements (Fig. 2). The tip con-
tacts objects and is comprised of a rubber-like material skin,
with white pins (∼1 mm dia.) on its inside surface. The tip is
entirely 3d-printed using a multi-material 3d-printer (Stratasys
Objet 260 Connex), with the rigid parts printed in Vero White
material and the compliant skin in the rubber-like TangoBlack+.
An acrylic lens separates the electronic parts from the tip, filled
with RTV27905 silicon gel for compliance. A circuit of 6 LEDs
illuminates the rubber pins, which protrude from the tip’s inside
surface and are topped with circles of white 3d-printed material.
Finally the base contains a camera that tracks pin movements
when the sensor contacts objects. As with the original TacTip,
this sensor is low cost, robust and easy to assemble.

2) The GR2 TacTip: We aim to demonstrate tactile manip-
ulation using the GR2 gripper [7], which introduces some new
challenges relative to the previously used M2 gripper [17]. Both
fingers of the gripper now move, and the TacTip thus needs
to be mounted on a moving finger. To this end, we move to-
wards Raspberry Pi compatible miniature cameras (Adafruit,
Spy Camera Module), which are significantly smaller than the
Microsoft LifeCam Cinema webcam used previously. This ver-
sion of the TacTip also features a fisheye lens to enhance the
camera’s field of view, enabling it to be mounted closer to
the skin, and thus strongly reducing the overall form factor
of the GR2 TacTip. Dimensions of the GR2 TacTip are 40 mm
diameter and 44 mm height (compared to 85 mm for the original
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Fig. 3. 3D-printed stimuli used in experiments. Cylinder diameters vary from
20 mm (leftmost cylinder) to 35 mm (rightmost cylinder) in 5 mm increments.

Fig. 4. Orientations at each step location along the gripper’s range. Measured
orientations are marked with dots, and estimated orientations (using a best line
fit) are displayed as lines.

TacTip). We take advantage of the multi-material 3d-printed tips
introduced with the TacThumb [21] which allow for easy mod-
ification of the tips to flat versions, leaving more room between
the gripper’s fingers to grasp larger objects.

The GR2 TacTip sensor is mounted on the GR2 gripper [7]
(Fig. 1). GR2 stands for grasp-reposition-reorient and the grip-
per is designed with precision manipulation capabilities allow-
ing in-hand reorientation of grasped objects while maintaining a
stable grasp (Fig. 4). Each finger of the GR2 gripper is connected
to an MX-28 Dynamixel servo, and rather than use complex
control algorithms to calculate finger positions during object
manipulation, the fingers are controlled through a combined
position-torque control scheme. While one position-controlled
finger pushes the object, the other finger uses torque control to
maintain a stable grasp. The GR2 includes coupled elastic bands
linking fingers to its base link and implementing a passive re-
turn, which improves precision manipulation behaviour without
affecting grasping performance.

Stimuli used during experiments are cylinders of diameters
20, 25, 30 and 35 mm (Fig. 3), all 3d-printed on a Stratasys
Fortus 250MC printer in ABS plastic.

B. Data Collection and Processing

1) Data Collection: The full range of motion of the GR2
gripper (Fig. 4) is separated into 40 discrete positions, with data
collected from both TacTips at each position. Object orientation
is used as a measure of the object’s in-hand location. Orienta-
tions are measured with respect to the object’s initial grasped
position at every location for each stimulus. We measure orien-
tations with an optical tracking method in which the cylinder’s
inner crossing segments are measured with respect to the hori-

Fig. 5. The GR2 movement range. Grasped objects can be reoriented across
a range of orientations. The extent of the orientation range depends on the size
of the object (e.g. −34.4◦ to 32.2◦ for a 20 mm cylinder).

zontal. Each experiment is filmed from above as it runs through
its entire location range. The video is then fed into specialized
software (Kinovea) in which angle to the horizontal is measured
at each position step for each cylinder (Fig. 5). Steps in orien-
tation vary in an approximately linear fashion, and orientations
are thus estimated based on measured values using linear regres-
sion to obtain a best line fit. The full range of object orientations
depends on object size and shape, and here the ranges vary from
−34.4◦ to 32.3◦ for the 20 mm diameter cylinder to −21.8◦ to
20.6◦ for the 35 mm cylinder.

Our experiments are separated into two distinct phases:
training, in which data is gathered to form likelihood models
representing a particular position and testing, in which data is
collected and locations are classified based on training data. We
describe the training and testing phases further below.

a) Training: During training, cylinders are initially grasped
in the centre of the gripper, then brought to its most negative
(anti-clockwise) orientation. The object is then reoriented to its
most positive orientation in 40 equal increments in motor space
(Fig. 4), which will be approximately equal in angle space. The
full range of orientations covered is object size-dependent and
ranges for the different cylinders are described in the results
section.

b) Testing: Two forms of testing are implemented. Offline
validation gives us an indication of performance (localization
accuracy) using cross-validation on pre-collected datasets. On-
line testing complements this analysis by testing our methods
in an active manipulation task to evaluate their performance in
a real environment.

In offline validation, both training and testing datasets are
collected over the full manipulation range for further analysis.
Once the sets have been collected, data is then randomly sampled
from the testing datasets using a Monte-Carlo procedure, and
used to evaluate algorithm performance.

During online testing, a closed loop between data capture and
processing, analysis and the control algorithms for the gripper is
implemented. Data is captured in real-time and analysed using
the same training sets as for offline validation, followed by an
action by the gripper (to follow a given manipulation trajectory).

A supplementary MPEG video clip (2.40 MB) is available at
http://ieeexplore.ieee.org and shows the online testing experi-
ment being performed.
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2) Data Preprocessing: At each position along the manipu-
lation trajectory, the GR2 TacTip sensors each capture 10 frames
at approximately 20 fps. As described in Section III-A2, frames
are captured using Raspberry Pi compatible cameras, each con-
nected to a separate Raspberry Pi 3. This data is then streamed
through a TCP/IP connection to a desktop computer. It is then
pre-processed in Matlab using a series of image processing tech-
niques to reduce noise and find the x- and y-coordinates of the
pin centres in each frame.

In order to track pins from frame to frame, and ensure pin
identities are maintained throughout the experiment, each pin
is compared to the set of pins from the previous frame, and
assigned an identity based on its closest pin. We deal with the
possibility of missing pins in a given frame by setting a search
radius of 20 pixels around each pin. If no corresponding pin is
found within that radius in the previous frame, the pin’s previous
position is used.

3) Passive Location Perception: Passive localization of
grasped objects along the manipulation trajectory of the GR2
gripper relies on methods previously applied to the TacTip sen-
sor for superresolution [5] and tactile quality control [6]. A
summary of these methods is included here, and we refer to
refs [28], [29] for a more detailed explanation. The methods
rely on the use of training data rather than explicit models of
the gripper and sensor, and can thus be separated into a training
phase and a testing phase.

a) Training During training, 10 datasets are collected at 40
discrete positions along the manipulation trajectory. Each po-
sition is considered a separate location class and a histogram
method is used to construct a likelihood model for each class.

b) Testing: In the testing phase, the likelihood model is used
to determine the log likelihood values of test data at each loca-
tion. Test data is obtained by collecting 5 distinct datasets and
randomly sampling data from these sets using a Monte-Carlo
process. We apply maximum likelihood to select the most likely
location class from the training data and assign a location de-
cision error for that sample. A mean decision error eθ for each
location class θ is then calculated by averaging errors over all
samples for that class.

4) Active Manipulation: Active manipulation requires a
shift from open-loop to closed-loop control: object location is
actively controlled based on the classification results of incom-
ing tactile data. A manipulation trajectory is first set as a series
of objective locations for the gripper to achieve. The gripper
moves to its target position and estimates its location as de-
scribed above. A new target location is then sent to the gripper
to move to, which it does relative to its current location belief.
The hand thus attempts to follow the defined trajectory over
time based solely on tactile feedback.

Location probabilities are updated using Bayes rule during
manipulation [5], [28], with previous posteriors used as priors
for the current location. Priors are shifted with the gripper’s
movements to remain aligned with the current location and are
combined with sampled likelihoods to obtain probabilities of
the current location class.

We report orientation errors in active manipulation as the
difference at each location between the target and actual

orientation, and use this as a measure of performance of tac-
tile manipulation.

IV. RESULTS

A. Inspection of Data

Training data are initially collected for the 20 mm diameter
cylinder. The cylinder is repositioned and reoriented across a
range of locations corresponding to the GR2 gripper’s range
of motion for that object. Orientation of the grasped object
is measured with respect to its initial grasped position in the
gripper, and this orientation is used to describe the object’s
location along the manipulation trajectory.

For the 20 mm diameter cylinder, orientation is varied along
a 66.7◦ range (−34.4◦ to 32.3◦ relative to the central grasped
position) in 40 increments. At each object orientation (also re-
ferred to as locations in the manipulation trajectory) we record
pin deflections in the x- and y-directions as described previously
(Section III-B2). The default pin positions (when no object is
grasped) are subtracted from training data to obtain pin de-
flections in the x- and y-directions. Although training data is
considered from both sensors simultaneously, the sensors have
been displayed separately for purposes of clarity here (Fig. 6).

Fig. 6 illustrates the deflections of pins from each sensor
(panel (a) is for the left finger TacTip, panel (b) for the right)
at each of the 40 object locations along the manipulation tra-
jectory. Each pin is identified by colour (rightmost panel), and
step changes in deflection correspond to the gripper moving to
the next object orientation. Deflections are also separated into
their components in the x-direction (top graphs) and y-direction
(bottom graphs).

An overall wave-like shape can be observed in the data
(Fig. 6), with areas of greater overall pin deflection likely due to
increases in grip force from the gripper. These slight variations
in force are part of the tactile information captured by the TacTip
sensors, and could aid the system in localizing grasped objects.

B. Validation-Object localization

For initial localization validation, we gather 15 datasets over
40 locations with the 20 mm diameter cylinder. 10 of these are
considered training sets, and the remaining 5 are used for testing
purposes. 10000 data points are sampled randomly from the
testing datasets with a Monte Carlo procedure to obtain average
localization errors eθ (θ) at each location (Section III-B3).

Additional training datasets are necessary to obtain accurate
localization. Running analyses with 1, 5 and 10 training datasets
(Fig. 7), shows the correlation between the number of training
sets used and localization accuracy. The average localization
error over all locations is eθ = 2.1◦, 0.7◦ and 0.2◦ for 1, 5 and
10 training sets respectively. Accuracy is improved with added
training sets, however there is a balance to strike between
increased training time and improvement in localization (which
diminishes with every additional training set). We consider 10
training sets to strike the appropriate balance. Some variation
in localization accuracy is also present along the manipulation
trajectory with the mid range (−6◦ to 18◦) displaying the
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Fig. 6. Training dataset recorded for the 20 mm diameter cylinder. Data from just 22 pins are displayed for clarity purposes and separated into data from the
GR2 gripper’s left finger in panel (a) and right finger data in panel (b). Within each panel, the top graph represents deflections in the x-direction, and the bottom
graph in the y-direction. Pins are identified by color according to the legend in the rightmost panel.

Fig. 7. Localization based on location along the manipulation trajectory and
number of training sets used. There is a clear reduction of average localization
errors with increased number of training sets.

TABLE I
ORIENTATION RANGES AND AVERAGE LOCALIZATION ERRORS ēθ FOR ALL

CYLINDERS (TEN TRAINING SETS)

Cylinder size Orientation range ēθ

20 mm −34.4◦ to 32.3◦ 0.4◦
25 mm −26.9◦ to 26.0◦ 0.1◦
30 mm −23.9◦ to 22.4◦ 0.1◦
35 mm −21.8◦ to 20.6◦ 0.0◦

highest errors (eθ = 0.3◦ for 10 training sets over that area,
which is almost twice the average for the full range). This
region is likely not centered within our orientation range due to
asymmetries in the gripper control.

We achieved accurate localization using 10 training sets with
cylinders of 20, 25, 30 and 35 mm diameters (Fig. 4) over
their respective orientation ranges. The GR2 gripper is designed
in such a way that the size of a grasped object will affect its
range of motion, leading to different orientation ranges for each
cylinder, with larger cylinders having more restricted ranges
(Table I). Localization errors never exceed 2◦ for any given
cylinder and location, and averages over all locations are below

Fig. 8. Localization accuracy based on location for all cylinders (ten training
sets each). Localization errors are low overall, but seem to increase around the
−6◦ to 18◦ region.

Fig. 9. Active manipulation of the 20-mm cylinder along a sinusoidal trajec-
tory with one, five, and ten training sets. An improved trajectory with additional
training data is observable.

0.4◦ for all cylinders (Table I). Accuracy is moderately higher
for larger cylinders with a reduced range of orientations
(Table I). Variability in localization is approximately consis-
tent across all cylinders, with the −6◦ to 18◦ region displaying
the highest errors. This would indicate that tactile information
gathered in this region of the manipulation trajectory is less
easily distinguishable, regardless of the object grasped.
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Fig. 10. Active manipulation of the 20-, 25-, 30-, and 35-mm-diameter cylinders. Target trajectories are in black, and actual trajectories followed by the gripper
in color. For each cylinder, the average position over five successive runs of the experiment is displayed, with error bars every 10 s showing the standard deviation
between runs. We note trajectories are successfully followed for all cylinders, and the centre of the orientation range has increased noise, consistent with our
validation results.

C. Active Manipulation

As detailed in the methods section (Section III-B4), active
manipulation consists of setting a sequence of target locations
along the manipulation trajectory which the GR2 gripper follows
through the use of an active control loop. The target trajectory
used here spans 200 moves (1 second duration), and is shaped
as a sinusoidal with varying amplitude (Fig. 9).

Active manipulation is improved with an increased number
of training sets used (Fig. 9). We measure the average trajectory
errors as the difference between the target and actual trajectory
at each location. With the 20 mm cylinder, we obtain average
orientation errors eθ of 5.0◦, 3.8◦ and 3.4◦ when using 1, 5 and
10 training sets respectively.

Active manipulation is successfully performed with each of
the 4 cylinders of varying diameters (Fig. 10). Each graph repre-
sents one of the 4 cylinders (20, 25, 30, 35 mm diameter) being
tracked and actively reoriented across its given range (Table I),
with 10 training sets used in each case. The experiment is per-
formed 5 times for each cylinder (Fig. 10). Orientation errors eθ

over the manipulation trajectories are averaged over each cylin-
der’s 5 runs and reported in Table II. Minor variability exists
between cylinder sizes, but all average errors over the full range
are kept below 5◦.

There is observable noise present in the centre of the orien-
tation space (−12◦ to 12◦) for all cylinders (Fig. 10), which is
expected based on the lower localization accuracy around that

TABLE II
ORIENTATION ERRORS FOR ALL CYLINDERS (TEN TRAINING SETS) OVER THE

FULL TRAJECTORY RANGE, THE FIRST 30 LOCATIONS OF THE TRAJECTORY,
AND THE LAST 30 LOCATIONS

Cylinder size eθ - Full range eθ - First 30 loc. eθ - Last 30 loc.

20 mm 3.9◦ ± 0.2◦ 4.4◦ ± 0.4◦ 2.9◦ ± 0.5◦
25 mm 4.8◦ ± 0.2◦ 3.9◦ ± 0.5◦ 3.9◦ ± 0.5◦
30 mm 4.2◦ ± 0.2◦ 4.8◦ ± 0.5◦ 1.3◦ ± 0.4◦
35 mm 4.3◦ ± 0.2◦ 7.5◦ ± 0.6◦ 1.1◦ ± 0.8◦

range (Fig. 8). We hypothesize that training data gathered in this
region has lower variations in torque and location of the grasped
object on the sensor surface (Fig. 6) rendering localization and
manipulation more challenging. An important aspect to these
trajectories is that noise is strongly reduced towards the end of
the trajectories (last 30 loc.) relative to the beginning (first 30
loc.), as shown in Table II. Since trajectories are symmetrical
in time, this demonstrates an improvement in performance as
more test data is collected, a consequence of our use of Bayesian
update algorithms.

D. Object Placement

To explore how the tactile GR2 gripper system deals with un-
certainty in object placement, we rerun the tactile manipulation
experiment with the 20 mm cylinder, varying initial position
along the an axis emanating perpendicularly from the gripper’s
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Fig. 11. Active manipulation of the 20-mm cylinder along a sinusoidal ori-
entation trajectory with initial placement at 0 mm and +3 mm along the z-axis
relative to the training data. The trajectory is most accurately followed with no
displacement between training and testing, however both cases follow roughly
sinusoidal trajectories.

TABLE III
AVERAGE LOCALIZATION ERRORS FOR THE 20-MM CYLINDER OVER FIVE

EXPERIMENT RUNS WITH INITIAL DISPLACEMENT ALONG THE GRIPPER’S AXIS

Placement −3 mm −1.5 mm 0 mm
+1.5 mm

+3 mm

ēθ (◦) 20.2◦
± 0.5◦

13.4◦
± 0.4◦

5.7◦
± 0.2◦

7.9◦
± 0.3◦

16.7◦
± 0.5◦

palm (which we name z axis) from −3 mm to +3 mm in 1.5 mm
increments. Negative displacements along the z axis correspond
to a move towards the gripper’s palm and positive away from
the palm. Positions are varied along the z axis since small varia-
tions across this axis would likely result in the gripper displacing
the cylinder and automatically correcting its position. Position
along the axis is thus easier to control experimentally, and less
likely to be solved by the gripper’s intrinsic mechanics.

As previously, the experiment is run 5 times at each ini-
tial placement and averages over the 5 runs are displayed in
Fig. 11 for the 0 and +3 mm displacement cases for compari-
son purposes. Results for other displacements are summarised in
Table III, however we do not display all trajectories in Fig. 11 for
purposes of clarity. As expected, the case with 0 mm displace-
ment between training and testing phases of the experiment fol-
lows the trajectory most accurately. The +3 mm displacements
still maintain a roughly sinusoidal shape, with a systematic shift
in orientation corresponding to the direction of initial misplace-
ment. Thus negatively displaced trajectories lie above the target
(gripper tends to rotate the object to the left), and positively
displaced ones lie beneath it (gripper tends to the right).

Table III shows us the scaling of average orientation errors
for trajectories in which we varied initial cylinder placement.
As expected, manipulation becomes less accurate the more we
initially displace the cylinder (from 5.7◦ at 0 mm to 20.2◦ at
+3 mm). The spread of trajectories also increases as displace-
ment is increased, as suggested by the trajectory uncertainties
(from ±0.2◦ at 0 mm to ±0.5◦ at ±3 mm). There is a slight
asymmetry in performance, which suggests the gripper handles
displacement better when it is further away from the palm rather
than closer (20.2◦ at −3 mm compared with 20.2◦ at +3 mm).

V. DISCUSSION

This study describes the successful implementation of model-
free active tactile manipulation on a novel tactile gripper. The
platform for manipulation consists of two TacTip sensors inte-
grated on a GR2 gripper [7]. We demonstrated this system is
capable of performing precise reorientation of grasped objects
of different sizes along given gripper trajectories using only tac-
tile feedback. Tactile information was used to adjust the object’s
orientation based on previously collected training data without
an explicit model of the gripper or sensor kinematics and av-
erage orientation errors over the manipulation trajectory were
kept below 5◦ for all cylinders.

We also showed the improvement in active tactile manipula-
tion performance when using additional training datasets. This
was demonstrated with the 20 mm diameter cylinder (reduction
of average error from eθ = 5.0◦ for 1 training set to eθ = 3.4◦

for 10 sets). Initial misalignment of objects within the gripper
was explored and we found errors increased rapidly with object
displacement, reaching 20◦ for 3 mm displacement towards the
gripper’s palm. However trajectories were still approximately
followed, albeit with a constant angular displacement through-
out the manipulation trajectory, leading to the increased overall
errors in active manipulation. The method’s robustness to object
placement could be improved with further training over a series
of initial positions.

Our approach is based on the influential neuroscience the-
ory of perception as Bayesian inference [30], a framework
for biomimetic active touch [31] that combines perception via
Bayesian evidence accumulation with control of the gripper
through perceived object location. This evidence accumulation
over the manipulation trajectory explains the improvement in
performance towards the end of experiments relative to the be-
ginning. The central part of orientation space displays larger
amounts of noise than other areas, and ways to reduce this noise
could include gathering further training datasets and fine-tuning
control of the gripper around that region.

A further extension to this work would involve the addition of
object recognition within the perception algorithm. This would
allow the gripper to perform simultaneous object localization
and identification [28] of objects being manipulated, creating
a more versatile and autonomous gripper. Objects of different
shapes, sizes or textures could thus be manipulated by identify-
ing them and associating them with their corresponding training
dataset.

The TacTip is a low-cost, robust and easily adaptable tactile
sensor. As such, it would be straightforward to investigate the
effect of its shape and size on manipulation capabilities. This
work could also be further extended by adapting the TacTip
for use on more complex robotic hands, such as the OpenHand
Model O, an open-source variant of the i-Hy hand [19]. More
complex manipulation trajectories will present challenges, and
it may be necessary to separate tactile feedback into more pre-
cise features such as contact location, force, torque and slip.
3-fingered systems would also increase the amount of data to
be processed, potentially requiring optimization of the image
processing methods.
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Our methods for model-free active tactile manipulation on
the GR2 TacTip gripper platform can be used to investigate
principles of dexterous manipulation and could lead in future to
essential advances in the areas of robotic tactile manipulation
and tele-operation.

VI. CONCLUSION

Active tactile manipulation of grasped objects of different di-
mensions was achieved with the GR2 gripper and two integrated
TacTip sensors. Objects were manipulated along a target trajec-
tory using only tactile feedback, demonstrating precise active
manipulation in a manner that could be extended to other tactile
manipulation tasks.
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