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Abstract

Background: An exercise-based Cardiac Rehabilitation Programme (CRP) is established as adjuvant therapy in heart
failure (HF), nevertheless it is underutilized, especially in the elderly. While the functional and hemodynamic effects
of CRP are well known, its underlying molecular mechanisms have not been fully clarified. The present study aims
to evaluate the effects of a well-structured 4-week CRP in patients with stable HF from a molecular point of view.

Results: A prospective longitudinal observational study was conducted on patients consecutively admitted to
cardiac rehabilitation. In fifty elderly HF patients with preserved ejection fraction (HFpEF), levels of sirtuin 1 (Sirt1) in
peripheral blood mononuclear cells (PBMCs) and of its targets, the antioxidants catalase (Cat) and superoxide
dismutase (SOD) in serum were measured before (Patients, P) and at the end of the CRP (Rehabilitated Patients, RP),
showing a rise of their activities after rehabilitation.
Endothelial cells (ECs) were conditioned with serum from P and RP, and oxidative stress was induced using
hydrogen peroxide. An increase of Sirt1 and Cat activity was detected in RP-conditioned ECs in both the absence
and presence of oxidative stress, together with a decrease of senescence, an effect not observed during Sirt1 and
Cat inhibition.

Conclusions: In addition to the improvement in functional and hemodynamic parameters, a supervised exercise-
based CRP increases Sirt1 activity and stimulates a systemic antioxidant defence in elderly HFpEF patients.
Moreover, CRP produces antioxidant and anti-senescent effects in human endothelial cells mediated, at least in
part, by Sirt1 and its target Cat.
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Background
Despite recent advances in clinical/diagnostic tools
and therapies, the incidence and prevalence of Heart
Failure (HF) show a steady increase [1]. A cardiac re-
habilitation programme (CRP) based on exercise
training, has been recognized as a fundamental com-
ponent in the continuum of care for patients with
HF. Meta-analyses of randomized controlled trials on
CRPs have demonstrated a significant reduction of
all-cause mortality, with lower rates of re-infarction
and cardiac mortality [2].

However, these studies included very few elderly or
high-risk patients, and exercise is rarely viewed as a ne-
cessary prescription for these patients because they have
more barriers to participation in exercise training [3].
In HF patients, exercise was shown to be associated

with significant improvement in functional and
hemodynamic parameters [4–7], nevertheless there are
few data explaining the molecular mechanisms under-
lying exercise-based CRP.
It has been established both in humans and in animal

models that exercise training can stimulate the natural
antioxidant defences thereby contrasting reactive oxygen
species (ROS) accumulation [8, 9].
The NAD+-dependent deacetylase sirtuin 1 (Sirt1) is

now recognized as a mediator of the response to
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oxidative stress and endothelial dysfunction, phenomena
both correlated with endothelial cell pathophysiology
and Cardiovascular Diseases (CVDs), including HF [10].
Evidence about the protective role of Sirt1 in vascular
biology has indicated Sirt1 as a possible target in pre-
venting CVDs and other diseases [11, 12]. Indeed, Sirt1
plays a crucial role in both cellular senescence and age-
ing, and it was recognized as modulator of the oxidative
stress response by inducing the expression of antioxidant
enzymes such as superoxide dismutase (SOD) and cata-
lase (Cat) [13, 14]. Recently, Lu et al. [15] showed that in
advanced HF, low Sirt1 expression in ageing might be a
significant contributing factor in the downregulation of
antioxidants and upregulation of oxidative stress and
apoptosis. We previously showed that moderate exercise
promoted Sirt1 activity in rats and induced increasing
SOD and Cat expression. Notably, in aged sedentary rats
there was lower levels of Cat comparing to young rats
and exercise led to a complete recover of such antioxi-
dant enzyme [16].
Cat, a molecular target of Sirt1, represents a primary

safeguard of the antioxidant system [17], and recent
studies have suggested that this enzyme might play an
important role in the pathophysiology of HF [18, 19].
In humans, exercise training improves cardiovascular

function and endothelial homeostasis, although the
benefit achieved varies widely depending on the type
and duration of exercise [20, 21].
In the present study, we aim at investigating the mo-

lecular changes possibly induced by a 4-week CRP on
Sirt1 activity in peripheral blood mononuclear cells
(PBMCs) and antioxidant status in serum of patients
with stable HF. Moreover, we looked at changes induced
by the conditioning of human endothelial cells, exposed
or not to oxidative stress induced by H2O2, with serum
isolated from patients before and at the end of the CRP.

Results
Heart failure elderly patient recruitment and
characterisation
Fifty-three consecutive patients affected by HF were re-
cruited from the Cardiac Rehabilitation Unit. All patients
completed the CRP. As only three patients were women,
they were excluded from the analysis. Therefore, the final
study population consisted of 50 elderly male patients
(mean age 68.6 ± 6.3 years). None of the patients had ex-
perienced a myocardial infarction (MI) in the 12 months
preceding the study. All patients were in clinically stable
condition, and classified as in NYHA II and III class with
a preserved Ejection Fraction (EF) [10 patients with HF
mid-range EF; 40 with HF preserved EF]. All definitions
were based on the ESC and ACCF/AHA criteria, in which
the term “stable” defines treated patients with symptoms

and signs that have remained generally unchanged for at
least 1 month [22].
The clinical and demographic features of the study

population are listed in Table 1. Information on comor-
bidities and concomitant medications were gathered
from all patients. No racial/ethnic-based differences
were present. At baseline, no differences in medical ther-
apy were found, and no changes occurred during the
study period.
Data are expressed as mean (SD) or number of sub-

jects (%). BMI, Body Mass Index; SBP, Systolic Blood
Pressure; DBP, Diastolic Blood Pressure; HR, Heart Rate;
bpm, beat/minutes; CAD, Coronary Artery Disease;
PTCA, Percutaneous Transluminal Coronary Angio-
plasty; CABG, Coronary Artery Bypass Graft; COPD,
Chronic Obstructive Pulmonary Disease; ARBs, Angio-
tensin II Receptor Blockers.

Table 1 Study population characteristics and medication use

Age (y.o.), mean (SD) 68.6 (6.3) Medications, n (%)

Gender (M/F) 50/0 β-blockers 46
(92)

BMI (kg/m2), mean (SD) 28.03
(3.17)

ACE-inhibitors 29
(58)

SBP (mmHg), mean (SD) 122 (6) ARBs 9 (18)

DBP (mmHg), mean (SD) 80 (9) Diuretics 8 (16)

HR (bpm), mean (SD) 84 (8) Nitrates 6 (12)

CAD, n (%) 49 (98) Ca2+-antagonists 4 (8)

ischemic 47 (94) α-antagonists 2 (4)

hypertrophic 1 (2) Aspirin 46
(92)

dilatative 1 (2) Anticoagulants 31
(62)

PTCA, n (%) 33 (66) Other cardiac drugs 3 (6)

CABG, n (%) 9 (18) Antiarrhythmics 2 (4)

Valvular substitution, n (%) 1 (2) Statins 49
(98)

Smoking, n (%) 35 (70) Gastro-protective
drugs

44
(88)

Familiarity, n (%) 15 (30) Polyunsaturated fats 13
(26)

Hypertension, n (%) 29 (58) Oral hypoglycaemics 9 (18)

Dyslipidaemia, n (%) 28 (56) Insulin 5 (10)

Diabetes, n (%) 13 (26)

COPD, n (%) 6 (12)

Obesity, n (%) 4 (8)

Peripheral Artery Disease, n
(%)

2 (4)

Arrhythmias, n (%) 2 (4)

Distyroidism, n (%) 1 (2)

Other diseases, n (%) 1 (2)
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Biochemical, echocardiographic and cardiopulmonary
stress test features of patients before (P) and at the end
of the CRP (RP) are shown in Table 2. A CRP signifi-
cantly reduced cholesterol and increased creatinine
levels (both P < 0.0001).
Cardiopulmonary stress test revealed a reduction in

maximum systolic blood pressure (P = 0.002), and in-
creased maximum heart rate (P = 0.034), rate-pressure
product (P < 0.0001), test duration (P < 0.0001), and VO2
max (P < 0.0001) with consequent significantly higher
exercise tolerance, one of the most crucial target in the
HF treatment, after CRP.

CRP-induced changes in antioxidant capacity in heart
failure elderly patients
The activity of Sirt1 and of its molecular targets, Cat
and SOD before and at the end of the CRP were
evaluated.
The CRP enhanced Sirt1 activity measured in PBMCs

from patients (RP vs P, P = 0.02) (Fig. 1, Panel a). Like-
wise, Cat and SOD activities measured in serum were
greater in RP than in P (P < 0.005 and P < 0.05, respect-
ively) (Fig. 1, Panels b and c).

Sirt1, Cat and SOD activities in endothelial cells
conditioned with patients’ sera
To investigate the possible role of Sirt1, Cat and SOD
in modulating the beneficial effects of the CRP, an in

vivo-in vitro model was set up by conditioning human
endothelial cells (ECs) with sera from patients at time
0 (Patient serum-conditioned ECs, P-ECs) and at the
end of the CRP (Rehabilitated Patient serum-
conditioned ECs, RP-ECs). Moreover, the antioxidant
response in such conditioned cells was evaluated after
the induction of stress using H2O2.

Table 2 Changes in biochemical, echocardiographic and
cardiopulmonary stress test parameters induced by CRP

P RP P value

Biochemistry

Cholesterol (mmol/L) 157.61 ± 37.11 150.67 ± 30.37 <0.0001

Creatininemia (mmol/L) 0.94 ± 0.24 0.97 ± 0.20 <0.0001

Hemoglobin (g/dL) 13.58 ± 1.35 13.42 ± 0.53 0.494

Echocardiographic parameters

EF (%) 53.33 ± 8.97 55.10 ± 6.79 0.011

LVEDD (mm) 51.37 ± 3.77 51.31 ± 3.13 0.804

Cardiopulmonary stress test

SBP max (mmHg) 169.02 ± 15.54 165.51 ± 19.29 0.002

DBP max (mmHg) 81.46 ± 5.62 80.64 ± 5.15 0.077

HR max (bpm) 117.56 ± 21.55 123.13 ± 13.20 0.034

Rate-pressure product
(mmHg x bpm)

19892.69 ±
3841.64

20261.54 ±
3743.32

<0.0001

Test duration (sec) 359.41 ±
112.57

451.89 ±
109.78

<0.0001

VO2 max (ml/kg/min) 20.30 ± 4.61 24.51 ± 5.81 <0.0001

P, HF patients pre-CRP; RP, the same patients post-CRP. Data are expressed as
mean ± SD. EF, Ejection Fraction; LVEDD, Left Ventricle End Diastolic Diameter;
SBP, Systolic Blood Pressure; DBP, Diastolic Blood Pressure; HR, Heart Rate;
bpm, beat/minutes. A P value <0.05 was considered significant

Fig. 1 CRP increased Sirt1 activity in PBMCs with a concomitant rise
of antioxidants in sera. Sirtuin 1 (Sirt1) activity (a) was determined in
the nuclei extracted from PBMCs from patients before (P) and after
4 weeks of a cardiac rehabilitation programme (CRP). Catalase (Cat)
activity (b) and superoxide dismutase (SOD) activity (c) were
determined in serum samples

Russomanno et al. Immunity & Ageing  (2017) 14:7 Page 3 of 9



Sirt1 and Cat activities were higher in RP-ECs than in
P-ECs (both, P < 0.0001) (Fig. 2, Panels a and b). Con-
versely, SOD activity decreased in RP-ECs (P < 0.05)
compared with P-ECs (Fig. 2, Panel c).
In the presence of H2O2-induced oxidative stress, Sirt1

and Cat activities were higher in RP-ECs than in P-ECs
(P < 0.0001 and P < 0.05, respectively) (Fig. 2, Panels a
and b), whereas SOD activity did not change (Fig. 2,
Panel c).
These results showed that a CRP induced Sirt1 and

Cat activation in both the absence and presence of oxi-
dative stress, suggesting the role of Sirt1 in stimulating
the antioxidant response.

Role of Sirt1 and Cat in endothelial cell senescence
The senescence in endothelial cells (ECs) conditioned
with patients’ sera was measured. ECs conditioned with
sera from patients at the end of a 4-week CRP (RP-ECs)
showed a significantly reduced senescence compared to
that conditioned with sera from patients before CRP (P-
ECs), in both the absence and presence of induced oxi-
dative stress (both, P < 0.0001; Fig. 3).
To investigate the possible role played by Sirt1 and its

molecular target Cat in the modulation of cell senes-
cence, P-ECs and RP-ECs, either exposed or not to oxi-
dative stress, were treated with Sirt1 and Cat
pharmacological inhibitors, EX-527 and 3-amino-1,2,4-
triazole (ATZ) respectively.
As shown in Fig. 3, the inhibition of Sirt1 activity by

EX-527 caused an increase of senescence in RP-ECs
compared with baseline (P = 0.001), but not in P-ECs.
Interestingly, in the presence of H2O2 oxidative stress,
EX-527 induced a rise in senescence, in both P-ECs (P <
0.05) and RP-ECs (P = 0.001). Hence, Sirt1 inhibition
abolished the anti-senescent effect of a CRP, suggesting
Sirt1 as a modulator of endothelial cell senescence.
Also the inhibition of Cat activity by ATZ resulted in

an increased senescence, in both P-ECs and RP-ECs
(both, P < 0.0001), compared with baseline. In the pres-
ence of H2O2-induced oxidative stress, ATZ treatment
caused a significant increase in the senescence rate in
ECs conditioned with RP sera (P < 0.0001) compared
with basal levels. Of note, senescence become higher in
stressed RP-ECs compared with stressed P-ECs when
Cat was inhibited (P = 0.001). These data suggest that
Cat is, at least in part, responsible for the reduced senes-
cence rate observed in ECs conditioned with RP sera.

Discussion
Most of the studies in both young and older adults have
been planned after considering functional and
hemodynamic outcomes, without clarifying the effects of
a CRP from a molecular point of view.

In this study, we showed an increase of Sirt1 activity
in PBMCs alongside an increase of antioxidant capability
in serum isolated from patients with HF after 4 weeks of
a CRP.
In vivo-in vitro experiments performed in endothelial

cells conditioned with patients before and after CRP
showed that serum from the rehabilitated patients is able
to stimulate Sirt1 activity and the cellular antioxidant
defence by increasing activity of the Sirt1 target Cat.
Furthermore, the conditioning of human endothelial

cells with serum from rehabilitated patients attenuated
senescence in both the absence and presence of oxida-
tive stress induction and such effect was eliminated by
the pharmacological inhibition of Sirt1 or Cat activity.
Cellular senescence is a hallmark of ageing and a

process in which competent cells are brought into a per-
manent form of growth arrest. If and how senescence is
correlated with age-associated frailty and diseases is still
one of the major unanswered questions in ageing physi-
ology and clinical geriatrics [23]. An increase of oxida-
tive stress-induced senescence can be dangerous to
endothelial cells, resulting in impairment of endothelial
structure and function. Some authors showed that cellu-
lar senescence is involved in endothelial dysfunction and
atherogenesis, and this was confirmed by a histological
study on atherosclerotic human plaques demonstrating
morphological features of senescence [24]. As oxidative
stress-induced endothelial dysfunction is strictly con-
nected to HF, researching methods to modify this condi-
tion is certainly of clinical interest.
The role played by Sirt1 in the regulation of ageing,

endothelial homeostasis and cellular senescence is now
recognized. Indeed, several studies demonstrated that a
H2O2 treatment caused a reduction of Sirt1 protein ex-
pression, and the inhibition of Sirt1 contributed to a
H2O2-induced senescence in endothelial cells [25, 26].
Furthermore, the Sirt1 target Cat was also shown to be
involved in ageing and senescence control [27, 28]. We
previously demonstrated that Cat is reduced during age-
ing [16], and involved in the reduction of endothelial
senescence during an aerobic exercise training [20, 21].
Some studies in animal models demonstrated that
over-expression of Cat in heart and vessels may have
a beneficial impact on HF. In particular, Cat may pre-
vent adverse myocardial remodelling and contribute
to the preservation of geometric and functional
changes by alleviating stress in the endoplasmic
reticulum [18, 29].
Notably, patients enrolled in the present study were

HF elderly patients with preserved ejection fraction, a
phenotype of HF that is attracting particular attention
from both physicians and researchers. Actually, pharma-
cological trials performed to assess improving of out-
come and symptoms, including exercise intolerance, in
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HFpEF patients have been shed light the absence of ef-
fective drugs [30, 31].
On the other hand, some recent studies in such pa-

tients have suggested that exercise training is a prom-
ising therapeutic strategy to improve exercise
intolerance [32], increase exercise capacity, as mea-
sured objectively using peak oxygen consumption, and
ameliorate quality of life and diastolic function,
assessed by echocardiography [6, 7, 33].
Here we showed that, in addition to the improvement

of hemodynamic parameters and exercise tolerance
(assessed by cardiopulmonary stress test), an exercise-
based CRP increases Sirt1 activity and stimulates a sys-
temic antioxidant defence in HFpEF elderly patients and
was able to produce antioxidant and anti-senescent ef-
fects in endothelial cells mediated, at least in part, by
Sirt1 and its target Cat.

Limitations
A possible limitation of the present study could be the
lack of a group of heart failing patients not undergone
CR. However, the main outcome was represented by the
investigation of the molecular changes occurred before
and after a well-structured 4-week rehabilitation

Fig. 2 Sirt1, Cat and SOD activities in conditioned endothelial cells.
Sirt1 (a), Cat (b) and SOD (c) activities in endothelial cells (ECs)
conditioned with sera from patients before (P) and after (RP) a 4-week
well-structured CRP in either the presence or absence of H2O2-induced
oxidative stress

Fig. 3 Effect of the inhibition of Sirt1 and Cat activities on
endothelial cell senescence. SA-β-gal staining of ECs conditioned
with sera from HF patients in the presence and absence of oxidative
stress. Sirt1 and Cat activities were inhibited by EX-527 and 3-amino-
1,2,3-triazole (ATZ), respectively. Senescence values are shown as a
percentage of the reference condition (FBS-conditioned ECs), which
is 100%. a) P < 0.05 vs baseline; b) P = 0.001 vs baseline; c) P < 0.05 vs
H2O2; d) P = 0.01 vs EX-527; e) P = 0.001 vs H2O2; f) P < 0.02 vs EX-527;
g) P < 0.0001 vs baseline; h) P < 0.01 vs EX-527;i) P < 0.05 vs EX-527; j)
P < 0.05 vs ATZ; k) P < 0.02 vs EX-527 + H2O2; l) P < 0.0001 vs H2O2.
(B): a) P = 0.001 vs baseline; b) P < 0.02 vs baseline; c) P < 0.005 vs
baseline; d) P = 0.002 vs H2O2; e) P = 0.01 vs EX-527; f) P < 0.01 vs
baseline; g) P < 0.05 vs EX-527; h) P < 0.05 vs H2O2; i) P = 0.002 vs EX-
527 + H2O2; j) P = 0.001 vs EX-527 + H2O2; k) P < 0.005 vs H2O2
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program in patients affected by chronic HF, who did not
change their clinical characteristics and pharmacological
therapy during the study period.
Another drawback is the lack of women in the study

population. Actually, we did recruit only three women,
and then we decided to exclude them because of the
small number. This is in line with the fact that women
are less inclined to take part in cardiac rehabilitation
programs [34]. Therefore, further studies are necessary
to better clarify the molecular effects of CR also in fe-
male patients.

Conclusion
The ability of exercise training to regulate vascular endo-
thelial function and oxidative stress response is an
example of how lifestyle and/or tools such as exercise-
based CRPs can complement both clinical and pharma-
cological means of managing CVDs. In particular,
cardiac rehabilitation is a helpful medical practice in
which several molecular factors mutually influence each
other. The exercise training included in CRPs acts as a
non-pharmacological inductor of antioxidant response.
To determine the molecular mechanisms underlying

the beneficial effects of CRPs is an essential step in de-
veloping a strategy to facilitate the clinical practice of ex-
ercise training. Further studies should be addressed to
evaluate the possibility of reducing the number and the
dosage of drugs in HF patients, including those with pre-
served ejection fraction by implementing exercise pro-
grams, especially in high-risk elderly subjects.

Methods
Study Design and Population
A prospective longitudinal observational study was con-
ducted on patients consecutively admitted to the Cardiac
Rehabilitation Unit of “San Gennaro dei Poveri” Hospital
in Naples, Italy. Patients’ information and consent forms
were approved by the ethical committee of ASL of
Salerno Registry of Observational Studies (RSO) n.10/14.
The study was performed in accordance with the Dec-

laration of Helsinki Seventh Revision (2013) and its
amendments. This report adheres to the standards for
the reporting of observational trials and was written ac-
cording to the STROBE guidelines for Observational
Studies in Epidemiology - Molecular Epidemiology
(STROBE-ME) [35].
Exclusion criteria included unstable angina pectoris,

uncompensated HF, complex ventricular arrhythmias,
pacemaker implantation and orthopaedic or neurological
limitations to exercise.
All enrolled patients underwent a physical examin-

ation, collection of demographic and routine blood
chemistry tests, chest X-ray, blood pressure measure-
ment, electrocardiographic and echocardiographic

examinations, cardiopulmonary stress test and a 6-min
walking test with Borg index evaluation. For interval
training, low muscle commitment calisthenics and re-
spiratory exercises were performed.

Training Protocol
The CRP consisted of 30-min sessions of aerobic exer-
cise, 5 days a week. A daily training session comprised a
warm-up (10 min), endurance training (15 min) and a
cool-down (5 min) on a cycle ergometer at 50% of the
VO2 max achieved on the cardiopulmonary stress test.

Blood Sample Collection
Overnight fasting blood samples were obtained from pa-
tients before starting and at the end of the CRP. After
centrifugation at 1500 × g for 10 min, serum samples
were transferred to new tubes and stored at −80 °C until
analysis. PBMCs were isolated from whole blood by
Ficoll-Paque PLUS (GE Healthcare, Munich, Germany),
according to manufacturer’s procedures.
Samples isolated from patients before CR were indi-

cated as P, while those collected from patients after CR
were designated as RP.

Cell Culture and Treatments
Human Umbilical Vein Endothelial Cells (HUVECs,
ECs) were purchased from Clonetics (Walkersville, MD).
The cells were cultured in an endothelial growth
medium, containing FBS at a concentration of 2% and
bovine brain extract (with FGF-2 at a concentration of
100–500 pg/ml). The cells were subcultured by trypsini-
zation, seeded on cell culture dishes coated with 0.1% gel-
atin and growth in an atmosphere of 5% CO2 at 37 °C.
Pilot experiments to identify the concentration of hydro-
gen peroxide (H2O2 = 100–750 μM) that effectively in-
duced a significant decrease in the survival of control
cells, were conducted and a concentration of 500 μM was
chosen. Moreover, we evaluated the effect of oxidative
stress 12, 24, 48, and 72 h after a treatment with 500 μM
H2O2. Finally, we chose the time of 48 h as representative
of the most relevant change.
Therefore, ECs were seeded and cultured for 48 h in a

medium supplemented with either the patient’s serum
(10%) at time 0 (Patient serum-conditioned ECs, P-ECs)
and post CR (Rehabilitated Patient serum-conditioned
ECs, RP-ECs), or FBS (10%) as a control and were ex-
posed or not to oxidative stress induced by 500 μM
H2O2. Four hours after H2O2 exposure, the growth
medium was replaced with fresh medium containing
FBS.
All experiments were performed at a population doub-

ling level (PDL) of 8 to 12.

Russomanno et al. Immunity & Ageing  (2017) 14:7 Page 6 of 9



Sirt1 Activity
Crude nuclear samples were extracted by suspending the
cells into 1 mL of lysis buffer (10 mM of Tris HCl at
pH 7.5, 10 mM of NaCl, 15 mM of MgCl2, 250 mM of
sucrose, 0.5% NP-40, 0.1 mM of EGTA). Cells were spun
through 4 ml of sucrose cushion (30% sucrose, 10 mM
of Tris HCl at pH 7.5, 10 mM of NaCl, 3 mM of MgCl2)
at 1300 × g for 10 min at 4 °C. The isolated nuclei were
suspended in 50–100 μl of extraction buffer (50 mM of
HEPES KOH at pH 7.5, 420 mM of NaCl, 0.5 mM of
EDTA Na2, 0.1 mM of EGTA, 10% glycerol). After cen-
trifugation at 15,000 rpm for 10 min, the protein con-
centration of the crude nuclear extract without protease
inhibitor was determined by the Bradford method. Sirt1
activity in the nuclei was determined using the CycLex
SIRT1/Sir2 Deacetylase Fluorometric Assay Kit (Ina,
Nagano, Japan). The reaction was carried out by simul-
taneously mixing fluorescent-labeled acetylated peptide
as substrate and 10 μl of the sample, trichostatin A,
NAD, and lysyl endopeptidase. The intensity of the
fluorescence at 440 nm was measured 60 min after the
onset of the reaction. Values are reported as relative
fluorescence/μg of protein (AU). All data are the means
± standard deviation (SD) of three independent
experiments.

Catalase and Superoxide Dismutase Antioxidant Activities
Catalase (Cat) and superoxide dismutase (SOD) activities
were determined using the Catalase Assay Kit and the
Superoxide Dismutase Assay Kit (Cayman Chemical,
USA). Samples were previously diluted with buffer (1:10
for serum; 1:2 for cell lysate). The values were reported
as U/μg of protein. All data are the means ± SD of three
independent experiments.

Sirt1 and Catalase Activities Inhibition
To investigate if Sirt1 or Cat activity influenced changes
in the senescence of the conditioned cells either exposed
or not to H2O2, their respective activities were inhibited
using EX-527 (Sigma, Milan-Italy) at a concentration of
5 μM for 1 h and 3-amino-1,2,4-triazole (ATZ) (Sigma,
Milan-Italy) at a concentration of 10 mM for 3 h.

Senescence-Associated β-galactosidase (SA-β-gal) Activity
Cultured cells were washed in PBS and fixed with 2%
formaldehyde and 2% glutaraldehyde for 10 min at room
temperature. The cells were washed and then incubated
at 37 °C in staining buffer with the following compo-
nents: 40 mM citric acid/sodium phosphate (pH 6.0),
0.15 M NaCl, 2 mM MgCl2, 5 mM potassium ferrocyan-
ide, and 1 mg/mL X-gal (5-bromo-4 chloro-3-indolyl β-
D-galactoside). After 4 h, the SA-β-gal rate was obtained
by counting four random fields per dish and assessing
the percentage of SA-β-gal-positive cells from 100 cells

per field. Senescence values are shown as a percentage
of the reference condition (FBS-conditioned ECs), which
is 100%.

Statistical Analysis
Continuous variables are expressed as mean ± SD and
compared by paired or unpaired Student’s t test (nor-
mally distributed variables) or by two or three way
ANOVA when appropriate, or as median ± interquartile
range value and compared by the Mann–Whitney U test
(not normally distributed). Normality of data distribu-
tion was evaluated using the Kolmogorov-Smirnov test.
Non-normally distributed continuous variables were
converted to their natural log functions. Categorical var-
iables are expressed as a proportion and compared by
the χ2 test, with risk ratios and 95% confidence intervals
quoted.
All data were analysed using SPSS version 19.0 (SPSS,

Inc., Chicago, Illinois-USA). Statistical significance was
accepted at P < 0.05.
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rehabilitation programme; PDL: Population doubling level; P-ECs: Patient
serum-conditioned endothelial cells; PTCA: Percutaneous transluminal
coronary angioplasty; ROS: Reactive oxygen species; RP: Rehabilitated
patients; RP-ECs: Rehabilitated patient serum-conditioned endothelial cells;
SA-β-gal: Senescence-Associated β-galactosidase; SBP: Systolic blood
pressure; Sirt1: Sirtuin 1; SOD: Superoxide dismutase; VO2: Maximal oxygen
consumption; X-gal: 5-bromo-4 chloro-3-indolyl β-D-galactoside.
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