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Abstract

Ultrafast spectroscopy offers temporal resolution for probing processes in the femto- and

picosecond regimes. This has allowed for investigation of energy and charge transfer in

numerous photoactive compounds and complexes. However, analysis of the resultant data

can be complicated, particularly in more complex biological systems, such as photosystems.

Historically, the dual approach of global analysis and target modelling has been used to elu-

cidate kinetic descriptions of the system, and the identity of transient species respectively.

With regards to the former, the technique of lifetime density analysis (LDA) offers an appeal-

ing alternative. While global analysis approximates the data to the sum of a small number of

exponential decays, typically on the order of 2-4, LDA uses a semi-continuous distribution of

100 lifetimes. This allows for the elucidation of lifetime distributions, which may be expected

from investigation of complex systems with many chromophores, as opposed to averages.

Furthermore, the inherent assumption of linear combinations of decays in global analysis

means the technique is unable to describe dynamic motion, a process which is resolvable

with LDA. The technique was introduced to the field of photosynthesis over a decade ago by

the Holzwarth group. The analysis has been demonstrated to be an important tool to evalu-

ate complex dynamics such as photosynthetic energy transfer, and complements traditional

global and target analysis techniques. Although theory has been well described, no open

source code has so far been available to perform lifetime density analysis. Therefore, we

introduce a python (2.7) based package, PyLDM, to address this need. We furthermore pro-

vide a direct comparison of the capabilities of LDA with those of the more familiar global

analysis, as well as providing a number of statistical techniques for dealing with the regulari-

zation of noisy data.
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Introduction

Ultrafast spectroscopy remains an important tool for the investigation of energy transfer and

transiently lived reaction intermediates in photoactive compounds and complexes, due to its

high temporal resolution. Analysis of the resultant time-resolved data is often performed with

a view to two primary goals. First is the determination of spectral features of transient lived

species in order to characterize their molecular state. Second is the extraction of kinetic param-

eters describing the overall reaction(s). Adoption of new analysis techniques can help provide

a better account of the systems under investigation, and complement older ones.

With regards to the first goal, the most prominent technique available is target, or compart-

ment, modelling. In target modelling, a number of compartments, representing molecular

states, or a group/average of related molecular states, are assumed. The recorded signal at any

given point in time is taken to be the concentration weighted sum of what the spectra of each

compartment would be in isolation. A number of kinetic models are tested which determine

the time evolution of the concentrations of each compartment. These models may include for-

ward and reversible reactions, as well is independent or parallel decay of various compart-

ments. The fitting procedures then simultaneously optimize the kinetic parameters and the

spectra of the indvidual compartments using a variable projection method. For a further

review of this technique see [1–5].

While target modelling produces kinetic parameters, historically, the principle method for

addressing the second goal, at least at first pass, has been what has been termed global analysis.

Global analysis, frequently used with the singular value decomposition (SVD) as a means of

dimension reduction, fits all wavelength channels (columns of the data matrix) simultaneously

to a sum of a small number of exponential functions [3]. A single set of exponential lifetimes is

fit to all wavelengths, while the pre-exponential amplitudes are allowed to vary. This analysis,

along with target modelling, gives an overview of the principle decay lifetimes present in the

signal. However, a small number of decays may not be sufficient to fully describe the complex

kinetics exhibited by non-exponential transients in biological systems of interest such as pho-

tosynthetic complexes.

In theory, the data can be fully represented by the integral of a continuous distribution of

decays, with the pre-exponential function being the underlying spectral distribution [6–8].

Retrieval of this information would then be as simple as taking the Laplace transform of the

signal function; however, as with other sources of time-resolved data, an analytical formulation

of the signal is not known in ultrafast spectroscopy. In order to address this, numerical approx-

imations are needed; however, numerical inversion of the Laplace transform is a highly ill-con-

ditioned problem [7]. Lifetime density analysis (LDA), popularized by the Holzwarth group

[9] in the field of photosynthesis research, approximates the continuous integral to a semi-con-

tinuous sum of n = *100 lifetimes distributed evenly along the time-scale of the experiment:

DAðt; lÞ ¼
Xn

j¼1

xjðtj; lÞe
� t

tj 
 IRFðt; lÞ ð1Þ

where ΔA is the recorded data, and the amplitudes x(τ, λ) represent the probability of a process

with the associated lifetime τ occuring at the particular wavelength λ. This procedure is analo-

gous to the exponential series method developed in the late 1980s and early 1990s [7, 8]. The

IRF represents the instrument response function, with
 indicating convolution (see, e.g., [4,

5] for review). Alternatively this can be rewritten in matrix notation as:

~Al ¼ D~xl ð2Þ
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where ~Al is the column vector of length m containing the ΔOD measurements recorded at m
time delays, and~xl is the column vector of length n containing the pre-exponential amplitudes

associated with the n lifetimes. D is an m × n matrix of the IRF convolved exponential decays.

The amplitude vectors at all wavelengths λ are compiled into contour maps, or lifetime

density maps (LDMs), with lifetime τ on the y-axis and wavelength λ on the x-axis. The pos-

itive and negative contours correspond to the values of x. The major advantage of this analy-

sis technique is that it provides an immediate overview of the the kinetic distributions

present at all wavelengths, and does so in a visually concise way. Furthermore, LDA is able

to handle heterogeneous decay lifetimes for single species, and pick up on dynamic motion,

two features common to biological data with which global analysis has struggled. Yet despite

these advantages, and extensive use of the technique by the Holzwarth group [9–14], wide-

spread adoption has been limited to date (e.g. [15–17]). We believe this to be due to the

unavailability of tools performing this type of analysis. The OPTIMUS program [17]

recently released a module facilitating this type of analysis; however, the code remains

closed-source.

This lack of widespread adoption is particularly striking given the historical motivations

leading to the development of the technique. The need for a complement to global analysis

began to appear with the advent of more powerful detection schemes. This was particularly

true for improved fluorescence detection. Although the earliest time-correlated single pho-

ton counting dates back to the 1960s [18], improvements, and greater popularization occur-

ring in the mid 1980s (see e.g. [19]), led to the fitting of more complex models with greater

numbers of lifetimes. Additionally, a new concern arose as to whether it was possible to

recover kinetic distributions, both in fluorescence spectroscopy, and related fields, model-

ling time series. As early as the 1960s and 1970s [20] the maximum entropy method was

developed as a means to recover these distributions, and was applied to a variety of fields

from the 1980s onwards, e.g. [21–24]. A competing approach, the exponential series method,

was also developed in the 1980s. The advantages of this method are discussed in comparison

to the maximum entropy method by Siemiarczuk et. al. [8]. This technique and observations

form the basis of follow-up work by the Holzwarth group [9], upon which the current work

is based. The introduction of the use of regularization, a topic discussed at length below, by

Landl et. al. [7] was particularly important for the development of this technique in its cur-

rent form.

We present here an open-source python package, with GUI, to allow for the performance

of this type of analysis. We also provide a comprehensive overview of the theory and mathe-

matics behind the approach, and a comparison with the more well-known global analysis.

Design and implementation

General remarks

All code was written in python 2.7. The goal was to provide a package that allowed the user to

experiment with a number of different options and methods in order to produce the best

LDMs given their dataset. At the same time, visual inspection throughout the fitting process

was emphasized, while also providing a number of statistical measures to assist in avoiding

over-fitting and model bias. Finally, the package was designed to use as few dependencies as

possible, to allow for easier installation and code inspection. As such, only the relatively com-

monplace NumPy [25], SciPy [26], and Matplotlib [27] packages were used. A full manual for

installation and use is available with the software.
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Global analysis and singular value decomposition

In order to best demonstrate the utility of LDA, a comparison with the older, and more devel-

oped technique of global analysis is provided. To determine the number of exponential decays

to include in the analysis, loaded datasets can have their SVD visually inspected. The SVD of

the m × n data matrix A containing spectroscopic measurements recorded at m time delays,

across n wavelength channels is given by:

A ¼ USVT ð3Þ

where U is the m ×m unitary matrix of left singular vectors giving the temporal dependence of

the signal, VT is the n × n unitary matrix giving the spectral dependence of the signal, and S is

the m × n diagonal matrix of singular values.

Typically the number of singular values significantly larger than the rest is taken to be the

number of independently resolvable lifetimes in a global analysis [3]. This number of exponen-

tial decays is fit simultaneously to an equal number of weighted left singular vectors, that is,

the columns of U weighted by their corresponding singular values. This process serves to

reduce the dimensionality of the problem. Note, however, that the number of singular values

chosen reflects only an estimate of the number of orthogonal components appropriate to rep-

resent the data, and makes no estimation of any underlying reaction scheme. Additionally,

large noise components can have singular values larger than small signal components [5]. In

order to address this, the weighted left singular vectors can be visually inspected before fitting.

Those corresponding to signal components should have a regular structure. In the case that a

left singular vector corresponding to a smaller singular value has more regular structure than

that corresponding to a larger one, it can be used in the fitting procedure in its stead, at the

users discretion. For example, if there are four large singular values, but the 5th left singular

vector has more regular structure than the 4th, the first, second, third and fifth vectors can be

used for fitting.

We begin the fitting with an equation similar to eq 2, substituting however, the weighted

left singular vectors for the full data matrix:

ðUSÞn ¼ Dð~tÞx ð4Þ

where the (US)n represents the matrix of chosen weighted left singular vectors. Note, however,

that in this case D will be an n × n square matrix, where n is the number of lifetimes, and that it

is itself a function of a parameter vector of lifetimes,~t. In addition, x is also a matrix corre-

sponding to the pre-exponential function for each weighted left singular vector.

Determination of x and the associated lifetimes is done by solving the associated non-linear

least squares problem:

min
x;~t
kDð~tÞx � ðUSÞn k

2

2
ð5Þ

A variable projection method [28] is employed in conjunction with SciPy’s implementation of

the Levenberg-Marquardt algorithm. Solely the vector of lifetimes,~t, is fed to the solver. At

each iteration, the solution for x is found by taking the QR-decomposition of D and solving

using back substitution.

The results of the fit can be inspected, and redone with new initial guesses and bounds if

found to be divergent, and the lifetimes are stored for mapping onto the LDMs.
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Lifetime density analysis

Unlike in global analysis, the pre-exponential function itself is what is of interest in LDA.

However, solving for~x in eq 2, or the corresponding matrix of pre-exponential functions at all

wavelengths, requires solution through the associated least-squares minimization, as before. In

this case though, as the number of lifetimes, i.e. parameters, is vary large, over-fitting of the

data is a bigger concern. The initial discretization producing eq 1, helps to improve the condi-

tioning of the inverse problem; however, as the number of lifetimes is increased to find a

meaningful approximation to the underlying spectral distribution, this conditioning deterio-

rates [7]. In order to address this, regularization is introduced. Regularization is the process

whereby the objective function is modified to penalize large coefficients of fitting, in this case

~x. While the unregularized least squares problem will find the mathematically optimal solu-

tion, this is undesirable, as the large number of fitting parameters will result in fits of the noise,

making the solution extremely sensitive to perturbations. Regularization introduces bias to the

fit in an attempt to avoid this. As a result it is effectively smoothing the data. A number of regu-

larization procedures and penalty terms exist, all imposing different assumptions on the data.

Those included in the software package will be discussed in turn below. For a thorough inter-

pretation of these techniques in a Bayesian framework, see [29].

Truncated SVD. The truncated SVD was proposed by Per Hansen in 1987 [30] as an

alternative to the more well-known Tikhonov regularization (discussed below). A rank K
approximation is used for the design matrix, in this case the matrix of exponential decays,

where all the small singular values beyond some cut-off K are replaced with 0. This means that

the higher frequency components of the pre-exponential amplitudes are ignored [30]. The

major difference with this technique compared to Tikhonov regularization is that while the lat-

ter also dampens the components corresponding to the smallest singular values, it does so with

a smooth filter function compared to the step-function used here. We note that while this tech-

nique may produce solutions similar to those of Tikhonov regularization, its use for inverse

problems where the matrix has ill-determined numerical rank (such as in this case of inverse

Laplace transformation) may produce solutions sensitive to perturbation [30]. It is therefore

suggested only as a technique to provide a rough overview of kinetic distributions, early on in

analysis.

Eq 2 is rewritten with the truncated SVD for D:

~Al ¼ USKV
T~xl ð6Þ

which when solved for~xl yields:

x̂K
l
¼ VS�1

K UT~Al ð7Þ

as the inverses of the unitary matrices U and VT are simply their transposes.

Solving for the LDMs in this manner requires only the use of the SciPy singular value

decomposition routine. Note that this regularization technique should not be confused with

low rank data approximation, which applies a similar cut-off filter to the data matrix A as a

means of dimension reduction or compression of large matrices. This feature is also included

in the GUI.

Matrix regularization: Tikhonov - ℓ2. The most well known regularization method, and

the one that has likely been in use the longest, is Tikhonov regularization, alternatively known

as ℓ2 regularization, or ridge regression [31–33]. Tikhonov regularization imposes a direct pen-

alty on the amplitudes of the regression coefficients in this case the values of x in eq 2. This

type of regularization is one of a broader category matrix regularizations, with the penalty in

this case taking the form of a 2-norm. The associated Tikhonov regularized least squares
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minimization problem then becomes:

min
~x
k D~xl �

~Al k
2

2
þa k L~xl k

2

2
ð8Þ

where L is a matrix which in standard form is the identity. Depending on the structure of the

data set a number of alternative matrices may be used, including 1st and 2nd derivative

approximations, as well as a “fused” [36] identity and 1st derivative matrix. All of these options

are available to the user; however, the use of the identity matrix imposes the fewest assump-

tions on the fitting procedure and is used by default. For a review on some of the situations

where the other matrices are appropriate see [33, 34]. α is a positive valued hyper-parameter

which represents the trade-off between minimization of the residuals and the regression coeffi-

cients. For noisier data one would expect the value providing appropriate results to increase. A

number of ways of selecting the α value are discussed below.

Through the use of augmented matrices, the Tikhonov regularized minimization problem

can be reduced to an ordinary least squares problem. We define ~D ¼
D
ffiffiffi
a
p

L

 !

and

~A ¼
A

0

 !

. Eq 8 then becomes:

min
~x
k ~D~xl �

~Al k
2

2
ð9Þ

Eq 9 has the closed form solution, for a given α value:

x̂a

l
¼ ð~DT ~DÞ�1 ~D~Al ð10Þ

To avoid instability associated with numerical inversion, the SVD is again used. The tildes

only indicate that the SVD was taken for ~D and not D. The final result is:

x̂a

l
¼ ~V~S�1 ~UT ~Al ð11Þ

The solution is found for a user specified range of alpha values, allowing the user to cycle

through all the resultant maps. In addition the various α selection statistics are also displayed.

The user can choose to display these assuming a single α for all wavelength channels, or allow-

ing separate statistics to be calculated for each wavelength channel independently. The latter

choice may be desired if there is some regular structure to the noise in the data across wave-

length channels; however, a single α is likely sufficient.

Tikhonov regularization is useful when there is little known about the underlying kinetic

distributions. The imposed penalty term assumes that~x and the noise in the data are normally

distributed [29]. This will produce results with somewhat broader kinetic distributions about

key lifetime contributions. We note that it is therefore difficult to separate two near-lying

kinetic distributions, or a single lifetime from a nearby distribution.

Matrix regularization: LASSO - ℓ1 and elastic net. A second form of matrix regulariza-

tion, called the LASSO, was introduced by Robert Tibshirani in 1994 [35], substituting a

1-norm for the 2-norm. The LASSO was originally studied for the case of L = I; however, Rob-

ert Tibshirani later introduced what is known as the “fused” [36], and generalized [37] LASSOs

as alternatives. One possible advantage of these methods over Tikhonov regularization is that

while the former will shrink regression coefficients, it will not set any to zero, while the LASSO

will [35]. This allows for further variable selection, making the differences between the pre-

exponential amplitudes for various associated lifetimes greater. This is because the 1-norm

penalty term assumes that~x is drawn from a Laplacian distribution [29], producing sparser
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solutions. This assumption is a good one if the data is expected to be described by few, nar-

rowly distributed lifetimes. However, the minimization problem:

min
~x
kD~xl �

~Al k
2

2
þakL~xl k1 ð12Þ

does not have a closed form solution unless the columns of the matrix D are orthogonal, in

which case the solution for each entry j in~xl is (SI for derivation):

x̂a

j ¼ sgnðx̂OLS
j Þð2jx̂

OLS
j j � aÞ

þ
ð13Þ

where the superscript OLS indicates the ordinary least squares solution, and (�)+ indicates the

maximum between the value within the parentheses and 0.

Unfortunately the case of an orthogonal regression matrix is very rare, and so a number of

different algorithms have been proposed for solving the LASSO regularization problem. In a

paper in 2016 [38], Shifeng Xiong et al. introduced a new algorithm based on the principle of

orthogonalizing the regression matrix through the addition of new rows. The responses are

then imputed at each iteration of the algorithm. However, neither the rows, nor the responses

need to be explicitly computed (see [38] for derivation). This algorithm was chosen for this

package and is reproduced below:

Algorithm
1. Set the initialguessfor x̂l equalto the Tikhonovregularizedsolution
2. Computeg = γ1 where γ1 is the largesteigenvalueof D

T D
3. Set B = gIp − D

T D where Ip is the p × p identitymatrix,where p is the number
of parameters

4. Set K = 0 where K is the iterationcounter
5. for each coefficientj in x̂

while
xðKÞj �xðK�1Þ

j

xðK�1Þ

j
> 10e� 12 ^ xðK�1Þ

j 6¼ 0

(a) K = K + 1
(b)U ðKÞ ¼ DT~Aj þ BjxðK�1Þ

(c) xðKÞ ¼ sgnðUÞðjUjg � aÞ
þ

A combination of the LASSO and Tikhonov regularization, called the elastic net, was intro-

duced in 2005 by Hui Zou [39], and is also made available in this package. It was shown to out-

perform the LASSO technique while maintaining similar variable selection properties,

particularly in the case where the number of parameters was greater than the number of obser-

vations, a situation likely to be encountered by users of this package [39]. The elastic net makes

use of both the 1-norm and 2-norm, with the associated minimization problem being:

min
~xl

kD~xl �
~Al k

2

2
þ aðr kL~xlk1 þ ð1� rÞ kL~xl k

2

2
Þ ð14Þ

The additional hyper-parameter ρ is introduced to weight the use of the two different

norms. When ρ = 1 the problem reduces to an ordinary LASSO problem, and likewise when

ρ = 0, it reduces to a Tikhonov regularization problem. In the intermediate scenario, the elastic

net can be reduced to an augmented LASSO problem similarly to how the Tikhonov problem

can be reduced to an ordinary least squares one. We define α1 = αρ, α2 = α(1 − ρ) and
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~a ¼
a1ffiffiffiffiffiffiffi
1þa2

p . Our augmented matrices then become:

~D ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffi
a2

pp
D
ffiffiffiffiffi
a2

p L

 !

~A ¼
A

0

 !

and so our LASSO problem, solved using the algorithm above, is:

min
~xl

¼k ~D~xl �
~Al k

2

2
þ~akL~xl k1

The solution to the above problem, x̂naive is reweighted by (1 + α2) to give the final elastic

net solution, for a given α and ρ value [39].

The elastic net provides solutions intermediate between the LASSO and Tikhonov regulari-

zation. Its use is appropriate when broad distributions are not expected, but LASSO solutions

prove unexpectedly sparse.

Matrix regularization: Selecting hyper-parameters. While frequently ad-hoc methods,

based on visual inspection, are used to select hyper-parameter values, the PyLDM package

includes a number of features to assist the user in making the appropriate choice. As a first

step, the lifetimes from the global analysis help with visual inspection. Tikhonov regularization

has had the longest history, and so the greatest number of hyper-parameter selection tech-

niques have been developed for it. When Tikhonov regularization is used three additional sta-

tistics are available to guide the user:

1. The Generalized Cross-Validation (GCV) Statistic [40]

The optimum α value is given by the minimizer of:

GCVðaÞ ¼
kDx̂a � Ak2

2

trðI � HÞ2

where H = D(DT D + αLT L)−1 DT, and tr(�) indicates the trace of the matrix.

2. The Cp statistic [41]

The optimum α value is given by the minimizer of:

CpðaÞ ¼kDx̂a � Ak2

2
þ 2s2ðdf Þ

where σ2 is the error variance, an estimate of which is given by the error variance of the

most complicated model, i.e. the one with the lowest α value, and df is the degrees of free-

dom given by the trace of H from the previous equation.

3. The L-curve [42, 43] The L-curve is a plot of the smoothing norm k Lx̂k1;2 ¼ S, in either

the Tikhonov or LASSO cases, vs the residuals, k Dx̂a � A k2
2¼ R. Each solution at a given

α value corresponds to a single point on the graph, and the L-curve estimate for the ideal

solution is given by the α value corresponding to the point of maximum curvature, given by

the formula:

max
a

kðaÞ ¼
dR
da

d2S
da2 �

d2R
da2

dS
da

dR
da

� �2
þ dS

da

� �2
� �3=2
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Fewer statistics are currently available for selection of hyper-parameters when using the

LASSO, particularly due to the lack of differentiability; however, the Cp statistic has been sug-

gested for LASSO-based regularization [41], as has a modified L1-curve [43].

Results

The above methods have been recently applied to analyse measurements of photosynthetic

energy transfer and charge separation in photosystem I(submitted). For the purposes of illustra-

tion, three synthetic data sets with 10% random noise were created. To begin, two simpler data

sets (Fig 1B and 1D) are presented to more easily illustrate the ability of LDA to resolve heteroge-

neous decay, and dynamic motion, respectively, before moving on to a more complex scenario.

Beginning with the heterogeneous decay scenario, whose kinetic scheme is given by Fig 1A,

we observe that an analysis of the SVD indicates only three principle components (Fig 2). This

suggests that a global analysis will result in at most three lifetimes, in comparison to the nine

that determine the reaction scheme (S1 Fig for fits). The SVD of the dynamic motion scenario,

given by the red-shift of a single species shown in Fig 1C, shows that there are potentially two

Fig 1. Heterogeneous decay and dynamic motion data sets. A,C Species spectra and kinetic schemes used

to construct the heterogeneous decay and dynamic motion data sets respectively. All decay lifetimes are

indicated in seconds. For A, each species had an equal chance of decaying with any of the three lifetimes at

each time point. B,D The respective data sets for heterogeneous decay, and dynamic motion, displayed as

contour maps. Both have had 10% random noise added. Note that the y-axis scale is a lin-log scale, i.e. linear

between 0 and 1, and log from there on.

https://doi.org/10.1371/journal.pcbi.1005528.g001
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lifetimes that could be resolved by a global analysis (Fig 2). This demonstrates that the SVD

acts to approximate the time dependent measurements with linear combinations of basis spec-

tra that in fact do not represent the spectral dynamics. Instead, LDA may be used to analyze

such dynamic behavior. Furthermore, we note that the major component, corresponding to

the first singular value, is well fit by a single decay (S2 Fig).

The use of Tikhonov, LASSO and Elastic Net regularization routines produced similar

results for these data sets, and for brevity only the Tikhonov results will be shown (Fig 3). The

lifetimes resulting from the global analysis of the heterogeneous decay data (12 s, 58 s, 905 s)

while within the range of lifetimes used, did not coincide with any of them. The LDM on the

other hand displayed broader peaks that were representative of the entire range of decay life-

times. Note, however, that some vertical broadening of peaks can be expected, particularly

with Tikhonov regularization. This is most apparent by observing that multiple smaller ampli-

tudes will reduce kxk2
2

compared to a single large amplitude. From a probabilistic perspective,

this is a consequence of the assumption of normally distributed amplitudes [29]. This is evi-

dent from the LDM of the dynamic motion data, where the central peak at 100 s is significantly

broader than would be expected. Furthermore, while one might anticipate horizontal broaden-

ing of the 100 s lifetime due to decay while the species’ maximum absorption was at various

wavelengths, it is not a large amount, as there are many more time points while the species is

at its red-shifted position, compared to the initial one.

Combining these types of features, we present a five species reaction, with heterogeneous

decay lifetimes, and dynamic motion (Fig 4). Such a scheme produces data sufficiently com-

plex to approximate the types of electronic spectra that may be expected from experiments

involving many chromophores, such as in photosystem I/II. Note that an analysis of the

Fig 2. Singular values. The singular values for the heterogeneous decay and dynamic motion data sets in

Fig 1B and 1D. Note that the heterogeneous decay data has three significant values and the dynamic motion

data has two.

https://doi.org/10.1371/journal.pcbi.1005528.g002
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Fig 3. LDMs for heterogeneous decay and dynamic motion data. The Tikhonov regularized lifetime maps

for the heterogeneous decay (A) and dynamic motion (B) data. The dashed horizontal lines indicate the

lifetimes determined from global analysis. The indicated alpha values were selected using a compromise

between suggested values by the GCV and Cp statistic.

https://doi.org/10.1371/journal.pcbi.1005528.g003

Fig 4. Combined data set. A combined data set comprising dynamic motion and heterogeneous decay, with five

species. A The kinetic scheme and individual species spectra used to construct the data. The lifetimes are in

seconds, and each species had an equal chance of decaying with any of the lifetimes indicated. B A contour map

showing the resultant data. 10% random noise has been added to the data. Note that the y-axis scale is a lin-log

scale, i.e. linear between 0 and 1, and log from there on.

https://doi.org/10.1371/journal.pcbi.1005528.g004
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singular values (Fig 5A) also indicates the potential for 6 lifetimes. Additionally, problems

were encountered regarding convergence for the fitting routines when fitting 6 components.

As before, the LASSO and elastic net solutions were similar to the Tikhonov solutions for

low α values, and so only the latter will be presented (Fig 5B). However, to illustrate their

behaviour a comparison is provided in S3 Fig.

Despite the complexity of the data, the LDM retains clearly defined peaks, which corre-

spond well to the lifetime distributions from the kinetic scheme, particularly at shorter life-

times. The slight divergence at longer lifetimes is expected given that these lifetimes are longer

than the longest time points in the data set.

Availability and future directions

The software is freely available for download from www.github.com/gadorlhiac/pyldm, along

with the instruction manual and datasets. Also included is an IPython notebook used for the

creation of the data sets. Future versions of the software will focus on expansion of available

statistics for the LASSO, truncated SVD and elastic net. Possibilities for this include implemen-

tation of a discrete picard condition [44] for the truncated SVD, and a two dimensional selec-

tion model as described in [45]. Additionally, integration with routines for target modelling

may be pursued.

Supporting information

S1 Fig. Global analysis fits of heterogenous decay data. A Decay associated difference spectra

for the three lifetimes fit to 3 wLSVs. B The three wLSVs and the corresponding fits.

(TIF)

Fig 5. Singular values and LDM for combined data. A The singular values from the SVD of the data shown in

Fig 4B. Note that there are 6 significant values. B The Tikhonov regularized LDM. The dashed horizontal lines

indicate lifetimes determined from global analysis.

https://doi.org/10.1371/journal.pcbi.1005528.g005
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S2 Fig. Global analysis fits of dynamically moving band. A Fit of a single wLSV using one

lifetime. The fitted lifetime corresponded to 99.9 s. B The decay associated difference spectrum

and fit of the second wLSV when using two wLSVs and two lifetimes. Note the divergence in

the fit. The initial guesses were 5 and 100 s. Only initial guesses very close to the actual values

of the lifetimes converged (e.g. guesses of .2 and 100 s).

(TIF)

S3 Fig. Comparison of LDMs. A-D LDMs produced with the indicated regularization rou-

tines. Alpha values and K for truncated SVD are also noted.

(TIF)

S1 Appendix.

(PDF)
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