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*S Supporting Information

ABSTRACT: The statistical associating fluid theory of variable range
employing a Mie potential (SAFT-VR-Mie) proposed by Lafitte et al.
(J. Chem Phys. 2013, 139, 154504) is one of the latest versions of the
SAFT family. This particular version has been shown to have a
remarkable capability to connect experimental determinations,
theoretical calculations, and molecular simulations results. However,
the theoretical development restricts the model to chains of beads
connected in a linear fashion. In this work, the capabilities of the
SAFT-VR Mie equation of state for modeling phase equilibria are
extended for the case of planar ring compounds. This modification
proposed replaces the Helmholtz energy of chain formation by an
empirical contribution based on a parallelism to the second-order
thermodynamic perturbation theory for hard sphere trimers. The
proposed expression is given in terms of an extra parameter, χ, that
depends on the number of beads, ms, and the geometry of the ring. The model is used to describe the phase equilibrium for
planar ring compounds formed of Mie isotropic segments for the cases of ms equals to 3, 4, 5 (two configurations), and 7 (two
configurations). The resulting molecular model is further parametrized, invoking a corresponding states principle resulting in sets
of parameters that can be used indistinctively in theoretical calculations or in molecular simulations without any further
refinements. The extent and performance of the methodology has been exemplified by predicting the phase equilibria and vapor
pressure curves for aromatic hydrocarbons (benzene, hexafluorobenzene, toluene), heterocyclic molecules (2,5-dimethylfuran,
sulfolane, tetrahydro-2H-pyran, tetrahydrofuran), and polycyclic aromatic hydrocarbons (naphthalene, pyrene, anthracene,
pentacene, and coronene). An important aspect of the theory is that the parameters of the model can be used directly in
molecular dynamics (MD) simulations to calculate equilibrium phase properties and interfacial tensions with an accuracy that
rivals other coarse grained and united atom models, for example, liquid densities, are predicted, with a maximum absolute average
deviation of 3% from both the theory and the MD simulations, while the interfacial tension is predicted, with a maximum
absolute average of 8%. The extension to mixtures is exemplified by considering a binary system of hexane (chain fluid) and
tetrahydro-2H-pyran (ring fluid).

■ INTRODUCTION
The Statistical Associating Fluid Theory (SAFT) equation of
state (EoS) is one of the most versatile, advanced, and accurate
molecular-based EoS used to predict the thermophysical
properties of pure fluids and fluid mixtures. Its formulation is
based on Wertheim’s first-order thermodynamic perturbation
theory (TPT1)1−4 and expressed as a sum of contributions to
the Helmholtz free energy, namely:

= + + +a a a a aIG MONO CHAIN ASSOC (1)

where a is the dimensionless Helmholtz energy, defined as a =
A/(NkBT); A being the total Helmholtz energy, N the number
of molecules, kB the Boltzmann constant, and T the
temperature. aIG is the ideal gas reference value, while the
other terms correspond to increased complexity in the model;
aMONO adds the monomer (unbounded) contribution for a
chain composed of ms tangential segments, aCHAIN accounts for

the formation of said chains, while aASSOC is the Helmholtz
energy contribution accounting for intermolecular association.
Since its inception within the Gubbins group in the late 80s,
several variants of the SAFT EoS have been proposed in order
to incrementally improve its accuracy and range of applicability.
It is arguably one of the most important advances in the area of
correlation and prediction of fluid phase properties of the last
decades. For an abridged overview of the SAFT EoS and its
most recent versions, the reader is directed to the available
reviews in the open literature.5−9 Without prejudice to other
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implementations, the SAFT-VR Mie proposed by Lafitte et al.10

is employed here, as it provides a remarkable route to connect
experimental determinations, theoretical calculations, and
molecular simulations results.11 Its success is attributed to
two factors, the versatility of the underlying potential and its
accuracy in representing said potential. The Mie potential,12
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where r is the distance between centers of the particles, ε is the
minimum energy of interaction, σ is the short distance where
the repulsive and attractive contribution of the potential cancel
and λr and λa are the exponents that characterize ultimate range
of the interaction. It represents an “upgrade” of the commonly
used Lennard-Jones (λr = 12; λa = 6), incorporating a flexibility
in the treatment of the attractive range and repulsive nature of
the intermolecular potential, whereas the inclusion of a
perturbation expansion of the underlying monomer term,
aMONO, to third order allows the theory to describe with
precision the expected macroscopic behavior of the potential.
This latter aspect is particularly important, as it allows the
exploitation of the link between the theoretical description by
means of an EoS and the direct molecular simulation of the
corresponding fluid. The accuracy of this one-to-one
correspondence is crucial in order to represent molecules as
coarse-grained (CG) beads with molecular parameters provided
by the fitting of the SAFT model to experimental data.13 The
procedure essentially defines a top-down coarse grained
approach that has been widely successful in modeling both
the phase equilibria, interfacial properties, and self-assembly of
organic molecules, polymers, surfactants, and mixtures.14−19

In one of the seminal manuscripts defining the above theory,
Laffite et al.,16 recognized the importance of having the
appropriate overall shape of the molecular model. TPT1, on
which most of the SAFT formulations are based on, adds to the
monomer term of the Helmholtz energy an explicit
contribution corresponding to the free energy required to
form a chain from the corresponding monomer segments.
While TPT1 makes no explicit provision for the connectivity of
the beads, an analysis of the assumptions made in the theory
with regards to the three (and higher body) distribution
functions immediately suggests that the theory will be most
accurate for linear chains (or completely flexible and extended
chains).20 Molecules formed by beads connecting each other in
a nonlinear fashion require a fundamentally different approach,
essentially invoking Wertheim’s second order perturbation
theory (TPT2).21 If one is to consider phase equilibria
applications, whereas the parameters of the EoS are fitted to
experimental data, and the resulting analytical expression is
used to correlate and extrapolate the bulk thermodynamic
properties, the nuances of the shape of the molecule and those
of the underlying potential are to a great extent irrelevant. As a
consequence of that the various versions of SAFT (and indeed
of any other modern EoS) fundamentally provide comparable
accuracy among themselves, and all serve as appropriate tools
for use in engineering and spreadsheet calculations.9 A key
point raised by Laffite et al.,16 is that the shape of the
underlying molecular model, while having modest effect on the
bulk thermodynamic properties, has an important role in the
accurate description of the structure of the fluid, as probed by

molecular simulation. In ref 16, tasked with the challenge of
representing a discotic molecule like benzene as a ring of three
beads bonded to form an equilateral triangle, it was suggested
to replace the aCHAIN term in the SAFT-VR Mie EoS (see eq 1)
by an empirical aRING term proposed by Sear and Jackson.22

The performance of this new model was tested by comparing
the phase equilibria (i.e., temperature−density coexistence
envelope and Clausius−Clapeyron curve) and interfacial
tension results for benzene to alternative models such as a
single-segment CG sphere, a geometrically accurate six-segment
TraPPE United Atom23 model and available experimental data.
As concluded in ref 16, the three-segment CG ring is an
excellent approximation displaying good agreement with
experiments for subcritical and critical phase equilibria,
interfacial tension, and as an ancillary benefit avoids the
premature freezing exhibited by the single bead model. More
importantly, however, the ring model displays the correct
behavior for the fluid structure, as evidenced by the center of
mass pair distribution function. The Laffite et al.,16 approach
suffers from two drawbacks: the accuracy with which the Sear
and Jackson aRING term represents the potential is limited
(hence the need to rescale the EoS parameters when
attempting to employ them in simulations) and the absence
of information on the actual ring geometry. The latter
limitation is particularly important for the case of ring
components with more than three segments. In principle, an
expression for ring molecules can be obtained by taking the
limit of an associating fluid that can either self-associate (as a
snake biting its tail) or associate forming rings. This latter
approach is discussed recently by Haghmoradi et al.24 and the
reader is referred to said manuscript for a review of the existing
alternative approaches.
This work reports a revised expression for the aRING term of

the SAFT-VR Mie EoS that allows the parameters to be used
within molecular simulations. The proposed model is
developed with input from TPT2, adapted and informed by
molecular simulations of models of ring molecules. The
resulting model is further parametrized, employing a corre-
sponding states correlation, to establish a link between the force
field parameters and a selected set of macroscopical properties.

Helmholtz Energy for Rings. The TPT1 theory, upon
which SAFT is based, “forbids” the combination of monomers
in such a way that a closed ring (or a branched chain) is
formed. In spite of this limitation, versions of the SAFT EoS
have been used to model rings compounds, by employing the
molecular chain length (ms) as a lumped parameter that
absorbs the geometric shape of molecule. An example of this
approach was presented by Huang and Radosz,25 where
correlations for the parameters of polynuclear aromatic
compounds (PAH) are presented in terms of molecular
weights. In this (and similar approaches), the molecular
parameters used for these compounds can not be transferred
to molecular simulations and, in general, the corresponding
values of the chain length ms do not provide any physical link to
the actual molecular geometry.
A closer look at the perturbation form of the SAFT EoS

reveals that the contribution to the Helmholtz energy of
forming a ring structure must be encapsulated in the aCHAIN

term of eq 1, which has the general form of

σ= −a C gln[ ( )]CHAIN ref
(3)

where gref(σ) denotes the contact value of the radial pair
distribution function for the reference monomeric fluid. Sear
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and Jackson22,26,27 proposed that if within TPT1 C can be
loosely interpreted as the contribution to form (ms − 1)
covalent-like bonds between ms monomers and takes the form
of C = (ms − 1) for a linear chain, then for the case of an ms-
membered ring of tangential segments, the expression for the
Helmholtz energy for rings (aRING) should be given by eq 3
with C = ms. The background for this ansatz is that in the case
of a circular structure an “additional” bond is being made
between the first and last member of a chain to form the ring
structure. The use of this closure does not always give
satisfactory results: the results of Lafitte et al.16 suggested that
the EoS parameters obtained when using this ansatz and fitting
experimental data of vapor pressure and liquid density, need to
be rescaled in order to be further used in molecular simulations.
The fact that the linear version of the theory does not require
such scaling implies some degree of inconsistency.
Müller and Gubbins20 explored the extension of TPT1 to

second order (TPT2) and obtained rigorous expressions for the
EoS for molecular geometries of rings of ms = 3 for hard fluids.
These expressions are based on the knowledge of the three-
body distribution functions of the hard sphere reference fluid
and depend on the density (packing fraction) of the system.
One can compare analytically the results of a linear chain of
three beads with that of a ring of three beads and extract from
the comparison the “equivalent” value of C to be used within

TPT1 to accurately represent a ring. Further details are
supplied in the Appendix, but it suffices to say that the
derivation leads expression for C with the following form

χη= − +C m 1s (4)

where η is the packing fraction, η = msπρσ
3/6, ρ is the

molecular number density, and χ is a parameter which depends
on the geometry and the reference potential. It is noteworthy
that for χ = 0, the usual TPT1 expression for linear chains is
recovered. While χ = 1.3827 is an exact result for a hard sphere
system of triangles (see Appendix), in order to employ a similar
approach for other geometrical realizations of planar rings, we
postulate the following general form for the contribution to
ring formation for the SAFT-VR Mie EoS

σ χη σ= − = − − +a C g m gln[ ( )] ( 1 )ln[ ( )]RING Mie
s

Mie

(5)

where χ is defined as a parameter, function of ms and the actual
geometrical connection of the ring. For chain fluids of ms > 3,
and soft potentials TPT2 is not fully developed and analytical
expressions are not available, hence, the procedure outlined
above for hard triangles is not applicable. For the same reason,
for soft potentials, the packing fraction is ill-defined and reverts
essentially to a measure of the system density. We seek to
exploit the correspondence between the SAFT-VR Mie EoS

Table 1. Ring Molecule Geometries and Values for the Parameter χ (Eq 5)a

aAll molecular models are planar, built from ms tangent Mie spheres, bonded rigidly at a distance σ from the center of adjacent beads. The lines
between the centers of neighbouring beads form equilateral triangles.

Figure 1. Phase equilibrium for ms = 3: (a) coexistence densities (ρ−T projection), (b) vapor pressure (T−P projection); (■) MD results; ()
SAFT-VR Mie EoS calculations with χ = 1.4938 (ring fluid); (- - -) SAFT-VR Mie EoS calculations with χ = 0 (chain fluid).
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and the underlying Mie potential and employ Canonical (NVT)
molecular dynamics (MD) simulations carried out for a defined
pure fluid (i.e., fixed geometry and molecular parameters: ms, ε,
σ, λr, λa) and use them as pseudoexperimental data to calculate
χ from the EoS. We explored the phase equilibrium behavior of
planar pure ring fluids for the cases of ms = 3, ms = 4, ms = 5
(two configurations), and ms = 7 (two configurations). While
we use a single set of molecular parameters: ε/kB = 250 K, σ =
3.0 Å, λr = 11.0 and λa = 6.0 for the simulations, we will later
extend these results employing a corresponding states principle.
Simulation details and numerical values of the simulations are
given as part of the Supporting Information. In Table 1, we
summarize the resulting values of χ along with the graphical
representation of the ring geometries used.
Figures 1−4 illustrate the phase equilibrium (ρ−T

projection) and vapor pressure diagram (T−P projection) of
these models. In Figures 1−4, we include the calculation from
the SAFT-VR Mie EoS, molecular dynamics results for rings,

and also include the theory results for a chain (χ = 0) fluid
formed by the same number of beads, ms. These figures
quantify the importance of considering ring geometries
separately; for a fixed value of ms, eq 5 is sensitive to the
geometric connectivity of the ring. Figures 3 and 4 (ms = 5 and
7) are particularly revealing, as they show how even among ring
molecules with the same value of ms, their particular
conformation is relevant. In general, we see that for a fixed
value of ms, the ring compounds display higher critical
coordinates (i.e., temperature, pressure, and density) than the
corresponding linear versions, in accordance with what is
expected for common fluids, that is, compare the critical
temperature of cyclooctane (647.2 K) to that n-octane (568.8
K).28

Corresponding States Parametrization. In order to use
the proposed models for specific fluids, it is necessary to define
the values of the molecular parameters χ, ms, ε, σ, λr, λa. This
can be done by using the criteria of the critical conditions of a

Figure 2. Phase equilibrium for ms = 4: (a) coexistence densities (ρ−T projection), (b) vapor pressure (T−P projection); (■) MD results; ()
SAFT-VR Mie EoS calculations with χ = 2.9833; (- - -) SAFT-VR Mie EoS calculations with χ = 0 (chain fluid).

Figure 3. Phase equilibrium for ms = 5: (a) coexistence densities (ρ−T projection), (b) vapor pressure (T−P projection); (■) MD results for
geometry (d) from Table 1; (●) MD results for geometry (c) from Table 1; () SAFT-VR Mie EoS calculations with χ = 4.7188 (geometry (d)
from Table 1); ( ·) SAFT-VR Mie EoS calculations with χ = 3.2222 (geometry (c) from Table 1); (- - -) SAFT-VR Mie EoS calculations with χ
= 0 (chain fluid).
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pure fluid together with the evaluation of the liquid density at a
specific condition29 or alternatively by fitting to experimental
data, for example, vapor pressure and liquid density.10 Such an
approach is exemplified in the Supporting Information by
fitting the model of ms = 3 (triangles) for three discotic-like
molecules: benzene, hexafluorobenzene, and toluene. Alter-
natively, the parameters can be found by using a corresponding
state parametrization. The procedure is described in detail in ref
30 and used therein to provide parameters for thousands of
molecular fluids employing the linear chain approximation.31 It
will be briefly detailed here for completeness.
From the set of parameters required to describe a pure fluid,

χ and ms are predetermined according to the shape and
geometric connection of molecule (see Table 1). A further
reduction in the number of parameters can be made if one
recognizes that, for fluid phase properties, there is an intimate
relationship between the exponents λr and λa of the Mie
potential, that is, their specification is not independent of each
other.32 The observation is based on the premise that the van
der Waals constant, α,
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which captures the first order contribution to the mean field
dispersion energy of the Mie potentials, establishes a unique
dependence between pairs (λr, λa) of exponents, that is, fluids
described by the same value of α exhibit conformal fluid phase
diagrams. In that sense, for most common applications and
without lack of generality, one can fix the attractive exponent λa
to 6.0. This choice will be made here and in what follows in the
manuscript λ = λr is the only one of the Mie exponents to be
fitted. The van der Waals constant is then related directly to the
repulsive exponent as

α λ
λ

λ=
−

λ−
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⎝

⎞
⎠3( 3) 6

6/( 6)

(7)

For each of the molecular geometries (i.e., for a given set of
values of ms and χ from Table 1) it is possible to correlate λ

with the slope of the vapor pressure curve. This is done by
taking a unique point of the saturation curve at a reduced
temperature of Tr = T/Tc = 0.7. Such point is used to define
Pitzer’s acentric factor, ω. Tables for the acentric factor of pure
substances are commonly available, otherwise the value can be
found by its definition.33 The core of our procedure is to
recognize that given the fact that we can use the SAFT-VR Mie
EoS to relate macroscopic thermophysical properties with
potential parameters, we can explicitly evaluate the relationship
between these two conjugate properties (one microscopic and
the other macroscopic) and fit the results to a Pade ́ series
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From the knowledge of the corresponding λ, the van der Waals
constant, α, may be found from eq 7. For each possible value of
α, the principle of corresponding states states that the critical
properties and phase behavior can be expressed uniquely for
each fluid in reduced terms, that is, scaling with respect to the
appropriate energy (ε) and length (σ) scales. Thus, we express
in reduced units the temperature T* = kBT/ε, as well as the
density ρ* = ρσ3. This unique relationship may also be
expressed in parametric form if one does not desire to resolve
the parent EoS. We propose the following expressions for the
critical temperature Tc*, and the reduced saturated liquid
density at Tr = 0.7, ρ*|Tr=0.7
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Finally, to match the reduced behavior to that of a real fluid, we
need then only two experimental points for which the
corresponding values for ε and σ for a given fluid may be
obtained by simple scaling

Figure 4. Phase equilibrium for ms = 7: (a) coexistence densities (ρ−T projection), (b) vapor pressure (T−P projection). (■) MD results for
geometry (f) - Table 1 ; (●) MD results for geometry (e) - Table 1 ; () SAFT-VR Mie EoS calculations with χ = 8.8640 (geometry (f) - Table 1);
( · ) SAFT-VR Mie EoS calculations with χ = 9.0958 (geometry (e) - Table 1); (- - -) SAFT-VR Mie EoS calculations with χ = 0 (chain fluid).
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Table 2. Coefficients for the Eqs 8, 9, and 10 for Different Ring Configurations
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where Nav is Avogadro’s number.
In summary, the model relies on three molecular parameters

ε, σ, and λ, which require fitting to experimental conditions.
This is done by matching three chosen thermodynamic state
points: the acentric factor, ω (essentially a point on the vapor
pressure curve), the critical temperature, Tc, and the saturated
liquid density, ρ|Tr=0.7, at the reduced temperature Tr = T/Tc =
0.7, guaranteeing a good fit of the range of the potential, the
energy and the length scales. In Table 2 we present the values
of the parameters ai, bi, ..., f i required for eqs 8−10) for each of
the ring geometries discussed in Table 1 along with their range
of applicability.

In the following section we illustrate the application to some
representative cases, where SAFT-VR Mie is compared to MD
simulations and the available reference28,34,35 or experimental36

data.
Application to Pure Fluids. In order to test the

applicability of the proposed expression for aRING, its
parametrization based on corresponding state principia and
the transferability of its molecular parameters from SAFT EoS
model to MD simulations, we have selected some archetypal
cases of ring fluids represented by ms = 3, 4, 5, and 7. Table 3
summarizes the pure ring fluids tested in this work together
with the values for the critical temperature (Tc), the acentric
factor (ω), the liquid density at Tr = 0.7 (ρTr=0.7) used to obtain

Table 3. Pure Fluid Critical Temperature (Tc), Acentric Factor (ω), Liquid Density at Tr = 0.7 (ρTr=0.7), and the Molecular
Parameters ε, σ, and λ for Ring Components Discussed in This Work

fluid Tc (K) ω ρTr=0.7 (mol/m3) ε/kB (K) σ (Å) λ

ms = 3 (χ = 1.4938)
benzenea 562.05 0.2092 9814.800 230.30 3.441 10.45
hexafluorobenzenea 516.42 0.3986 7828.647 294.23 3.772 16.53
2,5-dimethylfuranb 559.00 0.3191 8198.694 277.70 3.687 13.35
sulfolaneb 855.00 0.3782 8343.743 470.27 3.685 15.58
tetrahydro-2H-pyranb 572.20 0.2256 8868.462 241.53 3.564 10.81
tetrahydrofuranb 540.20 0.2353 10920.680 232.03 3.328 11.04
toluenea 591.75 0.2660 8105.800 268.24 3.685 11.80
ms = 4 (χ = 2.9833)
naphthalenec 748.33 0.3317 6547.781 281.76 3.578 11.06
pyreneb 938.33 0.4954 4411.178 459.04 4.134 15.79
ms = 5 (χ = 4.7188)
anthracenea 876.00 0.3314 4875.613 259.68 3.631 9.55
ms = 7 (χ = 9.0958)
coronenea 1143 0.6199 3907.857d 347.02 3.524 11.43
ms = 7 (χ = 8.8640)
pentaceneb 1079.03 0.6740 3518.840 351.68 3.664 12.48

aPure fluid experimental data (Tc, ω, ρTr=0.7) are taken from NIST-REFPROP database, ref 28. bPure fluid experimental data (Tc, ω, ρTr=0.7) are
taken from DECHEMA, ref 36. cPure fluid experimental data (Tc, ω, ρTr=0.7) are taken from MOLInstincts, ref 34. dPure fluid experimental data (Tc,
ω, ρTr=0.7) are calculated by using the Rackett expression.37

Figure 5. Phase equilibrium and interfacial tension for benzene (ms = 3). (a) Coexistence densities (ρ−T projection); inset: vapor pressure (T−P
projection). (b) Interfacial tension (T−γ projection). () SAFT-VR Mie EoS calculations with χ = 1.4938 and SGT with c = 25.416 × 10−20 J m5

mol−2. (○) NIST- REFPROP database.28 MD results: (■) this work; (left pointing, green triangle) 1 site CG;16 (blue diamond) 3 site CG.16 Monte
Carlo simulations: (▲) 6-site TraPPE-UA;38 (red triangle) 6 site TraPPE-UA;23 (right pointing, red triangle) 9 site TraPPE-UA with electrostatic
charges;39 (down pointing, red triangle) 12-site TraPPE-UA-EH with electrostatic charges and explicit-hydrogen.40
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the corresponding molecular parameters ms, ε, σ, and λ from
the correlations (eqs 8-10).
The molecular parameters listed in Table 3 have been

simultaneously used in both the SAFT EoS model and MD
simulations to carry out phase equilibria and interfacial
properties calculations. Selected numerical values obtained
from MD simulations presented in Table 3 are included in the
Supporting Information. The corresponding statistical devia-
tions of the results presented here and those obtained from
other authors have been summarized in Table S19 (Supporting
Information). These values are obtained from the comparison
between molecular simulation and the reference or exper-
imental data. The quoted figures also include the reference or

experimental data reported in databases such as NIST-
REFPROP28 and DECHEMA,36 and reported results are
from molecular simulations that employ other molecular
models (e.g., CG or united atom force fields). The SAFT
EoS calculations and MD simulation agree with each other to
within a deviation of 1% for phase equilibria predictions. Table
S19 also includes the error observed when comparing the
interfacial tension between the liquid and vapor bulk phases
calculated from MD by employing the virial route against the
experimental information. Interfacial tensions are not an input
to the fitting of the potential or the EoS and provide a sensitive
gauge to the quality and consistency of the density predictions
obtained from the force fields.

Figure 6. Phase equilibrium and interfacial tension for tetrahydrofuran (ms = 3). (a) Coexistence densities (ρ−T projection), inset: vapor pressure
(T−P projection). (b) Interfacial tension (T−γ projection). () SAFT-VR Mie EoS calculations with χ = 1.4938 and SGT with c = 18.174 × 10−20 J
m5 mol−2. (○) DECHEMA database.36 MD results: (■) this work; (blue circle) 1-site CG;41 (down pointing, yellow triangle) 2-site CG;41 (blue
triangle) 3-site CG;41 (green square) 5-site Jorgensen-UA;41 (red triangle) 5-site Rigid-UA;41 (left pointing, purple triangle) 5-site TraPPE-UA;41

Monte Carlo simulations: (right pointing, red triangle) 5-site TraPPE-UA;40 (down pointing, red triangle) 5-site TraPPE-UA with electrostatic
charges.42

Figure 7. Predicted phase equilibrium and interfacial tension for coronene (ms = 7). (a) Coexistence densities (ρ−T projection); inset: vapor
pressure (T−P projection). (b) Interfacial tension (T−γ projection). () SAFT-VR Mie EoS calculations with χ = 9.0958 and SGT with c =
125.898 × 10−20 J m5 mol−2. (■) this work; (○) Reference data for ρL have been estimated from Rackett.37

Langmuir Article

DOI: 10.1021/acs.langmuir.7b00976
Langmuir XXXX, XXX, XXX−XXX

H

http://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.7b00976/suppl_file/la7b00976_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.7b00976/suppl_file/la7b00976_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.7b00976/suppl_file/la7b00976_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.7b00976/suppl_file/la7b00976_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.7b00976/suppl_file/la7b00976_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.7b00976/suppl_file/la7b00976_si_001.pdf
http://dx.doi.org/10.1021/acs.langmuir.7b00976


While the tables are too lengthy to discuss in detail, we
selected two representative triangle fluids and compare the
results graphically. Figure 5 and 6 show the comparisons for
benzene, and tetrahydrofuran. Benzene and tetrahydrofuran are
particularly relevant, as both have been previously modeled
both as fully atomistic models, united atom representations
where the hydrogens are lumped into the descriptions of the
heavy atoms and as CG three-bead (equilateral triangle
configuration) employing a related top-down approach through
the use of fitting via the SAFT-VR Mie.16,41 The high-fidelity
models23,39−41 are computationally much more expensive and
do not provide any further level of accuracy,23,39−41 exception
being the fully atomistic TraPPE-UA-EH40 model of benzene.
For the case of previous models of ring fluids fitted using the

SAFT top-down methodology,16,41 as these did not employ the
appropriate form of the EoS, the molecular parameters
obtained by fitting the EoS to experimental data had to be
further refined (scaled) in order for the simulations to match
experimental data, limiting the predictive nature of the
procedure.
For the case of naphtalene and anthracene, the CG for

models for rings display low ADDs in density and vapor
pressure (data in the Supporting Information) . For the other
fluids presented in Tables 3, this work represents predictions of
the hypothetical phase equilibria, as the temperatures will most
likely be above the decomposition temperatures for these
organic fluids. Example is given in Figure 7 with the presumed
phase equilibria of coronene.
Besides the phase equilibrium, Table S19 includes a

comparison of the accuracy of the calculation of the interfacial
tension, obtained through the Square Gradient Theory (details
in the Supporting Information), showcasing the accuracy and
predictive nature of the model. Figure 8 displays the density
profiles across a vapor−liquid interface, ρ(z), profiles computed
both from the theory and MD simulations at three temper-
atures for benzene. The classical hyperbolic profiles described

by the theory agree with the MD results, and as expected, the
interfacial width increases with temperature.

Applications to Mixtures. The extension of the model for
the case of fluid mixtures is straightforward, as the eq 5 reverts
to the case of a linear chain when χ = 0. For mixtures (which
may include linear chains, rings or both) it is necessary to
replace the original contribution of aCHAIN for the following
expression, which accounts for both chain and ring fluids:

∑ χ η σ= − − +
=

a x m g( 1 )ln[ ( )]
i

n

i i i i ii
RING

1
s

Mie
c

(13)

where the subscript i runs over all the individual nc components
(not beads) in the mixture. As the other terms in the
perturbation expansion (eq 1) remain unchanged, the method-
ology to solve phase equilibria and obtain thermophysical
properties remain unchanged with respect to the original
versions of the EoS. In particular, for a mixture, one must define
combinations rules to be used both in the simulations and
within the theory. We employ the same choice originally
suggested by Lafitte et al.,10
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There is no expectation that the mixture behavior will match
these idealized results, hence, a binary interaction parameter, kij,
is included in the cross energy term. This interaction parameter
can be obtained from experimental data.
To illustrate the performance of this extension for fluid

mixtures, we consider the binary mixture composed by hexane
and tetrahydro-2H-pyran (THP). For this application, hexane is
modeled as chain fluid formed by two tangential spheres, ms = 2
with parameters taken from the literature,43 σ = 4.508 Å, ε/kB =
376.35 K, λ = 19.57, whereas THP is modeled as an equilateral
triangle with ms = 3 with parameters taken from Table 3.
Figure 9a displays the vapor−liquid phase equilibria (VLE) at

94 kPa, while Figure 9b displays the phase equilibria in a
temperature−mass density diagram. The theory is resolved
using a value of kij = −0.022, which is obtained from the fitting
of the EoS model to the experimental data.44 Details of the
calculation of the equilibria are given in the Supporting
Information. The SAFT model correctly accounts for the
zeotropic behavior of this mixture in the whole mole fraction
range with a low absolute average deviation in boiling
temperature (0.05%) and vapor mole fraction (0.91%.).
While arguably such a quality of fit could be obtained by
employing other versions of SAFT (and indeed other EoS),
Figure 9 also includes the results obtained from performing
molecular dynamics simulations using the same molecular
parameters employed in the theory. The agreement between
the theory and the simulations is unique to this treatment.
Simulation details and numerical results are provided in the
Supporting Information (see Tables S14 and S15).
A further test is the prediction of the homogeneous liquid

density of the mixture at isothermal−isobaric conditions. Figure
10 displays the mass liquid density as a function of the mole
fraction of the mixture at 298.15 K and 101.325 kPa (numerical
data are presented in Table S16 of the Supporting Information)
including also the SAFT calculations with kij = −0.022 and MD

Figure 8. Density profiles ρ(z) across the vapor−liquid interface for
benzene. () SAFT-VR Mie EoS calculations with χ = 1.4938 and
SGT with c = 25.416 × 10−20 J m5 mol−2. (×) MD results at (black) T
= 350 K; (blue) T = 450 K; (red) 500 K.
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results. There is an absolute average deviation (AAD) of 0.41%
for the SAFT calculations and 0.49% for the MD results.

■ CONCLUSIONS
We present a modification to the SAFT-VR Mie EoS that
allows the accurate representation of the properties of planar
rings. Specific expressions for use in the case of rings composed
of 3, 4, 5 (two configurations) and 7 (two configurations) beads
are given in terms of a unique fixed parameter χ. Further
expressions are provided that allow the parametrization of the
EoS invoking the corresponding states principle. This approach
provides molecular parameters from the knowledge of three
state points: the critical temperature, acentric factor, and a
reference liquid density of the pure fluid. The proposed
approach has been tested by predicting the phase equilibria for
discotic molecules and mixture of discotic and linear molecules

and, when available, compared to experimental data. An
important aspect of the proposed model is the direct link
that exists between the molecular parameters underlying the
Hamiltonian that defines the theory and the molecular
simulations that employ the same parameters. This corre-
spondence provides evidence that the approximations made
within the theory are robust and accurate. The parallelism
between the theory and the simulation models becomes
important when dealing with interfacial and transport proper-
ties, where the theoretical developments are less refined. As an
example, in Table S15 of the Supporting Information we
present the results of the interfacial tension for a heptane−THP
mixture where, as expected, the tension decreases as temper-
ature and/or mole fraction increases, and while no isobaric
experimental data is available to compare to, we have enough
confidence in the models to trust these results.45 In essence, the
procedure of fitting molecular EoS parameters to experimental
data becomes a shortcut to parametrize force fields for
molecular simulations, with the advantage of producing
effective pairwise intermolecular potentials which are fitted
not to a few properties, but to provide the best compromise fit
of the full free energy landscape. Comparison of structural and
transport properties, such as radial distribution functions,
diffusion, shear viscosity, and thermal conductivity are beyond
the scope of this manuscript, although there are indications16,41

that suggest a similar level of accuracy.

■ APPENDIX

Following the second order thermodynamic theory (TPT2) for
hard spheres as proposed initially by Wertheim,21 one can
express the compressibility factor Z = P/ρkBT of a hard sphere
chain of ms spherical segments by

= + +Z Z Z Zref 1 2 (A.1)

where Zref is the reference term for hard spheres, Z1 and Z2
correspond to the first and second-order terms in the
perturbation series, respectively, P, T, and ρ correspond to
the pressure, temperature and molecular number density,
respectively. In order to produce a closed expression for the
reference and first-order terms of the Z expansion, one can

Figure 9. Phase equilibrium for hexane (1) + THP (2) at 94 kPa. (a) Boiling temperature (T) as a function of the liquid (x1) and vapor (y1) mole
fractions; (b) Boiling temperature (T) as a function of the bulk mass densities for the liquid (ρL) and vapor (ρV) phases. () SAFT-VR Mie EoS
calculations with kij = −0.022; (○) Experimental data from Mejiá et al.;44 (■) MD from this work (see numerical values in Table S15 of Supporting
Information).

Figure 10. Liquid density as a function of the liquid (x1) mole fraction
for hexane (1) + THP (2) at 298.15 K and 101.325 kPa. () SAFT-
VR Mie EoS calculations with kij = −0.022; (○) Experimental data
from this work (see numerical values in Table S20 of Supporting
Information); (■) MD from this work (see numerical values in Table
S16 of Supporting Information).
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adopt the Carnahan−Starling expression46 for Zref and a value
of gHS(σ) consistent with it for the Z1 and Z2 terms. For specific
details the reader is referred to refs 20 and 21.
The final forms of Zref, Z1, and Z2 are given by the following

expressions:

η η η
η

= + + −
−
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⎦⎥Z m

1
(1 )ref s

2

3
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In eqs A.2−A.4, η represents the packing factor, η = msπρσ
3/6,

where ρ is the number density of molecules, and σ is the
diameter of a single sphere (monomer). For a fixed bond angle
θ, the parameter s is given by
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In eq A.5, gHS(σ) is the contact value of the radial distribution
function for hard spheres, and gHS

(3), is the triplet correlation
function of three touching hard spheres. Müller and Gubbins47

evaluated this latter quantity and provided21 a closed form
expression for gHS

(3), which for the case of an equilateral
triangle, θ = 60°, becomes

σ σ σ σ η η
η

= − +
−

⎧⎨⎩
⎫⎬⎭g g[ , , ] ( )

1 1.7568 1.5779
(1 )HS

(3)
HS

2
2

3

(A.6)

Since for the case of ms = 3, θ = 60° TPT2 will provide an exact
result for ring molecules with an equilateral triangle
conformation (Model a, Table 1), it is illustrating to equate
the compressibility factor obtained from TPT2 result (eqs
A.1−A.6 evaluated at ms = 3) to that obtained from the more
common TPT1 formulation (eqs A.1 and A.2 evaluated at meff)
in order to back calculate an “effective” value of number of
segments, meff, that will produce the correct result,
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Inexorably, the result is density dependent and may be
expressed in a simplified form as meff = ms − 1 + 1.3287η
(see Supporting Information). While this is an exact result for
hard sphere triangles, we make the assumption that it may be
used equally for other potentials, adopting it to SAFT-VR Mie
EoS and thus providing an expression for the ring contribution
within TPT1, namely, eq 5.
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■ NOTE ADDED AFTER ASAP PUBLICATION
This paper was published ASAP on June 28, 2017, with
production errors in equations 6, 13, and A.3. The corrected
version was reposted on June 29, 2017.
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