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Abstract 
Current industrial trends encourage the development of sustainable, environmentally friendly 

processes with reduced energy and raw material consumption. Meanwhile, the increasing 

market demand as well as the tight regulations in product quality, necessitate efficient 

operating procedures that guarantee products of high purity. In this direction, process 

intensification via continuous operation paves the way for the development of novel, eco-

friendly processes, characterized by higher productivity compared to batch (Nicoud, 2014). 

The shift towards continuous operation could advance the market of high value biologics, 

such as monoclonal antibodies (mAbs), as it would lead to shorter production times, 

decreased costs, as well as significantly less energy consumption (Konstantinov and Cooney, 

2015, Xenopoulos, 2015). In particular, mAb production comprises two main steps: the 

culturing of the cells (upstream) and the purification of the targeted product (downstream). 

Both processes are highly complex and their performance depends on various parameters. In 

particular, the efficiency of the upstream depends highly on cell growth and the longevity of 

the culture, while product quality can be jeopardized in case the culture is not terminated 

timely. Similarly, downstream processing, whose main step is the chromatographic 

separation, relies highly on the setup configuration, as well as on the composition of the 

upstream mixture. Therefore, it is necessary to understand and optimize both processes prior 

to their integration. In this direction, the design of intelligent computational tools becomes 

eminent. Such tools can form a solid basis for the: (i) execution of cost-free comparisons of 

various operating strategies, (ii) design of optimal operation profiles and (iii) development of 

advanced, intelligent control systems that can maintain the process under optimal operation, 

rejecting disturbances. In this context, this work focuses on the development of advanced 

computational tools for the improvement of the performance of: (a) chromatographic 

separation processes and (b) cell culture systems, following the systematic PAROC 

framework and software platform (Pistikopoulos et al., 2015). In particular we develop 

model-based controllers for single- and multi-column chromatographic setups based on the 

operating principles of an industrially relevant separation process. The presented strategies 

are immunized against variations in the feed stream and can successfully compensate for time 

delays caused due to the column residence time. Issues regarding the points of integration in 

multi-column systems are also discussed. Moreover, we design and test in silico model-based 

control strategies for a cell culture system, aiming to increase the culture productivity and 

drive the system towards continuous operation. Challenges and potential solutions for the 

seamless integration of the examined bioprocess are also investigated at the end of this thesis.
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Dmin Disturbances lower bound 

DSP Downstream Processing 

EMA  European Medicines Agency 
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HCP Host Cell Proteins 

HEK Human Embryonic Kidney epithelial cells 
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MAbs Monoclonal Antibodies 
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mp-MILP Multi-parametric Mixed Integer Linear Programming 

mp-MIQP Multi-parametric Mixed Integer Quadratic Programming 

mp-P Multi-parametric Programming  

mp-QP Multi-parametric Quadratic Programming 

MPC Model Predictive Control  

MPT Multi Parametric Toolbox 

NC Control Horizon 

NLP Nonlinear Programming 

ODAE Ordinary Differential and Algebraic Equations 

ODE Ordinary Differential Equations 

OH Output Horizon 

OSD Oral Solid Dosage 

P Terminal weights for the states 

PAROC Parametric Optimization and Control 

PAT Process Analytical Technologies 
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PDAE Partial Differential and Algebraic Equations 
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!!"# Constant used in the calculation of the specific growth rates - 
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c0
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cfeed
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! !"#,!"# Saturation constant for growth on arginine mM 

!!"#,!"# Saturation constant for growth on asparagine mM 
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qII
i,h Saturation constant  mg/mL 

!! Yield at cycle j - 

!!,!"# Yield of glucose on biomass Cell/mmol 

!!"#$,!"# Requirement of glucose to produce lactate (Energy) per cell  Cell/mmol 
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Subscripts 

h Column index 

i Species index 

j Cycle index 

s Stream index 

t Time 

!!"!#$%&'$ Cycle duration 
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Monoclonal antibodies (mAbs) play a vital role in the treatment of infectious diseases, cancer 

and autoimmune diseases (Torphy, 2002). Despite their beneficial properties, mAbs are now 

facing competition stemming from: (i) the emergence of biosimilars and other therapeutic 

agents of similar properties, (ii) lower production costs and (iii) shorter time-to-market. 

Moreover, current industrial trends indicate a shift towards eco-efficient processes of reduced 

environmental footprint that consequently leads to re-evaluation of standard practice 

(Xenopoulos, 2015, Klutz et al., 2016). Klutz et al. (2016) recently presented a study where 

they compared: (i) a fed-batch (single fed-batch fermentation unit, followed by six 

downstream unit operations, run sequentially), (ii) a continuously operated process (perfusion 

bioreactor and six downstream unit operations, run simultaneously) and (iii) a hybrid model 

(fed-batch upstream with continuous downstream). Especially in the case of the downstream, 

the study reports that continuous operation is approximately 8 € per gram of mAb more 

favorable than the batch. The latter is mainly attributed to better utilization of the 

chromatography resin as well as the viral retention filtration material. Overall, the hybrid 

model results in 15% reduction in the cost of goods and is proposed as the most successful 

solution. A similar study by Walther et al. (2015) demonstrates that integrated continuous 

biomanufacturing could reduce the total cost (operating and capital) up to 55% compared to 

batch. Continuously operated processes could also reduce the environmental footprint. As 

reported by Plumb (2005) by shifting from batch to a continuous operation utility and energy 

requirements could be cut up to 95%. Moreover, due to its higher efficiency and lower utility 

consumption, continuously operated equipment is reported to be significantly smaller in size, 

leading therefore to further cost savings (Plumb, 2005, Nichols, 2008, Hillier, 2013). 

Indicatively, Langer and Rader (2014) report that commercial manufacture involves 

bioreactors over 1,000�2,000L that require large-scale industrial operations and equipment. A 

shift to continuous operation would involve smaller equipment and other operations (e.g. 

mixing, heating, cooling, etc) at smaller scale making the process more eco-efficient.  

Recently there has been increasing interest in the investigation of the improvement 

possibilities of the processes currently used for the production of mAbs (Girard et al., 2015, 

Walther et al., 2015, Klutz et al., 2016). Most of the related studies suggest the transition from 

batch to continuous operation, as the solution towards steady-state operation, where product 

purity would remain constant throughout the process (Steinebach et al., 2016a, Zydney, 

2016). Furthermore, a shift from batch to continuous operation promises significant decrease 

in the holdup steps, thus decreasing both the production time and the risk of product 

degradation (Gillespie et al., 2012, Gospodarek et al., 2014, Steinebach et al., 2016a, Zydney, 

2016). 
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MAb production consists of the upstream and the downstream processing. Upstream 

considers the culturing of the cells that are used as the expression system for the production of 

the targeted product, while downstream processing involves a series of separation/purification 

steps of the upstream mixture. Currently, cell culture systems are operated to a great extent in 

fed-batch mode, while separation processes are characterized by periodic, batch profiles. 

Therefore, a shift from batch to a fully integrated, continuous operation is not a trivial task 

and is associated with a plethora of challenges. The latter can arise from the optimal 

equipment design, quality assurance as well as monitoring and control of the new production 

line. More specifically, in the case of the upstream it is necessary to ensure that the 

continuous system will be characterized by similar or higher productivity, improved product 

quality, while the equipment size will be decreased (Chon and Zarbis-Papastoitsis, 2011). As 

reported by Konstantinov and Cooney (2015), stable cell lines need to be developed that will 

ensure high productivity for longer periods (e.g. 3 months). In the same fashion, there is 

eminent need for the design of media formulations that can support high cell densities and 

optimization of the cell culture conditions in order to ensure high cell density and 

productivity. Similarly, in downstream processing and in particular in the case of 

chromatographic separation processes, it is essential to optimize and/or re-design current 

equipment in order to allow handling of larger load volumes, while minimizing equipment 

and material cost. In addition, under high titers, downstream processing can become 

significantly expensive, mostly due to equipment and consumables costs (Dünnebier et al., 

2001, Chon and Zarbis-Papastoitsis, 2011, Strube et al., 2012, Gronemeyer et al., 2014), thus 

setting its optimization a priority. Although, the concept of continuous upstream is being 

discussed since 1986 (Arathoon and Birch, 1986), in the case of downstream knowledge is 

still limited. Nowadays there are several manufacturers that offer small-scale continuous 

chromatography systems (e.g. BioSC® & Varicol® by Novasep, Periodic Countercurrent 

Chromatography (PCC) & Straight-through Processing (STP) by GE Healthcare, 

Contichrom® by Chromacon). However, significant experience in continuous 

chromatography needs to be gained in process scale-up in order to ensure successful 

operation at large scale. Moreover, apart from advances in the chromatography steps, 

developments in other downstream unit operations are required (e.g. continuous 

ultrafiltration/diafiltration) (Konstantinov and Cooney, 2015). 

From a process standpoint, it is necessary to ensure that the integrated bioprocess is 

efficiently monitored and controlled in order to achieve maximum and stable product quality 

and yield. Control and monitoring of such complex processes is a challenging task that is now 

coupled with continuous operation, rendering online measurements even more challenging to 
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obtain. At the moment in batch operation, each process unit is controlled independently 

without need of communication between the different monitoring/control equipment. 

However, in continuous operation the feedback across process units is required, pointing 

towards the development of global control schemes, where the entire process flow is 

supervised. The development of advanced computational tools can facilitate changes in the 

current state-of-the-art of biomanufacturing, providing a basis for cost-free simulations. In 

addition, it can pave the way towards the design of advanced optimization strategies and 

control policies that will ensure feasible, optimal and stable operation. Furthermore, in-silico 

experimentation allows the comparison of various operating scenarios that can significantly 

reduce labor time and cost and identify process limitations and bottlenecks. 

 Aims & Objectives 1.1

Aiming to facilitate the shift from batch to continuous operation, this work presents the 

development of advanced computational tools that will enable the intensification of 

monoclonal antibody production through continuous operation. MAb production consists of 

two main parts: (1) the upstream processing, where the cells are cultured and the therapeutic 

agent is produced and (2) the downstream processing that involves the isolation/purification 

of the targeted product. Acknowledging that currently downstream processing is the most 

costly and limiting part of the bioprocess, we devote the main focus of this work to the 

development of advanced control strategies for a series of industrially relevant, 

chromatographic separation systems. The key objective of this study is the design of “smart 

control strategies” that obey the governing laws of the system at hand, while ensuring 

continuous monitoring and stable operation. However, in a fully integrated bioprocess, the 

need of global control policies becomes eminent. Therefore, in this work we also investigate 

the design of control strategies for a cell culture system in a bioreactor. The development of a 

global approach for the control of the continuous bioprocess is also discussed. The control 

policies presented in this work are of model-based nature and are developed within the 

generic PAROC framework/software platform for the design and in-silico testing of advanced 

controllers (Pistikopoulos et al., 2015). The rest of the manuscript is organized as follows: 

 

• Chapter 2. Monoclonal Antibody Biomanufacturing: 

This chapter presents the current state-of-the-art in monoclonal antibody 

manufacturing. Here we discuss the standard practice both in upstream and 

downstream processing and we investigate the potential and bottlenecks of the shift 
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form batch to continuous operation. Moreover, the role of computational tools in this 

transition is discussed. 

• Chapter 3. Chromatographic Separation Processes: 

The main focus of this work is the development of advanced control strategies for 

chromatographic separation systems. This chapter is dedicated to the operating 

principles of chromatography. Works on optimization and control of such systems are 

also discussed here. 

• Chapter 4. Model-based Control of Single-Column Chromatographic Systems: 

Here we present the development of advanced control strategies of a single-column 

chromatographic separation system, based on the operating principles of an industrial 

process. We design and test in-silico 3 different control schemes: (a) 3 Single-Input 

Single-Output controllers under continuous feed, (b) a Single-Input Multiple-Output 

controller under continuous feed and (c) a Single-Input Multiple-Output controller 

under periodic feeding strategy. Aiming to overcome issues with unavailable 

measurements and to design a continuous monitoring approach, we suggest a novel 

concept, where we track the integral of the outlet concentrations of the mixture 

components. The behavior of the controllers under various flow rates and 

disturbances is also assessed. 

• Chapter 5. Model-based Control of Multi-Column Chromatographic Systems 

following the PAROC framework: 

This chapter focuses on the development of advanced control schemes for multi-

column chromatographic systems. We consider a twin-column system; based on the 

principles of an industrially relevant separation process and we present the design and 

testing of a novel control scheme, where the two columns are monitored in a 

centralized/decentralized fashion. Moreover, we present a novel approach, where the 

recycling streams are treated as disturbance aiming to minimize the feedback 

information required during online monitoring. 

• Chapter 6. Model-based Control of Cell Culture Systems: 

In this chapter we investigate the development of an advanced, model-based control 

strategy for a cell culture system aiming to improve the process productivity. Firstly 

we present a dynamic optimization study that is used as a basis for the development 
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of the model-based controllers. Furthermore, we design and test 3 advanced 

controllers of different sampling strategies. The controllers’ performance is assessed 

and compared. 

• Chapter 7. Conclusions & Future Directions: 

In this chapter a summary of this work is presented and current/future directions for 

the continuation of this work are discussed. 

• Appendix A: Computational Tools 

Appendix A presents all theoretical aspects related to this work. Namely we illustrate 

the theory behind: (i) Global Sensitivity Analysis and (b) Multi-parametric Model 

Predictive Control. 

• Appendix B: Downstream Process 

Appendix B demonstrates additional studies/collaborations related to the downstream 

systems examined in this work. In particular, we illustrate: (a) the process model of 

the MCSGP process, developed by the Morbidelli Group (ETH, Zürich), (b) a 

sensitivity analysis study on the control parameters, executed on the single-column 

system, (c) a collaborative work on the development and comparison of PID 

controllers for the single-column case and (d) a preliminary investigation of the 

periodicity in the control laws during the “closed-loop” validation of the controllers 

designed for the single-column case. 

• Appendix C: Upstream Process 

Appendix C presents complementary work performed on the upstream system. More 

specifically here we illustrate: (a) a collaborative project for the development and 

experimental validation of the dynamic model used to describe the cell culture system 

and (b) an additional control study, where no outlet is considered. 

The work presented on the development of control strategies for the downstream purification 

process was conducted in the framework of the European OPTICO Project for “Model-based 

Optimization and Control for Process Intensification in Chemical and Biopharmaceutical 

Systems” (G.A. No 280813). This collaborative initiative consisted of a 13-partner 

industrial/academic consortium. The current work was conducted in collaboration with 

ChromaCon AG and ETH Zürich (the Morbidelli Group) on the industrial process unit Multi-

column Counter-current Solvent Gradient Purification process. The mathematical model for 
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this unit have been previously developed and validated by ETH Zürich (the Morbidelli 

Group), while the current thesis focused on the development of advanced control techniques. 

The work conducted on the development of control strategies for the bioreactor system, is 

based on a previously developed and validated model by Dr. Ana Quiroga. This thesis 

focused on the investigation of different control strategies on the respective system.  
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 Current status and needs 2.1

2.1.1 Fundamentals  

MAbs are “Y” shaped molecules, consisting of two light and two heavy chains connected by 

disulfide bonds. Each light chain (approximately 25 kDa) is composed of two successive 

domains (the constant and the variable), while the heavy one (approximately 50 kDa) 

considers one constant and one variable region. The variable regions are responsible for 

antigen binding, while the constant regions are responsible for the biological functions. In 

general, based on their heavy chains, we distinguish 5 classes of antibodies: IgG, IgA, IgM, 

IgE and IgD (Sommerfeld and Strube, 2005). Their targeted selectivity makes them a very 

powerful and attractive method for the treatment of cancer, various autoimmune diseases or 

organ transplantations (Bai, 2011).  

MAbs act as the leading product in the rapidly increasing market of high value biologics and 

their sales are considered to increase twice as fast as other biotechnological drugs. According 

to market projections, the value of mAb market is expected to increase up to 75 billion USD 

by 2025 (Mabion, 2013). Their demand depends highly on the patient population, however, 

their high cost (approximately $35000 p/a per patient for mAbs treating cancer conditions) 

(Farid, 2007) has given rise to alternative, more affordable solutions. Indicatively, biosimilars 

form a new class of lower-cost therapeutics and designed to be similar to existing biological 

medicines (Blackstone and Fuhr, 2012, E.M.A, 2016b). Biosimilars are considered to be 

biopharmaceutical drugs that are manufactured to have active properties similar to those of 

previously licensed therapeutics. They demonstrate no clinically meaningful differences to 

the original product and are usually produced using alternative expression systems (Love et 

al., 2013). Since the approval of the first biosimilar product in the European Union (2006) 

their market has been rapidly increasing, looking at the moment at 21 approved products by 

the European Medicines Agency (EMA) solely (E.M.A, 2016b). Moreover, in March 2015 

biosimilars penetrated the US market with their first product being approved by the U.S. Food 

and Drug Administration (F.D.A, 2015a). However, biosimilars are not generic equivalents of 

the originator product and their properties are highly associated to the processes used for their 

manufacturing (Mellstedt et al., 2008). As patents of biotechnological companies on mAbs 

gradually expire (Konstantinov and Cooney, 2015), there is an eminent need for the mAb 

market to answer to competition by moving towards novel processes that will secure patents 

on mAb manufacturing and subsequently decelerate the emergence of similarly manufactured 

drugs. Shifting to more cost-effective solutions and smart manufacturing shows great 
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potential and can result into higher process yield, cheaper end-products and shorter 

production times (Blackstone and Fuhr, 2012, Xenopoulos, 2015). 

2.1.2 Current status in mAb biomanufacturing 

The production of mAbs consists of two main parts: (a) the upstream processing (USP) and 

the downstream processing (DSP). The former refers to the culturing of the cells in 

bioreactors and the production of the targeted product, while the latter involves a sequence of 

separation/purification steps responsible for the isolation of the antibody from the upstream 

harvest. Currently, the biomanufacturing of mAbs considers fed-batch cell culture systems 

and batch separation processes (Xenopoulos, 2015).  

2.1.2.1 Upstream Processing (USP) 

The design of an optimal process of high yield is a challenging task, accompanied by a 

variety of factors that need to be considered and examined. Figure 2.1 illustrates some of 

those problem parameters that are discussed below. 

 

Figure 2.1 Factors that need to be considered during the design of an upstream process in monoclonal 
antibody production. 
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(i) Production systems: Current state-of-the-art in upstream processing of monoclonal 

antibodies and other biopharmaceutical products dictates mammalian cell culture 

systems as the preferred expression system (Zhu, 2012). Mammalian cells have the 

distinct advantage to produce active molecules with humanlike post-translational 

modifications (PTM) identical to native endogenous proteins, including 

glycosylation, formation of disulphide bonds and proteolytic processing; which are 

known to be essential for the biological function and pharmacokinetics of the final 

product (Berlec and Strukelj, 2013). Most marketed biologic drugs are produced in 

Chinese Hamster Ovary (CHO) cells, murine myeloma lymphoblastoid-like cells 

(NS0 and Sp2/0-Ag14), Human Embryonic Kidney epithelial cells (HEK 293), and 

Baby Hamster Kidney (BHK-21) cells. Despite their successful entry in the 

manufacturing industry, mammalian cells cultures face significant challenges such as 

low yield, high medium costs and slow growth (Zhang, 2010) when compared to 

bacteria and/or yeast (approximately 3fold lower) (Báez et al., 2005, Birch et al., 

2008, Zhang, 2010). To enhance the expression of the recombinant proteins, different 

approaches have been implemented such as cell engineering, vector design, screening 

tools, culture medium composition and operating conditions optimization, and control 

strategies (Zhu, 2012). 

(ii) Operating mode: Here various types of configurations are considered. Batch 

cultures are closed systems, which contain a limited amount of nutrients. In this case, 

cell death is caused by nutrient starvation or toxic metabolites accumulation. On the 

other hand, in fed-batch cultures, a concentrated feeding medium is supplied to cover 

the nutritional requirements of the cells; consequently, the integral viable cell density 

and volumetric productivity are increased. Fed-batch cultures are widely used in the 

biopharmaceutical industry because of their reduced direct costs, high harvest 

concentration and robust, reproducible, manufacturing outcomes (Zhang, 2010). In 

perfusion and continuous manufacturing configurations, fresh medium is added 

continuously with the difference laying on the content of outflow. In perfusion the 

cells are retained inside the bioreactor, and the removed broth is cell-free, containing 

the product in relatively low titer. Continuous processes do not have internal or 

external cell-retention devices. The advantages of these systems are the steady state 

operation, reduced equipment size, streamlined process flow, low-cycle times, and 

reduced capital cost (Konstantinov and Cooney, 2015). Nevertheless, issues such as 

phenotypic instability of the cell line over long culture periods in use need to be 

addressed prior to the selection of the appropriate expression system (Barnes et al., 

2004, Bailey et al., 2012). 
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(iii) Process control & monitoring: In order to ensure optimal operation that will lead to 

stable product quality, advanced control and monitoring tools are required. Currently 

available electrochemical and optical sensors enable the monitoring of the physical 

and physicochemical culture conditions (pH, temperature and dissolved oxygen 

online measurements). However, for the control of the product titer and quality it is 

necessary to measure additional parameters, such as: cell density, nutrient 

concentration and level of toxic metabolites (Konstantinov and Cooney, 2015). 

Despite the advances in online sampling for at-line analysis (e.g. BioProfile 

analyzers) and online probes (e.g. near-infrared spectroscopy technology) there is still 

a wide gap between monitoring technologies and control techniques. Therefore there 

is eminent need to fill this technological gap and drastically improve the 

sustainability of biopharmaceutical processes. 

2.1.2.2 Downstream Processing (DSP) 

Similarly to USP, Figure 2.2 illustrates they key issues that need to be addressed during the 

design of a downstream process. 

 

Figure 2.2 Factors that need to be considered during the design of a downstream process in monoclonal 
antibody production. 
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Unlike USP, DSP is a sequential procedure, involving a series of separation/purification steps 

until the required product purity is achieved. Firstly, the cell culture mixture containing the 

targeted product is centrifuged and filtered. Following that, a step performed with Protein A 

chromatography, serves as a product capture step and results in high purity and concentration 

of the drug (Figure 2.3). This is followed by two polishing steps, where usually ion-exchange 

chromatography is used. Finally, a virus filtration step is required, followed by 

ultrafiltration/diafiltration (UF/DF) for the formulation and concentration of the final product 

(Kelley, 2009a, Kelley et al., 2009). Here we discuss some of the key aspects that need to be 

considered during the design of the optimal downstream process train. 

(i) Operation units: For the first clarification step, centrifugation is the current 

preferred method. However it is not able to significantly reduce the amount of solids 

present in the medium and return a centrate suitable for capture chromatography. 

Therefore, depth filtration is required for the removal of host cell proteins (HCP) 

(Kelley et al., 2009). At this stage, alternatives such as flocculation can also be 

considered, offering higher clarity than centrifugation (Shpritzer et al., 2006). The 

primary capture step is usually performed with Protein A chromatography, however 

ion-exchange chromatography can be considered as well. The preferred method for 

the polishing step is normally defined by the nature of the product and the impurities. 

Here, Protein A and ion-exchange chromatography can both be used. For increased 

efficiency and minimization of the polishing steps, alternatives such as mixed-mode 

resins (Carta and Jungbauer, 2010) and/or the use of membrane adsorbers can also be 

considered (Zhou and Tressel, 2006). Traditionally, column chromatography utilizes 

stainless steel equipment. However, recent trends that necessitate the minimization of 

production costs, have given rise to novel technologies, such as single-use equipment. 

The emergence of disposable technologies (e.g. chromatographic units, filters, 

centrifuges) offers great opportunities towards the design of more cost-efficient 

processes of similar or improved productivity (Lim et al., 2007, Shukla and 

Gottschalk, 2013). 

(ii) Operating mode: Currently, industrial downstream manufacturing utilizes multiple 

batch unit operations, designed to handle feeds of 2-5 g/L (Gronemeyer et al., 2014). 

Industrially standardized procedures followed in DSP, ensure products of high purity, 

limiting, however, the amount recovered in the end of the process cycle as they can 

only handle certain volume of loads. Aiming to increase process efficiency, 

significant advances have been made towards the development of semi- or fully 

continuous chromatographic processes. The latter gave rise to novel semi-continuous 
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separation configurations, such as the Periodic Counter-Current Chromatography 

(PCC), the Multicolumn Countercurrent Solvent Gradient Purification Process 

(MCSGP) the Continuous Countercurrent Tangential Chromatography (CTC) and the 

Sequential Multicolumn Chromatography (SMCC) (Ströhlein et al., 2006a, Aumann 

et al., 2007, Godawat et al., 2012, Ng et al., 2014, Dutta et al., 2015, Zydney, 2016). 

Apart from increased productivity, continuous DSP guarantees a significant decrease 

in the respective Cost of Goods (COGs) as raw materials, such as eluents, are 

recycled. Moreover, product quality can be significantly improved, as in continuous 

processing hold-up steps (e.g. harvest vessels, intermediate storages) can be 

eliminated (Klutz et al., 2016). 

(iii) Process control & monitoring: Currently, measurements regarding product quality 

rely mostly on ultraviolet (UV) detectors and automated HPLC systems. The 

accuracy of the former is highly sensitive and linked to experimental factors, while 

the latter provide infrequent measurements on the average concentrations of the 

mixture components (Grossmann et al., 2008). In addition, in order to obtain the 

suitable controller feedback, lengthy experimental procedures are required 

(Konstantinov and Cooney, 2015), leading to significant delays in the process 

operation. Traditionally, the outlet of chromatography columns is continuously 

monitored by ultraviolet/visible (UV/VIS) detectors; while in lab-scale, light 

scattering and mass spectroscopy equipment are also used (Carta and Jungbauer, 

2010). UV detectors are considered to be effective as proteins usually exhibit a strong 

absorbance signal at 280 nm (applicable also in the case of monoclonal antibodies). 

Despite the existence of some online measurements on protein concentration, the 

detection of impurities in the mixture is still performed through offline procedures, 

such as size exclusion chromatography for the detection of fragments and/or 

aggregates and immunoasays for the detection of host cell proteins and DNA 

(Moorhouse et al., 1997, Wakankar et al., 2011, Healthcare, 2015). In the case of 

aggregates, other methods may also be used based on their size (Cordoba-Rodriguez, 

2008, Paul and Hesse, 2013). Regulatory bodies also suggest few analytical 

procedures that can assist the identification of impurities (ICH Q6B) and they are 

discussed below (section 2.1.3). Moreover, there are attempts to allow for on-line 

available measurements, such as the one by EMD Milipore & Momenta 

Pharmaceuticals (Doneanu et al., 2012), where they present a procedure for the online 

identification of host cell proteins using two-dimensional liquid chromatography 

coupled with high resolutions mass spectroscopy, followed by high throughput HCP 

quantification. Currently, regulatory bodies encourage the development of advanced 
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Process Analytical Technologies (PAT) that will provide the necessary information 

timely, minimizing human error (F.D.A et al., 2004, Low et al., 2007). 

 

Figure 2.3 Sequence of processes involved in DSP. 

2.1.3 Industrialization of monoclonal antibodies 

2.1.3.1 Typical production process 

Figure 2.4 illustrates a standard process sequence followed in the production of mAbs. 

Usually, mammalian cells are chosen as the expression system and are grown in suspension 

culture in large bioreactors (5-25 thousand liter) (Kelley, 2009b). Most of mAbs products are 

derived from CHO, NS0 or Sp2/0 cell lines (Wurm, 2004). A typical production process is 

run for 7-14 days in fed-batch mode, where discrete feeds with nutrients are added to the 

bioreactor. Before inoculation of the production bioreactor, an expansion of a cell bank vial 

and subsequent growth of the cells in seeding bioreactors is performed (Zhang, 

2010).Currently, mAb titers vary between 1-10 g/L  while the bioreactor production volumes 

range from 5,000 L to 25,000 L (Butler, 2005, Sharfstein, 2008).  

 

Figure 2.4 Indicative production process of mAbs. Upstream processing steps are depicted in the white area, 
while the grey area illustrates the downstream purification steps (adapted from Kelley 2009 & Liu 2010). 
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The downstream processing cascade involves various separation processes, including 

different chromatographic purification steps. Starting with the initial centrifugation and 

filtration (often referred as primary recovery), the mixture is clarified from suspended solids, 

such as cells or cell debris. Following the primary recovery, a standard downstream process 

sequence includes successive capture, purification and polishing steps, each with one or more 

operations (Carta and Jungbauer, 2010). In most of the cases in mAb production, the capture 

step is realized through Protein A affinity chromatography. The selectivity of Protein A 

affinity chromatography can result in high purities up to >95% in a single step (Shukla et al., 

2007, Perez-Almodovar and Carta, 2009, Shukla and Thömmes, 2010). This step is usually 

employed after harvest operations (where the supernatant is clarified from cells and cell 

debris) and significantly reduces the volume of the product stream, as a higher concentration 

in the post-Protein A capture pool is achieved. Nevertheless, Protein A adds another impurity 

in the stream, that of the leached Protein A ligand that has to be removed by the following 

purification steps. 

From a process perspective, Protein A is often the limiting step as large volumes from the 

culture supernatant are loaded on relatively smaller and expensive columns (Shukla et al., 

2007). Moreover, as Protein A carries out the elution at low pH values, there is the risk for the 

formation of soluble high molecular weight aggregates, thus reducing the product yield and 

burdening the polishing steps with further clearance from the aggregate species that can be 

antigenic (Shukla and Thömmes, 2010, Zydney, 2016, Johnson et al., 2017). Besides the 

removal of impurities, also viral inactivation steps are required (Q5A, Shukla and Thömmes, 

2010, Johnson et al., 2017). Therefore, low pH treatment is employed as it has been proven to 

efficiently inactivate retroviruses from various biological products (Shukla et al., 2007). The 

following two polishing steps are responsible for the removal of host cell proteins, DNA, 

aggregates, fragments and leached Protein A from the capture step (Voitl et al., 2010, Zhang 

et al., 2014b, Khalaf et al., 2016). Typically in mAb downstream processing, two subsequent 

chromatographic steps are employed based on ion-exchange (IEX) chromatography. The 

latter is performed for the removal of both process and product related impurities. While IEX 

chromatography can also be applied in capture steps it is mainly used for polishing 

applications. With the pH being in between the pI of the antibody and the pI of most host cell 

proteins, significant removal of HCPs can be achieved. Additionally, aggregates can also be 

removed. Due to the pI of most mAbs, which is often in the range of 7.5-9.5, cation-exchange 

polishing is often performed in bind-elute mode, aiming at the removal of HCP, DNA as well 

as aggregates, while anion-exchange polishing is performed in flow-through mode, with 

impurities such as DNA and HCP adsorbing on the resin, while the target protein is collected 
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in the flow-through (Carta and Jungbauer, 2010, Voitl et al., 2010). Viral filtration follows to 

complement the viral inactivation step that is performed after the primary recovery. Lastly, an 

ultrafiltration/ diafiltration step is applied for the concentration of the final product as well as 

buffer exchange. As discussed earlier (section 2.1.2.2), there is a variety of measurements 

obtained during the downstream processing to determine Critical Quality Attributes, as well 

as product purity and process yield. 

2.1.3.2 Critical Quality Attributes (CQAs) and regulatory approval 

Monoclonal antibodies are associated with stringent regulations that define their purity and 

composition. According to the ICH Q6B note on “Specifications: Test Procedures and 

Acceptance Criteria for Biological/Biotechnological Products”, for a drug to be considered 

acceptable for its intended use it needs to comply with pre-defined specifications. The latter 

correspond to “a list of tests, references to analytical procedures, and appropriate acceptance 

criteria which are numerical limits, ranges, or other criteria for the tests described”. 

Table 2.1 CQAs commonly observed in biopharmaceutical proteins (adapted from Eon-Duval et al. (2012), 
ICH Q6B & EMA “Guideline: Development, production, characterization and specifications for 
monoclonal antibodies and related products” (2016)).  

Product-related 
impurities & substances 

Process-related 
impurities Contaminants 

Aggregation Residual DNA Adventitious agents (e.g. bacteria, 
mycoplasma, viruses) 

Fragmentation Residual Host Cell 
Proteins (HCPs) Endotoxins 

C- and N- terminal 
modifications 

Raw material-derived 
impurities (e.g. leached 
Protein A) 

 

Oxidation   

Deamidation/isomerization   

Glycosylation   

Glycation   

Conformation   

Disulfide bond 
modifications/free thiols   

The characterization of a biological product includes the determination of physicochemical 

properties, biological activity, immunochemical properties, purity and impurities ”(ICH 
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Q6B). Based on regulatory announcements (ICH Q6B) as well as information provided in the 

open literature (Shukla et al., 2007, Carta and Jungbauer, 2010, Eon-Duval et al., 2012) 

impurities are classified into two main categories: (a) product-related and (b) process-related 

impurities. The first one relates to impurities that result from the product, such as aggregates, 

while process-related impurities evolve from the process itself, such as HCPs. Besides the 

removal of these impurities, one needs to consider that mAbs undergo different modifications. 

Therefore, announcements published by the International Conference on Harmonization 

(ICH) and other regulatory bodies (EMA, FDA) identify the necessary Critical Quality 

Attributes (CQA) alongside with their allowed ranges. CQA refers to “a physical, chemical, 

biological or microbiological property or characteristic that should be within an appropriate 

limit, range or distribution to ensure the desired product quality”. CQAs are considered to 

highly affect product safety and efficacy, hence it is suggested that they are closely 

monitored. For the purposes of this work, we focus particularly on the aspects of purity and 

hence the removal of impurities is considered, while for the rest of the specifications, such as 

glycosylation, the reader is referred to ICH Q6B.  

The determination of absolute and/or relative “purity” is usually highly method-dependent 

and is determined using a combination of methods (ICH Q6B). Due to their complex 

molecular characteristics and production process, the end-drug substances can include 

multiple molecular entities and variants (e.g. glycoforms or charge variants). It is advised that 

the properties of the latter are assessed and compared to the desired product in order to ensure 

that the presented heterogeneity has no effect on the activity, efficacy and safety of the drug. 

In the event that the tested variants demonstrate properties similar to the desired product they 

can be characterized as “product-related substances” and not impurities. In case they are 

found to affect the activity, efficacy and/or safety of the drug they are classified as “product-

related impurities” and they need to be within certain limits (ICH Q6B). On the other hand, 

“process-related” impurities are variants occurring during the production process and do not 

have properties similar to the desired product thus jeopardizing the drug activity, efficacy 

and/or safety. These can result from cell substrates (e.g. HCP, DNA), cell culture (e.g. 

antibiotics) or downstream processing (e.g. leached Protein A). Last but not least, 

contaminants (e.g. bacteria) adventitiously introduced in the production process “should be 

strictly avoided and/or suitably controlled with appropriate in-process acceptance criteria or 

action limits for drug substance or drug product specifications” (ICH Q6B). Table 2.1 

presents an indicative summary of product- and process- related impurities, as well as types 

of contaminants that are often encountered in the production of mAbs. 
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Table 2.2 demonstrates the appropriate requirements that need to be met in order to ensure the 

safety of a protein pharmaceutical. Limits on other types of impurities may depend on their 

type and/or effect on the drug activity, efficacy and/or safety and are therefore decided upon 

characterization and collection of preclinical/clinical data (Eon-Duval et al., 2012). ICH Q6B 

suggests an indicative list of analytical techniques that can be used for the detection and/or 

quantification of impurities in biological and biotechnological products. In the case of 

process-related impurities; for host cell proteins, a sensitive assay (such as immuoassay) can 

assist the detection of a wide range of proteins, while DNA levels from host cells can be 

identified via direct analysis (e.g. hybridization techniques). Chromatographic and/or 

electrophoretic methods can be applied for the detection of product truncation, dissociation 

and polymerization (EMA “Guideline: Development, production, characterization and 

specifications for monoclonal antibodies and related products” (2016) ).  

Table 2.2 General guidlines for purity of protein pharmaceuticals (adapted from Carta and Jungbauer 
(2010)). 

Criteria Requirement 

Specific protein content >99.9% 

Dimer/oligomer content <1.0% 

Ligand leakage Usually < 1 ppm � 

Virus content  Absence with a probability of <10−9 

DNA content  <10 pg/dose 

Endotoxin content  5 EU kg−1 h−1  

Prion content  Absence with a probability of <10−9  

 From batch to continuous operation: A paradigm shift 2.2

Recent trends in biomapharmaceutical processing are investigating the possibility of 

operating the process steps in a continuous fashion, envisioning the development of a fully 

integrated, continuous bioprocess. Continuous biomanufacturing is currently a promising 

solution towards 

(i) Improved productivity 

(ii) Decreased COGs 
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(iii) Reproducible product quality and 

(iv) Decreased process times. 

The shift to continuous operation will offer the opportunity to reduce the capital cost through 

significant decrease in the equipment size and footprint (e.g. small bioreactors and 

chromatography columns, elimination of hold tanks) (Konstantinov and Cooney, 2015). 

Continuous bioreactors and purification columns are characterized by high volumetric 

productivity, cell density and utilization rate respectively that allow for multifold decrease in 

the equipment size that will result in similar or higher product volumes. Indicatively, Langer 

(2011) reports that  a single 50 L perfusion bioreactor can produce the same amount of 

product as a 1,000 L bioreactor operating in fed-batch mode. Moreover, reduction in buffer 

volumes offered by continuous chromatography as well as the decreased start-up/shut-down 

procedures will allow the development of processes of lower environmental classification. 

Continuous processing offers also decreased molecule residence time in the reactor as well as 

elimination of the holdup steps that can risk product quality (Konstantinov and Cooney, 

2015).  

Process intensification through continuous operation has already, successfully been applied to 

various industries (Anderson, 2001, Laird, 2007), aiming to decrease the environmental 

footprint, while increasing process productivity and product quality. The initiatives of 

Novartis-MIT for continuous crystallization (Quon et al., 2012) and the GSK-Pfizer 

partnership for the development of continuous processing technology for oral solid dosage 

(OSD) drugs (Taylor, 2015) demonstrate the industrial importance of this trend in the 

biopharmaceutical sector. In the market of recombinant proteins, Genzyme and Bayer are 

leading adapters of perfusion and other continuous manufacturing processes (Langer, 2011), 

while Novasep, GE Healthcare, Knauer and ChromaCon are some of the equipment 

manufacturers offering small- and pilot-scale continuous chromatography systems. Warikoo 

et al. (2012) demonstrate one of the first fully continuous pilot-scale bioprocesses for the 

production of a mAb and a recombinant human enzyme. They design and use a system 

composed by a 12 L perfusion bioreactor connected to 4-column Periodic Countercurrent 

Chromatography and they successfully demonstrate the production and purification of the 

desired products. 

Regulatory directives for Quality by Design (QbD) and the rising competition from less-

expensive solutions (e.g. biosimilars) are now urging mAb manufacturing towards significant 

changes in the current state-of-the-art (del Val et al., 2010, Konstantinov and Cooney, 2015). 

Moreover, recent presentations and reports by the US FDA show that regulatory authorities 
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have started to embrace the shift from batch to continuous operation in mAb manufacturing, 

pointing out its potential and needs (Chatterjee, 2012). There are no regulatory 

announcements inhibiting continuous processing. On the contrary, regulatory bodies such as 

the FDA and EMA embrace technological advances that can lead to more efficient processes 

of lower cost. The latter is supported by recent announcements from the FDA (2004, 2015b) 

where they urge manufacturers to make a step towards innovative pharmaceutical 

manufacturing. Moreover, the benefits of novel PAT technologies (such as reduction of 

production cycles and increased automation to minimize human error) are acknowledged and 

their development is encouraged (FDA 2015). Currently, challenges such as process control, 

scale-up and contamination avoidance are discussed (Langer and Rader, 2014).  

It is true that such a ground-breaking change in the status quo requires thorough consideration 

and investigation of several factors that affect both process counterparts (USP & DSP). The 

vision of a fully integrated bioprocess can also be facilitated through gradual development of 

each process independently, leading to hybrid intermediates (e.g. continuous upstream and 

batch downstream) (Godawat et al., 2015, Konstantinov and Cooney, 2015). Technological 

advances are therefore required in both USP & DSP in order to ensure that the “new” 

bioprocess will bring substantial improvements.  

Perfusion systems are already being used to a certain extent for the production of recombinant 

proteins (Hernandez, 2015) by leading manufacturers such as Genzyme, Eli Lilly, Bayer, 

Novartis, Merck-Serono and Lonza. However there are still open challenges to be addressed 

such as the design of media formulations to support high cell densities as well as the stability 

of the cell line in use (Konstantinov and Cooney, 2015). Stability in the protein (mAb) quality 

attributes is a crucial parameter that needs to be assessed in order to ensure that the selected 

cell line will be able to support long term culturing. Barnes et al. (2004) report that in long-

term cultures of GS-NS0 cells there is a threshold above which mAb production is limited by 

saturation of the translational/secretory machinery of the cell. Similarly, Bailey et al. (2012) 

demonstrate decrease in the productivity of long-term cultured GS-CHO cells, relating the 

phenomenon to the potentially altered cell metabolism of late generation cells and their 

different response to environmental conditions. However a more recent publication 

(Konstantinov and Cooney, 2015) shows constant product quality of a mAb for 30 days 

cultivation of CHO cells. 

USP systems have been extensively studied (Arathoon and Birch, 1986) and their 

technological evolution is expected to be fast (Konstantinov and Cooney, 2015), however 

downstream processing is still facing significant challenges. Recent studies identify the latter 
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as the most costly and limiting factor of the bioprocess. DSP is associated with approximately 

80% of the manufacturing costs in bioprocessing (Hunt et al., 2001, Girard et al., 2015) and 

currently handles limited amount of volumes, thus limiting further improvements in the 

upstream process (Dünnebier et al., 2001, Chon and Zarbis-Papastoitsis, 2011, Strube et al., 

2012, Gronemeyer et al., 2014). As mentioned earlier, there are a few manufactures offering 

small-scale continuous chromatographic separation processes. However, such kinds of 

equipment are rather new. Therefore, significant understanding and experience on their 

dynamics needs to be accumulated prior to their implementation. Issues regarding process 

performance and capacity utilization need to be addressed as they significantly affect product 

purity, production costs and yield. Besides this, process robustness is one of the main 

challenges, as batches out of specifications due to variations need to be avoided (Jungbauer, 

1993, Degerman et al., 2009, Ng et al., 2012, Angarita et al., 2013). Moreover, the need of 

technological advances in continuous viral inactivation and UF/DF as well as PAT is also 

reported (Konstantinov and Cooney, 2015, De Palma, 2016).  

There is therefore eminent need to design of a systematic approach that will minimize 

investment costs and potential risks. A robust, integrated experimental/computational 

approach can serve as the tool to obtain the information required for the design of an efficient, 

continuous bioprocess. However, currently, there are no standardized methods indicating the 

nature and the amount of the experiments that will provide the essential information needed 

for the optimization of the system. As a result, the information coming from experiments is 

often overwhelming and requires costly and time-consuming procedures to be retrieved. To 

compliment and facilitate experimentation, comes the design of advanced computational tools 

that provides a solid basis for cost-free simulations, comparisons of different operating 

scenarios, as well as design of tailor-made experiments, thus minimizing labor cost and time 

(Royle et al., 2013). 

  The Role of Computational Tools 2.3

Although regulatory authorities are supportive of this paradigm shift towards continuous 

manufacturing, the adaptation of novel processing methodologies by the key industrial 

players is relatively slow. Concerns arising from the uncertain efficiency of new equipment as 

well as the overwhelming investment costs make the shift from batch to continuous operation 

a challenging process (Konstantinov and Cooney, 2015). As pointed out by the FDA 

(Chatterjee, 2012), questions regarding the optimal sample frequency and on-line/in-line data 

management need to be answered prior to the development and adaptation of novel, 
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continuous production lines. Moreover, issues regarding the integration of analytical tools, as 

well as the uniformity in the control approach need to be addressed Ierapetritou et al. (2016). 

Table 2.3 Selected list of publications on computational tools used in the assistance of bio- and 
pharmaceutical process development. 

Research Area Reference 

Pharmaceutical process 

development  

Barton and Lee (2002), Farid (2007), Gernaey and Gani (2010), 

Reklaitis et al. (2010), Boukouvala et al. (2012), Pollock et al. 

(2012), Lakerveld et al. (2013), Liu et al. (2014a), Zhang et al. 

(2014a), Lakerveld et al. (2015), Rogers and Ierapetritou (2015), 

Sahlodin and Barton (2015), Xenopoulos (2015), Ierapetritou et al. 

(2016), Sebastian Escotet-Espinoza et al. (2016), Singh et al. (2016a), 

Singh et al. (2016b), Haas et al. (2017), Wang et al. (2017), Wang 

and Georgakis (2017) 

Cell culture systems 

Schubert et al. (1994), Ozturk et al. (1997), Farid et al. (2000), Frahm 

et al. (2003), Sidoli et al. (2004), Kontoravdi et al. (2005b), Teixeira 

et al. (2005), Jenzsch et al. (2006), Teixeira et al. (2006), Kontoravdi 

et al. (2007), Teixeira et al. (2007), Gnoth et al. (2008), Lam et al. 

(2008), Karra et al. (2010), Kontoravdi et al. (2010), Kiparissides et 

al. (2011c), Sercinoglu et al. (2011), Aehle et al. (2012), Jedrzejewski 

et al. (2014), Green (2015), Kiparissides et al. (2015), Quiroga et al. 

(2016) 

Chromatographic 

processes 

Dünnebier et al. (2000), Dünnebier and Klatt (2000), Klatt et al. 

(2000), Dünnebier et al. (2001), Teoh et al. (2001a), Teoh et al. 

(2001b), Engell and Toumi (2005), Nagrath et al. (2005), Degerman 

et al. (2006), Kawajiri and Biegler (2006a), Degerman et al. (2007), 

Farid (2007), Chan et al. (2008a), Grossmann et al. (2010), Krattli et 

al. (2011), Müller-Späth et al. (2011), Getaz et al. (2012), Westerberg 

et al. (2012), Bentley and Kawajiri (2013), Bentley et al. (2013), 

Close et al. (2013), Krättli et al. (2013b), Behrens et al. (2014), Close 

et al. (2014b), Li et al. (2014), Liu et al. (2014b), Ng et al. (2014), 

Suvarov et al. (2014), Papathanasiou et al. (2016b), Papathanasiou et 

al. (2017) 
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In order to be able to tackle the aforementioned challenges, a thorough investigation and 

understanding of the system is required. The latter necessitates the execution and comparison 

of various operating scenarios that will elucidate the process dynamics, as well as the optimal 

design and/or operating conditions. In this direction, advanced computational tools can prove 

to be of high importance as they provide low-cost test platforms, where the results can be 

obtained rapidly (Klatt and Marquardt, 2009, Gernaey et al., 2012, Rogers and Ierapetritou, 

2015). The development of tractable mathematical models provides a solid basis to 

quantitatively study the characteristics of complex and multilevel interactions. Multi-scale 

mathematical models combined with experimentally-derived characterization will allow an 

early determination of the process bottlenecks at minimum experimental cost. These models 

can also be used for testing purposes of different operating scenarios and initial conditions, as 

well as for the design of advanced optimization strategies and control policies that will lead to 

optimal and stable operation. Table 2.3 summarizes few of the recent contributions where 

Process Systems Engineering has played a central role in the simulation/prediction and 

investigation of various biopharmaceutical systems. 

2.3.1 The PAROC Framework & Software Platform  

The development and testing of the computational tools discussed above, requires the 

application of robust procedures that can guarantee the efficiency of the designed 

optimization and control policies. Moreover, from a computational perspective, the 

mathematical models describing such processes are usually highly complex and require 

significant computational force in order to be simulated. In addition, nonlinearities present in 

the model equations might render the optimization and control studies impossible to perform. 

Therefore, prior to the execution of the in-silico experimentation, the design of a detailed 

computational protocol is required that will guarantee seamless development and testing of 

the respective tools. 

 In this work we follow the PAROC (PARametric Optimization and Control) framework and 

software platform (Figure 2.5) for the design and testing of advanced controllers 

(Pistikopoulos et al., 2015). PAROC is a comprehensive framework that allows the execution 

and design of advanced optimization and control studies based on high-fidelity, dynamic 

mathematical models. The framework comprises four distinct steps: (i) high fidelity modeling 

and analysis, (ii) model approximation, (iii) model based control and ‘closed-loop’ control 

system validation and (iv), moving horizon estimation techniques that are discussed in detail 

below. The presented framework has been successfully applied in various case studies for: (a) 

the control and estimation of the anesthesia process (Nascu et al., 2014), (b) the simultaneous 
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design and control of a Combined Heat and Power (CHP) system (Diangelakis et al., 2014), 

(c) the control and estimation of a distillation column (Nascu et al., 2014, Pistikopoulos et al., 

2015) and (c) the development of advanced control strategies of chromatographic systems 

(Papathanasiou et al., 2016a). 

2.3.1.1 High-fidelity Modeling and Analysis 

As mentioned above, mathematical models play a vital role in the in-silico experimentation. 

Following the procedure suggested by Kiparissides et al. (2011a), the first step of the 

framework is dedicated to the formulation and validation of a rigorous, dynamic model, based 

on first principles. Once the model structure has been finalized, the impact of the parameter 

uncertainty on the model output is assessed (Global Sensitivity Analysis, GSA) (Appendix A) 

and the significant parameters are estimated using experimental data (Parameter Estimation, 

PE). The model predictability is also evaluated and the model is used for both open loop 

simulations of the examined system, as well as optimization studies. Within PAROC, the 

actions described here are executed using gPROMS® ModelBuilder (P.S.E, 1997-2016) for 

the model simulation and the optimization, while the GSA and PE are performed using 

gPROMS® ModelBuilder in conjunction with MATLAB®, via the gO:MATLAB interface. 

 

Figure 2.5 The PAROC framework and software platform (adapted from Pistikopoulos et al. (2015)). 
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2.3.1.2 Model approximation 

Usually, the models designed in the previous step contain large sets of Partial and/or Ordinary 

Differential and Algebraic Equations (PDAE and/or ODE) that involve highly nonlinear 

terms, thus leading to computationally expensive simulations. Therefore, it is often necessary 

to simplify the model formulation and replace it with a linear system representation that will 

allow control studies to be successfully performed (Rivotti et al., 2012, Lambert et al., 2013). 

PAROC suggests the model approximation to be realized either via (i) system identification 

or (ii) model reduction techniques. The principal difference of the two methods is that the 

latter is based on formal techniques that reduce the model complexity, while maintaining the 

physical interpretation of its entities, while system identification is based on statistical 

methods that may lead to linear representations without physical meaning. However, both 

methods aim to design a linear, model (state space) that is suitable for the formulation and 

solution of the control problem later on. In this work, we perform the model approximation 

via system identification, using the System Identification Toolbox (ident) from MATLAB®. 

2.3.1.3 Model-based control and Closed-loop validation 

The state space model designed in the previous step is used here for the formulation of the 

control problem, employing receding horizon policies. PAROC suggests the development of 

advanced controllers based on multi-parametric programming techniques (Appendix A). 

Based on the latter, the optimization problem is solved offline thus improving the 

performance of the controller during the online operation (Pistikopoulos, 2000). The control 

formulations are solved within MATLAB® using the Parametric OPtimization (POP) toolbox 

(Oberdieck et al., 2016) designed for the solution of explicit/multi-parametric programming 

problems. As documented by , the POP toolbox consists of three elements: a problem solver, 

Oberdieck et al. (2016) problem generator and a problem library. In the problem solver, a 

variety of algorithms for the solution of multi-parametric programming problems are 

implemented. For the case of multi-parametric-Linear Programing (mp-LP) and multi-

parametric-Quadratic Programing (mp-QP) problems, a geometrical, a combinatorial and a 

connected-graph algorithm is available, as well as a link to the Multi-Parametric Toolbox 

(MPT) (Kvasnica et al., 2004). For the case of multi-parametric-Mixed Integer Linear 

Programing (mp-MILP) and multi-parametric-Mixed Integer Quadratic Programing (mp-

MIQP) problems, a decomposition-based algorithm as well as an exhaustive enumeration 

algorithm is implemented, combined with four different comparison procedures. The problem 

generator enables the random generation of test problems for the four problem classes, which 

can be solved. It is important to note that not only the numerical values of the problems are 
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randomly generated, but also the sparsity of the matrices generated. This aims at avoiding the 

generation of structurally similar problems. Lastly, the problem library consists of 4 test sets, 

which have been used to benchmark the solution algorithms within POP. For more 

information on the POP toolbox and multi-parametric Model Predictive Control (mp-MPC) 

framework the reader is referred to Oberdieck et al. (2016), Pistikopoulos et al. (2015) and 

Appendix A. Following the solution of the control problem, the designed controllers are 

tested in-silico against the process model. This is a ‘closed-loop’ procedure, where the 

dynamic model is simulated in tandem with the controller and the performance of the latter is 

assessed. For the closed-loop validation we use gPROMS® ModelBuilder for the model 

simulation in tandem with MATLAB®, utilizing the gO:MATLAB interface. 

2.3.1.4 Moving Horizon Estimation (MHE) 

The framework allows also moving horizon estimation techniques to be applied, where 

processes are noisy or there is limited amount of feedback information available. In those 

cases, Kalman filter is commonly applied (Welch and Bishop, 2001), however, the use of 

constrained estimation techniques such as the moving horizon estimation (MHE) can lead to 

significant improvements of the estimation result by adding system knowledge (Rao, 2000, 

Darby and Nikolaou, 2007). MHE is an estimation method that obtains the estimates by 

solving a constrained optimization problem given a number, or horizon, of past 

measurements. It has the ability to obtain both the state information and the noise sequence 

over the horizon (Rawlings and Mayne, 2009). It should be noted that for the purposes of this 

work MHE techniques are not employed. 

 

 

Figure 2.6 Software integration utilized by the PAROC framework and software platform.  
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1. *The mathematical model of the MCSGP process presented in this chapter has been 
developed and validated by the Morbidelli Group (ETH Zürich). The model is also presented 
in Appendix A of Papathanasiou et al. (2016). Advanced control strategies for the 
multicolumn countercurrent solvent gradient purification process. AIChE J., 62: 2341–2357. 
doi:10.1002/aic.15203s 
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 Introduction 3.1

Downstream processing plays a vital role in the production of mAbs. Industrial production of 

mAbs involves a series of filtration/purification steps aiming to achieve the required purity 

levels (Chon and Zarbis-Papastoitsis, 2011). In particular, the bioreactor harvest is initially 

clarified with filtration/centrifugation and is further processed by a sequence of 

chromatographic steps until the desired quality is reached. Firstly, a capture step is applied 

where the harvest volume is reduced and the majority of the impurities are removed. Usually, 

another three chromatographic steps follow that are responsible for viral inactivation/filtration 

and the formulation of the product in the final concentration (Kelley, 2009a, Chon and Zarbis-

Papastoitsis, 2011). The chromatographic steps are usually based on protein A or ion 

exchange technologies and there are cases, where multiple purification cycles per harvest are 

required, thus leading to a combination of these methods. The downstream process is 

finalized with a polishing step, where human pathogenic agents are removed (Gottschalk, 

2005, Chon and Zarbis-Papastoitsis, 2011).  

Industrial downstream manufacturing utilizes multiple batch unit operations, designed to 

handle feeds of 2-5 g/L (Gronemeyer et al., 2014). Industrially standardized procedures 

ensure products of high purity, limiting, however, the amount recovered in the end of the 

process cycle. Current separation techniques can process average amount of harvests, 

constraining optimization efforts to increase product volumes in the upstream. However, 

recent advances in the upstream lead to increased titers (over 5 g/L), challenging the 

purification process even more. As a result, the production cost has shifted from the upstream 

to the purification process as novel equipment and processes are required in order to be able 

to handle the increased product volumes resulting from the upstream (Lim et al., 2007, 

Schaber et al., 2011). Recent figures indicate that downstream processing is associated with 

80% of the total cost of the bioprocess (Hunt et al., 2001, Girard et al., 2015) and currently 

acts as a limiting factor for the optimization of the upstream. 

Improvements in cell culture titers, along with new regulatory directives (such as QbD and 

PAT) and the emergence of novel therapeutics of lower production costs (e.g. biosimilars) 

(Cramer and Holstein, 2011) urge the current state-of-the-art in downstream processing 

towards ground-breaking changes. In this direction several advances have been made both in 

the materials used, as well as in the operating strategies of purification processes. Several 

works have demonstrated chromatographic separation processes of increased capacity, 

achieved by either changes in the purification procedure or the use of novel technologies (e.g. 
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single use technologies) (Shukla and Gottschalk, 2013). Although the recovery yield is one of 

the dominant factors that characterize the efficiency of downstream processing, it is not the 

only criterion. Particularly in the case of mAbs, process efficiency is also evaluated by the 

purity of the end-product that is coupled with strict regulations (Kurz, 2007). The combined 

objective of high purity and yield that follow a reverse analogy, gave rise to novel 

chromatographic separation processes of semi-continuous nature, such as Periodic Counter-

Current Chromatography, the Multicolumn Countercurrent Solvent Gradient Purification 

Process and the Continuous Countercurrent Tangential Chromatography (Zydney, 2016). The 

shift from batch to semi-continuous and eventually to continuous processing in 

chromatographic processes offers the opportunity for standardized procedures, common for 

all biopharmaceutical products and therefore stable product quality. In addition, the 

continuous nature promises significant reduction in equipment size and consequently in the 

capital costs (Konstantinov and Cooney, 2015). Last but not least, batch processing is 

characterized by several hold up steps that risk product quality, while in continuous operation 

those are minimized and therefore product quality is significantly improved. 

Evidently, a shift from batch to continuous operation necessitates the current state-of-the-art 

to be redesigned both in terms of equipment, as well as operating strategies. Additionally, 

novel control and monitoring technologies are required in order to ensure that the process will 

run uninterrupted at optimal levels.  

This chapter is organized as follows: Section 3.2 illustrates the basic principles of 

chromatographic separation processes. Types of mathematical models, as well as the 

operating modes used are discussed here. Section 3.3 is particularly focused on the 

description of the Multicolumn Countercurrent Solvent Gradient Purification process, while 

section 3.4 discusses main challenges and relevant works on the optimization and control of 

chromatographic systems. 
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 Chromatography 3.2

3.2.1 Basic principles 

Downstream processing can be defined as the integration of product isolation and purification 

in a single process that consists of logical sequenced steps (Jagschies, 2000). The aim is to 

extract the desired product (usually a protein or a peptide) from a mixture of biological 

products that resulted from the upstream process. Therefore, process planning is essential in 

order for the product to meet the quality criteria. A rigorous design of the downstream 

strategy, optimization of the process parameters and process scale-up from the laboratory to 

industrial scale is required (Jagschies, 2000). Since the early 1970s chromatography has been 

widely used for the purification of several therapeutic agents, such serum proteins (Curling, 

1980). Chromatographic purification usually constitutes the final step of the downstream 

purification process and therefore it is highly affected by the earlier steps such as the selection 

of raw materials and the product isolation. The selection of the appropriate chromatographic 

process depends mainly on the composition of the mixture subjected to separation. 

Chromatography has proved to be a powerful tool when it comes to the isolation of the 

desired product from a mixture that contains a broad range of compounds (Guiochon, 2012). 

The separation process utilizes the differences in the equilibrium constants of the components 

in a diphasic system and elutes each component in separate, distinct time frames (elution 

bands). In principle, a chromatographic system consists of a mobile and a stationary phase 

that need to be in relative motion and excellent contact, for the concentrations in the 

stationary phase to be close to their equilibrium values (Guiochon, 2012). The mixture 

components equilibrate between the mobile and the stationary phase and as the former 

percolates through the second, rapid mass transfer takes place, driving the components to the 

column exit. Table 3.1 summarizes the main chromatographic techniques used and their 

selection method. 
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Table 3.1 Chromatographic methods and their separation criteria. 

Method Separation Criterion  

Gel filtration Particle size 

Ion exchange Particle charge 

Hydrophobic interaction 

& reversed phase chromatography 
Hydrophobicity 

Affinity chromatography Biospecific interaction 

 

In this work we focus on the development of control strategies of a chromatographic 

separation process based on ion-exchange (IEX) technologies. In bioprocessing, IEX 

chromatography is performed for the removal of both process and product related impurities. 

While IEX chromatography can also be applied in capture steps (Miesegaes et al., 2012) it is 

mainly used for polishing applications (Carta and Jungbauer, 2010). With the pH being in 

between the pI of the antibody and the pI of most HCPs, a good removal of HCPs can be 

achieved. Additionally, aggregates can also be removed. In particular: 

• Cation-exchange polishing is often performed in bind-elute mode, aiming at the 

removal of HCP, DNA as well as aggregates and fragments (Carta and Jungbauer, 

2010, Zhang et al., 2014b, Khalaf et al., 2016). 

• Anion-exchange polishing is performed in flow-through mode, with impurities such 

as DNA and HCP adsorbing on the resin, while the target protein is collected in the 

flow-through (Carta and Jungbauer, 2010, Voitl et al., 2010).  

In IEX, the columns are packed with ion-exchanger particles that contain charged ion-

exchange groups that are attached to a solid matrix with covalent bonds. The exchangers can 

be either cation or anion exchangers (Jandera and Lembke, 2000). The isolation and 

concentration of the desired component is realized through the selective adsorption of the 

sample on the chromatographic medium (Jagschies, 2000). As a general rule, the efficiency of 

chromatographic separation processes is assessed by the final product recovery and purity. 

However, yield and purity follow a reverse analogy and therefore there is an inherent trade-

off during the optimization of the process. Thus, the optimal point should be identified, where 
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the process is characterized by maximum product recovery, while meeting the purity 

constraints. 

!"#$%&' !"#$%"&' =  !"#$%& !" !"#$%&' !" !ℎ! !"#$%# !"#$%&' !"#$%&
!"#$%& !" !"#$%&' !" !ℎ! !""# !"#$%&  

!"#$%&' !"#$%& =  !"#$%& !" !"#$%&' !" !ℎ! !"#$%# !"#$%&' !"#$%&
!"#$% !"#$%& !" !ℎ! !"#$%&'('")*+  

 

3.2.2 Types of chromatography & Mathematical modeling 

In the attempt to understand the dynamics of chromatography Guiochon (2012) distinguishes 

chromatographic processes based on the following criteria: 

(i) The equilibrium isotherm: The process can be characterized either as linear on 

nonlinear based on the profile of the isotherm. Usually, in analytical applications the 

volume of the samples is small or they are highly diluted and therefore any curvature 

on the isotherm can be ignored, thus classifying the process as linear. However, in the 

case of concentrated solutions (or preparative chromatography) the effect of the 

aforementioned curvature can no longer be neglected (nonlinear chromatography). 

(ii) Influence of axial dispersion & resistance mass transfer on band profiles: Neglecting 

these phenomena, leads to an ideal chromatography model, where infinite column 

efficiency is assumed. Alternatively, considering the dispersion in the direction of the 

concentration gradient as well as the fact that equilibration between the mobile and 

the stationary phases is not instantaneous, results into nonideal chromatographic 

models. 

The classification described above results into four distinct theories that are illustrated in 

Table 3.2. With respect to mathematical modeling, all the combinations provide relatively 

simple solutions with the exception of nonideal, nonlinear chromatography, where only 

numerical solutions are possible (Guiochon, 2012).  
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Table 3.2 Chromatographic theories and their main assumptions. 

 Linear Nonlinear 

Ideal 

Component pulses move 
independently from one 
another, without changes in 
their profiles. 

Influence of nonlinear phase 
equilibrium thermodynamics 
is considered. Individual 
elution profiles cannot be 
obtained independently. Final 
outcome depends on the 
amount of components 
present in the mixture. 

Nonideal 

Influence of kinetic 
phenomena on band profiles 
is considered. Pulses move 
independently at constant 
velocity. 

Column efficiency and 
nonlinear behavior both 
taken into consideration. 

 

Aiming to describe and understand the phenomena taking place during chromatographic 

separations, several types of models have been developed. The models are classified into two 

main theory categories: (i) The Theory of Linear Chromatography and (ii) The Theory of 

Nonlinear Chromatography. Based on the above, models that fall in the first category, neglect 

any curvature in the isotherm, while the others consider phase equilibrium thermodynamics. 

Table 3.3 summarizes the main model types for the two categories. 

Apart from plate and statistical models that are found in linear chromatography, the majority 

of chromatographic models is based on the general mass balances for the different 

components along the column (Guiochon et al., 1994, Guiochon, 2012, Nicoud, 2015), 

combined with mass-transfer expressions (Gritti and Guiochon, 2012a) and an appropriate 

adsorption isotherm (Guiochon et al., 1994). Regarding the mass transport from the liquid 

bulk to the adsorption site, various expressions, which are based on different assumptions, can 

be found in the literature. These concepts are, in order of increasing complexity, 

instantaneous equilibrium (Varma and Morbidelli, 1997), lumped mass-transfer coefficient 

(Carta and Jungbauer, 2010), external film diffusion (Gritti and Guiochon, 2012b) and 

discretization along the pore length (Guiochon et al., 1994), which can also be combined with 

discretized pore models (de Neuville et al., 2013). Therefore the choice of the right model 

equation set and its associated assumptions depends highly on the examined system, its 

dynamics as well as the purpose that the process model is called to meet. 
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Table 3.3 Mathematical models in chromatography and their key assumptions (adapted from Guiochon 
(2012)). 

Model Key Assumptions 

Plate Models 

(Empirical) 

Craig Model Batch operation 

Martin-Synge Model Continuous operation 

Statistical Models 

Various individual contributions in 

the mechanism of band broadening 

and column efficiency are related. 

Gaussian band profiles 

Equilibrium-Dispersive Model 

Infinite fast mass transfer across the 

column with finite extent of axial 

dispersion 

Lumped Kinetic Model 

Relates the variation of the local 

concentration of solute in the 

stationary phase and the extent of the 

local deviation from equilibrium 

through a kinetic equation 

The General Rate Model 

Accounts for all possible 

contributions in the system with 

respect to mass transfer kinetics  

Ideal Model of Chromatography Considers infinite column efficiency 

Moderate Column Overload 
Band profiles depend on the initial 

curvature of the isotherm 

 

3.2.3 Continuous chromatography 

Chromatography is an expensive separation technique and thus it is preferred when other 

methods are not adequate for the separation of high-value molecules. Particularly the market 

of high-value biologics (e.g. peptides, proteins and antibodies) uses solvent gradient batch 

chromatography for the separation and purification of the targeted product (Aumann and 

Morbidelli, 2007). The advantages of continuous processes, such as higher purity, less solvent 
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consumption and increased productivity, make continuous, countercurrent separation 

processes more attractive compared to batch. One of the most popular continuous 

chromatographic processes is the Simulating Moving Bed (SMB).  

Since its emergence in 1960’s SMB has gained attention and has been applied in numerous 

industries (e.g. sugars, petrochemicals, pharmaceuticals). SMB is a multi-column process, 

where the columns are connected to each other creating a circulation loop (Kawajiri and 

Biegler, 2006b). This technique is suitable for the separation of two-fraction mixtures and it is 

highly attractive as it reaches high purity only with partial separation of the two fractions. 

However, in cases where the mixture needs to be separated in three fractions with the desired 

component to be the intermediate (weak impurities, targeted product and strong impurities), 

the SMB process, which separates the mixture in only two fractions, is no longer sufficient. A 

feasible solution would be the consecutive use of two SMBs, however this would increase the 

cost of the process significantly. In this direction Aumann and Morbidelli (2005) designed 

and patented the MCSGP process, for the continuous separation of multicomponent mixtures 

with three (or more) components. The basic principles and the operation of MCSGP are 

described in Section 3.3.  

 The Multicolumn Countercurrent Solvent Gradient Purification 3.3

Process (MCSGP) 

MCSGP is a continuous, multicolumn separation process used for the purification of various 

biomolecules. The process is based on the principles of SMB, utilizing at the same time the 

benefits of gradient chromatography. The initial design was for a three-fraction separation 

process with linear solvent gradients. The gradients can also be step, piecewise linear or 

nonlinear (Aumann and Morbidelli, 2007). The principle of MCSGP was first presented by 

Ströhlein et al. (2006a), while in 2007, Aumann & Morbidelli described the operation of the 

six-column process and presented the determination procedure of its parameters patented in 

2006 (EP 05405327.7). The process was then reduced to a three-column, semi-continuous 

system (Aumann and Morbidelli, 2008). The latter was expanded to a setup consisting of four 

columns, where the fourth column can be used either for loading (Müller-Späth et al., 2010a) 

or for different types of cleaning in place (CIP) (Müller-Späth et al., 2009). The latest 

development is the twin-column setup (Krättli et al., 2013b, Müller-Späth et al., 2013). The 

MCSGP process has been successfully applied for the separation of several mixtures.  
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Table 3.4 Main applications of the MCSGP process. 

Application Reference 

6-column system for the purification of industrial stream containing 
46% Calcitonin 

Aumann and 
Morbidelli (2007) 

Peptide Purification using the Multicolumn Countercurrent Solvent 
Gradient Purification (MCSGP) Process (ChromaCon, ETH, 
Novartis) 

Aumann et al. (2009) 

3-column system for the separation of three mAb charge variants Müller-Späth et al. 
(2008) 

MCSGP as capture step for mAb purification from clarified cell 
culture supernatant 

Müller-Späth et al. 
(2010a) 

3-column system used for the purification of three commercially 
available mAbs (Bevacizumab, Trastuzumab, and Cetuximab) 

Müller-Späth et al. 
(2010b) 

Purification of a synthetic peptide using multi-column 
chromatography (Contichrom® & MCSGP) (ChromaCon, Bristol-
Myers Squibb, KAI Pharmaceuticals) 

Ströhlein et al. (2012) 

Purifying Common Light-Chain Bispecific Antibodies: A Twin-
Column, Countercurrent Chromatography Platform Process 
(ChromaCon & Merus) 

Müller-Späth et al. 
(2013) 

Multifraction separation MCSGP (from three to four fractions) Krättli et al. (2013a) 

Currently, purification equipment based on MCSGP is commercially available by 

ChromaCon AG and LEWA Bioprocess Technology Group and has been used by several 

manufacturers (e.g. Bristol-Myers Squibb, Clariant, Merck Serono, Novartis) in case studies 

presented in Table 3.4. The work presented in this thesis is based on a case study separation 

performed using the ContiChrom HPLC unit used for the separation of a monoclonal antibody 

from product-related impurities (ChromaCon, 2017). 

3.3.1 The twin-column MCSGP process for ternary mixture separations 

Let us consider here a general case where a ternary mixture is fed in a batch mode to the setup 

and the separation is achieved by the application of a modifier gradient. From thereafter, the 

terminology suggested by Ströhlein et al. (2006a) is adapted, according to which impurities 

characterized by weak adsorptivity are lumped into one fraction called weak impurities (W), 

the product (P) that corresponds to the targeted compound and the strongly adsorbing 

impurities are lumped under the term strong impurities (S). Elution of the different 

components is performed by a linear modifier gradient, which decreases the adsorptivity of 
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the different components. Figure 3.1 illustrates a simplified chromatogram for such a 

separation, where five stages can be identified: 

 

Figure 3.1 Elution profile in gradient chromatography. 

(i) S1: The column elutes weak impurities (W). 

(ii) S2: A mixture of weak impurities and product (P) is eluted. 

(iii) S3: The targeted product exits the column. 

(iv) S4: A mixture of strong impurities (S) and product (P) is eluted. 

(v) S5: Strong impurities are removed from the column.  

The dotted line illustrated in Figure 3.1, represents the gradient applied to the modifier 

throughout one process cycle. The efficiency of the process is evaluated based on the final 

purity and recovery yield of the targeted product. However, the latter is eluted at S3 and can 

be found in mixtures with W and S, during S3 and S4 respectively. Therefore, it is necessary 

to find the optimal operating procedure that will prolong the elution window of the targeted 

product (S3), maintaining high product purity (minimizing the amount of impure fractions). 

On that end, the internal recycle of the impure mixture fractions in the MCSGP process, 

increases the increases the recovery yield and guarantees high product purity. 

The twin-column MCSGP setup comprises two identical chromatographic columns based on 

IEX principles (Krättli et al., 2013b). During the process cycle, the columns alternate between 

batch and interconnected mode, with the latter facilitating the internal recycle of the impure 

stream fractions. In particular, during the first interconnected (continuous) phase (I1), column 

2 starts empty and equilibrated (Figure 3.2). Simultaneously, the outlet flow of column 1 

enters column 2 mixed with an additional fraction of adsorbing eluent (E). After the 

completion of I1, the two columns start operating in batch mode (B1 phase), where the feed 

(F) is introduced to column 2 and the product is eluted from column 1. In I2 phase the 

recycling stream containing the impure fraction of product and strong impurities exits column 
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1 and enters column 2. By the end of I2 phase, column 2 starts eluting pure W (B2 phase). B2 

phase finishes when the overlapping region of W and P reach the end of column 2. At this 

point the first switch (Switch 1) has been completed and the two columns swap positions. 

Therefore, column 1 will go through the recycling and feeding tasks as described above, 

while column 2 will continue with the gradient elution (Krättli et al., 2013b). 

 

Figure 3.2 The twin-column MCSGP setup (Krättli et al., 2013b, Papathanasiou et al., 2016a). 

3.3.2 Mathematical modeling of the MCSGP process 

Here we focus on the twin column system, used for the separation and purification of an 

antibody from a cell culture mixture. Based on IEX technology, the MCSGP process is 

described by a PDAE model that was firstly presented by Müller-Späth et al. (2008). The 

model is based on lumped kinetics and considers: 

(i) Weak adsorbing mAb variant: antibody fragments. The latter can be of various types 

(AbsoluteAntibody, 2017), however for the purposes of this work they are lumped 

thereafter under the term weak impurities (W). 

(ii) Product variant: mAb (P) 

(iii) Strong adsorbing impurities: antibody aggregates. Aggregates can be dimers or of 

higher order. In general, dimers have, due to their structure, a similar adsorption 

behavior to the target protein, and represent therefore the most challenging strong 

adsorbing impurity (Cordoba-Rodriguez, 2008, Paul and Hesse, 2013). For the 

purposes of this work aggregates are lumped and considered as a single impurity 

under the term strong impurities (S). For the controller development a correlation 

between input and output variables is required, however without absolute values as 

explained in Section 3.3.2.1. 
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Appendix B presents the process model that describes the events taking place during 

separation. The model uses the differential mass balances for the calculation of the 

component concentrations as suggested by (Guiochon et al., 1994, Guiochon, 2002) and uses 

equations commonly encountered in liquid chromatography (Appendix B). Usually, the mass 

balance equation of chromatography is characterized by a series of assumptions that 

accompany the majority of such models and as reported by Guiochon et al. (1994) they do not 

limit significantly the range of validity of the derived mass balance equation set. 

(i) The column is assumed to be radially homogeneous. There are studies discussing the 

influence of column heterogeneity on the elution profiles (Miyabe and Guiochon, 

1999), however radial homogeneity is encountered in most of the developed models 

and is a good approximation for well-packed columns, as they are used in industry.  

(ii) In preparative chromatography, the compressibility of the mobile phase is almost 

always neglected. That characterizes the majority of mathematical models in 

preparative chromatography, for aqueous solutions at pressures between 1-5 bar, this 

is a good approximation. 

(iii) As shown by Martin et al. (1973), the diffusion coefficients in liquids do not depend 

highly on pressure, thus the axial dispersion coefficient is considered to remain 

constant.  

(iv) In liquid chromatography, the differences between the partial molar volumes in the 

two phases do not exceed a few percentage (Riedo, 1982, Kováts, 1985), therefore 

they are considered to be the same.  

(v) In liquid chromatography it usually assumed that the solvent or the weak solvent (in 

the case of a mixed mobile phase) is not adsorbed (Kováts, 1985) one could exclude 

its mass balance from the equation set.  

(vi) Thermal effects are neglected. In order for all the physico-chemical parameters to 

remain constant, the column is assumed to operate under constant conditions (i.e. 

temperature, pressure, mobile phase flow rate). While for reversed-phase systems, the 

performance depends highly on the temperature; this is not the case for IEX 

chromatography. 

The mathematical model used to describe the events taking place during the purification of 

the mAb using the MCSGP process has been previously developed and validated by the 

Morbidelli Group (ETH Zürich) (Ströhlein et al., 2006a, Ströhlein et al., 2006b, Melter et al., 

2007, Melter et al., 2008). The model equations are described in detail in Appendix B, while 

here an overview of the process model structure is given. The model comprises two main 

parts: (a) the equation set describing the mass balances for the mixture components & the 
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isotherms and (b) the mass balances around the columns. The latter is variable, depending on 

the system configuration (Figure 3.2) and is explained below (sections 3.3.2.3 and 3.3.2.4). 

3.3.2.1 Chromatography mass balance and isotherms 

The model used in this work, is the linear driving force model with a lumped mass-transfer 

coefficient, which can also be expressed as a function of the adsorbed amount (Ng et al., 

2014, Steinebach et al., 2016a). The model uses a competitive bi-Langmuir isotherm to 

describe the adsorption behavior of proteins (Guiochon, 2002, Ströhlein et al., 2006a). 

Generally, in ion-exchange chromatography (Kopaciewicz et al., 1983), the most commonly 

used concepts are: (a) the multi-component Langmuir isotherm (Carta and Jungbauer, 2010), 

(b) the steric mass-action law (Brooks and Cramer, 1992) and (c) colloidal models (Guélat et 

al., 2013). A third consideration in biomolecule separation is the idea of lumping several 

components into one pseudo-component (Forrer et al., 2008, Pfister et al., 2016), which 

allows faster simulations while still capturing the main trends. In the model used in this work, 

a relatively simple structure is adopted, which however contains all relevant mass-transport 

and adsorption effects and their impact on the process performance. 

There is a variety of models that can be found in the open literature based on the separation 

type and operating mode. Those may consider a series of different assumptions (e.g. axial 

dispersion, mass transfer limitation), initial/boundary conditions and/or level of detail (e.g. 

modeling at the pore level). In that context and based on the separation dynamics, the model 

developer can consider: (a) different expressions for the isotherms (Gerontas et al., 2013, 

Close et al., 2014a, Ng et al., 2014, Kumar et al., 2015), (b) monitoring the concentration at 

the pore level (Küpper et al., 2009, Steinebach et al., 2016b), (c) modeling the distribution of 

analytes based on the ion charge (in ion exchange chromatography) (Drgan et al., 2009) or (d) 

follow a more macro-scale approach such as the one presented by Wang et al. (2002), in cases 

where the model does not require a great level of detail. There are also other approaches such 

as the one presented by Guzlek et al. (2010), where the chromatographic system is resembled 

to and modeled as a series of continuous-stirred reactors. The aforementioned cases, along 

with many more contributions in the open literature, present the development of mathematical 

models that adequately describe the systems of interest. Their principal differences usually lay 

on the level of detail they monitor, as well as the assumptions upon which the equation sets 

are built. Both those elements however are product of the purpose of use of the developed 

model. In principal, chromatographic models should be designed based on the system 

dynamics, considering however the purpose of their end-use. Models that are characterized by 

high level of mathematical complexity and detail can prove to be valuable when it comes to 
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studies on the interactions taking place within the chromatographic system. Nevertheless, 

such rigorous models tend to involve a large number of parameters that require significant 

amount of experiments in order to be determined. In addition, such models may be used for 

further computational studies (such as optimization and control) can potentially require high 

computational effort. As a result the trade-off between model rigor and computational 

demand needs to be assessed based on the purpose for which the mathematical model is 

developed (Dünnebier et al., 1998).  

Particularly in cases where the purpose of the study is the development of control schemes 

and estimation techniques (Dünnebier et al., 2001, Engell and Toumi, 2005, Degerman et al., 

2007, Küpper et al., 2009, Behrens et al., 2014, Holmqvist and Magnusson, 2016) the 

mathematical model is expected to provide accurate information on the input-output 

interaction. Usually, models of moderate complexity are preferred as they are able to describe 

the process dynamics without excessive computational requirements (Dünnebier et al., 1998). 

Furthermore, in the case of model-based control studies, the process models are often 

simplified in order to meet the specifications required for the control problem formulation as 

discussed in Chapter 2. Such procedures can be realized through linear state space modeling 

techniques and/or complete discretization followed by linearization, leading subsequently to 

simplified systems that look into the input/output interactions. In this direction, the model 

presented in Appendix B, which has been previously presented and validated in several works 

(Ströhlein et al., 2006a, Aumann and Morbidelli, 2007, Aumann et al., 2007, Stroehlein et al., 

2007, Aumann and Morbidelli, 2008, Müller-Späth et al., 2008, Aumann et al., 2009, 

Grossmann et al., 2010, Müller-Späth et al., 2010a, Aumann et al., 2011, Muller-Spath et al., 

2011), is considered to adequately describe the effects taking place in the chromatographic 

system that are of interest for the development of the control schemes presented here (Chapter 

4 and Chapter 5).  

3.3.2.2 Mass balances around the columns 

The model discussed above and presented in Appendix B describes the separation dynamics 

within the columns and does not depend on the system configuration that is the connection of 

different columns in a multi-column process (interconnected/batch, Figure 3.2). However, 

based on the system configuration, the mass balances around the columns may differ within 

the process cycle. Subsequently, the design equations of the system for the two operating 

modes are as follows: 
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3.3.2.3 Batch mode 

During batch operation (Figure 3.3a) the stream entering the column is not mixed with any 

other stream. Therefore we simply assume that anything that enters the column, exits at 

constant flow rate (Equation 3.1) for both columns. 

!!,!" ∙ !!,!" = !!,!"# ∙ !!,!"# 
Equation 3.1 Column mass balance during batch 
operation 

Where !!,!"  (mg/mL) and !!,!"#  (mg/mL) represent the inlet and outlet concentrations of 

component i, while !!,!" (mL/min) and !!,!"# (mL/min) represent the inlet and outlet flow rate 

respectively. 

3.3.2.4 Interconnected (continuous) mode 

In the continuous mode the two columns operate under a different strategy. The column on 

the right side (Figure 3.1) is not affected by the operation of the column on the left and 

therefore its mass balance remains the same as in batch (Equation 3.1). On the other hand, the 

elution volumes from the column in the right position are mixed with additional fractions of 

modifier (Figure 3.3b) and enter the column on the left. Therefore the mass balance for the 

latter is described by Equation 3.2 and Equation 3.3. 

 

Figure 3.3 Column configuration under: (a) batch and (b) interconnected operation. 
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!!,!" =
!!,!"" ∙ !!,!"" + !!,! ∙ !!,!

!!,!"
 

Equation 3.2 Mass balance around the column 
receiving the internal recycle stream during 
interconnected operation. 

!!,!" = !!,!"# = !!,!"" + !!,! 
Equation 3.3 Inlet flow rate of the column receiving 
the internal recycle stream during interconnected 
operation. 

Where !!,!"" (mg/mL) and !!,! (mg/mL) represent the additional and the internally recycled 

concentrations of component i, while !!,!"" (mL/min) and !!,! (mL/min) represent the flow 

rates of the additional and the internally recycled stream respectively. !!,!" (mL/min) and 

!!,!"# (mL/min) represent the inlet and outlet flow rate respectively 

 

 Optimization and Control of Chromatographic Systems 3.4

3.4.1 Optimization under Cyclic Steady State (CSS) 

Similarly to Pressure Swing Adsorption (PSA) systems, chromatographic systems belong to 

the family of periodic systems that constitutes a challenging type of models to optimize and 

control. Their periodic nature and the PDAE model that describes them challenge the 

development of advanced optimization and control studies on such systems. Due to their 

periodic nature, cyclic processes require significant computational effort in order to be 

simulated and optimized. For this reason there have been many studies reported in the 

literature aiming to accelerate the acquisition of cyclic steady state (CSS). This issue has been 

mostly studied for PSA systems, the dynamics of which resemble continuous, multi-column 

chromatographic processes. Two main approaches are presented below: 

3.4.1.1 Direct dynamic simulation 

Unger et al. (1997) proposed a direct dynamic simulation approach. According to this 

method, the numerical procedures aim to obtain the CSS directly, without solving the entire 

PDAE model. This is realized by posing a point boundary condition (Equation 3.4) that 

requires the initial and the final state of the system within a cycle to be the same.  

!(!!"!#$%&'$)! −  !(!!)!  ≤  !""!   Equation 3.4 Boundary condition posed to enforce 
CSS in periodic systems.  

Here, k is the iteration counter, !(!!)!  represents the initial state of the system, 

!(!!"!#$%&'$)! is the state of the system after a cycle and !""! shows the development of 

!(!!"!#$%&'$)! −  !(!!)!  of cycles computed. Consequently, if a very small !""! is chosen 
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then a very large number of cycles has to be computed in order for Equation 3.4 to be 

satisfied (Unger et al., 1997). Direct dynamic simulation is a robust and relatively simple 

approach, since there is only need for the solution of a system of differential equations (Unger 

et al., 1997, Dünnebier et al., 2000). On the other hand, only stable cycles can be found and 

the convergence is determined by the properties of the system at hand. 

3.4.1.2 Global discretization 

Another approach to calculate CSS has been presented by Nilchan and Pantelides (1998). 

This global discretization method, suggests the discretization of model equations both in 

space and time. The resulting system will be a large nonlinear algebraic system and can be 

solved by an Nonlinear Programming (NLP) solver. Equation 3.4 is included in the general 

model formulation aiming to enforce CSS. The challenge of this method, apart from the 

spatial initial guess, is that it requires an initial guess for the temporal profiles of the variables 

that needs to be obtained from the results of dynamic simulations, close to the CSS.  

 

Table 3.5 Direct dynamic simulation and full discretization approach used in literature for the achievement 
of CSS. 

Approach Reference 

Maximization of feed velocity in SMB (s.t purity and 
recovery constraints). Comparison of simultaneous, single-
discretization approach (Jiang et al., 2003) and the global 
discretization method (Nilchan and Pantelides, 1998). Full 
discretization does not increase the optimal throughput 

Kawajiri and Biegler (2006b) 

Nonlinear adsorption profile of SMB renders the application 
of full-discretization approaches difficult. Very fine grid 
required thus making the problem stiff. 

Dünnebier et al. (2000) 

Maximizing product recovery under purity constraint in 
SMB, using Equation 3.4 for the CSS.  

Klatt et al. (2000) 

Traditional dynamic optimization approach for product 
recovery optimization in a two-bed PSA system, using 
Equation 3.4 for the CSS. 

Khajuria and Pistikopoulos 
(2013) 

Modeling & optimization of reversed-phase purification 
system using indirect optimization method, aiming to 
maximize productivity under purity constraints.  

Degerman et al. (2007) 
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Another important issue is the specification of the grid in the time domain, which for stiff 

differential equations results in extremely large systems, due to very fine discretization. 

Depending on the dynamics and special characteristics of the system, the appropriate 

optimization method needs to be chosen in order to obtain the optimal operation profile 

without requiring extensive computational force. Table 3.5 illustrates some of the 

contributions using the above-described methods for the optimization of cyclic processes. 

 

3.4.2 Control of chromatographic systems 

The definition of the objective function and the operating constraints is of key importance for 

optimization and/or control studies of any system. Chromatographic systems fall in the class 

of multi-objective optimization, where we are interested in maximizing both product purity 

and yield. Other objectives might be the minimization of production cost and/or production 

time (Table 3.6). A detailed review of the relevant literature can be found in Engell and 

Toumi (2005). Besides the objective function, another key aspect in the control studies of 

chromatographic processes is the selection of the control variables. The quality and quantity 

of the final product can be affected by various parameters, however the following aspects paly 

the most vital role in gradient chromatography: 

(i) The initial and final concentrations of the eluent that facilitates the separation of the 

mixture components (modifier): The modifier gradient is responsible for the quantity 

of the eluting fractions. 

(ii) The feed flow rate: The choice of the feed flow rate and therefore the flow rate within 

the column determines the speed that the components travel in the column and 

therefore the speed of the elution. 

(iii) Switching times: In multi-column processes, the time that the mixture spends in each 

configuration can significantly affect the quality of the targeted product.  

In addition to the above, the operational system constraints need to be satisfied at all times. Usually they 
consider: the maximum flow rate that can be applied to the system and minimum thresholds for the purity 
and recovery of the final product. Constraints for temperature and pressure could also be included but their 
effects are neglected in liquid chromatography (Guiochon et al., 1994). Their periodic nature and the 
complex mathematical models that describe those systems render the control of chromatographic processes 
a challenging task.  
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Table 3.7 summarizes some of the contributions focusing on the control of chromatographic 

separation processes, using different techniques in order to ensure the design of robust control 

strategies. Significant developments are required in order to facilitate full automation of 

current chromatographic processes. To the extent of the author’s knowledge, currently there 

are no standardized procedures for the control of chromatographic columns and their 

operation significantly resides on statistical tools and experimentally validated processes.  

Manufacturers offer various solutions that allow frequent sampling and feedback 

measurements. For example, UV/VIS detectors are commonly used in chromatography and 

offer on-line measurements (within seconds) on the elution profiles of the mixture 

components based on UV-adsorption. However, such systems measure at a single 

wavelength, which does not allow direct correlation to product purity. Therefore, 

complementary information is required that will more accurately determine the composition 

of the monitored stream. The latter is achieved by at-line HPLC units that can be coupled with 

automated sampling devices, to provide the required information. Such measurements can be 

achieved within reasonable time limits and within the process cycle time (Grossmann, 2009). 

Moreover, a variety of offline tests (such as chromatography and immunoassays) are available 

and ensure that the final product specifications are met (for more information the reader is 

referred to Chapter 2). Significant advancements have been made towards the automation and 

simplification of the operation that have lead to the availability of various software tools, such 

as UNICORN (GE Healthcare), BioSC® (Novasep), PurityChrom Bio (Knauer) and 

ChromIQ (ChromaCon AG) that allow process monitoring and results analysis.  
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Table 3.6 Optimization objectives often used for chromatographic processes (an indicative list of 
contributions). 

Objective function Reference 

Maximization of the production rate. 
Natarajan et al. (2000), Gallant (1996), Felinger 
and Guiochon (1992), Golshan and Guiochon 

(1990)  

Increase of yield (within a particular 
range). 

Jandera et al. (1998) 

Maximization of the production rate times 
yield. 

Felinger and Guiochon (1996) 

Minimization of the production cost. Gallant et al. (1996) 

Maximization of process efficiency. Golshan-Shirazi and Guiochon (1991) 

Maximization of the specific production 
rate. 

Felinger and Guiochon (1993) 

Dynamic optimization for the 
maximization of the amount of purified 
product, subject to purity and yield 
constraints. 

Teoh et al. (2001b) 

Comparison of different objective 
functions (cost minimization, recovery 
yield maximization and annual net profit 
maximization). 

Chan et al. (2008b) 

Investigation of trade-off of throughput 
maximization and desorbent minimization. 

Kawajiri and Biegler (2008) & Dünnebier et al. 
(2000) 

Comparison of 3 different objective 
functions (purity, yield, purity & yield.) 

Degerman et al. (2006) 
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Table 3.7 Control of chromatographic processes (an indicative list). 

Control Application Reference 

Open-loop control for the simultaneous 
maximization of recovery yield and production 
rate in batch chromatography. 

Holmqvist and Magnusson (2016) 

Model predictive control for the maintenance of 
product purity in the presence of disturbances. 

Toumi and Engell (2004) 

Iterative setpoint optimizing control on the 
MCSGP process for ternary separation. 

Behrens et al. (2014) 

Process control concept for batch-
chromatography. 

Dünnebier et al. (2001) 

Cycle-to-cycle’ control of SMB processes. Grossmann et al. (2008) 

Model Predictive Control of the MCSGP 
process. 

Grossmann et al. (2010) 

Online control of the twin-column MCSGP 
process. 

Krättli et al. (2013b) 

Closed-loop control of the MCSGP process. Krättli et al. (2011) 

Given the strict purity constraints and the complexity coupled with such systems, it is 

essential to ensure that the control strategies designed will be able to handle the system 

variations/disturbances, ensuring optimal operation and CSS. To that end, model-based 

control offers the advantage of transferring the knowledge from the process model to the 

controller, thus ensuring optimal operation. Additionally, particularly in the case of Model 

Predictive Control (MPC) the future state of the system can be predicted and therefore the 

appropriate control actions can be calculated. The aim of MPC is to provide a sequence of 

control actions over a future horizon that will optimize the controller performance based on 

predictions of the system states (Pistikopoulos, 2009). In particular, explicit/multi-parametric 

MPC combines the advantages of MPC with the ability to solve the optimization problem 

offline. In this fashion, the control inputs are derived as a set of explicit functions of the 

system states (Bemporad et al., 2002). An important advantage of multi-parametric Model 

Predictive Control (mp-MPC) is that the computed control laws can be easily tested and 

implemented on embedded devices (Dua et al., 2008). The optimal control laws are 

retrievable immediately through simple function evaluations, enabling fast response without 

the computational requirements of a computer in the background. In addition, it provides a 

deeper understanding of the process behavior based on the critical regions, how many and 
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which constraints are active. Moreover, for small, industrial scale systems, such as the 

MCSGP process, there is need for micro-devices that will be embedded on the setup (‘MPC 

on a chip’) (Pistikopoulos, 2012). More details for the theory behind mp-MPC can be found 

in Appendix A. 

In this work we focus on the development of advanced, intelligent controllers for: (i) 

chromatographic separation processes based on the principles of MCSGP and (ii) a cell 

culture system, using the mp-MPC technology. The following two chapters are dedicated to 

the work that has been performed for a single-chromatographic column (Chapter 4) and a 

multi-column system (Chapter 5). Finally, the development of advanced optimization and 

control strategies for a cell culture system is presented (Chapter 6). 
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 Introduction 4.1

As discussed in Chapter 3, chromatography is one of the most important steps in mAb 

manufacturing, as it determines the quality of the antibody and is applied both for initial 

separation and late-stage purification of the upstream mixtures. In addition, due to its volume 

limitations it restricts biomanufacturing from moving to higher titers. To add to that, the 

material and equipment costs associated with chromatographic processes (Dünnebier et al., 

2001, Chon and Zarbis-Papastoitsis, 2011, Strube et al., 2012, Gronemeyer et al., 2014) 

necessitate the development of advanced tools that will ensure optimal operation of reduced 

cost and maximum productivity, under purity constraints.  

There have been several works in the open literature that examine the control of such 

processes with the objective to increase the recovery yield, maintaining high product purity. 

Suvarov et al. (2014) presents an adaptive ‘cycle-to-cycle’ control strategy, based on a 

discrete time model for the maximization of the productivity of an SMB unit. Grossmann et 

al. (2010) suggests a ‘cycle-to-cycle’ MPC approach for the control of MCSGP (6-column 

configuration), while Krättli et al. (2011) and Krättli et al. (2013b) employed PID techniques 

for the control of the four- and the twin-column MCSGP respectively. Few of the main 

challenges discussed in the open literature are: (i) the achievement of CSS that will ensure 

process stability, (ii) the online feedback during the operation of the controller, as 

measurements are challenging to obtain, particularly in continuous processes, (iii) efficient 

rejection of disturbances and (iv) simplification of the optimization and/or control problem 

that often requires excessive computational force to be solved. 

Aiming to tackle the above-mentioned challenges, in this chapter, we present a methodology 

for the control of a single-column system, based on the operating principles of the MCSGP 

process, employing mp-MPC strategies. The chapter is organized as follows: Section 4.2 

describes the single-column system and focuses on the analysis of the input/output dynamics. 

Sections 4.3, 4.4 and 4.5 demonstrate the development of advance multi-parametric 

controllers for the following systems: (i) three single-input single-output systems under 

constant feeding, (ii) a single-input multiple-output system under constant feeding and (iii) 

single-input multiple-output system under variable feeding treated as disturbance. The 

controllers are developed and tested in-silico against the process model. Following that, a 

novel strategy is presented in Section 4.6, used to treat the inherent time delay of such 

systems. Finally, in Section 4.7 we assess the behavior of the SIMO controller (considering 

disturbances) under various flow rate values. This chapter focuses on the design of a control 

scheme that is able to track the system, capturing its main features (such as the periodicity and 
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system non-linearity), as well as dealing with challenges such as variations in the feed 

composition and time delays. Although in chromatographic separation ultimately the process 

performance in terms of purity and yield needs to be considered, the described controller has 

a more fundamental purpose of tracking the behavior of the system under various conditions. 

Hence such a controller can keep the system operating at a defined set-point in a cyclic 

manner. It is assumed that the conditions that result in optimal purity and yield can be 

experimentally and/or computationally pre-defined. 

 Single-column System 4.2

4.2.1 The system 

The single-column system shown in Figure 4.1 is a chromatographic column based on IEX 

technology, following the principles of MCSGP (Section 3.3). Here we consider the 

separation of a ternary mixture resulting from a cell culture system, including: 

(i) Weak adsorbing impurities (W) 

(ii) Antibody that is the targeted product (P) 

(iii) Strong adsorbing impurities (S) 

As mentioned in Chapter 3, weak impurities refer to antibody fragments, the product variant 

refers to the mAb, while strong adsorbing impurities refer to antibody aggregates. 

Indicatively, Müller-Späth et al. (2013) and Krättli et al. (2013b) describe the type of 

fragments and aggregates that can be found in antibodies of IgG-class, as the one considered 

here. Also, we assume that modifier is used for the separation process at a certain flow rate 

value (within the permitted range for the given equipment). In this case, the column is 

operated continuously and we distinguish two cases: (i) constant and (ii) periodic feeding. 

The system (Figure 4.1a) is described by the model equations presented in Appendix B, while 

the mass balance around the column is calculated by Equation 3.1. 

 

Figure 4.1 a) Single-column system based on the principles of the MCSGP process (5x3 system) and (b) 
Single-column system based on the principles of MCSGP, tracking the integrals of the outlet concentrations 
(5x3 system). 
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4.2.2 Input – Output selection 

4.2.2.1 Output selection: The concept of the integral 

According to standard practice, the optimization and control studies performed on 

chromatographic systems consider the maximization of recovery yield under purity 

constraints (Section 3.2). However, according to Equation B.10 and Equation B.11 (Appendix 

B), purity and yield are computed based on the average concentrations of the eluted mixture 

components and therefore we are interested only in their final values by the end of each 

process cycle. Consequently, that renders them “discrete-type” outputs and leads to ‘cycle-to-

cycle’ control strategies. The selection of continuous variables as outputs, would facilitate the 

derivation of tailor-made control laws and tighter process monitoring, as the controller would 

receive feedback in a continuous (or semi-continuous) fashion. Moreover, the outputs chosen 

for the formulation of the control problem should be ideally measurable or their 

measurements should not require lengthy experimental procedures. 

Towards this direction and aiming to tackle the aforementioned challenges, in this work we 

suggest tracking of the integral of the outlet concentrations of the mixture components (Figure 

4.1b). Currently the quantities of the eluted components can be identified using standard UV 

detectors that are widely used in such processes. The latter can be translated into the 

concentration of the eluted quantity using a linear relationship between the total mass injected 

in the column and the area below the peak of the chromatogram (Equation 4.1). This linear 

relationship holds within a certain range (approximately up to 1000 AU, representative range 

for such separation processes). Current setups are equipped with computational systems able 

to provide within seconds accurate, automated information on the area below the elution peak 

and therefore the eluted component quantity. This information can be used for the calculation 

of the integral of the eluted concentration via commercially available software (such as 

MATLAB®) and returned to the controller as feedback. The use of the proposed output offers 

continuous monitoring of the outlet stream throughout the process cycle and therefore allows 

the controller to act timely in case of disturbances and/or deviations of the assigned setpoints. 

In addition, continuous (or pseudo-continuous at the range of seconds) tracking of the system 

offers the flexibility to use a series of measurements as controller feedback and minimize the 

risk of failure. For example the designed controllers can initially receive frequent feedback 

within seconds from the UV/VIS monitors as described above and later on be updated by 

more accurate measurements resulting from the HPLC that requires longer analysis time. This 

two-step verification of the process state allows the controller to re-estimate a better forward 

action in case the original feedback received from the UV is not accurate enough. Finally, 

yield and purity can be post-calculated offline as per current standard practice as they are 
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based on the average concentrations over a process cycle, which are related to the concept of 

the integral. Similarly to any other online control strategy, it heavily resides on the 

availability of online (or at-line) measurements. Therefore, risks related to noise and/or 

unavailable measurements can be encountered here as well. However, due to the model-based 

nature of the proposed controllers, the presented approach can benefit from the process model 

when measurements are unavailable. More specifically, in a sudden event where the detectors 

fail to return a feedback measurement to the controller, the output from the high-fidelity 

process model can be used. The latter can be simulated in tandem with the online operation 

and provide measurements in cases of emergency. The latter can be updated later on by actual 

experimental values when available. Last but not least, the proposed controllers do not intend 

to completely eliminate the operator, who can interfere at any point and re-adjust the process 

parameters appropriately. 

!! = !! ∙ !! 
Equation 4.1 Linear relationship between the total 
mass injected in the column and the area below the 
peak of the chromatogram 

Where !! is the quantity of the eluted component i, !! is the absolute response factor for 

component i and !! is the area below the peak on the chromatogram.  

4.2.2.2 Input selection: Sensitivity tests 

As discussed in Section 3.4.2 the right choice of the control variables is of vital importance. 

Given the complexity of the mathematical model, it is essential to reduce the computational 

force required for the control studies to be executed. Therefore, the control problem 

formulation needs to be simplified in a meaningful manner, following a rigorous procedure 

that will ensure that the main system interactions are considered and the controller will return 

satisfactory results. Consequently, the 5 input – 3 output system (5x3) is subjected to 

sensitivity tests, where the inputs are varied within the permitted range and their effect on the 

output behavior is monitored. Figure 4.2 illustrates the strategy applied to the inputs, where 

we excite within the allowed range: (i) the modifier concentration, (ii) the flow rate and (iii) 

the feed composition. Each input is varied separately in order to identify the individual effect 

it has on the monitored outputs (synergetic/antagonistic effects are not considered here). 

Based on the experimental procedures followed for the operation of the MCSGP the three 

variables are excited within the ranges shown in Table 4.1 and are representative for 

applications in mAb purification (Grossmann et al., 2010, Krättli et al., 2013b). The 

illustrated bounds are in line and have been defined experimentally by the Morbidelli Group 

(ETH Zürich). Due to confidentiality agreement with the Morbidelli Group (ETH Zürich) the 

exact values cannot be disclosed and therefore only estimates are provided. Although this 
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work focuses on the purification of a mAb and the bounds used in the sensitivity test are 

representative for bioseparations, the reader is referred to Appendix B where a more extended 

sensitivity test on the modifier is available in order to examine cases where the separation 

requires modifier concentration greater than 4 mg/mL. 

Each input is varied independently and therefore synergetic/antagonistic effects are not 

considered here. The pulse strategy applied here is in line with the input strategy applied in 

the industrial operation of MCSGP (Section 3.3.1) and therefore it is preferred to a multisine 

approach. In order to allow an objective handling of the system, the time points and the 

duration of the pulses are randomly generated and chosen for each variable. Firstly the 

modifier concentration is perturbed from its starting value (2.48 mg/mL), following 3 

sequential changes (+8%, -19% and +61%) starting at the 60th, 136th and 200th minute 

respectively with 10 min duration (Figure 4.2). It is important to underline that between 

changes the system is let free to reach steady state. The latter allows unbiased monitoring of 

each perturbation independently. In this fashion, during changes in the modifier concentration 

the system is operated under constant flow rate (0.6 mL/min) and constant feeding with 

predefined composition (0.07, 0.4 and 0.04 mg/mL for weak impurities, product and strong 

impurities respectively). As depicted in (Figure 4.3) the modifier concentration affects 

significantly the eluting component quantities. More specifically, we observe that in the 

beginning when the modifier concentration is constant the eluted component quantities are 

constant as well. However, the first increase in the modifier concentration (60th minute) 

results in an increase in the eluted quantities. In particular we observe a 72%, 67% and 43% 

increase in the eluted concentrations of weak impurities, product and strong impurities 

respectively. From a physicochemical perspective it is expected that an increase in the 

modifier concentration will result into higher eluted quantities, as the modifier is the salt that 

induces the separation. Moreover, it is observed that the perturbation in the modifier 

concentration affected the weak impurities the most. The latter is also in line with the physics 

of the system as such kinds of impurities are characterized by decreased charge and are the 

ones that are relatively easy to separate and elute. Conversely, the strong impurities require 

significantly increased modifier concentration in order to be eluted and thus are less affected 

by small changes. Following that, the modifier concentration is decreased (-19%) and re-

stabilized to its original value after 10 min (Figure 4.2a). These two consecutive changes 

firstly allow the components to be accumulated in the column (during low modifier 

concentration) and then rapidly washed out resulting in the peaks observed at the 143rd minute 

(Figure 4.3). Lastly, the modifier concentration is increased to 4 mg/mL in order to cover the 

whole range of concentrations used in mAb purification (Figure 4.2a) that results into 200th 

minute (Figure 4.3). This jump in the modifier concentration leads to >100% increase in the 
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eluted quantities that is, however, a cumulative effect stemming both from the increase in the 

modifier concentration as well as in the accumulation of the latter within the column. 

Contrary to the modifier concentration, the inlet flow rate does not seem to affect the 

quantities of the eluted components. In particular the inlet flow rate follows 3 consecutive 

perturbations between the 266th and the 470th minute that result in no significant change in the 

quantity of the eluted concentrations (Figure 4.3). This in accordance both with the 

mathematical model and the experimental procedure as the modifier concentration is used to 

calculate the Henry constant in a highly nonlinear equation, while the flow rate participates in 

a linear fashion in the general mass balance (Appendix B) that results into lower impact on 

the total amounts of the eluting components. According to the basic chromatographic 

principles (Guiochon et al., 1994), the modifier concentration affects the liquid-solid 

equilibrium in a highly nonlinear fashion and consequently the accumulation and/or elution of 

the components at the end of each process cycle. On the other hand, the flow rate affects the 

speed of the elution (i.e. the process kinetics) but not the thermodynamics of the 

chromatographic system. 

Table 4.1 Upper and lower bounds used for the sensitivity tests. In the case of the feed composition: the 
concentrations of weak impurities, the product and strong impurities are varied within ±  10% from the 
base case values (0.07, 0.4 and 0.04 mg/mL respectively) 

Variable Upper bound Lower bound Units 

Modifier concentration 
(Figure 4.2a) 

4 2 mg/mL 

Inlet flow rate 

(Figure 4.2c) 
1 0.2 mL/min 

Feed composition 

(Figure 4.2b) 

+10% from the base 
case value 

-10% from the base 
case value 

mg/mL 

In the case of the feed composition, the concentrations of the mixture components are varied 

simultaneously as they are present in the upstream harvest and therefore cannot be controlled 

independently. More specifically, the feed composition follows 2 perturbations between the 

530th and the 610th minute (Figure 4.2b). The first change corresponds to a +10% increase 

from the base case value (Table 4.1) and the second to a -10% decrease respectively, while 

the system is left to stabilize in between. The variation window ±10% has been 

experimentally predefined by the Morbidelli Group and corresponds to repetitive variations 

that result from the upstream process used for the production of the mAb studied in this work. 

The changes applied to the feed composition result in <10% changes in the eluted quantities. 
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To summarize, it is observed (Figure 4.3) that the most significant deviation in the output 

profiles occurs from changes in the modifier concentration. This is followed by changes in the 

feed composition, while the flow rate seems to have no significant effect on the quantity of 

the eluted components. It should be underlined that both the modifier concentration and the 

inlet flow rate can be controlled by the operator. Conversely, the feed composition depends 

on the upstream process and cannot be controlled. Nevertheless, in standardized processes, 

the variation range of the composition of the feed stream can be experimentally predefined, 

thus allowing us to treat it as measured disturbance with known bounds. Consequently, based 

on the sensitivity tests presented here, the system is reduced to a 1 x 3 input – output system 

with the modifier concentration as the sole input and the integrals of the outlet concentrations 

of the three mixture components as outputs. 

 

 

Figure 4.2 Pulse input strategy as applied for the sensitivity tests and the development of the state space 
models for (a) the modifier concentration (mg/mL), (b) feed composition (mg/mL) and (c) the inlet flow rate 
(mL/min). 
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Figure 4.3 Output profiles as resulted from the sensitivity tests for the outlet concentration of (a) the weak 
impurities, (b) the product and (c) the strong impurities. 

It should be underlined that according to standard practice the modifier concentration is 

changed following a smoother gradient profile. The changes presented in this section are 

more abrupt and can potentially result in extreme profiles in the system behavior. However, 

this ensures that the system has been computationally excited based on extreme conditions 

and any other profile smoother than the one examined here should still be captured by the 

presented strategy. 

4.2.3 Reduced systems under investigation 

Following the input/output selection presented above, the input system is considering a single 

entity (modifier concentration), while the outputs correspond to the integrals of the outlet 

concentrations of the mixture components. In addition, the feed introduced to the 

chromatographic column can be considered as measured disturbance (Section 4.2.2.2). In 

order to fully explore the system dynamics and behavior, we examine the development of 

advanced controllers for the following systems: 

(i) Single Input – Single Output (SISO): We develop 3 independent controllers 

considering the modifier concentration as input and the integral of the outlet 

concentration of every mixture component as output, respectively (Section 4.3). 

(ii) Single Input – Multiple Output (SIMO), without disturbance: We design a controller, 

monitoring the integrals of the outlet concentrations simultaneously, using the 

modifier concentration as the control variable (input). In this case, the feed is not 

considered as disturbance (Section 4.4). 
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(iii) Single Input – Multiple Output (SIMO), with disturbance: The design of this 

controller is based on the one described above (ii), however here we consider the feed 

as measured disturbance. (Section 4.5). 

For all the cases the flow rate is maintained at a constant value and is not considered in the 

formulation of the control problem. 

 Single Input – Single Output Controllers 4.3

The 3 SISO controllers developed in this section are based on the cases presented in Figure 

4.4. Namely: 

(i) Case 1: SISO controller with modifier used as control variable and the integral of the 

outlet concentration of the weak impurities !!  considered as output. 

(ii) Case 2: SISO controller with modifier used as control variable and the integral of the 

outlet concentration of the targeted product !!  considered as output. 

(iii) Case 3: SISO controller with modifier used as control variable and the integral of the 

outlet concentration of the strong impurities !!  considered as output. 

 

Modifier	 ∫Cw	

Modifier	 ∫CP	

Modifier	 ∫CS	

(a)

(b)

(c)

Case	1

Case	2

Case	3

 

Figure 4.4 The three Single Input - Single Output (SISO) systems, considering the modifier concentration as 
input and the integral of the outlet concentration of the (a) weak impurities (Cw), (b) product (CP) and (c) 
strong impurities (CS) as output. 

4.3.1 Model approximation 

The process model (Appendix B) comprises complex, nonlinear equations that challenge the 

control studies. Therefore, as discussed in Section 0, the equation set needs to be simplified 
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and transformed into a form suitable for the formulation of the control problem. Therefore a 

system identification step for the design of discrete, linear state space models that capture the 

system dynamics is applied. The process model is simulated under a random pulse input 

strategy in order to ensure that the system is adequately excited (within the range of interest). 

The input/output data set is stored and processed using the identification toolbox in 

MATLAB® (ident). Figure 4.2 (a & b) illustrates the input strategy as applied to the 3 

systems described above (Figure 4.3), while the output behavior is depicted in Figure 4.5. 

 

Figure 4.5 Output profiles as resulted from the sensitivity tests for the integral of the outlet concentration of (a) the 
weak impurities, (b) the product and (c) the strong impurities. 

The presented data sets are used for the design of 3 linear, state space models. Equation 4.2 

demonstrates the general formulation of a state space without disturbances. The details of the 

designed models are summarized in Table 4.2. Figure 4.6 illustrates the comparison of the 

state space model and the process model simulation.  

 

! ! + !! = !" ! + !" !  

! ! = !" !  

Equation 4.2 General formulation of a linear state 
space model (without disturbance).  

Where !, !, ! correspond to the states, control actions (modifier concentration) and outputs 

(∫CW, ∫CP, ∫CS) respectively, !  represents the time, !!  is the sampling time and !,!,! 
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represent the matrices of the state space model. The matrices for the state space models are 

given below. 

(i) Case 1: Modifier concentration - Integral of weak impurities  

! = 0.9992 0.0003385
0.0001287 0.9996  

! =  7.417! − 06
1.358! − 05  

! = −52.42 451  

(ii) Case 2: Modifier concentration - Integral of product  

! = 0.999 −0.0005434
−4.204! − 05 0.9984  

! = 0.0002333
0.0001817  

! = −1151  2185  

(iii) Case 3: Modifier concentration - Integral of strong impurities  

! = 0.9951 0.01566
0.004947 0.9797  

! = 0.01079
−0.0134  

! =  −147.1  −125.3  

 
 

Table 4.2 Characteristics of the three SISO state space models 

Input 

Variable 

Output Variable 

(Integral of the outlet 
concentration) 

Number of 

States 

Sampling 
Time (s) 

%Fit 

Modifier 
Concentration Weak Impurities 2 6 95.98% 

Modifier 

Concentration Product 2 6 87.04% 

Modifier 

Concentration Strong Impurities 2 6 66.58% 
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Based on the on the operating strategy of the MCSGP process (Section 3.3.1) and in order to 

ensure that the main events (loading, elution etc) are captured, we choose a sampling time of 

6 seconds (0.1 min) for the design of the state space models (Figure 4.6). Additional graphs 

are illustrated in Figure 4.7, where the state space models presented in Table 4.2 are tested 

against a different set of inputs (Figure 4.7 a & b). 

 

Figure 4.6 Comparison of the three state space models designed above [state space model simulation (---) 
against the high-fidelity process model (─)] for (a) the weak impurities, (b) the product and (c) the strong 
impurities, with 95.98%, 87.04% and 66.58% fit respectively. 

It should be underlined that the state space model is an intermediate step performed in order 

to facilitate the formulation and solution of the control problem later on (please refer to 

Chapter 2) by transforming the problem into a discrete, linear representation suitable for mp-

MPC (Rivotti et al., 2012, Lambert et al., 2013). Here, the chosen method relies on the 

principles of system identification, where an input and an output data set are correlated based 

on linear combinations (MATLAB®, Mathworks). Therefore, the states of the presented, 

linear model do not correspond to physical entities of the examined system and any physical 

interactions/dynamics are eliminated in this step. Thus, the state space model does not classify 

as a “result” but rather as an “intermediate compensation” to facilitate the controller design. 
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Figure 4.7 Validation of the state space models presented in Table 4.2 against a different of 
input/disturbance profiles: (a) modifier concentration (mg/mL) used as input for the validation, (b) feed 
composition used as disturbance [blue: concentration of the weak impurities (mg/mL), red: concentration of 
the product (mg/mL) and green: concentration of the strong impurities (mg/mL)], (c) comparison of the 
state space models for weak impurities against the high-fidelity process model, (d) comparison of the state 
space model for the product against the high-fidelity process model and (e) comparison of the state space 
model for strong impurities against the high-fidelity process model [where state space model simulation is 
the dotted line (---) and the high-fidelity process model the continuous line (─)]. 

Based on the above, sophisticated analysis on the statistical significance of the model 

parameters and/or the mismatch would increase the computational expense without 

significant benefit in the system performance. Similar techniques that could bring the problem 

into a linear, discrete form could also be applied (such as full-discretization, followed by 

linearization as presented by Grossmann et al. (2010)). The latter however, when applied to 

such complex systems usually results into an overwhelming number of equations increasing 

both the risk of human error as well as the computational demand. 

The validation of the state space model designed here is assessed in two steps. Firstly, the 

mismatch between the output of the designed linear model and the output of the high-fidelity 

model (output set) is compared. At this stage, a “satisfactory” state space model is not the one 

that would necessarily demonstrate the least mismatch, but a model that is capable of 

capturing the trends followed by the original output (high-fidelity process model). The second 

and most important validation of the accuracy of the state space model comes from the 

controller validation itself (please refer to Chapter 2 & section 4.3.3). Following the 

formulation and solution of the control problem (based on the linear, state space model), the 

controller performance is assessed against the high-fidelity process model. Here, the 
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controller is responsible to minimize the error between the output and the output setpoint. 

Should it fail to present a satisfactory behaviour, it is advisable that the operator re-assesses 

the tuning parameters used for the controller design (please refer to section 4.3.2) and/or the 

design/rationale of the state space model.  

Based on the fact that state space model in this work is used for the formulation of mp-MPC 

schemes that are of receding horizon nature, the fitting of the linear, state space, discrete time 

model is relevant only within the length of the output and control horizon chosen for the 

design of the controller. Furthermore, it is in the nature of mp-MPC to account for process 

model-approximate model mismatch at every iteration. Given that the discretization step used 

for the design of the state space model is 6 seconds and the maximum control horizon chosen 

throughout the design of the mp-MPC controllers in this work is 10, the accuracy of the 

designed models is relevant for a horizon of 1 minute. Following this, a new process model – 

approximate model mismatch is taken into account into the mp-MPC formulation, thus 

neutralizing the approximation gap. 

Therefore, the state space models presented above are considered suitable for the formulation 

and solution of the control problem. At this stage they are considered satisfactory as they 

capture the main trends of the outputs of the high-fidelity model (Figure 4.6 & Figure 4.7). It 

is observed that the fit of all three models is satisfactory and therefore they can be used for the 

development of the controller later on. 
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4.3.2 Design of the mp-MPC controllers 

The state space models described above are used for the design of three, independent multi-

parametric controllers for the single-column design. Figure 4.8 illustrates the control scheme 

as designed for the three cases presented above. 

 

Figure 4.8 mp-MPC control scheme followed for the 3 SISO controllers. 

In particular, each controller is designed based on the state space models derived in section 

4.3.1. The setpoints for the controller are defined by the operator and concern the integrals of 

the outlet concentrations of the three mixture components. The controllers use the modifier 

concentration as manipulating variable and are developed based on mp-Programming 

strategies (Appendix A). Table 4.3 illustrates the tuning parameters used for the development 

of the three controllers. The problems are solved using the POP toolbox (Oberdieck et al., 

2016) within MATLAB®. Figure 4.9 illustrates the solution maps of the three controllers, as 

a function of two problem parameters. There are 28, 53 and 80 critical regions depicted for 

Controller 1, 2 and 3 respectively.  

  

Controller
(mp-MPC)

Setpoints 
Modifier 

Column
(Process model)

Control
Variable

Measured 
Output 

∫CW     or ∫CP or 
∫CS  

State Space 
Representation
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Table 4.3 mp-MPC tuning parameters as used for the design of the three SISO controllers (where ! is the 
identity matrix). 

Tuning 

Parameters 
Explanation 

Controller 1 

(Case 1) 

Controller 2 

(Case 2) 

Controller 3 

(Case 3) 

OH Output Horizon 10 10 10 

NC Control Horizon 8 8 8 

Q Weights on the 
states 

100∙ ! 100 ∙ ! 100∙ ! 

QR Weights on the 
outputs 

1000 1000 100 

R Weights for the 
inputs 

1 1 1 

Umin Input upper bound 0 0 0 

Umax Input lower bound 12 12 12 

Total number of 
critical regions 

 96 118 317 

 

 

Figure 4.9 Two-dimensional projection of the critical regions polyhedral, for: (a) Controller 1, (b) 
Controller 2 and (c) Controller 2. All the images are based on the following values: States: x1= -0.1, x2=θ2, 
Output: !! = !.!  and Output Setpoint: !!!"# = !!, where ! =!,!, !. 
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4.3.3 In-silico evaluation of the controller performance 

Following the design of the controllers, their performance is evaluated in-silico. The process 

model is simulated in gPROMS® ModelBuilder v.4.2.0 in tandem with the controller 

(MATLAB®) through the gO:MATLAB interface The results shown below correspond to 

three independent model simulations, one for each developed controller. All the simulations 

are performed under the assumption of continuous feeding of, experimentally predefined 

composition (Table 4.4) and under constant flow rate (0.6 mL/min). 

Table 4.4 Feed composition as considered for the in-silico controller validation1. 

Component Concentration in the feed (mg/mL) 

Weak impurities 0.07 

Product 0.4 

Strong impurities 0.04 

1Due to confidentiality agreement with the Morbidelli Group (ETH Zürich) the exact values cannot be disclosed 

and therefore only estimates are provided. 

Figure 4.10a, Figure 4.11a and Figure 4.12a illustrate the comparison between the model 

output and the desired output setpoint. It can be observed that there is a fairly good agreement 

between the monitored output and the setpoint, however the system responds with a repetitive 

time delay. Additionally, it can be observed that all three controllers indicate cyclic input 

profiles (Figure 4.10b, Figure 4.11b and Figure 4.12b). This implies that both the designed 

state space models and the developed controllers have incorporated the periodic nature of the 

examined process and could therefore lead to strategies that will ensure CSS. Moreover, the 

input profiles are in agreement with the physical and chemical properties of the system. As 

per the original process, elution can only take place after a respective increase in the modifier 

concentration. The latter is observed when the input profiles (Figure 4.10b, Figure 4.11b and 

Figure 4.12b) are correlated to the relevant setpoint changes (Figure 4.10a, Figure 4.11a and 

Figure 4.12a). More specifically, whenever an increase in the setpoint is encountered, the 

modifier concentration increases. However, this increase is not random and is directly related 

to the differences between the setpoints. For example, the difference between the second and 

third setpoint of the strong adsorbing impurities (Figure 4.12a) is less when compared to the 

one between the third and the fourth. Therefore, the modifier concentration is expected to 

increase much more during the 3rd setpoint change. This is also observed in the input profile 

that is suggested by Controller 3 (Figure 4.12b). It can be observed that the periodic profile 
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seen in the input strategies is also shown in the choice of critical regions (Figure 4.10c, Figure 

4.11c and Figure 4.12c). This could be translated into periodic control laws that force the 

system to effectively reach CSS. In particular, Controller 2 (Figure 4.11) that corresponds to 

the tracking of the targeted product shows a consistent, cyclic profile in the choice of critical 

regions and effectively the assigned control laws.  

 

 

Figure 4.10 Results from the ‘closed-loop’ validation of Controller 1 (weak impurities): (a) comparison of 
the model output (─) and the output setpoint (---), (b) input profile as generated by the controller and (c) 
selection of critical regions. 

 

Particularly in the case of the product (Controller 2) (Figure 4.11a) a repetitive offset is 

observed, starting from 10% overshoot in the second setpoint and followed by 5% and 3% 

overshoot in the third and fourth setpoint respectively. The decrease in the offset throughout 

the simulation could be attributed to the model-based nature of the controller as well as to the 

receding horizon theory behind it that allows the controller to gain knowledge both from the 

process model and its past actions. 
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Figure 4.11 Results from the ‘closed-loop’ validation of Controller 2 (product): (a) comparison of the model 
output (─) and the output setpoint (---), (b) input profile as generated by the controller and (c) selection of 
critical regions. 

 

 

Figure 4.12 Results from the ‘closed-loop’ validation of Controller 3 (strong impurities): (a) comparison of 
the model output (─) and the output setpoint (---), (b) input profile as generated by the controller and (c) 
selection of critical regions. 

The deviations observed here could be due to the fact that in this case study the feeding is not 

considered in the formulation of the control problem; thus the controller is not trained to 

recognize the amount of components entering the column. Moreover, as discussed in 
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Appendix B, the tuning parameters (Table 4.3) may affect the controller behavior in various 

ways with particular interest in the QR/R ratio that defines the effect of the controller input on 

the output. Consequently, a different choice of weights for the input and/or output may lead to 

improved performance (Appendix B). When required, such types of offsets can be handled 

using the “integral state” presented by Sakizlis et al. (2004a) that aims to track and decrease 

the setpoint/output mismatch, introducing the error as an additional state in the objective 

function. 

4.3.4 Conclusions  

In this section we investigate a single chromatographic column system, used for the 

separation of a ternary mixture containing weak impurities, antibody and strong impurities. In 

order to fully understand its dynamics, in this case study the system is decomposed to 3 SISO 

systems, monitoring the integrals of the outlet concentrations of the mixture components. The 

designed controllers manage to track the predefined setpoints returning periodic input profiles 

that are in accordance with the governing physicochemical properties of the system. The 

presented controllers are based on a novel concept introduced in section 4.2.2.1 that suggests 

tracking of the integral of the outlet concentrations of the mixture components at the column 

outlet. It is observed that the proposed strategy can lead to continuous process monitoring and 

periodic control laws, as the outputs can be continuously tracked throughout the process 

cycle. In the case of the product (Controller 2) repetitive, decreasing offset is observed. As 

discussed earlier this can be attributed to: (i) the elimination of the feed from the controller 

problem and (ii) the choice of weights that define the input/output behavior in the control 

problem. 

The results presented in this section, consider that feed is introduced continuously in the 

system. This however, does not always comply with the process operating conditions, as 

columns are usually loaded following a periodic (batch) strategy. In addition, it is observed 

that the setpoints are reached with a repetitive time delay that is common for all three 

controllers. Additionally, the system at hand is based on the principles of MCSGP that 

considers a nonlinear-nonideal type of model. Based on the latter, the component elution 

bands cannot be obtained independently from one another and therefore the three mixture 

components need to be monitored and controlled simultaneously under a uniform input 

strategy. Starting from the latter finding, in the following section (Section 4.4) we combine 

the three outlet concentrations in a single control strategy and we design a SIMO controller 

under continuous feeding. 



Chapter 4. Model-based Control of Single-Column Chromatographic Systems 

 

 105 

 Single Input – Multiple Output Controller (without disturbance) 4.4

As mentioned previously, the studied system is based on the assumption that the elution bands 

of the mixture components cannot be obtained independently and therefore they need to be 

monitored simultaneously. In addition, in order for the system to reach CSS a uniform 

modifier strategy is required. Therefore, in this section we study a 1x3 SIMO system (Figure 

4.13), where we control the modifier concentration and we track the integrals of the three 

outlet concentrations of the mixture components under the same input strategy (Figure 4.13). 

For this case study, we consider a continuous feeding of known composition Table 4.4. It 

should be underlined that this case study aims to design a controller that is able to track the 

system, capturing its main features such as the periodicity and system non-linearity. Although 

in chromatographic separation ultimately the process performance in terms of purity and yield 

needs to be considered, the described controller has a more fundamental purpose and 

therefore numeric results for these parameters are not further discussed. 

 

Figure 4.13 The three Single Input - Multiple Output (SIMO) system, considering the modifier 
concentration as input and the integral of the three outlet concentrations as outputs. 

4.4.1 Model approximation 

Here we combine the approximate models developed in Section 4.3.1 to design a new, linear 

state space model of the formulation presented in Equation 4.2, considering however 3 

outputs. Table 4.5 illustrates the details of the state space model that was constructed based on 

the 3 models designed in section above (Section 4.3.1), therefore the fitting of the linear 

model to the process models is the same as the ones presented for the 3 SISO controllers. 

Table 4.5 Characteristics of the SIMO state space model without disturbance. 

Input 

Variable 

Output Variable 

(Integrals of the outlet concentration) 

Number of 

States 

Sampling 
Time (s) 

Modifier 
Concentration 

Weak impurities,  

Product & Strong impurities 
6 6 

 

Modifier	

∫Cw	

∫CP	

∫CS	
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The matrices of the formulation are given below, while the fit is the same as presented in 

Section 4.3.1, as the state space is built based on the three SISO systems developed 

previously. 

! =

0.9992 0.0003385 0 0 0 0
0.0001287 0.9996 0 0 0 0

0 0 0.999 −0.0005434 0 0
0 0 −4.204! − 05 0.9984 0 0
0 0 0 0 0.9951 0.01566
0 0 0 0 0.004947 0.9797

 

! =

 7.417! − 06
1.358! − 05
0.0002333
0.0001817
0.01079
−0.0134

 

! =
−52.42 451 0 0 0 0

0 0 −1151 2185 0 0
0 0 0 0 −147.1 −125.3

 

4.4.2 Design of the mp-MPC controllers 

Following the procedure presented above (Section 4.3.3), the state space model (Section 

4.4.1) is used for the formulation and solution of the mp-MPC problem presented in Figure 

4.14. The controller considers the modifier concentration as the manipulating variable and the 

integrals of the outlet concentrations of the three mixture components as outputs. The 

problem is formulated using the tuning parameters presented in Table 4.6. In order to explore 

the system dynamics in an objective manner, we maintain the weights for all measured 

outputs (QR) equal. The problem is solved using the POP® toolbox within MATLAB® 

(Oberdieck et al., 2016).  

 

Figure 4.14 mp-MPC control scheme followed for the SIMO controller without disturbance. 

Controller
(mp-MPC)

Setpoints 
Modifier 

Column
(Process model)

Control
Variable

Measured 
Outputs 

∫CW , ∫CP , ∫CS  

State Space 
Representation
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Table 4.6 mp-MPC tuning parameters as used for the design of the SIMO controller without disturbances 
(where ! is the identity matrix). 

Tuning Parameter Explanation Value 

OH Output Horizon 4 

NC Control Horizon 2 

Q Weights on the states 1·I 

QR Weights on the outputs [1 1 1] 

R Weights for the inputs 1·I 

Umin Input upper bound 0 

Umax Input lower bound 12 

Total number of 

critical regions 
 6 

 

 

Figure 4.15 Two-dimensional projection of 5 critical regions polyhedral. States: !! = −!.!!!", !! =
!.!!"",  !! = −!.!!!",  !! = !.!!"#, !! = −!.!!"#, !! = −!.!!"#  , Outputs: !! = [!!  !  !] , 
Output Setpoints: !!!"# = !, !!!"# = !, !!!"# = !!", where ! =!,!, !. 
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4.4.3 In-silico evaluation of the controller performance 

The controller designed in the previous step is tested in a closed-loop fashion against the 

process model. Both the controller (MATLAB®) and the mathematical model (gPROMS® 

ModelBuilder v. 4.2.0) are simulated in tandem (via gO:MATLAB) and the controller 

behavior is assessed. For the simulation we consider constant feeding of fixed composition 

(Table 4.4) and constant flow rate (0.6 mL/min), while in this case the three outputs are 

monitored simultaneously. In this example, the setpoints are obtained by validated model 

simulations and the setpoints are changed instantaneously. It can be observed (Figure 4.16) 

that the proposed controller tracks the predefined setpoints efficiently, without significant 

offset (< 3%). Exceptions to the latter are the last setpoints of the weak and strong impurities 

(Figure 4.16 a & c), where 3% and 11% overshoots are observed. In a real-time application 

that could potentially entail certain risks associated with increased impurity amount in the 

final product formulation that would make the latter fall out of the regulatory specifications, 

depending on the product of interest. However, as discussed in section 4.4.2, also here, the 

controller is not trained to recognize the amount of components entering the column. 

Moreover, the tuning parameters (Table 4.6) may affect the controller behavior in various 

ways with particular interest in the QR/R ratio that defines the effect of the controller input on 

the output (Appendix B). Consequently, a different choice of weights for the input and/or 

output may lead to improved performance (Appendix B). When required, such types of 

offsets can be handled using the “integral state” presented by Sakizlis et al. (2004a) that aims 

to track and decrease the setpoint/output mismatch, introducing the error as an additional state 

in the objective function. 

In addition to the above, based on the original MCSGP process, we are interested in purifying 

the targeted product (Figure 4.16b) and therefore monitoring its behavior is of vital 

importance. With respect to the impurities, we are interested in removing them in controlled 

time intervals and clean the columns from strong adsorbing components by the end of each 

cycle. According to standard practice, the setpoints for the controller are obtained via 

optimization procedures (both experimental and computational) that define parameters such 

as the optimal feeding strategy and the process switching times between the two modes (batch 

and interconnected, please see section 3.3.2). Therefore, the application of the presented 

controller on the experimental setup would look into a set of optimized setpoints that would 

be more representative of the separation process.  
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Figure 4.16 Comparison of the predefined setpoint (---) and the output of the process model simulation (─) 
as resulted from the controller closed-loop validation for (a) weak impurities, (b) product and (c) strong 
impurities over time [under constant feed (Table 4.4) and flow rate (0.6 mL/min)]. 

 

Figure 4.17 (a) Input profiles as generated by the controller and (b) Evolution of the critical regions/control 
laws during the ‘closed-loop’ controller validation 

The simulation results shown in Figure 4.16 are a result of the controller input, illustrated in 

Figure 4.17a. It is observed that the controller introduces modifier into the system following a 

repetitive, periodic profile. The changes observed in the input profile, occur rapidly due to the 

instantaneous change of the predefined setpoints (Figure 4.16). The input behavior can be 
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explained based on the physicochemical properties of the system, as the controller increases 

the modifier concentration (Figure 4.17a) whenever elution is required (Figure 4.16). It is 

observed that the controller gradually decreases the modifier concentration at every step. That 

could be attributed to the fact that modifier is accumulated in the column and therefore the 

process model and effectively the controller realize that only the necessary amount of eluent 

needs to be provided. The latter is a distinct advantage of the model-based nature of the 

proposed control strategy, as the knowledge of the process model has been transferred to the 

controller. Subsequently, this can lead to smart control systems that provide eco-friendly, 

sustainable solutions that decrease the use of raw materials. 

The periodicity observed in the input is also depicted on the choice of critical regions (Figure 

4.16b). The controller inherently chooses critical regions in a periodic manner, thus leading to 

cyclic control laws. This can be considered as an indication that the system periodic nature 

has been successfully transferred from the process model to the designed controller, the 

application of which can lead to stable operation under CSS. Lastly, the monitored outputs are 

characterized by a repetitive time delay of approximately 8 min that is studied in section 4.6. 

4.4.4 Gradient setpoint change 

As mentioned above (Section 4.4.3) in the ‘closed-loop’ simulation of the controller the 

setpoints are changed instantaneously, leading to rapid control actions and therefore a more 

aggressive input profile. However, in chromatographic separations the elution takes place 

gradually, following a gradient profile. Particularly in the MCSGP process, the elution peaks 

are of approximately 1.5 min duration and therefore this needs to be considered in the design 

and/or evaluation of the presented control scheme. Based on this, we assess the controller 

capabilities to track gradient elution profiles of 1.5 min duration. Therefore, we repeat the 

step described in section 4.4.3 under a different setpoint strategy, where each change occurs 

following a slope of 1.5 min.  
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Figure 4.18 Comparison of the predefined setpoint following gradient change of 1.5 min and the output of 
the process model simulation as resulted from the controller closed-loop validation for (a) weak impurities, 
(b) product and (c) strong impurities over time [under constant feed (Table 4.4) and flow rate (0.6 
mL/min)]. 

 

Figure 4.19 (a) Input profiles as generated by the controller and (b) Evolution of the critical regions/control 
laws during the ‘closed-loop’ controller validation under gradient setpoint change. 

As illustrated in Figure 4.18 the setpoints (dotted line) are changed following a gradient of 1.5 

min, however this does not seem to affect significantly the behavior of the outputs, as the 

results from the process model (continuous line) are the same with the ones presented in the 

section above (Section 4.4.3) where the setpoints are changed instantaneously. Contrary to the 

output behavior, a significant change in the input profile is observed (Figure 4.19a). More 
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specifically, the input actions (modifier concentration) are now characterized by a smoother 

profile particularly at the time points where the setpoints are changed. Moreover, the input 

strategy as shown in Figure 4.19a is also very similar to the experimental strategy applied in 

the MCSGP process, upon whose design the presented controllers are based. 

It is observed that the controller manages to track efficiently the predefined setpoints (Figure 

4.18) returning a periodic input profile (Figure 4.19a) that corresponds to periodic control 

laws in the selection of critical regions (Figure 4.19b). Moreover, the main characteristics of 

the presented strategy discussed in section 4.4.3 are maintained here as well. More 

specifically, the controller obeys the governing principles of the examined system, feeding 

only the essential concentration of modifier required for the elution. However, it is observed 

that although the applied gradient change in setpoints represents the system in a more 

accurate manner, the time delay observed in section 4.4.3 persists. Lastly, the overshoots 

discussed previously are observed here as well (Figure 4.18) particularly in the last setpoints 

of weak and strong impurities (4% and 11,5% respectively). As demonstrated later on (section 

4.5) the addition of the feed stream as disturbance in the control problem offers significant 

improvements in the final controller behavior. Moreover, the main objective of the proposed 

controllers is to efficiently track the system, maintaining key features such as the periodicity. 

Therefore, attributes such as purity and/or yield are not assessed here. Nevertheless, since the 

proposed control strategy can efficiently track the system under various conditions, it can be 

expected that it will return satisfactory results also in real-time application, where the process 

is operated under pre-optimized setpoints. 

4.4.5 Conclusions 

This section demonstrates the development of a single-input multiple-output controller, where 

the integrals of the three outlet concentrations of the mixture components are monitored 

simultaneously under a unified modifier concentration profile. The behavior of the designed 

controller is assessed under continuous feeding of predefined concentration (Table 3.1) and 

constant flow rate (0.6 mL/min). The proposed controller manages to efficiently track the 

predefined setpoint under a physicochemically meaningful, periodic input strategy that 

promises stable operation. Moreover, the periodicity observed both in the modifier profile, as 

well as in the selection of control laws (critical regions) provides an indication that the cyclic 

nature of the system and process has been successfully transferred from the process model to 

the designed controller. In order to mimic the original process and in particular the gradient 

elution that occurs in such chromatographic separation processes, here we demonstrate a new 

strategy where the setpoints are changed following a slope of 1.5 min duration. The proposed 

approach does not improve the controller performance per se in terms of setpoint tracking, 
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however, it leads to smoother input profiles of gradient nature that resemble current industrial 

practice. 

The controllers discussed in this section consider continuous feeding of predefined 

composition that is not taken into consideration during the formulation of the control 

problem. However, according to standard practice feed is introduced into the system in a 

periodic fashion and its composition can vary, depending on the upstream batch. In order to 

immunize the control scheme against periodic feeding, as well as against the variations in its 

composition, in the next section (Section 4.5) we examine the design of a single-input 

multiple-output controller that considers the feed composition as disturbance and its 

performance is assessed. 

 Single Input – Multiple Output Controller (with disturbance) 4.5

The previous two sections (Section 4.3 and 4.4) focus on the development of advanced 

control strategies, considering continuous feeding. However, in industrial application of 

chromatographic processes, feed is usually introduced in a periodic manner. As mentioned in 

section 4.2.2, in the cases studied in this work, the feed corresponds to the upstream harvest, 

thus its composition cannot be manipulated. Therefore, in this section we examine the 

development of an advanced mp-MPC controller considering the feed as measured 

disturbance. We elaborate on the work presented in section 4.4, and we consider a system 

(Figure 4.20) with one input (modifier concentration), three outputs (integrals of the outlet 

concentrations of the mixture components) and measured disturbances (feed) of 

experimentally predefined bounds (± 10% from the base case value). 

 

 

Figure 4.20 The three Single Input - Multiple Output (SIMO) systems, considering the modifier 
concentration as input and the integral of the outlet concentration of the (a) weak impurities (Cw), (b) 
product (CP) and (c) strong impurities (CS) as output. 

4.5.1 Model approximation 

The input strategy presented in Figure 4.2 (a & b) is used for the design of a linear state space 

model of the characteristics presented in Table 4.7. 
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Table 4.7 Characteristics of the SIMO state space model with the feed as disturbance. 

Input 

Variable 

Output Variable 

(Integrals of the outlet 
concentration) 

Measured 
Disturbance 

Number 
of States 

Sampling 
Time (s) 

Modifier 
Concentration 

Weak impurities,  

Product & Strong impurities 

Feed 
composition 

4 6 

 

Given the fact that here we include measured disturbances, the mathematical formulation 

considers one additional matrix that represents the impact of the disturbances on the system 

states (Equation 4.3). The state space model is validated against the mathematical, process 

model and results into: 94.88%, 94.93% and 93.06% fit for the three outputs respectively. 

Figure 4.21 illustrates the comparison between the state space model (dotted line) and the 

process model (continuous line). 

! ! + !! = !" ! + !" ! + !"(!) 

! ! = !" !  

Equation 4.3 General formulation of a linear state 
space model (with measured disturbance).  

Where x, u, y are the states, inputs (modifier concentration) and outputs (∫CW, ∫CP, ∫CS) 

respectively, t corresponds to the time, Ts is the sample time and A, B, C, D represent the 

matrices of the state space model. 

 

! =
0.9998  0.0003667  0.0004885 −9.137! − 05

 0.0009448 0.9971 −0.003154  −0.001599
−0.001027 0.0003536 0.999 0.001881
0.000969 0.001559 0.0005033  0.9976

! =
−6.252! − 06
4.514! − 05
6.337! − 05
−3.396! − 05

 

! =
545.6 101.1 17.69 7.422 
2925 660.2 102.6 −67.49
331.9 78.42 17.12 −11.23

 

! =
1.557! − 05 8.449! − 05 9.616! − 06 
−9.018! − 05 −0.0004893 −5.57! − 05
−3.487! − 05 −0.0001892 −2.154! − 05 
3.698! − 05 0.0002007 2.284! − 05 
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Figure 4.21 Comparison of the state space model simulation (---) against the high-fidelity process model (─) 
for (a) the weak impurities, (b) the product and (c) the strong impurities, with 94.88%, 94.93% and 93.06% 
fit respectively. 

As mentioned earlier (section 4.3.1) the state space model does not classify as a “result” but 

rather as an “intermediate compensation” to facilitate the controller design.  Therefore, on the 

same basis, the state space model designed here is considered satisfactory and is used for the 

design of the controller. 

4.5.2 Design of the mp-MPC controllers 

The state space model described above is used for the design of an advanced multi-parametric 

controller for the nominal single-column case. We consider the modifier concentration as the 

manipulated variable (input), the concentrations of the components in the feed stream 

(measured disturbances) and the integrals of the outlet concentrations (tracked outputs) 

(Figure 4.22). The mp-MPC settings are illustrated in Table 4.8. The integral of the product is 

characterized by a higher coefficient in the QR matrix of the mp-programming problem 

formulation (Table 4.8) as it is in fact the output of interest. To compensate both for 

variations in the feed composition as well as for the periodic strategy applied in the feeding, 

the control formulation considers the feed composition as disturbance. The bounds of the 

latter can be experimentally pre-defined and therefore it is treated as measured disturbance 

with known bounds. As mentioned previously, in this work we examine the 

separation/purification of a monoclonal antibody from an upstream mixture and the case 

study is based on the MCSGP process. Therefore the bounds for the feed composition have 

been defined from experiments performed by the Morbidelli Group (ETH Zürich) and are 

shown in Table 4.8. The lower bound of 0 mg/mL corresponds to the cases where no feeding 
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is introduced to the system. Usually the feed composition varies ± 10% from the base case 

value presented in Table 4.4 and therefore the upper bound is defined accordingly. Due to 

confidentiality agreement with the Morbidelli Group (ETH Zürich) the exact values of the 

feed composition cannot be disclosed and thus here we provide close estimates. 

 

Figure 4.22 mp-MPC scheme designed for the SIMO controller considering the feed as disturbance. 

 

Table 4.8 mp-MPC tuning parameters as used for the design of the SIMO controller under measured 
disturbances (where ! is the identity matrix). 

Tuning 
Parameter Explanation Value Tuning 

Parameter Explanation Value 

OH  Output Horizon 4 Umin Input upper 
bound 

0 

NC Control Horizon 2 Umax Input lower 
bound 

12 

Q Weights on the 
states 

1·I Dmin Disturbance 
upper bound 

[0 0 0] 

QR Weights on the 
outputs 

[102 104 102] Dmax Disturbance 
lower bound 

[0.0748  0.4059  
0.0462] 

R Weights for the 
inputs 

1·I Total 
Number 
of Critical 
Regions 

 9 

P 
Terminal 

weight for the 
states 

Riccati 
equation* 

 
 

 

                                                        
* The Riccati equation is as follows: P = A!PA − !!!" !!!" + ! !! !"# + !, where A and B are the 
matrices of the state space model and P, R, Q the tuning parameters used for the control problem formulation. 

Controller
(mp-MPC)

Setpoints 

Feed

Disturbances Modifier 
Column

(Process model)

Control
Variable

Measured 
Outputs 

∫CW , ∫CP , ∫CS  

State Space 
Representation
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Figure 4.23 Two-dimensional projection of 5 critical regions polyhedral. States: !! = !.!!"#, !! =
!!,  !! = !.!!"#,  !! = !.!"#$  , Disturbances: !!

!""# = !.!" ! !.!!"   , Outputs: !! = ! , Output 
Setpoints: !!!"# = !, !!!"# = !, !!!"# = !!, where ! =!,!, !. 

The problem is solved using the POP® toolbox for robust/explicit mp-MPC, within PAROC 

(Pistikopoulos et al., 2015, Oberdieck et al., 2016). The solution of the problem resulted in 9 

critical regions, 5 of which are depicted in Figure 4.23. The plot is generated based on two of 

the parameters of the mp-programming problem, while the rest are fixed to a base case value. 

4.5.3 In-silico evaluation of the controller performance 

The designed controller is validated in-silico against the high-fidelity, nonlinear process 

model and the output profiles are monitored. The ‘closed-loop’ validation is performed using 

the gO:MATLAB interface in gPROMS ModelBuilder® v. 4.2.0. For the controller 

assessment we consider a constant, base case, average value for the flow rate (0.6 mL/min) 

and a periodic feeding strategy (Figure 4.24). The feeding strategy applied here is the same as 

the one adopted in the original MCSGP process (Section 3.3), where feeding is introduced at 

every column once per cycle for approximately 2 min. Figure 4.24 illustrates the 

concentrations of the: (a) weak impurities, (b) product and (c) strong impurities present in the 

feed stream. The feed as presented in Figure 4.24 is defined by the operator and is considered 

as measured disturbance by the designed controller. It should be underlined that setpoints 

during the in silico validation are changed following the gradient strategy presented in section 

4.4.4 and thus every increase follows a slope of approximately 1.5 min 
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Figure 4.24 Strategy followed for the feed composition (considered as measured disturbance), including: (a) 
weak impurities, (b) product and (c) strong impurities as indicated by the controller during the ‘closed-
loop’ validation. 

Figure 4.25 illustrates the comparison between the output of the process model and the 

predefined setpoint, where a good agreement is observed. The controller manages to track the 

setpoints efficiently and with significantly reduced offset compared to the results presented 

above (Section 4.4). In particular, the weak impurities are characterized by undershoots that 

are less than 2%, while the product does not demonstrate any deviation from the setpoints 

(Figure 4.25b). Nevertheless, in the case of strong impurities, deviations from the setpoints 

are still encountered. Especially the second setpoint is characterized by a 10% undershoot, 

where the controller does not manage to reach the desired concentration (Figure 4.25c). As 

discussed earlier, this could be attributed to the control tuning parameters and in particular the 

QR values determining the weight of the three outputs in the objective function of the control 

problem (Appendix B). Increasing the weight of the strong impurities could potentially lead 

to more accurate tracking of the output variable. At this point it should be underlined that the 

main objective of the proposed controller is to efficiently track the system, maintaining key 

features such as the periodicity (Figure 4.26). Therefore, attributes such as purity and/or yield 

are not assessed here. Nevertheless, since the proposed control strategy can efficiently track 

the system under various conditions, it can be expected that it will return satisfactory results 

also in real-time application, where the process is operated under pre-optimized setpoints. 

Here, however, the setpoints are retrieved from simulations of the validated mathematical 

model and correspond to a case study designed for this work aiming to test the controller 

behavior under a variety of conditions.  
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The improved behavior can be attributed to the fact that the control problem examined in this 

section also considers the feed composition as measured disturbance and therefore the 

controller is immunized against variations in the feed stream. This observation is also 

supported by the input profile generated by the controller in the ‘closed-loop’ validation 

(Figure 4.26a). The strategy suggested for the modifier is characterized by 4 satellite actions 

that proceed the main feeding and occur at the same time with the disturbances (Figure 

4.26a). It is therefore evident that the addition of the feed stream as disturbance in the control 

problem improves significantly the behavior of the controller that due to its predictive nature 

can calculate the optimal actions to account for the upcoming disturbance. Despite the 

addition of the disturbances in the control problem, the repetitive time delay discussed in the 

previous sections (Sections 4.3 and 4.4) is observed here as well. This systematic delay is 

encountered in all outputs (Figure 4.25) and is approximately 8 min. 

 

Figure 4.25 Comparison of the predefined setpoint (---) and the output of the process model simulation (─) 
as resulted from the controller closed-loop validation for (a) weak impurities, (b) product and (c) strong 
impurities over time [under constant flow rate (0.6 mL/min), considering the feed composition as measured 
disturbance]. 
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Figure 4.26 (a) Input profiles as generated by the controller and (b) Evolution of the critical regions/control 
laws during the ‘closed-loop’ controller validation [under constant flow rate (0.6 mL/min), considering the 
feed composition as measured disturbance]. 

 

Similarly to the previous control schemes, here we observe a periodic profile in the input 

(Figure 4.26a) that is followed by a cyclic profile in the selection of control laws (Figure 

4.26b), inherently suggested by the controller. We can therefore conclude that the periodic 

nature of the examined process has been successfully transferred from the process model to 

the linear representation and effectively to the controller, indicating that CSS can be achieved. 

4.5.4 Conclusions 

This section presents the development of a single-input (modifier concentration) multiple-

output (integrals of the outlet concentrations of the three mixture components) controller that 

considers variations in the feed stream as measured disturbance. The designed controller is 

tested in silico, under ‘closed-loop’ validation against the process model and its performance 

is assessed. The validation is performed under constant flow rate as per the previous proposed 

schemes (Sections 4.3 and 4.4). The presented controller manages to track the predefined 

setpoints efficiently, without significant offsets, suggesting a periodic input profile that can 

lead to stable operation. Moreover, the addition of the feed composition as disturbance in the 

problem formulation results into satellite, corrective actions in the input as the predictive 

nature of the controller, allows it to take action for the upcoming disturbance on time. 

However, despite the addition of the disturbance, the results continue to demonstrate a 

repetitive time delay in the output profiles. This delay is encountered at every setpoint change 
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and is of approximately 8 min. The latter can be associated with the operating flow rate and 

the residence time of the column at hand. The following section (Section 4.6) is dedicated to 

thorough the investigation of this delay and suggests a strategy for its elimination.  

 

 Handling the Time Delay: “Setpoint Shift” Strategy 4.6

As discussed earlier, the results presented in Sections 4.3, 4.4 and 4.5 are characterized by a 

repetitive time delay, identical for all problem formulations. Investigating this phenomenon 

further, we conclude that it is an inherent characteristic of the system and it is directly 

correlated to the value of the flow rate. More specifically, the time delay shown in the results 

presented above, corresponds to the residence time and can be calculated using the column 

volume and the operating flow rate (Equation 4.4) (Guiochon, 2012). 

! = !
! 

Equation 4.4 Residence time as a function of the 
column volume and operating flow rate. 

Where t is the residence time (or time delay), V is the column volume and Q the operating 

flow rate. The time delay can be calculated a priori at each time point, as both the column 

volume and the flow rate are known. From an optimization standpoint, the flow rate is one of 

the most important factors that highly affect the product purity and the elution bands. 

However, the optimal operating flow rates can be determined beforehand, through dynamic 

optimization procedures, instead of participating in the control problem as an additional input 

variable. In that way, the control problem is decreased and therefore the computational force 

required for its solution is significantly less. Moreover, operating the controller under 

constant flow rate is also in line with industrial applications as currently pumps installed in 

chromatographic devices can operate close to a given setpoint (i.e. under constant flow rate).  

Here, we pre-calculate the residence time for the given flow rate value and we shift the 

setpoint accordingly to compensate for the delay (“setpoint shift strategy”). In that way we 

create two sets of setpoints: (a) the ones that are shifted backwards in time and are the ones 

used by the controller for the input generation and (b) the real setpoints that follow the elution 

profiles. The proposed strategy is assessed for all the presented control schemes (SISO, SIMO 

without disturbance and SIMO with disturbance) for the base case of 0.6 mL/min. Table 4.9 

summarizes the details of the presented case studies. Due to confidentiality agreement signed 

with the Morbidelli Group (ETH Zürich), the exact values of the variables cannot be disclosed 

and therefore the values provided are close estimates of the ones used in the simulations. The 

simulations are performed under gradient setpoint change (Section 4.4.4).  

  



Chapter 4. Model-based Control of Single-Column Chromatographic Systems 

 

 122 

Table 4.9 Details used for the assessment of the “setpoint shift” strategy applied for the elimination of the 
time delay in the controller performance. 

Column Volume 

(mL) 

Flow Rate 

(mL/min) 

Residence Time (delay) 
(min) 

5 0.6 8 
 

4.6.1 SISO systems 

The first controllers to be tested under the “setpoint shift” strategy are the three SISO 

controllers developed in section 4.3. In addition, the controllers are simulated under the 

gradient setpoint change, where setpoints are increased following a slope of approximately 

1.5 min and continuous feed (Table 4.4). The controllers operate independently from each 

other, tracking only one output.  

 

Figure 4.27 Results from the ‘closed-loop’ validation of Controller 1: (a) comparison of the model output 
(─) and the output setpoint (---), (b) input profile as generated by the controllers and (c) selection of critical 
regions, under the ‘setpoint shift’ strategy. 

 

All the controllers manage to track the setpoints efficiently without significant offsets. 

However, most importantly, it is observed that the delay has been eliminated from all output 

profiles (Figure 4.27a, Figure 4.28a and Figure 4.29a). Investigating the input profiles 

thoroughly (Figure 4.27b, Figure 4.28b and Figure 4.29b), we observe that the input actions 
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are taken approximately 8 min earlier than before (Section 4.3). The latter is a result of the 

applied strategy of shifting the setpoints according to the pre-calculated delay.  

 

Figure 4.28 Results from the ‘closed-loop’ validation of Controller 2: (a) comparison of the model output 
(─) and the output setpoint (---), (b) input profile as generated by the controllers and (c) selection of critical 
regions, under the ‘setpoint shift’ strategy. 

 

Figure 4.29 Results from the ‘closed-loop’ validation of Controller 3: (a) comparison of the model output 
(─) and the output setpoint (---), (b) input profile as generated by the controllers and (c) selection of critical 
regions, under the ‘setpoint shift’ strategy. 

In addition, we observe that the proposed strategy does not affect the optimal actions in terms 

of value (Figure 4.27b, Figure 4.28b and Figure 4.29b), however, we observe that the input 
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profiles are characterized by broader peaks. This can be associated to the combined effect 

with the gradient elution that is imposed during the closed loop validation that forces the 

controller to follow a smoother input strategy. To add to that, as illustrated in Figure 4.27c, 

Figure 4.28c and Figure 4.29c, the choice of control laws continues to be periodic.  

4.6.2 SIMO system (without disturbance) 

The next control scheme we test under the “setpoint shift” strategy is the single-input 

multiple-output controller, under continuous feed (Section 4.4). The controller is tested in 

‘closed-loop’ under constant flow rate. It is observed that due to the applied strategy, all the 

outputs manage to reach the predefined setpoint on time, without time delay (Figure 4.30). 

Also in this case the input actions are taken 8 min earlier than before (Section 4.4) as the 

controller can now see the defined setpoint earlier in time.  

 

Figure 4.30 Comparison of the predefined setpoint following gradient change of 1.5 min and the output of 
the process model simulation as resulted from the controller closed-loop validation for (a) weak impurities, 
(b) product and (c) strong impurities over time [under constant feed (Table 4.4) and flow rate (0.6 
mL/min)], under the ‘setpoint shift’ strategy.  

  



Chapter 4. Model-based Control of Single-Column Chromatographic Systems 

 

 125 

The proposed strategy does not affect either the input values or the periodicity in its profile 

(Figure 4.31a). However, the control actions presented here are broader compared to the ones 

demonstrated in section 4.4.4 (Figure 4.18). This could be attributed to the fact that the 

“setpoint shift” strategy combined with the gradient change in the setpoints, allows the 

controller to follow the system more closely and therefore provide a more precise input 

profile based on the system needs. Similarly, the selection of the control laws continues to 

follow the cyclic profile presented earlier. 

 

Figure 4.31 (a) Input profiles as generated by the controller and (b) Evolution of the critical regions/control 
laws during the ‘closed-loop’ controller validation, under the ‘setpoint shift’ strategy. 

 

4.6.3 SIMO system (with disturbance) 

The last scheme where we apply the “setpoint shift” strategy and we check the controller 

capabilities is the single-input multiple-output controller that considers variations in the feed 

stream as measured disturbance (Section 4.5). Also in this case the flow rate is maintained 

constant throughout the simulation. Figure 4.32 illustrates the comparison between the 

predefined setpoints and the outputs of the process model, where a good agreement is 

observed. In particular, the time delay has been completely eliminated for all measured 

outputs, while the output of interest (Figure 4.32b) demonstrates the most satisfactory 

behavior. The latter can be attributed to the different weight distribution of the outputs in the 

objective function (QR matrix) as discussed in section 4.5.2. The input profile (Figure 4.33) is 
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characterized by the same width in the peaks and a cyclic behavior similar to the results 

presented above (Figure 4.26a). 

However, we observe that here (Figure 4.33) the satellite actions are merged to the main 

modifier feed. The latter is a result of the setpoint shift and consequently the shift of the input 

actions backwards in time. As a result, the selection of critical regions presented in Figure 

4.33b is different than the one presented above where no shift in the setpoints is applied 

(Section 4.5). Moreover, also in this case the periodicity in the control laws is maintained, 

indicating that the proposed scheme can lead to stable operation where CSS can be achieved. 

 

Figure 4.32 Comparison of the predefined setpoint (---) and the output of the process model simulation (─) 
as resulted from the controller closed-loop validation for (a) weak impurities, (b) product and (c) strong 
impurities over time [under constant flow rate (0.6 mL/min), considering the feed composition as measured 
disturbance (Figure 4.24)], under the ‘setpoint shift’ strategy. 
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Figure 4.33 (a) Input profiles as generated by the controller and (b) Evolution of the critical regions/control 
laws during the ‘closed-loop’ controller validation [under constant flow rate (0.6 mL/min), considering the 
feed composition as measured disturbance (Figure 4.24)], under the ‘setpoint shift’ strategy. 

 

4.6.4 Conclusions 

In this section we investigate the time delay observed in the assessment of previously 

developed controllers (Sections 4.3, 4.4 and 4.5). We demonstrate how this delay is 

associated to the operating flow rate and the column volume. In particular, the repetitive delay 

corresponds to the residence time that is an inherent characteristic of chromatographic 

systems and cannot be manipulated by the operator. Aiming to improve the system 

performance and educate the designed controllers to compensate for this delay, we suggest a 

novel approach, where the setpoints are shifted in time. More specifically, we exploit the fact 

that both the column volume and the operating flow rate are known a priori and therefore we 

use them to pre-calculate the residence time. Following that we create two sets of setpoints. 

The first one is shifted in time based on the calculated delay and is used to update the 

controller, while the second corresponds to the desired elution times. This strategy is applied 

to the three different control schemes presented earlier (Sections 4.3, 4.4 and 4.5) and the 

controllers are assessed. It is observed that the proposed approach manages to efficiently 

eliminate the time delay in all examined cases, without affecting the system periodicity and/or 

optimal control actions. The “setpoint shift” strategy presented here does not seem to 

significantly affect the controllers performance with respect to setpoint tracking, as the offsets 

discussed previously are observed here as well. In the following section (Section 4.7) we 
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consider the most complex case of the SIMO controller with disturbance and we examine its 

behavior under various flow rate values, following the strategy presented here. 

 Controller performance under various Flow Rates  4.7

As resulted from the sensitivity tests (Section 4.2.2.2), the flow rate does not affect the 

quantity of the ingredients extracted by the column. Therefore, the control schemes presented 

above do not consider the flow rate as part of the problem formulation and the controller 

performance is assessed under a constant flow rate within the range of interest. However, 

according to the principles of chromatography (Guiochon, 2012) the flow rate controls the 

speed of the extraction and effectively the elution profile. As discussed in section 4.6, the 

operating flow rate in conjunction with the column volume, are responsible for the residence 

time that results in an inherent time delay affecting the elution. 

It is therefore of vital importance to assess the performance of the designed controllers under 

various flow rate values, covering the whole feasible operating space. Here, we assess the 

most complex case of the SIMO system with disturbance (Section 4.5) under three different 

flow rate values (low, average and high ranging from 0 mL/min to 1 mL/min), applying the 

“setpoint shift” strategy, presented above (Section 4.6). The range chosen for the inlet flow 

rate is in line with the specifications/feasible operating bounds of the column (pressure over 

the packed bed) and the resulting linear flow rates are typical for chromatographic processes, 

described by the mathematical model that is presented in Appendix B. The latter has been 

validated across this range of conditions and therefore can be trusted for the in-silico 

validation of the controller (Ströhlein et al., 2006a, Aumann and Morbidelli, 2007, Aumann et 

al., 2007, Stroehlein et al., 2007, Aumann and Morbidelli, 2008, Müller-Späth et al., 2008, 

Aumann et al., 2009, Grossmann et al., 2010, Müller-Späth et al., 2010a, Aumann et al., 2011, 

Muller-Spath et al., 2011). Table 4.10 illustrates the operating details of the three case studies. 

Table 4.10 Details used for the assessment of the controller behaviour under various flow rate values. 

Column Volume 

(mL) 

Flow Rate 

(mL/min) 

Residence Time (delay) 
(min) 

5 

0.2 25 

0.6 8 

1 5 
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For the comparison studies, the disturbance profile shown in Figure 4.24 is followed. It 

should be mentioned that in each case, the setpoints are adjusted subjected to the system 

feasibility. In all three cases (Figure 4.34) the controller successfully meets the setpoint 

requirements, indicating a cyclic input profile. Depending on the flow rate values, the input 

profile may, however, vary. More specifically, it is observed that the higher the flow rate, the 

faster the control action. From a physicochemical point of view, high flow rates indicate 

higher speed within the column and therefore the input has a more aggressive impact on the 

output profile. Consequently, the controller has to react faster when operating under 

maximum flow rate (Figure 4.34a). On the contrary, in the third case, where the controller 

operates under minimum flow rate, the setpoints are shifted in time (Figure 4.34c.2), as the 

residence time is prolonged and the control actions are broader (Figure 4.34c.1). It can be 

observed that the “setpoint shift” strategy presented in Section 4.6 copes well with various 

flow rate ranges and manages to efficiently eliminate the inherent time delay. 
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Figure 4.34 Comparison results for three flow rate values (Q= 1, 0.6 and 0.2 mL/min). The column on the 
left represents the input profile (modifier concentration) indicated by the controller that leads to the output 
profile (integrals of the components concentrations, right column) [using the setpoint shift strategy]. 

  



Chapter 4. Model-based Control of Single-Column Chromatographic Systems 

 

 131 

 Conclusions 4.8

In this chapter we present the development of advanced, model-based control strategies for 

single-column chromatographic systems. We examine a single-column system based on the 

principles of the MCSGP process, used for the separation of a ternary mixture containing 

weak impurities, antibody and strong impurities. The main objective of this work is the design 

and testing of novel control strategies that is able to track the system at hand, while 

maintaining its key features, such as the periodicity and non-linearity. The case studies 

presented in this chapter aim to test the developed controllers under a variety of conditions 

and do not assess their performance based on final purity and/or yield. It is acknowledged that 

the latter correspond to the main parameters based on which the efficiency of a 

chromatographic separation is assessed, however the goal of the presented studies is focused 

on system tracking, that is understanding how the controller can maintain a set-point and 

reject disturbances and hence using a more fundamental approach. In real-time application the 

process is pre-optimized (computationally and/or experimentally) and issues such as optimal 

feeding strategy, optimal flow rate value and switching times are defined prior to the 

execution and automation of the process. The optimization policies yield thereafter the 

optimal setpoints under which the controller should operate. Here, we trust the validated 

mathematical model in order to specify the setpoints for each presented case study. 

The first objective of this chapter is to fully explore and understand the system dynamics. For 

this reason, we execute preliminary sensitivity tests, where the effect of the inputs on the 

outlet concentrations of the mixture components is assessed (Section 4.2.2). Based on this, we 

reduce the input set to a single entity (the modifier concentration) that is considered as the 

most significant for the eluted quantities. Considering the interactions resulting from the 

sensitivity tests we examine the development of advanced multi-parametric controllers on 

three case studies: (i) three single-input, single-output systems under continuous feeding 

(Section 4.3), (ii) a single-input, multiple-output system under continuous feeding (Section 

4.4) and (iii) a single-input, multiple-output system under variable feeding, considering the 

latter as disturbance (Section 4.5). At the same time, we propose a novel strategy (Section 

4.2.2), where we track the integral of the outlet concentrations of the mixture components, 

allowing continuous process control. This can effectively lead to better, ‘tailor-made’ control 

actions compared to ‘cycle-to-cycle’ control. Practically, the designed controllers can initially 

receive frequent feedback within seconds from the UV/VIS detectors (Chapter 2 & Chapter 3) 

and can later also be updated by more accurate measurements resulting from the HPLC that 

requires longer analysis time. This bi-level feedback offers a two-step verification of the 

process state and allows the controller to re-estimate a better forward action in case the 
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original feedback received from the UV is not accurate enough. The integral of the outlet 

concentrations can be computed using commercially available software packages (e.g. 

FORTRAN, MATLAB) and linked to a software package used for post-analysis of 

chromatograms that uses the integral function for the integration of the elution peaks (e.g. 

UNICORN Control Software by GE Healthcare). 

The presented controllers manage to efficiently monitor the system and track the predefined 

setpoints to a satisfactory extent. As discussed earlier there are cases where the controllers 

demonstrate increased deviations (under- and over-shoots) from the predefined setpoints, 

particularly in the case of strong impurities. In an experimental/industrial application this 

could entail risks related to increased impurity content in the final product formulation that 

falls out of regulatory specifications. However, it should be underlined that the case studies 

presented here aim to test the controllers against extreme and fast-changing conditions and 

ensure that they can track the system adequately and do not necessarily focus on optimizing 

purity and yield. The latter is usually achieved via optimization studies prior to the industrial 

application of the setup. Nevertheless, the presence of the offsets is briefly discussed in this 

chapter and various solutions are proposed in case the issue persists even at events where the 

process is optimized. Such offsets can be tackled in several ways: (i) through direct tuning of 

the controller (e.g. increasing the weight of the perturbed output variable), (ii) introduction of 

an integral state to minimize the offset as part of the objective function in the control problem 

Sakizlis et al. (2004a) and (iii) state estimation techniques (e.g. Kalman filter) that will allow 

estimation of the system states and will provide more accurate control actions (Voelker et al., 

2010). 

All presented control schemes are characterized by periodicity in the input profiles that is 

inherently suggested by the designed controllers. The latter is of vital importance as it shows 

that the proposed schemes can lead to cyclic operation, where cyclic steady state can be 

achieved. The presented systems are characterized by a repetitive time delay that is equal to 

the column residence time. The latter is directly correlated to column volume and the 

operating flow rate that has been excluded from the control problem formulation. 

Nevertheless, under known volume and flow rate, this delay can be pre-computed and 

therefore it can be handled by a shift of the setpoints in time. On that end, we suggest and test 

the “setpoint shift” strategy (Section 4.6), where we pre-calculate the residence time and we 

shift the setpoints in time. The efficiency of the strategy is successfully tested for: (i) all 

presented cases under average flow rate and (ii) the most complex case (SIMO system with 

disturbance) under a wide range of operating flow rates (Section 4.7). Chapter 5 is focused on 

the development of advanced control strategies for multi-column systems, considering a two-
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column chromatographic separation setup based on the principles of the MCSGP process. 

Key challenges such as unavailable measurements at the connection point are also discussed. 
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Chapter 5.  
 
 

Model-based Control of Multi-
Column Chromatographic Systems 

following the PAROC framework 
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 Introduction 5.1

In Chapter 4 we investigated the development of advanced control strategies of single-column 

chromatographic systems with primary goal to design the control schemes in a way that 

allows continuous process monitoring and stable operation. The case studies presented above 

can be applied in various examples, where a single column is used or in cases where columns 

operate in batch mode (e.g. B-phases of the MCSGP process). However, in order to increase 

the process efficiency, chromatographic processes usually consider multi-column equipment, 

where the columns interact with each other. Such configurations can be found in SMB or 

other chromatographic separation processes, where the mixture is transferred from one 

column to the other. The operation of such systems is considered to be continuous and 

therefore online measurements become even more challenging to obtain. 

In this chapter we focus on the development of advanced control strategies of multi-column 

systems and in particular a two-column configuration, based on the principles of the MCSGP 

process (Section 3.3). We follow the PAROC framework and software platform 

(Pistikopoulos et al., 2015) for the design and testing of the model-based controllers. The 

main objective of this chapter is the design and testing of novel control strategies for the 

connected system, handling issues with unavailable measurements when the impure stream is 

transferred from one column to the other. Section 5.2 describes the twin-column system, as 

well as the framework followed for the development of the control scheme. The latter is 

discussed in detail in section 5.3, where we demonstrate how we apply PAROC for the 

development of two, advanced, single-input multiple-output parametric controllers. Following 

their design, the controllers are tested in silico, in a ‘closed-loop’ fashion under two sets of 

operating flow rates and their performance is assessed. Lastly, in section 5.4 we discuss a 

novel control concept for the twin-column MCSGP process, where we suggest a 

centralized/decentralized control approach, monitoring each operating mode independently. 
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 Two-column System 5.2

Based on the principles of the MCSGP process, we consider the system presented in Figure 

5.1, comprising two identical chromatographic columns. The thermodynamic and kinetic 

equations described in Appendix B remain the same for both columns, however the mass 

balances around them are modified to describe the mixing (Equation 3.2). For simplicity, we 

will refer to the two columns as: Column 1 (the one eluting the mixture) and Column 2 (the 

one receiving the recycling stream). For the purposes of this case study, we consider that feed 

is introduced to Column 1 in a periodic fashion. It should be underlined that this case study 

aims to design a controller that is able to track the system, capturing its main features such as 

the periodicity and system non-linearity. Although in chromatographic separation ultimately 

the process performance in terms of purity and yield needs to be considered, the described 

controller has a more fundamental purpose and therefore numeric results for these parameters 

are not further discussed. 

 

Figure 5.1 Two-column system considering: (1) for Column 1: the modifier concentration as input & the 
feed composition at the column inlet and the three mixture components at the column outlet and (2) for 
Column 2: the modifier concentration & the internally recycled components from Column 1 at the column 
inlet and the three mixture components at the column outlet. 

The development of advanced control strategies for such complex systems requires a rigorous 

procedure that can ensure seamless design and testing of the proposed controllers. Here we 

follow the PAROC framework and software platform (Pistikopoulos et al., 2015) for the 

design and in-silico testing of advanced multi-parametric controllers. The framework, as 

described in Section 0 comprises 4 main steps: (i) model development, (ii) model 

approximation, (iii) design of the mp-MPC controller and (iv) ‘closed-loop’ validation. Figure 

5.2 illustrates the PAROC framework tailored for the purposes of this work. Section 5.3 

describes the step-by-step application of framework for the control of the two-column system. 

Modifier	 ∫CP	

Feed	

W

P

S

Modifier	
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Figure 5.2 PAROC framework as followed for the development of the twin-column control scheme 
development and testing. 

 

 Control of the Two-column System via PAROC 5.3

5.3.1 Model development 

The two columns shown in Figure 5.1 operate in series, aiming to increase process efficiency. 

Based on the operation of the MCSGP process (Section 3.3), during the I-phases, the outlet of 

Column 1 that elutes the impure fraction becomes the inlet Column 2 that undergoes gradient 

elution. To achieve separation, the impure fraction is mixed with additional modifier before 

entering the second column. The columns presented here are the same with the one studied in 

Chapter 4 and therefore the input/output set selection is based on the results from the 

sensitivity tests presented earlier (Section 4.2.2). 
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5.3.1.1  Input & output set selection 

(i) Column 1 

The operation of Column 1 is not affected by the second column and can be therefore 

considered similar to the batch operation. Therefore, the controller operating on Column 1 

considers the modifier concentration as the sole input, the feed composition as measured 

disturbances and the integrals of the mixture components at the column outlet as outputs. 

(ii) Column 2 

As mentioned previously, the two columns are described by the same thermodynamic/kinetic 

equations, regardless of the system configuration. Consequently, the sensitivity of the inputs 

as described in Section 4.2.2 applies in this case as well and therefore, the modifier 

concentration is used as the only input. Similarly to the batch operation, we consider the 

integral concentrations of the three mixture components at the column exit as tracked outputs. 

However, in this case Column 2 receives the recycling stream exiting Column 1. Given the 

continuous nature of the process at this stage, no online measurements are available at the 

connection point between the two columns. However based on simulation results as well as 

offline experiments, the range of the mixture composition exiting Column 1 can be pre-

defined and can be therefore treated as measured disturbance for the design of Controller 2. It 

is important to underline that although the output set considers the integrals of the outlet 

concentrations (mg), the disturbances considered by Controller 2 correspond to the actual 

concentrations of the mixture components (mg/mL). This is to maintain consistency with the 

process model that uses the concentration profiles in order to describe the events within the 

column. 

5.3.2 Model approximation 

Based on the fact that both the columns and the input/output set remain the same, the 

approximate model derived in Section 4.4 can be used here as well. In particular, both 

columns are described by the same model equations. Table 5.1 illustrates the details of the 

approximate models. 

  



Chapter 5. Model-based Control of Multi-Column Chromatographic Systems following the 

PAROC framework 

 

 139 

Table 5.1 Input/Output sets and measured disturbances as considered for the two-column system. 

 Column 1 Column 2 

Input Modifier Concentration Modifier Concentration 

Output 

Integrals of the outlet 

concentrations of W, P, S 

exiting Column 1 

Integrals of the outlet 

concentrations of W, P, S 

exiting Column 2 

Disturbance Feed composition 
Component concentrations 

transferred from Column 1  

Approximate Model As presented in Section 4.4.1 

 

5.3.3 Design of the mp-MPC controllers 

Following the PAROC framework, the next step is the formulation and solution of the mp-

MPC problem that will lead to the map of optimal control actions. Figure 5.3 demonstrates 

the control scheme considered for the current configuration, where Controller 1 acts on 

Column 1, considering: (i) the modifier concentration as input, (ii) the feed as measured 

disturbances and (iii) the integrals of outlet concentrations of the three mixture components as 

outputs. Similarly, Controller 2 monitors the activity of Column 2, considering: (i) the 

modifier concentration as input, (ii) the outlet concentrations of Column 1 as measured 

disturbances and (iii) the integrals of outlet concentrations of the three mixture components as 

outputs. It should be underlined that the flow rate has been excluded from the problem 

formulation and thus is maintained constant for both columns. Given that the two columns are 

identical, they are described by the same approximate model and the same operational 

constraints, it suffices to formulate and solve only one mp-P problem. The latter will lead to a 

map of solutions that can be used for both columns 
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Figure 5.3 mp-MPC control scheme as designed for the two-column system. 

 

Table 5.2 Tuning parameters used for the formulation and solution of the mp-MPC problem. 

Tuning 

Parameter 
Explanation Value 

Tuning 

Parameter 
Explanation Value 

OH  Output 
Horizon 

4 Umin Input upper 
bound 

0.2 

NC  Control 
Horizon 

2 Umax Input lower 
bound 

12 

QR Weights on the 
outputs 

[102 104 102] Dmin Disturbance 
upper bound 

[0 0 0] 

Q Weights on the 
states 

1I Dmax Disturbance 
lower bound 

[10 10 10] 

R 
Weights for 
the inputs 

1 Total 
number of 

critical 
regions 

 9 

P Terminal 
weight for the 

states 

Riccati 
equation* 

   

 

                                                        
* The Riccati equation is as follows: P = A!PA − !!!" !!!" + ! !! !"# + !, where A and B are the 
matrices of the state space model and P, R, Q the tuning parameters used for the control problem formulation. 

Controller 1
(mp-MPC)

Setpoints 

Feed

Disturbances Modifier 
Column 1

(Process model)

Control
Variable

Disturbances
CW , CP , CS

Measured 
Outputs 

∫CW , ∫CP , ∫CS  

State Space 
Representation

Controller 2
(mp-MPC)

Measured 
Outputs 

∫CW , ∫CP , ∫CS  Modifier 
Column 2

(Process model)

Control
Variable

State Space 
Representation

Setpoints 
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Figure 5.4 Two-dimensional projection of 5 critical regions polyhedral. States: !! = !.!!"#, !! = !!,  !! =
!.!!"#,  !! = !.!"#$  , Disturbances: !!

!""# = !.!" ! !.!!"   , Outputs: !! = ! , Output Setpoints: 
!!!"# = !, !!!"# = !, !!!"# = !!, where ! =!,!, !. 

 

Table 5.2 illustrates the tuning parameters used for the design of the controller. The multi-

parametric programming problem is solved using the POP® toolbox (Oberdieck et al., 2016) 

for robust/explicit mp-MPC, within PAROC. The map of solutions for this problem 

comprises 9 critical regions that correspond to the control laws. A higher weight in the 

objective function is chosen for the targeted product (QR) as it is the output of interest. Figure 

5.4 illustrates the map of solutions as a function of two of the control problem parameters. 

5.3.4 In-silico evaluation of the controller performance  

The controllers designed above are tested in-silico against the process model and their 

performance is assessed. Based on the schematic shown in Figure 5.3, the two columns 

and therefore the respective controllers are operated in tandem. The two columns start 

empty, and feed is introduced to Column 1 in a periodic fashion (Figure 5.5) (following 

the original feeding strategy of the MCSGP process, please refer to Section 3.3). 

Controller 1 receives feedback from the outlet of Column 1 and returns the respective 

optimal control action (modifier concentration) to reach the predefined setpoints. 

Following that, Column 2 receives the fraction exiting Column 1 that is treated as 

disturbance by Controller 2 (Figure 5.7). The latter, receives feedback from the output 
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measurement (integrals of the outlet concentrations) and returns the optimal modifier 

concentration. 

 

Figure 5.5 Disturbance profile on Column 1 during the 'closed-loop validation' corresponding to the 
concentrations of: (a) weak impurities, (b) product and (c) strong impurities in the feed stream. 

 

Figure 5.6 Disturbance profile on Column 2 during the 'closed-loop validation' corresponding to the 
concentrations of: (a) weak impurities, (b) product and (c) strong impurities eluting from Column 1. 
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For the in-silico validation, we apply both the ‘gradient setpoint change' (Section 4.4.4) and 

the ‘setpoint shift’ (Section 4.6) strategies. Table 5.3 illustrates the operating conditions used 

in this example for the calculation of the residence time (time delay). Figure 5.7a and Figure 

5.8 illustrate the input profile (modifier concentration) as designed by Controller 1 and the 

comparison between the predefined setpoints and the outputs, respectively. It is observed that 

the behavior of Controller 1 is identical to the one of the batch operation (Section 4.5) as the 

operation of Column 1 and effectively the actions of the controller are not affected by the 

configuration illustrated in Figure 5.1. Conversely, although Controller 2 shares the same map 

of solutions with Controller 1, it is characterized by a different behavior during the in-silico 

validation. In the interconnected mode, Controller 2 is operated under disturbances that occur 

from the impure fractions transferred from Column 1. The disturbance profile (Figure 5.6) 

corresponds to the component concentrations at the exit of Column 1 and is a result of the 

process model simulation under ‘closed-loop’ in tandem with Controller 1. The disturbance 

profile can also be post-calculated by the derivation of the outputs of Column 1 (Figure 5.8). 

The elution peaks are of approximately 1.5 min duration, similarly to the gradient change of 

the setpoints defined for Controller 1. 

Table 5.3 Operating details used during the ‘closed-loop’, in-silico validation for the two columns. The 
details are used for the calculation of time delay and therefore the setpoint shift strategy, based on Equation 
4.4.* 

 
Column Volume 

(mL) 

Flow rate 

(mL/min) 

Residence Time 

(time delay, min) 

Column 1 
5 

0.6 8 

Column 2 1 5 

In order to track the setpoints (Figure 5.9), Controller 2 is returning the input profile shown in 

Figure 5.7b. Contrary to the input of Controller 1 (Figure 5.7a), here, the periodic profile is 

not observed. This can be attributed to the fact that at this stage of the process, Column 2 is 

continuously receiving the outlet of Column 1. In particular, apart from the impure fractions 

(disturbances, Figure 5.6), Column 2 is also receiving the amount of the modifier that exits 

Column 1. This is considered by Controller 2 and therefore feeds only the essential amount of 

modifier in order to reach the desired setpoints. It is observed (Figure 5.7b) that in all control 

                                                        
* Due to confidentiality agreement with the Morbidelli Group (ETH Zürich) the exact values cannot be disclosed 
and therefore only estimates are provided. 
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actions, the controller starts feeding modifier approximately 5 min before the upcoming 

setpoint change to compensate for the residence time. This is a combined result both from the 

knowledge transferred from the process model as well as from the “setpoint shift” strategy. 

Particularly interesting is the second, wide input action, where modifier is fed in the system 

for approximately 70 min. During this time frame, the controller is aiming to compensate for 

both the occurring disturbances (Figure 5.6) and the setpoint tracking (Figure 5.9). A 

satisfactory agreement between the setpoints and the tracked outputs is observed, 

characterized by less than 2% offset (Figure 5.9). Exceptions to the latter are the first and 

third setpoints of the strong impurities that demonstrate a significant offset of approximately 

10%. This could be attributed to the control tuning parameters and in particular the QR values 

determining the weight of the three outputs in the objective function of the control problem 

(please also refer to the studies on the tuning parameters presented in Appendix B). 

Increasing the weight of the strong impurities could potentially lead to more accurate tracking 

of the output variable. It should be also underlined that the main objective of the proposed 

controller is to efficiently track the system, maintaining key features such as the periodicity 

(Figure 5.7). Therefore, attributes such as purity and/or yield are not assessed here. 

Nevertheless, since the proposed control strategy can efficiently track the system under 

various conditions, it can be expected that it will return satisfactory results also in real-time 

application, where the process is operated under pre-optimized setpoints. Here, however, the 

setpoints are retrieved from simulations of the validated mathematical model and correspond 

to a case study designed for this work aiming to test the controller behavior under a variety of 

conditions. In case the same deviations persist they could be tackled either directly (via the 

tuning parameters of the control) or indirectly using estimation methods (e.g. integral state or 

Kalman filter estimation techniques) (Sakizlis et al., 2004b, Voelker et al., 2010). 
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Figure 5.7 Input profiles as generated by: (a) Controller 1 and (b) Controller 2 during the 'closed-loop 
validation of the interconnected system. 

 

Figure 5.8 Column 1: Comparison of the predefined setpoint (---) [using the setpoint shift strategy] and the 
output of the process model simulation  (─) as resulted from the controller closed-loop validation for (a) 
weak impurities, (b) product and (c) strong impurities over time [under the disturbance and input profile 
illustrated in Figure 5.10 and Figure 5.7a respectively]. 
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Figure 5.9 Column 2: Comparison of the predefined setpoint (---) [using the setpoint shift strategy] and the 
output of the process model simulation  (─) as resulted from the controller closed-loop validation for (a) 
weak impurities, (b) product and (c) strong impurities over time [under the disturbance and input profile 
illustrated in Figure 5.11 and Figure 5.7b respectively]. 

5.3.5 Testing the controllers under different flow rates 

The control scheme presented above is tested here under a different set of flow rates and the 

controller behavior is assessed. Table 5.4 summarizes the operating flow rate used for the new 

‘closed-loop’ validation for each column. The “setpoint shift” strategy presented in section 

4.6 is employed here as well. 

Table 5.4 Operating details used during the ‘closed-loop’, in-silico validation for the two columns. The 
details are used for the calculation of time delay and therefore the setpoint shift strategy, based on Equation 
4.4* 

 
Column Volume 

(mL) 
Flow rate 
(mL/min) 

Residence Time 
(time delay, min) 

Column 1 
5 

0.2 25 

Column 2 1 5 

                                                        

* Due to confidentiality agreement with the Morbidelli Group (ETH Zürich) the exact values cannot be disclosed 

and therefore only estimates are provided. 
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For the simulation, we consider that periodic feeding of predefined composition (Table 4.4) is 

introduced to Column 1 (Figure 5.3), while Column 2 received the recycling stream exiting 

Column 1. The disturbance profiles considered for Column 1 and 2 are illustrated in Figure 

5.10 and Figure 5.11 respectively. Figure 5.13 illustrates the comparison between the output 

and the output setpoints of Controller 1, where a good agreement is observed. The controller 

manages to track the setpoints without significant offsets, returning a periodic input profile 

(Figure 5.12a) that is followed by periodicity in the control laws (Figure 5.12b).  

 

 

Figure 5.10 Disturbance profile on Column 1 during the 'closed-loop validation' corresponding to the 
concentrations of: (a) weak impurities, (b) product and (c) strong impurities in the feed stream. 
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Figure 5.11 Disturbance profile on Column 2 during the 'closed-loop validation' corresponding to the 
concentrations of: (a) weak impurities, (b) product and (c) strong impurities eluting from Column 1. 

 

 

Figure 5.12 Column 1: (a) Input profiles as generated by the controller and (b) Evolution of the critical 
regions/control laws during the ‘closed-loop’ controller validation [under constant flow rate (0.2 mL/min), 
considering the feed composition as measured disturbance]. 
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Figure 5.13 Column 1: Comparison of the predefined setpoint (---) and the output of the process model 
simulation (─) as resulted from the controller closed-loop validation for (a) weak impurities, (b) product 
and (c) strong impurities over time [under constant flow rate (0.2 mL/min), considering the feed 
composition as measured disturbance]. 

Compared to the results demonstrated previously (Figure 5.7a), here we observe broader 

actions in the input profile. This can be attributed to the fact that in this case Column 1 

operates under decreased flow rate that leads to reduced speed within the column. Therefore, 

the time required for the column to be saturated with modifier is significantly longer, leading 

to delayed elution. The controller operating on Column 1 recognizes the slower speed of the 

eluting outputs and therefore suggests that modifier should be introduced to the system for a 

longer time. Conversely, the second controller operates on Column 2 that runs under 

maximum flow rate value. Therefore the respective input profile (Figure 5.14) is 

characterized by narrower peaks. It is observed that Controller 2 introduces decreased amount 

modifier to the system compared to Controller 1. The latter is a result of the stream 

transferred from Column 1 to Column 2, where modifier is transferred as well. This behavior 

indicates that due to their model-based nature, the controllers recognize the system 

requirements and provide only the necessary amount of raw material, paving the way towards 

the design of sustainable process of reduced cost. The peaks observed in the input profile, 

occur at the time points where the setpoints are increased and therefore actions taken by the 

controller in order to reach the desired setpoints on time. Furthermore, the periodicity 

characterizing both the input and the selection of optimal control laws, indicate that the cyclic 
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nature of the system has been inherited by the control scheme that can guarantee stable 

operation during the online application.   

 

Figure 5.14 Column 2: (a) Input profiles as generated by the controller and (b) Evolution of the critical 
regions/control laws during the ‘closed-loop’ controller validation [under constant flow rate (1 mL/min), 
considering the outlet of Column 1 as measured disturbance]. 

 

Figure 5.15 Column 2: Comparison of the predefined setpoint (---) and the output of the process model 
simulation (─) as resulted from the controller closed-loop validation for (a) weak impurities, (b) product 
and (c) strong impurities over time [under constant flow rate (1 mL/min), considering the feed composition 
as measured disturbance]. 
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 Control Concept of the Twin-Column MCSGP Process 5.4

The twin-column MCSGP process (Section 3.3.1) comprises two, identical chromatographic 

columns that operate in a semi-continuous fashion. The works that have been presented so far 

regarding the control of the process suggest ‘cycle-to-cycle’ approaches, where the setup is 

treated as a black box and the purity and/or recovery yield are monitored (Grossmann et al., 

2010, Krättli et al., 2011, Krättli et al., 2013b). However, the feedback required for such 

approaches depends on offline measurements that require significant amount of time to be 

obtained. Additionally, updating the controller once per cycle may entail the risk of 

unexpected disturbances that will cause the system to deviate from its optimal performance. 

In addition, at the points where the process operates in a continuous fashion (I-phases) 

feedback measurements become unavailable and thus the controller cannot receive the 

required feedback. 

 

Figure 5.16 Proposed control scheme for the twin-column MCSGP process. 

To tackle the above challenges, in this work we distinguish two operating modes of the 

process: (i) batch (B-phases) and (ii) interconnected (I-phases) mode and we propose a 

centralized/decentralized control strategy based on the control schemes presented above 

(Sections 4.5 and 5.3). As illustrated in Figure 5.16, we suggest the design of two independent 

control schemes, one for each operating mode. The first one accounts for the batch operation 

(B-phases) and considers that the columns operate independent from one another, while the 

second scheme is designed for the control of the continuous operation (I-phases) and takes 

into account the recycling stream from one column to the other. Exploiting the fact that the 

two columns are identical in terms of technical characteristics and physicochemical 
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properties, we suggest the formulation of a single control problem that will lead to the design 

of one parametric controller. The latter can operate on both columns, regardless of their 

operating mode and/or position in the setup. Following the work presented in the previous 

sections we suggest the schemes summarized in Table 5.5. 

Essentially, the control scheme remains the same throughout the process cycle for both 

columns, thus reducing the computational work required for the design of the controllers. The 

key difference between the two operating modes and the column positions is the nature of the 

disturbances. In particular, during the I-phases the column on the left-hand side of the setup 

(Figure 5.16) is free of disturbance as no feed is introduced to the system, while the column 

on the right position receives the recycling stream of the impure fraction that is considered as 

disturbance by the controller (Section 5.3). Similarly, during batch operation (B-phases) the 

columns are either free of disturbance or they are receiving the feed that comes from the 

upstream. In either case, the designed controllers are immunized for a wide range of 

disturbance values (from 0 to +10% of the predefined experimental value) and thus they can 

account for any of the aforementioned scenarios. 

Another main difference and therefore challenge for the proposed control schemes is the 

change in the operating flow rate that is adjusted accordingly in every process phase. As 

mentioned above (Section 4.6), the optimal flow rate values can be defined via dynamic 

optimization procedures and/or experimental optimization strategies and therefore they are 

known a priori. Consequently, following the strategy presented in Section 4.6 for the 

elimination of the time delay, the suggested controllers are able to handle variations in the 

flow rate simply by shifting the desired setpoints in time. 
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Table 5.5 Suggested control schemes for the operating modes of the twin-column MCSGP* (please refer to 
Chapter 3, Section 3.3). 

Switch Operating 
mode 

Operating flow rate Control 
Scheme Results 

Column 1 Column 2 

Sw
itc

h 
1 

I1 Average 

(0.4-0.8 mL/min) 

Maximum 

(0.8-1 mL/min) 

2 SIMO 
controllers 

with 
disturbance 

Chapter 5 
(Section 5.3) 

B1 Maximum 

(0.8-1 mL/min) 

Maximum 

(0.8-1 mL/min) 

2 SIMO 
controllers 

with 
disturbance 

Chapter 4 
(Section 4.5 

& 4.6.3) 

I2 Low 

(0-0.4 mL/min) 

Maximum 

(0.8-1 mL/min) 

2 SIMO 
controllers 

with 
disturbance 

Chapter 5 
(Section 5.4) 

B2 Maximum 

(0.8-1 mL/min) 

Maximum 

(0.8-1 mL/min) 

2 SIMO 
controllers 

with 
disturbance 

Chapter 4 
(Section 4.5 

& 4.6.3) 

Sw
itc

h 
2 

I1 Maximum 

(0.8-1 mL/min) 

Average 

(0.4-0.8 mL/min) 

2 SIMO 
controllers 

with 
disturbance 

Chapter 5 
(Section 5.3) 

B1 Maximum 

(0.8-1 mL/min) 

Maximum 

(0.8-1 mL/min) 

2 SIMO 
controllers 

with 
disturbance 

Chapter 4 
(Section 4.5 

& 4.6.3) 

I2 Maximum 

(0.8-1 mL/min) 

Low 

(0-0.4 mL/min) 

2 SIMO 
controllers 

with 
disturbance 

Chapter 5 
(Section 5.4) 

B2 Maximum 

(0.8-1 mL/min) 

Maximum 

(0.8-1 mL/min) 

2 SIMO 
controllers 

with 
disturbance 

Chapter 4 
(Section 4.5 

& 4.6.3) 

                                                        

*Due to confidentiality agreement with the Morbidelli Group, the exact flow rate values cannot be disclosed in this document, 

therefore their order of magnitude is provided. Flow rate values can vary between 0 mL/min and 1 mL/min. 
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 Conclusions 5.5

This chapter is dedicated to the model-based control of multi-column chromatographic 

systems. We examine a two-column system based on the principles of the MCSGP process, 

where the outlet stream of Column 1 is transferred to Column 2 (Figure 5.3). We suggest a 

control scheme, where we design two, identical multi-parametric controllers, one for each 

column. The controllers consider the modifier concentration as the sole input and the integrals 

of the outlet concentrations of the three mixture components as outputs. For this study we 

consider that feed is introduced to the system in a periodic fashion and is considered as 

measured disturbance by the controller operating on Column 1. Similarly, the controller 

operating on Column 2 receives and considers as measured disturbance the concentrations of 

the mixture components eluting from Column 1. The proposed scheme is tested under two 

different sets of flow rate values and its performance is assessed.  

The key objective of this chapter is the development of a control strategy that is able to 

handle the stream transferred from one column to the other, where measurements are 

unavailable, while maintaining the periodicity of the process. Although in chromatographic 

separation ultimately the process performance in terms of purity and yield needs to be 

considered, the described controller has a more fundamental purpose and therefore numeric 

results for these parameters are not further discussed. In real-time application the process is 

pre-optimized (computationally and/or experimentally) and issues such as optimal feeding 

strategy, optimal flow rate value and switching times are defined prior to the execution and 

automation of the process. The optimization policies yield thereafter the optimal setpoints 

under which the controller should operate. Here, we trust the validated mathematical model in 

order to specify the setpoints for each presented case study. 

The suggested controllers demonstrate a satisfactory behavior, managing to track the 

predefined setpoints without significant offsets, returning periodic input profiles that are of 

vital importance for cyclic processes and the achievement of CSS. Additionally, it is observed 

that due to the internal recycle stream from Column 1 to Column 2, the modifier consumption 

from the latter is reduced as the controller recognizes that part of the modifier is transferred to 

the column. The latter indicates that the proposed strategy has the potential to lead to the 

design of novel process, characterized by reduced costs, as the amount of raw materials used 

can be significantly reduced. Another distinct advantage of the proposed strategy is that the 

internal recycle stream is treated as disturbance by the controller and therefore no online 

measurements are required. Particularly, during continuous operation, online measurements 
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are often challenging and/or impossible to obtain and can render the application of global 

control strategies infeasible. Therefore, strategies that could potentially decrease the amount 

of online measurements required can pave the way towards the intensification of existing 

processes via continuous operation.  

Lastly, this section investigates the development of a control concept for the twin-column 

MCSGP process, operating in a semi-continuous, periodic fashion. Contrary to previously 

published works (Grossmann et al., 2010), here we suggest a centralized/decentralized 

strategy, where the setup is not treated as a ‘black box’ but every operating mode is controlled 

independently. We follow the steps presented in previous sections (Chapter 4 and Chapter 5) 

and we suggest a control scheme for the given setup. Ultimately, a global control strategy on 

the MCSGP process would look into a combination of the control schemes presented in 

Chapter 4 (single-column, batch mode) and Chapter 5 (twin-column, interconnected mode). 

For a fully automated, in-silico demonstration of the proposed scheme, a supervisory 

controller would be required that will serve as the decision maker for the switching times 

between the two modes. The latter are usually optimized prior to the controller development, 

aiming to maximize process productivity under purity constraints. 

From a practical standpoint, measurements can be obtained within seconds from the UV/VIS 

monitors currently used in industry and later on be updated by more accurate measurements 

resulting from the HPLC that requires longer analysis time. This bi-level feedback offers a 

two-step verification of the process state and allows the controller to re-estimate a better 

forward action in case the original feedback received from the UV is not accurate enough. 

The signal resulting from the on-line and/or at-line equipment provides information on the 

eluted concentrations of the mixture components that can be translated into integrals using 

commercially available software packages. Finally, yield and purity can be post-calculated 

offline based on the average concentrations over a process cycle. Similar to any other online 

control strategy, it heavily resides on the availability of online (or at-line) measurements and 

entails risks related to noise and/or unavailable measurements. However, due to the model-

based nature of the proposed controllers, the presented approach can benefit from the process 

model when measurements are unavailable. In the event where the detectors fail to return a 

feedback measurement, the output from the high-fidelity process model can be used as 

compensation and be updated by actual experimental values when available. Last but not 

least, the proposed controllers do not intend to completely eliminate the operator, who can 

interfere at any point and re-adjust the process parameters as appropriate.  
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* The mathematical model used for the design of the optimization and control studies has been 
developed and validated by Dr. A. Quiroga. The model is also presented in Papathanasiou et. al 
(2017). “Advanced multi-parametric Model Predictive Control (mp- MPC) strategies towards 
integrated continuous biomanufacturing”. Biotechnology Progress for the Special Issue based on the 
Berkeley conference on Integrated Continuous Biomanufacturing. Article in Press. 

** The dynamic optimization studies have been performed in collaboration with Ms M. Elviro 
(University of Salamanca, Spain). The results are also presented in Papathanasiou et. al (2017). 
“Advanced multi-parametric Model Predictive Control (mp- MPC) strategies towards integrated 
continuous biomanufacturing”. Biotechnology Progress for the Special Issue based on the Berkeley 
conference on Integrated Continuous Biomanufacturing. Article in Press 

*** The results presented in this chapter have been included in the following publications: 

1. Papathanasiou et. al (2017). “Advanced multi-parametric Model Predictive Control (mp- 
MPC) strategies towards integrated continuous biomanufacturing”. Biotechnology Progress 
for the Special Issue based on the Berkeley conference on Integrated Continuous 
Biomanufacturing   Article in Press. 

2. Papathanasiou et. al (2016). “Development of advanced computational tools for the 
intensification of monoclonal antibody production”, 2016, In Computer Aided Chemical 
Engineering, Elsevier, Volume 38; pp. 1581-1586. � 
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 Introduction 6.1

The main interest of this work is the development of advanced computational tools to 

facilitate the development of an integrated, continuous process for the production of 

monoclonal antibodies. In the previous two chapters (Chapter 4 and Chapter 5) we 

demonstrate how the design of advanced control strategies can facilitate the development and 

monitoring of continuous downstream processes. However, the performance of the 

downstream separation/purification is tightly linked to the efficiency of its upstream 

counterpart. In the case of the upstream it is necessary to ensure that the continuous system 

will be characterized by similar or higher productivity, improved product quality, compared 

to the batch operation. 

Prior to the development of a fully integrated bioprocess, both USP and DSP need to be 

optimized. Although cell culture systems have been studied for several years, the lack of PAT 

technologies, limits their capabilities. Currently, cell culture systems are operated to a great 

extent in fed-batch mode, while their in situ monitoring relies on sensors and electrodes 

measuring basic process parameters (e.g. pH, dissolved oxygen, temperature, airflow, 

pressure etc.) (Teixeira et al., 2009). Other process parameters, such as cell volume (offline), 

cell concentration and viability (offline, online or in situ) and product concentration (offline or 

in situ) can be also measured (Al-Rubeai, 2015). However particularly the development of 

PAT technologies that monitor the aforementioned attributes is still at its early stages, 

therefore challenging the application of advanced process control tools that can assist process 

monitoring and improve process performance. 

Despite the aforementioned obstacles, significant contributions have been reported in the 

control of mammalian cell cultures systems ( 

Table 6.1) that aim to improve process performance and maintain it under optimal operation. 

Often the optimal feeding profile is computed offline, based on a priori determination of the 

process parameters (Pörtner et al., 1996) or it is determined through correlation studies, based 

either on online measurements of the oxygen uptake rate (OUR) (Zhou et al., 1995, Zhou et 

al., 1997) or offline experiments that monitor the integral of viable cells (deZengotita et al., 

2000). Although the presented studies result in improved culture performances, the suggested 

methodologies are coupled with certain limitations when it comes to their application in large 

scale. In the case where the course and parameters of the cell culture are determined a priori, 

the optimal feeding strategy does not encounter for disturbances. Therefore, there is no 

guarantee that the designed feeding profile will maintain the system under optimal operation 
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and lead to the desired culture productivity/viability. On the other hand, monitoring OUR, 

allows the operator to update the information over the culture period and take corrective 

actions whenever required. However, as reported by Zhou et al. (1997), although OUR is a 

good indicator of the culture performance, it does not allow the operator to investigate 

whether changes in the viability are associated to lack of nutrients or variations in other 

environmental conditions (e.g. osmolality), hindering therefore the design of a tailor-made 

feeding profile that will satisfy the needs of the cell culture system. Moreover, most of the 

presented studies employ the optimal feeding profiles through manual administration. 

However, in continuous manufacturong automated processes are preferred as they allow 

continuous system monitoring and they minimize variations associated to human error. In that 

respect, there are works suggesting automated techniques to calculate the optimal feeding 

profile based on the current culture needs (Ozturk et al., 1997, Frahm et al., 2003, Teixeira et 

al., 2009). Nevertheless, most of the studies propose re-calculation of the process parameters 

during online operation and are based on computationally expensive simulations. Therefore, 

in spite of their experimental success, can become significantly expensive when applied in 

industrial scale. 

Table 6.1 Contributions in the control of mammalian cell culture systems. 

Contribution Reference 

Open-loop control for the calculation of 
optimal feeding strategies using dynamic 
models. 

• Hybridoma cells: Pörtner et al. 
(1996) 

• NS0 myeloma cells: deZengotita et 
al. (2000) & Zhou et al. (1997) 

On-line control based on measurements of 
oxygen uptake rate and estimation of nutrient 
consumption rate in a hybridoma cell culture 
system. 

Zhou et al. (1995) 

On-line control based on feed-forward 
algorithm for the maintenance of glucose and 
lactate levels in a hybridoma cell culture 
system. 

Ozturk et al. (1997) 

Model-based control based on a hybrid 
model for the optimization of BHK cell 
culture systems (integrating metabolic flux 
analysis & measured data). 

Teixeira et al. (2007) 

Model-based control for the improvement of 
culture productivity & cell density in NS0 
culture systems. 

Frahm et al. (2003) 
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In continuous operation, additional factors need to be considered in the design of a global 

control strategy, such as the interaction between the multiple units of the production line 

(Chatterjee, 2012). In order to overcome regulatory hurdles, the developed schemes need to 

minimize risk of failure and ensure process robustness prior to their online application. In this 

fashion, human error needs to be minimized and the suggested optimization and control 

strategies need to allow the incorporation of disturbances in the mathematical formulation. 

Model-based optimization and control strategies can prove to be of great assistance when it 

comes to continuous operation. The model-based nature of such techniques allows the design 

of control strategies that are trained on the knowledge gained from the process model and 

therefore the principal interactions of the system at hand. Compared to other classical control 

methods (e.g. PID control), model-based controllers can be trained against disturbances thus 

providing an additional level of process robustness against sudden variations during online 

operation. Moreover, they can be combined with estimation techniques (e.g. Kalman filter) 

that not only improve the system performance with respect to setpoint-plant mismatch, but 

they also facilitate state estimation in cases where online measurements are unavailable or 

influenced by noise. Furthermore, due to their model-based nature, such control systems can 

be executed in tandem with the process model that can be used to provide the feedback 

required for the operation of the controller when online measurements are unavailable. The 

latter can prove to be of vital importance in systems where measurements rely mainly on at 

line or offline measurements that require longer times in order to be obtained. In this case, the 

process model can temporarily provide feedback to the controller that will be later on updated 

by the experimental measurement when it becomes available.  

Based on the above, in this chapter we present a model-based control scheme for the 

performance improvement of a cell culture system used for the production of a monoclonal 

antibody. The designed controllers are based on the principles of mp-MPC (Appendix A) that 

combines the features of model-based control techniques with the ability to solve the 

optimization problem once and offline. The latter allows a priori identification of the optimal 

regions of operation and simplifies the calculation of the control actions through affine 

function evaluations (Pistikopoulos, 2009). This can be of great importance at large scale, 

where the complexity of the process models and the number of parameters become 

overwhelming thus leading to computationally demanding optimization problems.  

In particular, here we investigate the development of advanced computational tools for the 

intensification of a GS-NS0 cell culture system, used for the production of an IgG4 

monoclonal antibody following the systematic PAROC framework/software platform 

(Pistikopoulos et al., 2015). Section 6.2 explains the main metabolic pathways considered in 
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this work that are modeled in section 6.3, following first-principles. Section 6.3 demonstrates 

also dynamic optimization studies executed on the aforementioned system, aiming to explore 

its capabilities and increase the culture efficiency. Lastly, sections 6.4 and 6.5 are dedicated to 

the development and testing of 3 control strategies, based on various discretization times (2-

hours, 4-hours and 1-minute). The performance of the suggested strategies is assessed and 

compared to the results of the dynamic optimization. Moreover, the impact of the feedback 

frequency on the culture performance is also investigated. 

 

 GS-NS0 Cell Culture System 6.2

Based on previously presented work (Kiparissides et al., 2015), we investigate a simplified 

metabolic network (Figure 6.1) that describes the uptake of nutrients used in the examined 

system. Namely, we consider glucose and four key amino acids: aspartate, arginine, 

asparagine and glutamate. The nutrients are utilized through different pathways for 

biosynthesis, energy production and mAb assembling (Figure 6.1). The key importance of the 

considered nutrients is discussed below. The model development, sensitivity analysis, 

parameter estimation and experimental validation for the upstream model used in this chapter 

has been performed by Dr. Ana Quiroga Campano (Imperial College London), while the 

optimization studies were executed in collaboration with Ms Montaña Elviro Perez 

(University of Salamanca). 

 

Figure 6.1 Metabolic network considering the basic pathways. 

(i) Glucose is the most predominant carbohydrate that participates in various metabolic 

pathways, such as: (1) the pentose phosphate pathway (PPP) for the production of 

DNA precursors, (2) the anaerobic pathway or glycolysis for the production of energy 



Chapter 6. Model-based Control of Cell Culture Systems 

 

 161 

and (3) the aerobic pathway, where it is completely oxidized through the tricarboxylic 

acid (TCA) cycle. 

(ii) Glutamate is a key compound in the cellular metabolism, as it represents the only 

source of glutamine in the case of GS-NS0 cells (Papathanasiou et al., 2016c, 

Quiroga et al., 2016). The latter are NS0 cells transfected with plasmids that include 

the glutamine synthetase gene expression system (GS-system) that allows them to 

synthesise glutamine from glutamate and ammonium (Barnes et al., 2000). It has 

been observed that in GS-NS0 cell culture systems its consumption is preferred over 

glucose and therefore, glutamate depletion leads to a decrease in the growth rate. 

Nevertheless, the cells can still continue to grow utilizing other amino acids, such as 

asparagine, whose catabolism leads to glutamate production. 

(iii) Aspartate is crucial for energy production (through the TCA cycle). Similarly to the 

mechanism described above, to compensate for aspartate depletion, the cells can 

produce the required amino acid amount through asparagine hydrolysis. 

For the control studies presented in this section, we consider a cell culture system of the GS-

NS0 mammalian cell line, for the production of the chimeric IgG4 antibody, in a 1L flask 

with 200 mL working volume. 

 Model Development & Dynamic Optimization 6.3

6.3.1 Model development 

For the upstream system we consider a 1L flask with 200 mL working volume, where 

samples of 1 mL are taken every 6 hours. The system (Figure 6.1) is described by an 

unstructured, non-segregated, Monod-kinetics model that comprises 22 Differential and 

Algebraic Equations (DAEs), 24 variables and 27 parameters (Appendix C). Following the 

framework presented by Kiparissides et al. (2011a) we perform Global Sensitivity Analysis 

for the identification of the significant model parameters (executed through the gO:MATLAB 

interface that allows in tandem utilization of gPROMS® ModelBuilder and MATLAB®) that 

are later estimated using experimental data (gPROMS® ModelBuilder v4.2.0 (P.S.E, 1997-

2016)). Moreover, the model is validated against experimental data and its predictive 

capabilities are assessed using 2 sets of initial conditions (Appendix C). The mathematical 

model used in this work was previously developed and validated by Dr. A. Quiroga (Quiroga, 

2017). For more information on the model development, analysis and validation, the reader is 

referred to Appendix C. 
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The presented model describes the batch culture of GS-NS0 cells for the production of an 

IgG4 antibody. Therefore, the term representing the inlet flow rate (Fin) shown in the model 

equations is set to zero, while the outlet (Fout) corresponds to the periodic sampling. However, 

fed-batch operation is the most common choice when it comes to industrial application of 

such systems. Therefore, for the optimization and control studies in this work, we consider 

that feed is introduced to the system in a fed-batch fashion, while part of the culture volume is 

removed as a result of the sampling. 

6.3.2 Model-based dynamic optimization  

Dynamic optimization techniques can be used to identify the optimal feeding strategy for the 

maximization of the efficiency of mammalian cell culture systems based on mathematical 

models. The two most common indicators that characterize the efficiency of a cell culture 

system are culture viability and specific productivity (Bibila and Robinson, 1995) and are 

usually affected by different parameters. Moreover, culture conditions that seem to prolong 

culture viability may result in reduced productivity and vice versa (Kiparissides et al., 2015). 

Cell culture optimization can been performed for the design of optimal feeding strategies to 

increase culture productivity and/or cell viability. There are several works in the open 

literature addressing the optimization of mammalian cell culture systems employing various 

methods, such as design of experiments and in silico optimization using statistical and/or 

dynamic tools (Teixeira et al., 2006, Ji, 2012, Koumpouras and Kontoravdi, 2012, Bayrak et 

al., 2015, Green, 2015, Kiparissides et al., 2015, Bayrak et al., 2016, Chen et al., 2016, 

Villaverde et al., 2016, Liu and Gunawan, 2017). Particularly dynamic, model-based 

optimization strategies that employ first-principle models can provide a solid basis for the 

execution of such studies (Kiparissides et al., 2011b, Koumpouras and Kontoravdi, 2012). 

Such methods allow the knowledge obtained by the process model to be transferred to the 

optimization problem formulation, while the latter is applied on a mathematical representation 

that describes the events of the bioprocess in a dynamic fashion (Farzan et al., 2017). The 

procedure is usually executed offline, while the results from the dynamic optimization are 

validated in vitro, in lab-scale prior to the application of the feeding strategy on a larger scale. 

In this fashion, computationally expensive, online optimization procedures can be avoided. 

During the formulation of the optimization problem, one can consider various objective 

functions upon which the mathematical problem will be designed. These could look into the 

specific antibody production rate, the extracellular antibody concentration, the concentration 

of viable cells or the integral of viable cells that corresponds to the total number of cells 

available for antibody production (Koumpouras and Kontoravdi, 2012). In a similar study. 
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Koumpouras and Kontoravdi (2012), investigated four optimization studies, comparing the 

four different objective functions and demonstrated that using the antibody concentration as 

the objective function resulted in increased productivity in terms of extracellular antibody 

concentration, improved total cell number, while the specific productivity remained the same 

for all examined cases. Based on the above we aim to explore the system dynamics and in 

particular to maximize the culture productivity, using the volumetric antibody concentration 

as the objective function to be maximized. The optimization studies performed in this work 

aim to provide preliminary information regarding the system behavior under feeding. This 

information will be used as setpoint for the designed controller. Therefore, the strategy upon 

which the optimization problem is formulated should be identical to the control problem 

formulation. Nonetheless, the experimental implementation of the optimization and/or control 

strategies needs to be considered. Therefore, based on the suggested strategy, the antibody 

concentration can be measured experimentally using sensors currently available (e.g. 

Bioprofile® Flex Analyser, Nova Biomedical, Waltham, USA). The latter is of high 

importance for the control strategy described later on (Section 6.4) as it can provide the 

measurements required for the controller feedback. Genzyme presented a small-scale example 

of a fully continuous bioprocess for the production of monoclonal antibodies by a CHO cell 

culture system (Warikoo et al., 2012). In this study a 12L bioreactor is operated in perfusion 

mode, utilizing alternating tangential flow (ATF) filtration as the cell retaining procedure. 

The upstream harvest is pumped into a disposable bag serving as the surge vessel and then 

loaded to a 4-column Periodic Countercurrent Chromatography (PCC) system for the 

purification. The volumetric productivity of the culture is measured online using UV 

detectors at the inlet of the PCC system, while culture viability and mAb Critical Quality 

Attributes (CQAs) are measured offline. In this application, following the standard procedure 

of mAb production, cells are removed prior to the collection of the upstream harvest. 

Therefore, from an experimental standpoint, tracking the volumetric mAb concentration could 

lead to control schemes that could be applied using existing sensors. 

This work is focusing on the design of control strategies that can assist continuous operation 

and therefore the two control schemes (upstream and downstream) should be designed in a 

fashion that allows seamless communication amongst them. Using the antibody concentration 

as the optimization objective and subsequently as the control output will allow seamless 

communication between the two control schemes. In addition, as demonstrated in Chapter 4, 

impurities resulting from the cell culture system can be treated as measured disturbances by 

the downstream controller, eliminating therefore the need for accurate online measurements 

on their concentration. Furthermore, offline optimization experiments to identify the optimal 
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culture conditions that will minimize impurity content in the cell culture system can be 

performed. We use the model developed in the previous section for the design of a dynamic 

optimization problem. The suggested formulation (Table 6.2) aims to maximize the final 

volumetric concentration of mAb, administrating GS-Supplement (SAFC Biosciences, 

Sigma-Aldrich, UK) X40 and 0.4M glucose in fed-batch fashion. This medium is chosen in 

order to be in line with the procedure presented by Kiparissides et al. (2015) and allow 

comparison of the generated results. We consider a culture time of 168 hours and we define 

76 time intervals, allowing the optimizer to design a feeding strategy that will lead to 

increased volumetric mAb concentration. Due to the plethora of nutrients available at the 

beginning of the culture, initially we design a scarcer feeding strategy (6-hour intervals) that 

we intensify after the 20th hour (2-hour intervals), when nutrient concentrations start to 

decrease significantly. Aiming to move towards continuous operation, we choose to 

administrate feeding based 2-hour long pulses, instead of the standard injection-like strategies 

of 1 min. In order to maintain the culture under optimal conditions, we consider a tight 

constraint on the total culture volume (± 10% from the base value), as well as on the inlet 

flow rate of the supplement based on the same criterion. Moreover, we allow 28 mL sampling 

volume to be removed throughout the culture time. The initial conditions shown in Table 6.2 

are based on lab-scale experiments (Appendix C). The optimization studies are executed in 

gPROMS® ModelBuilder, using g:OPT (P.S.E, 1997-2016). 

Table 6.2 Formulation of the dynamic optimization solved for the maximization of the productivity of the 
GS-NS0 cell culture system. 

 

Objective function !"#  [!"#] 

subject to   

The process model: !! ! = !! !! ! ,! ! , ! , !, ! = 1… 10 

Control variable: ! ! = !!"(!) 
Inequality constraints: 0.9×!! ≤ ! ≤ 1.1×!! 

 !!" ≤ !!" ≤ !!" 

Initial conditions:  

!! = !.! ! !!,! = 1.78×10! cells/L 

[!"#]! = !.!" mg/L !!,! = 4.4×10! cells/L 

[!"#]! = !".! mM [!"#]! = 1.03 mM 

[!"#]! = !.!" mM [!"#]! = 1.03 mM 

[!"#]! = !.!! mM [!"#]! = 0.73 mM 

Total amount removed from sampling: !!"#,!"! = 28 mL 
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Figure 6.2 Simulation results after the solution of the dynamic optimization problem for 168 hours of 
culture: (a) optimal feeding strategy, (b) volumetric mAb concentration for batch (- -) and fed-batch (−) 
system, (c) viable cell population for batch (- -) and fed-batch (−) system and (d) culture volume for batch (- 
-) and fed-batch (−) system. 

Figure 6.2a demonstrates the proposed feeding strategy, where medium is introduced in 

pulses of 2-hours duration. Based on the applied strategy, the feeding is intensified after the 

20th hour, however it is observed that the dynamic optimizer suggests that fresh medium 

should be administrated only until the 70th hour. This time point corresponds to the end of the 

growth phase of the culture and the cells start entering the irreversible state of death phase. 

The profile of the feeding strategy (Figure 6.2a) is similar to the one presented by 

Kiparissides et al. (2015), where fresh medium introduced during the first hours of the culture 

and stops approximately after the 75th hour. The schedule proposed here for the feeding 

results in a higher volumetric mAb concentration by the end of the culture (approximately 1.4 

fold higher than the batch system). Moreover, it is demonstrated that the depletion of 3 of the 

key nutrients (glutamate, aspartate and arginine) (Figure 6.3b, c & e) leads to decreased cell 

growth and subsequently cell death. The results presented here will serve as setpoints for the 

design of advanced control strategies of the examined system (Section 6.4). 
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Figure 6.3 Simulation results after the solution of for batch (- -) and fed-batch (−) system: (a) glucose, (b) 
glutamate, (c) aspartate, (d) asparagine, (e) arginine and (f) lactate over 168 hours of culture. 

The computational optimization results presented in this chapter indicate into improved 

culture productivity and prolonged viability (Figure 6.2 b & c) compared to the batch system. 

However, comparing the results demonstrated here to the work presented by Kiparissides et 

al. (2015), it is observed that the suggested feeding strategy (Figure 6.2 a) results into lower 

final antibody concentration. In particular, here a final concentration of 120 mg/L is achieved, 

while Kiparissides et al. (2015) reports 175 mg/L. Nevertheless, the feeding strategy 

illustrated in Figure 6.2a results into an improved profile for the viable cells as on the 168th 

day the model reports a concentration of 6.42 ∙ 10! cells/L, while in Kiparissides et al. (2015) 

a concentration of approximately 5.5 ∙ 10! cells/L is achieved. It should be underlined that 

neither of the optimization approaches considers the viable cells in the objective function. The 

feeding strategy presented here considers feeding intervals of 2 hours that offer a smoother 

adaptation of the cells to the new culture conditions, compared to the pulse strategy presented 

by Kiparissides et al. (2015). The latter could be considered as the reason of the 

computationally improved cell viability presented here.  



Chapter 6. Model-based Control of Cell Culture Systems 

 

 167 

 Control of the Cell Culture System via PAROC 6.4

The validated process model designed in the previous section (Section 6.3) is used here for 

the development of an advanced, parametric controller. For the design and testing of the latter 

we follow the PAROC framework that allows us to seamlessly formulate and solve the mp- 

programming problem, while it facilitates the in-silico validation of the designed controller. 

For the latter we exploit the results of the dynamic optimization studies presented above in 

order to define the setpoints for the proposed control strategy. As discussed in section 6.3, the 

formulation of the control problem should be in line with the rationale upon which the 

optimization problem is designed and solved. Therefore, the volumetric antibody 

concentration is chosen for the design of the control scheme. As discussed earlier (section 

6.3) using the antibody concentration as the optimization objective and subsequently as the 

control output will allow seamless communication between the upstream and downstream 

control schemes (see also Chapter 4 for a detailed discussion on disturbances considered in 

the downstream system). In addition, the suggested output can be monitored using sensors 

available in the market (Warikoo et al., 2012). 

6.4.1 Model approximation 

The process model (Appendix C) is characterized by nonlinear equations that render the 

control studies infeasible to perform. Therefore, an intermediate step is required, where the 

process model is re-formulated to a state space, linear representation. Here this is realized 

using system identification techniques (ident toolbox, MATLAB®). The model input (inlet 

flow rate of the feeding medium) is adequately excited and the behavior of the tracked output 

(volumetric mAb concentration) is monitored (Figure 6.4). In addition, here we consider a 

periodic sampling of 1 mL every 6 hours that is introduced as measured disturbance for the 

design of the state space model (Figure 6.4c). Moreover, standard practice indicates that the 

culture volume should not vary more than ±�10% from its starting value. In order to ensure 

that the volume is maintained within the permitted range, we consider it as an additional 

system state (4th state) introducing its equation in the state space formulation. Moreover, we 

introduce the culture volume as an additional output with a predefined setpoint fixed at the 

original value of 200 mL. 
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!"
!" = !!" − !!"# 

Equation 6.1 Equation for the calculation of the 
culture volume. 

 

 

Figure 6.4 Data used for the model approximation of the upstream process model: (a) random pulse input 
strategy applied on the inlet flow rate (input), (b) periodic sampling strategy applied on the system 
(1mL/6hours), (c) comparison between the process model (continuous grey line) and the linear state space 
model (dotted black line). 

 

The resulting linear model is characterized by 95.13% fit to the tracked output and considers 

2 hours sampling time (Ts) to be in accordance with the optimization procedure presented 

above (Section 6.3). The latter is also chosen in order to ensure that the proposed control 

strategy is capturing the main events taking place in the culture system, such as the metabolic 

shifts (Quiroga et al., 2016). The model structure is given below (Table 6.3). 
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Table 6.3 State space model formulation.  

! ! + !! = !" ! + !" ! + !"(!) 
Equation 6.2 State space formulation as considered 
for the upstream system.  

! ! = !" !  

Where x, u, y are the states, inputs (inlet flow rate of the feeding medium) and outputs 

(volumetric mAb concentration) respectively, t corresponds to the time, Ts is the sample time 

and A, B, C, D represent the matrices of the state space model.  

 

! =
0.5441 −0.04234 0.04154 0
0.003578 0.9867 0.001953 0
−1.684 −0.1334 1.126 0

0 0 0 1
 

! =
1.718! + 4
−1242

7.411! + 4
7200

 

! = 51.69 −90.72 −13.25 1
0 0 0 1  

! =
0
0
0

−120
 

 

 

Equation 6.3 Matrices of the linear state space 
model of the upstream system with 2 hours 
sampling time. 

As mentioned earlier (Chapter 4) the state space model does not classify as a “result” but 

rather as an “intermediate compensation” to facilitate the controller design. Subsequently, the 

state space model designed at this step is considered satisfactory for the design of the 

controller. 

6.4.2 Design of the mp-MPC controller 

The state space model designed in the previous step is used here for the development of a 

parametric controller for the maximization of the culture productivity (mAb volumetric). 

Figure 6.5 demonstrates the control scheme considered in this work. We investigate the 

development of advanced control strategies for a bioreactor operating in fed-batch mode and 

we consider the inlet flow rate of feeding medium as the manipulating variable. Following the 

optimization strategy presented above (Section 6.3) we consider the feeding of GS-

Supplement (SAFC Biosciences, Sigma-Aldrich, UK) X40 and 0.4 M glucose. The proposed 
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controller is monitoring both the volumetric concentration of the antibody, as well as the 

levels of the culture volume (allowing variations within ± 10% from the starting value). 

Moreover, we consider that samples of 1mL are extracted from the bioreactor every 6 hours. 

This periodic sampling is considered as measured disturbance by the designed controller.  

 

 

Figure 6.5 Proposed control scheme for the upstream system. 

 

The multi-parametric programming problem is formulated and solved based on the state space 

model. Table 6.4 summarizes the control parameters chosen for the design of the mp-

programming problem. The control problem comprises 8 parameters and is solved using POP 

(Oberdieck et al., 2016) toolbox in MATLAB®. Figure 6.6 illustrates the map of critical 

regions that correspond to affine function evaluations of the problem parameters and result 

into the optimal control actions (Pistikopoulos et al., 2002, Pistikopoulos, 2009).  

  

Bioreactor
Inlet Flow Rate

Controller 
mAb

Sampling

Culture Volume

Setpoint
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Table 6.4 Tuning parameters used for the formulation of the mp-MPC problem for the 2 hours, 4 hours and 
1 minute discretization. 

Tuning 
Parameter Explanation Value Tuning 

Parameter Explanation Value 

OH  Output Horizon 4 Umin Input upper bound 0 

NC Control Horizon 2 Umax Input lower bound 1 

QR Weights on the 
outputs 103 I Dmin Disturbance upper 

bound 0 

Q Weights on the 
states 1I Dmax Disturbance lower 

bound 0.1 

R Weights for the 
inputs 0.01 

Total 
number of 
critical 
regions 

 64 

P Terminal weight 
for the states 

Riccati 
equation*    

 

 

Figure 6.6 Two-dimensional projection of 4 critical regions polyhedral for the 2-hour controller. States: 
!! ,… , !! = !!,…  !!  , disturbances: !!  , volumetric mAb concentration: !! , Output Setpoints: 
!"# !"#$%&'# = !! ,!"#$%& !"#$%&'# = !!. The values used for the design of the graph are depicted. 

 

                                                        
* The Riccati equation is as follows: P = A!PA − !!!" !!!" + ! !! !"# + !, where A and B are the 
matrices of the state space model and P, R, Q the tuning parameters used for the control problem formulation. 
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6.4.3 In silico evaluation of the controller performance  

Following its design, the controller is validated in-silico, in ‘closed-loop’ fashion against the 

process model. The validation is facilitated using the gO:MATLAB interface that allows 

seamless data exchange between MATLAB® (control actions) and gPROMS® ModelBuilder 

(process model). We use the maximum volumetric concentration of antibody as resulted from 

the optimization studies as the target value (Section 6.3) and we simulate the model for 168 

hours (7 days), under periodic sampling (Figure 6.4b). It is observed that the designed 

controller inherently suggests fed-batch feeding (Figure 6.7a), while the first pulse is 

introduced 8 hours after the beginning of the culture and the feeding is intensified only after 

the 20th hour. During the beginning of the culture, the cells are growing slowly (adaptation/lag 

phase) and therefore the nutrient requirements are lower (Olofsson and Ma, 2011). 

Consequently, the proposed feeding strategy minimizes the excess of nutrients in the culture 

and promotes the effective consumption of glucose, reducing the formation of toxic 

metabolites, such as lactate (Figure 6.9f) (Xie and Wang, 1994, Cruz et al., 2000). In a similar 

fashion, the controller intensifies the feeding after the 20th hour, when the culture enters the 

exponential phase and maximum cell growth is achieved. At this stage nutrient uptake 

increases as well, as nutrients are essential for cell growth. 

 

Figure 6.7 (a) Control input (inlet feed flow rate) as designed by the presented controller, (b) sampling 
strategy applied both to the batch and the fed-batch system, (c) evolution of culture volume for the fed-
batch case and (d) evolution of the culture volume for the batch case. 
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The suggested strategy for nutrient supply (Figure 6.7a) not only increases the number of 

viable cells, but also prolongs the culture longevity (Figure 6.8b), leading to increased 

productivity (Figure 6.8a) (Spens and Häggström, 2007). Counter-intuitively, the controller 

suggests a scarcer feeding towards the end of the culture (beyond the 142nd hour). However, 

the latter is in agreement with standard experimental/industrial practice, as at this stage the 

culture starts entering death phase that is an irreversible state. In particular, the exhaustion of 

arginine (66th hour), followed by the limitation of glutamate (96th hour) decreases the cell 

growth and activates cell apoptosis via starvation signals (Majors et al., 2007). Therefore, any 

medium provided beyond this point would increase process waste rather than improve the 

culture productivity. Furthermore, these results provide a valid indication of the optimal time 

point that the culture should be terminated in order to minimize product degradation and 

therefore to improve the performance of the downstream purification. In addition, it is 

illustrated (Figure 6.7b) that the controller efficiently manages to maintain the working 

volume within the permitted range (± 10% from the starting value of 0.2 L). The volume of 

feeding required in order to maintain the system in exponential growth, the accumulation of 

glucose and asparagine and the limitation of glutamate and arginine reveal the opportunity to 

use the proposed controller for medium development, in order to simultaneously optimize the 

feeding composition and feeding profile. 

 

Figure 6.8 Comparison between the fed-batch (continuous black line) and the batch (dotted grey line) 
system for: (a) the volumetric mAb concentration and (b) the population of viable cells over 168 hours of 
culture. 



Chapter 6. Model-based Control of Cell Culture Systems 

 

 174 

 

Figure 6.9 Comparison between the fed-batch (continuous black line) and the batch (dotted grey line) 
system for the concentrations of: (a) glucose, (b) glutamate, (c) aspartate, (d) asparagine, (e) arginine and (f) 
lactate over 168 hours of culture. 

The presented control input (Figure 6.7a) results in increased culture productivity, that is 

almost 1.4 fold higher compared to the batch system (Figure 6.8), without reaching however 

the maximum volumetric product concentration acquired in the optimization studies (Section 

6.3). Nevertheless, the suggested feeding strategy results in higher cell densities and 

prolonged culture times. The latter plays a vital role increasing the culture productivity, 

particularly under continuous operation, where the culture duration should be increased in 

order to minimize start-up/shut-down costs. 

 Comparison of Various Feeding Strategies 6.5

Currently, in fed-batch cultures measurements are taken every 24 hours (Kiparissides et al., 

2015) and therefore control strategies developed for such systems can only be updated once 

per day. However, in order to minimize the risk of failure in continuous operation tighter 

monitoring and control strategies should be investigated. In the previous section (Section 6.3 

& 6.4) we examined optimization & control strategies based on a 2-hour interval. Here we 

examine the impact on the system performance of two new strategies: (a) a 4-hour interval 



Chapter 6. Model-based Control of Cell Culture Systems 

 

 175 

and (b) a tighter approach of 1-min intervals. The system performance is compared to the one 

described above (2-hour interval strategy, Section 6.4) as well as to the batch operation. 

6.5.1 Model approximation 

The linear state space models for the 1-minute and 4-hour cases are derived directly from the 

linear model designed in the previous section (Section 6.4.1). The system behavior, as well as 

the interactions between the input (feed flow rate), the disturbance (sampling) and the outputs 

(culture volume and volumetric mAb concentration) remain the same. The matrices 

representing the mathematical relationships of the latter are illustrated in the equation sets 

below (Equation 6.4 and Equation 6.5 respectively) and are constructed based on the 

respective discretization/sampling times (1 minute & 4 hours respectively). The fitting of the 

linear representation to the process model remains the same as well. 

 

! =
0.9955 −0.0004266 0.0004173 0

5.614! − 05 0.9999 1.418! − 05 0
−0.0169 −0.001404 1.001 0

0 0 0 1
 

! =
167.2
−11.47
717
60

 

! = 51.69 −90.72 −13.25 1
0 0 0 1  

! =
0
0
0
−1

 

 

Equation 6.4 Matrices of the linear state space 
model of the upstream system with 1 minute 
sampling time. 
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! =
0.2259 −0.07035 0.06928 0
0.002188 0.9732 0.004274 0
−2.813 −0.2104 1.197 0

0 0 0 1
 

! =
2.965! + 4
−2261

1.288! + 05
1.44! + 04

 

! = 51.69 −90.72 −13.25 1
0 0 0 1  

! =
0
0
0

−1906
 

Equation 6.5 Matrices of the linear state space 
model of the upstream system with 4 hours 
sampling time. 

 

6.5.2 Design of the mp-MPC controllers  

Following the scheme presented in Figure 6.5 and using the state space models with the new 

discretization times (1 min & 4 hours), we design two new parametric controllers, using the 

same tuning parameters as for the 2-hour case (Table 6.4). The control problems are solved 

using POP (Oberdieck et al., 2016) toolbox in MATLAB®. Table 6.5 summarizes the total 

number of critical regions for each of the three problem solutions.  

Table 6.5 Details of the three mp-MPC controllers. 

Discretization 
Total Number of 

Critical Regions 

Tuning 

Parameters 

Offline Solution 

Map 

2 hours 64 

Table 6.4 

Figure 6.6 

4 hours 65 Figure 6.10 

1 min 48 Figure 6.11 
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Figure 6.10 Two-dimensional projection of 5 critical regions polyhedral for the 4-hour controller. States: 
!! ,… , !! = !!,…  !!  , disturbances: !!  , volumetric mAb concentration: !! , Output Setpoints: 
!"# !"#$%&'# = !! ,!"#$%& !"#$%&'# = !!. The values used for the design of the graph are depicted. 

 

Figure 6.11 Two-dimensional projection of 5 critical regions polyhedral for the 1 minute controller. States: 
!! ,… , !! = !!,…  !!  , disturbances: !!  , volumetric mAb concentration: !! , Output Setpoints: 
!"# !"#$%&'# = !! ,!"#$%& !"#$%&'# = !!. The values used for the design of the graph are depicted. 
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6.5.3 “Closed-loop” validation and comparison of strategies 

The performance of the mp-MPC controllers designed in the previous step is assessed here, in 

silico against the process model. For the “closed-loop” validation we consider periodic 

sampling of 1mL every 6 hours (disturbance) (Figure 6.7b). Both controllers aim to increase 

the culture productivity (volumetric mAb concentration) using the setpoint obtained from the 

dynamic optimization studies (Section 6.3.2) and manipulating the inlet flow rate of the feed. 

For the latter, we consider feeding of the GS-Supplement (SAFC Biosciences, Sigma-Aldrich, 

UK) X40 and 0.4 M glucose, as before. The controller is simulated for 168 hours (7 days) of 

culture and its performance is assessed. 

 

Figure 6.12 Input profile (feeding strategy) for the: a) 2-hour, (b) the 1-minute and (c) 4-hour interval 
strategy. 

Figure 6.12 illustrates the feeding strategies as indicated by the controllers. It is observed that 

the 2- and 4-hour controller (Figure 6.12a & c) return a pulse feeding strategy that is scarcer 

in the beginning and is intensified as the culture evolves and enters growth phase. As 

mentioned previously, the generated profiles are in accordance with the system biologics, as 

nutrients are mostly required during the exponential phase. In addition, the cell density 

increases as a function of time (Figure 6.14), leading therefore to increased nutrient demand. 

A key difference in the two input profiles is that the 2-hour controller decreases the frequency 

of the feeding towards the last hours of the culture. On the other hand, the 1-minute strategy 

suggests a different input profile for the feeding that could be characterized semi-continuous. 
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In particular, the controller (Figure 6.12b) starts introducing 0.3 mL of fresh medium that is 

gradually decreased throughout the culture time and reaches the value of 0.17 mL on the 168th 

hour. The continuous profile is interrupted by periodic pulses of approximately 1mL at the 

points when samples are extracted. The latter are most probably corrective actions taken by 

the controller as a response to the occurring disturbance (sampling), in order to maintain the 

culture volume within the permitted window. Although this profile is probably a result of the 

volume constraint imposed on the control problem formulation, the periodic feeding pulses 

introduce fresh medium in the cell culture system that affects the cell metabolism and 

therefore the culture behavior. The model-based nature of the control strategy presented here 

allows testing of the controller against the process model that describes the main events 

taking place in the cell culture system. Consequently, any variations in the culture behavior 

due to the applied feeding strategy are depicted in the closed-loop, in silico simulation results 

presented in Figures 6.14 and 6.15. Therefore the efficiency of the strategy can be assessed 

both in process constraints (e.g. culture volume) and culture performance. It should be 

underlined that all three strategies manage to maintain the culture volume within the 

predefined ±10% window (Figure 6.13) (<0.5% overshoot for the 2 hour and the 4 hour 

strategies). 

 

Figure 6.13 Culture volumes during the simulation (black lines) of the: a) 2-hour, (b) 1-minute and (c) 4-
hour interval strategy.  The red dotted lines correspond to the allowed ±10% threshold for the volume 
(upper bound: 0.22 L, lower bound: 0.18 L). 
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Comparing the output profiles (Figure 6.14) we observe that all controllers outperform the 

batch system, as expected. The 4-hour strategy achieves significantly lower volumetric 

antibody concentration by the end of the culture, compared to the other two strategies that 

demonstrate a similar behavior in the output (Figure 6.14a). However, based on the profile of 

viable cells (Figure 6.14b) it could be concluded that the scarcer the strategy the higher the 

culture longevity. More specifically, it is observed that although the 4-hour strategy results in 

lower cell density compared to the other fed-batch systems, it demonstrates a decreased death 

rate and therefore prolonged culture time.  

 

Figure 6.14 Comparison of the 2-hour, 1-minute and 4-hour interval and the batch system for: (a) the mAb 
concentration and (b) the population of viable cells over 168 hours of culture. 
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Figure 6.15 Comparison the 2-hour, 1-minute and 4-hour interval and the batch system for the 
concentrations of: (a) glucose, (b) glutamate, (c) aspartate, (d) asparagine, (e) arginine and (f) lactate over 
168 hours of culture. 

Figure 6.15 illustrates the profiles of the 5 nutrients considered in this work, where the 

proposed strategies manage to maintain the levels of most of the amino acids and glucose 

above zero and therefore guarantee that nutrients are available throughout the culture period. 

Comparing the amino acid profiles it is evident that the cells utilize them in a preferential 

manner, rather than all at the same time and rate. According to the metabolic interactions 

considered here (Figure 6.1), the cell population utilizes different metabolic pathways based 

on the nutrient availability. Such profiles could therefore lead to the design of combined 

optimization and/or control strategies where the optimal medium and composition for 

maximum productivity are defined (Quiroga et al., 2016). 

In order to evaluate the overall performance of the examined systems, we compare the total 

amount of antibody produced within the culture period (Figure 6.16). Therefore we can assess 

the total amount of product produced, regardless of variations in the culture volume. It can be 

observed that although the maximum volumetric mAb concentration (mg/L) is reached 

following the feeding strategy designed by the dynamic optimization (Section 6.3.2), the 

culture produces higher total amount of product (mg) under the 2-hour and 1-minute strategy. 
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Interestingly, although the total amount of medium administrated in the 2- and 4-hour strategy 

is the same and in fact significantly higher (49 mL) than the 1-minute one (37 mL), the latter 

strategy manages to reach similar amounts of total product to the 2-hour strategy (1965mg). 

Conversely, the 4-hour strategy can be considered as less efficient (1860 mg). It could be 

therefore concluded that control strategies with higher feedback frequency and therefore more 

frequent feeding can lead to more efficient culture operations. That could be attributed to the 

fact that semi-continuous feeding, such as the 1-minute strategy, introduce the feed in a 

gradual fashion, allowing the culture to adapt to changes and therefore minimize the risk of 

cell stress that might jeopardize the cell functions.  

 

Figure 6.16 Accumulative amount of mAb produced during the culture period for the 2-hour, 1-minute and 
4-hour interval and the batch system. 

It is acknowledged that the suggested control strategies are associated with certain practical 

implications when it comes to their implementation and are mostly related to sensor 

availability. More specifically, currently measurements for mAb concentration are performed 

at line, thus requiring part of the culture volume to be removed. Therefore, strategies that 

require frequent sampling (e.g. 1 minute frequency) would compromise almost 1/3 of the 

culture volume within the timespan of 1 hour. Such strategies would be feasible to implement 

only in the event where online sensors are available. For this reason, the 2-hour control 

strategy would result in a more stable system with feasible experimental application. 

Moreover, the at line measurement for the antibody concentration can be returned to the 

controller in the order of minutes, thus allowing the controller to re-estimate the system state 

prior to the next action.   
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 Conclusions 6.6

This chapter presents novel, model-based control strategies where the developed controllers 

are designed based on a dynamic, process model of a mammalian cell culture system. In 

particular, we investigate the culturing of GS-NS0 cells in a 1L flask and we design advanced 

multi-parametric control strategies for the maximization of the culture productivity. Firstly, a 

dynamic model is developed that considers the main events taking place in the culture. The 

model is based on a simplified network of the cell metabolism that considers 5 key nutrients: 

(a) glucose, (b) glutamate, (c) aspartate, (d) asparagine, (e) arginine, and lactate. Those 

interactions are described through Ordinary Differential and Algebraic Equations (ODAEs) 

that are assessed also under sensitivity analysis and parameter estimation procedures 

(Appendix C). The model is experimentally validated and a good agreement between the 

simulation results and the experimental data is reported. Following the model development, 

dynamic optimization studies are executed in order to define a feeding strategy that will 

increase the culture productivity. The optimization problem is formulated using the 

volumetric antibody concentration as the objective function of interest. Other objective 

functions reported in the literature are the concentration of viable cells, the integral of viable 

cells as well as the specific productivity (Schubert et al., 1994, Bibila and Robinson, 1995, 

Jenzsch et al., 2006, Aehle et al., 2012, Koumpouras and Kontoravdi, 2012, Kiparissides et 

al., 2015). However, as discussed in section 6.3 the optimization problem forms the basis for 

the design of the control scheme further on and should therefore follow the same structure. 

Therefore envisioning to create a computational link between the upstream and the 

downstream controller, we choose to use the volumetric antibody concentration as the 

objective function that is the output of interest also in the downstream control schemes 

presented in this work (Chapter 4 and Chapter 5).  

Based on the results obtained from the dynamic optimization three parametric controllers are 

designed, following the PAROC framework and their performance on the examined system is 

compared. Based on different discretization profiles we design a: (a) 2-hour, (b) 4-hour and 

(c) 1-minute control strategy. According to the results from the in-silico validation, all three 

controllers manage to increase the culture productivity and longevity compared to batch, 

maintaining the culture volume within the permitted range. Nevertheless, the 2-hour & 1-

minute approaches demonstrate significantly improved performances as they achieve higher 

total amount of product. Comparing the input profiles, all controllers manage to consider the 

culture requirements and adjust the feeding accordingly, minimizing the excess of nutrients in 

the flask. From the computational results presented in this section, it could be concluded that 
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semi-continuous feeding has the potential to lead to more efficient operating profiles, where 

cell stress due to abrupt change of conditions in the culture can be decreased. Compared to 

standard practice ( 

Table 6.1), the control strategies presented here suggest a feeding strategy considering not 

only the improvement of the system performance, but also a set of operational constraints 

such as variations in the culture volume. In addition, the use of mp-MPC allows the 

optimization problem to be solved offline thus reducing the computational demand of the 

controller during online operation (Pistikopoulos, 2009). 

A potential limitation of the proposed control strategies could be associated with feedback 

measurements, as the latter need to be taken at the same frequency as the discretization step 

used for the controller design. Therefore, strategies that require frequent sampling (e.g. 1 

minute frequency) would compromise a large amount of the culture working volume thus 

rendering the strategy infeasible in the absence of online sensors. For this reason, control 

strategies with scarcer discretization step (e.g. 2 hours) would be preferred. Moreover, the at-

line measurements available for antibody concentration can be returned to the controller 

within minutes, thus allowing the controller to re-estimate the system state prior to the next 

action. The mp-MPC controllers designed here can be modified to account for disturbances 

that might occur during online operation. These can be a result of the periodic sampling as 

part of the required monitoring (measured disturbance) or other types of variations in the 

system that might occur as a result of changes in the culture conditions (e.g. pH, temperature) 

or noise in the feedback measurements. The latter would be incorporated as unmeasured 

disturbances in the control problem formulation as they are of unexpected nature and 

variation and the controller would be robustified against those.  

Based on the work presented in this chapter, the proposed control scheme suggests tracking of 

the volumetric antibody concentration that is also the output of interest in the downstream 

purification (Chapters 4 &5). Therefore, a computational link between the upstream and the 

downstream control schemes could be established, using the output of the upstream controller 

(volumetric antibody concentration) to update the controller operating on the downstream 

process. In particular, as discussed in Chapter 4 the exact product concentration resulting 

from the upstream may vary and it is therefore treated as measured disturbance in the 

downstream control scheme. Another set of crucial variables that need to be considered is the 

level of impurities that in this work look into fragments and aggregates (weak and strong 

impurities respectively) that is also treated as measured disturbance, as their concentrations 

cannot be defined a priori (Chapter 4). In order to realize the in silico integration, their 
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quantities need to be tracked by the upstream process model. Appendix D demonstrates 

preliminary, in silico results on the modification of the upstream model to include terms 

describing the formation of these impurities in the cell culture. At this stage it is not 

considered necessary to include the impurities in the output set of the upstream controller as 

their levels can be controlled offline, through experimental and/or computational optimization 

that will indicate the optimal operating conditions that can lead to improved cell culture 

performance and reduced impurity levels. 

 

 



 

 186 

Chapter 7.  
 
 

Conclusions & Future Directions 



Chapter 7. Conclusions & Future Directions 

 

 187 

 Project Summary  7.1

Aiming to design eco-efficient processes of high productivity and operating costs, 

pharmaceutical industries are embracing the shift from batch to continuous operation (Hillier, 

2013). This technological advance could be characterized as “leading-edge” in the field of 

intensification of chemical engineering processes and beyond. In particular, monoclonal 

antibody manufacturing can significantly benefit from this paradigm shift, as continuous 

operation promises higher product titers and reproducible/stable quality. However, for this 

transition to be realized significant improvements in the current state-of-the-art are required. 

More specifically, both the process counterparts (upstream & downstream) need to be 

individually studied, optimized and effectively integrated, considering the entire set of their 

capabilities/limitations. The main focus of this work is the development of advanced 

computational tools for the performance improvement of chromatographic separation systems 

as well as cell culture systems, envisioning their integration under a global control strategy. In 

this direction: 

• Chapters 1, 2 & 3 are dedicated to the investigation and discussion of the current 

state-of-the-art both in the upstream and the downstream system. The capabilities and 

limitations of both systems are examined and key contributions in the fields of 

modeling, control and optimization of such systems are acknowledged. 

• Chapters 4 & 5 are focused on the development of advanced, model-based control 

strategies of chromatographic separation systems. In particular, we present the design 

& in silico testing of multi-parametric MPC controllers for a single- (Chapter 4) and a 

twin-column (Chapter 5) system, based on the industrially relevant MCSGP process. 

The mathematical model used for the control studies has been previously developed 

and validated by the Morbidelli Group (ETH Zürich). Issues with unavailable 

measurements, as well as disturbances due to feed variations are discussed. In 

addition, the inherent time delay due to the residence time is investigated. The 

controllers are designed and tested within the systematic PAROC framework and 

software platform for the development of explicit/multi-parametric controllers. 

• Chapter 6 presents a model-based control approach for the improvement of the 

productivity in a GS-NS0 cell culture system. A dynamic model based on the 

consumption/production of 5 key nutrients and lactate is used for the execution of 

dynamic optimization experiments for the design of an optimal feeding strategy. The 

model has been previously developed and validated in collaboration with Dr. Ana 

Quiroga. Following that, we employ PAROC as the tool for the design and testing of 
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3 parametric controllers with different feedback requirements (sampling time). The 

system performance under the proposed strategies is assessed and compared. 

 Key Contributions & future steps 7.2

The aim of this work was to design advanced control strategies that are able to track the 

examined systems throughout the process cycle. In the case of the chromatographic 

separation (Chapter 4 & 5) the main focus was the development of control schemes that can 

maintain the periodic nature of the studied process, while dealing with variations in the feed 

stream. Similarly, the main objective for the upstream system (Chapter 6) was the 

investigation of the effect of feeding frequency on the culture productivity. The contributions 

of this thesis are discussed below. 

7.2.1 Model-based control of chromatographic separation processes 

The control scheme presented in this work suggests monitoring every chromatographic 

column as an independent unit, rather than treating the setup as a “black box”, where a 

general correlation between the input (modifier) and the output (usually product purity and 

yield (Grossmann et al., 2010)) is utilized. Moreover, as discussed in Chapter 4, the designed 

controllers are monitoring the integral of the outlet concentrations of the mixture components, 

allowing for continuous process monitoring, rather than “cycle-to-cycle” control policies. 

Hence the presented results enable a control of multi-column continuous processes, while 

dealing with their cyclic and non-linear behavior. The main contributions of the proposed 

scheme are summarized below: 

• Novel multi-parametric control strategies for single- and multi-column 

chromatographic systems were designed and tested in silico against the process 

model. 

• Integral tracking: Aiming to design advanced control strategies that can facilitate 

continuous monitoring, we propose tracking of the integrals of the outlet 

concentrations of the mixture components. The latter can be used for the offline, 

post-calculation of yield and purity as discussed in Chapter 4. 

• Gradient setpoint change: We apply a gradient slope for the change in the 

predefined setpoints, aiming to follow the profiles encountered in gradient 

chromatography. 

• Setpoint shift strategy: To compensate for the residence time in chromatographic 

systems, we suggest a novel strategy, where the setpoints are shifted in time, 

based on the pre-calculated time delay. 
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• Column integration: We present the column integration, where the recycling 

streams are treated as disturbance in the control scheme, minimizing the amount 

of online measurements required. 

7.2.2 Model-based control of cell culture systems: 

In the context of this work preliminary control studies were also performed on a cell culture 

system, aiming to investigate the impact of different feeding frequencies on the culture 

performance. As discussed in Chapter 6 the suggested control schemes manipulated the feed 

flow rate, tracking the volumetric antibody concentration within the culture. The latter is 

chosen as the control output amongst other variables (e.g. viable cells, specific productivity) 

as it provides seamless communication between the upstream and the downstream controller. 

In addition, in real-life application, as discussed in Chapter 6, feedback measurements can be 

obtained by sensors already available in the market. Moreover, the proposed controllers are 

designed taking into consideration constraints associated with changes in the culture volume, 

minimizing the risk of dilution due to excessive feeding. The main contributions of the 

proposed scheme are summarized below: 

• Novel, model-based control strategies for GS-NS0 cell culture system are 

designed and tested in silico, based on a dynamic, process model. 

• Dynamic optimization policies are designed for the maximization of the culture 

productivity under fed-batch feeding of 5 key nutrients and lactate. 

• Different sampling strategies are tested for the improvement of the performance 

of the cell culture system. The designed controllers are trained against 

disturbances that can occur from noise in the measurements and/or periodic 

sampling (or outlet flow in the case of continuous operation).  

 Discussion 7.3

This work presents the development of advanced controllers, based on multi-parametric 

techniques for: (i) a chromatographic separation process and (ii) a cell culture system. 

Compared to previously presented works on such systems, the control schemes suggested 

here benefit from the advantages of multi-parametric MPC that allows the solution of the 

optimization problem offline thus enabling faster control actions (Pistikopoulos, 2009). 

Moreover, “online via offline” optimization allows the solution of more complex problems, as 

the computational burden is transferred offline without having the timing restrictions existing 

during the online operation. The contributions from this work along with their applicability 

and potential limitations are discussed below. 
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7.3.1 Chromatographic separation systems 

The strategies developed for the MCSGP system have demonstrated their capabilities with 

respect to setpoint tracking. Moreover, as demonstrated in Chapter 4 and 5, the controllers 

manage to return cyclic input profiles, thus revealing the potential of the suggested techniques 

to maintain the process periodicity and ensure cyclic steady state. As discussed earlier 

(Chapter 4) the control schemes designed in this work consider variations in the feed stream 

as measured disturbances, aiming to prevent deviations due to process variability to affect the 

process performance. The latter can prove to be of great significance as it has been reported 

that changes in the feed composition affect the robustness of the separation (Mazzotti et al., 

1997). It has to be underlined that the case studies upon which the controllers were tested 

(Chapter 5) focus on their performance under different operating conditions (e.g. periodic 

feeding, various flow rates). The latter was successfully assessed with respect to system 

tracking rather than final product purity and recovery yield. For completeness, the next step 

should look into a unified simulation of the whole MCSGP process course, where purity and 

yield can be assessed. 

Feedback measurements are often a challenge for most control schemes in downstream 

processing. Also, in this case, the presented controllers will require a series of online 

measurements when applied on the setup. These can result from equipment that is already 

established on such units, such as UV/VIS. The latter can provide measurements within few 

seconds on the eluted concentrations that can later be updated by more accurate 

measurements resulting from the HPLC that requires longer analysis time. Software packages 

such as MATLAB® or similar can be used in tandem in order to calculate the value of the 

integral concentration, while yield and purity can be post-calculated offline as per current 

standard practice. The model-based nature of the proposed controllers minimizes the risk of 

failure in case measurements are unavailable, as the process model can be used to temporarily 

obtain the required feedback. In addition, the suggested approach takes into consideration the 

lack of measurements during continuous mode, treating the internal recycle stream as 

disturbance. 

7.3.2 Cell culture system 

Compared to previously developed control schemes (please refer to Chapter 6 for a detailed 

discussion) the one presented in this work benefits both from the model-based nature of the 

controller, as well as the ability offered by multi-parametric control, to solve the optimization 

problem offline. The first element, not only allows the controller to be trained on the 
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knowledge gained from the process model, but offers also the advantage of using the 

validated process model to obtain feedback for the controller during online operation in case 

of unexpected events and/or noisy measurements. To add to that, mp-MPC suggests the 

solution of the optimization problem offline (Pistikopoulos, 2009), thus minimizing the 

computational demand and time required for the calculation of the optimal action during the 

online operation. Similar to all control strategies, also the one presented in this work, relies on 

the availability of online measurements. Using the volumetric antibody concentration as the 

tracked output, the controller feedback can be obtained via sensors available in the market 

(e.g. Bioprofile® Flex Analyser, Nova Biomedical, Waltham, USA).  

Currently, the input profile suggested by the presented control strategies is characterized by 

relatively low flow rate values that are close to the operating lower bound of current 

commercial pumps, thus posing a challenge in their experimental application. The latter could 

be potentially tackled through the use of micro-pumps. The study presented here, focuses on 

the examination of the effect of different feeding frequencies on the volumetric antibody 

concentration, based on a simplified mathematical model. Current and future research is 

looking into the development of similar control strategies using a more sophisticated 

mathematical model that incorporates elements such as metabolic shifts and energy 

metabolism (Quiroga, 2017). Moreover, replacing the feeding medium used here with a 

medium of optimized composition would lead to the development of tailor-made, automated 

feeding strategies that satisfy the culture needs while using the optimal amount of nutrients 

required. 

 Future Research Directions 7.4

The main vision of this work is the advancement of computational tools used in the 

biomanufacturing of monoclonal antibodies for the. In this framework, current and future 

developments are looking into further optimization and development of: (a) upstream 

processes, (b) chromatographic separation processes and (c) the integrated bioprocess. 

7.4.1 Upstream processes 

In Chapter 6, we demonstrate the development of dynamic optimization and model-based 

control strategies based on a simplified network that considers 5 key nutrients as the principal 

components of the cell metabolic functions. This work is currently being expanded and 

applied to an energy-based model, monitoring ATP and the full set of amino-acids (Quiroga, 

2017). Moreover, the use of model-based media as the input for the control problem 

formulation can also be considered. Aiming to shift towards continuous processing, the model 
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parameters could be re-estimated to serve cases where there is continuous outlet flow. The 

latter will not affect the control methodology presented in this work, as the outlet flow rate is 

already considered as disturbance by the problem formulation. A change in the outlet profile, 

however, may result into changes in the input profile that is expected to present a more 

continuous behavior. In addition, alternative control schemes where the concentrations of the 

key amino-acids are monitored independently could also be investigated. In addition, in order 

to determine the effect of the human error, an automated feeding strategy as designed and 

provided by the controllers can be compared to a human-operated feeding. 

7.4.2 Chromatographic separation processes 

The work presented in Chapters 4 & 5 can be employed for the control of multi-column 

chromatographic separation processes, such as the MCSGP process. In collaboration with the 

Morbidelli Group (ETH Zürich) we are investigating the experimental application of the 

proposed control schemes. From a computational standpoint, dynamic optimization policies 

of the MCSGP process can be investigated, aiming to improve the experimentally optimized 

input profiles and setpoints. The online application of the proposed methodology could be 

facilitated by the design of a supervisory controller that will determine the optimal duration of 

each phase (batch or continuous, please refer to Chapter 3, Section 3.3) and consequently the 

switch between the two proposed control schemes (batch (Chapter 4) and interconnected 

(Chapter 5) respectively). For completeness, it would be also interesting to investigate the 

development of robust control schemes that will account for unexpected disturbances during 

the online operation. In order to immunize the controller against a greater variety of feed 

compositions, the latter could also be predicted using a systematic approach as presented by 

Chan et al. (2008a) that could be used afterwards as disturbance bounds for the controller 

development. 

7.4.3 Integrated biomanufacturing system 

As mentioned earlier, the vision of this work is the intensification of the production of 

monoclonal antibodies via continuous operation. On that end, work is being carried out 

towards the integration of all the units utilized in the bioprocess. Figure 7.1 demonstrates the 

concept based on which a global control policy will be designed. 
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Figure 7.1 Integrated bioprocess under a global control scheme. 

In collaboration with the Morbidelli Group (ETH Zürich), we are studying the integration of: 

• A continuous upstream system, 

• a continuous capture system based on Protein A chromatography (Steinebach et al., 

2016a) and 

• the MCSGP process. 

Current research is focusing on the improvement and unification of the aforementioned 

systems under an interoperable software platform, employing the PAROC framework and 

software platform (Pistikopoulos et al., 2015). For the model integration to be achieved, the 

outputs of the three process models (cell culture, capture and MCSGP) need to be unified, in 

order to monitor: impurities (weak & strong) as well as the targeted product (mAb). In 

particular, with respect to the upstream system; the incorporation of terms describing the 

formation of aggregates and fragments needs to be investigated. Preliminary results on the 

modification of the upstream process model are presented in Appendix C, however, due to the 

fact that aggregation kinetics and fragmentation are complex effects that are associated with 

the culture conditions, the selected cell line as well as the type of antibody produced, a 

thorough investigation is needed, coupled with the required experimentation. Therefore, the 

results demonstrated in Appendix D serve as a proof of concept that identifies the 

computational requirements for the unification of the three process models. In order to 

smoothen the integration of the process models at hand the simulation of the capture model in 

gPROMS® Modelbuilder (P.S.E, 1997-2016) is being realized. Appendix D discusses 

preliminary results on the model integration under an interoperable software environment. 

7.4.4 Other applications 

The presented control strategies can be further expanded to other types of industries, where 

continuous processing and/or monitoring can improve the process efficiency. For example, 
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chromatography is extensively used in food industries for the clarification of various mixtures 

(Bubnik et al., 2004, Ni et al., 2016). Intensifying their operation via advanced computational 

tools could lead to increased productivity and significantly improve product quality, as 

holdup steps will be minimized. Other areas of application of the suggested strategies could 

be fermentation systems as well as periodic separation processes such as pressure swing 

adsorption systems (Jiang et al., 2003, Kawajiri and Biegler, 2006b, Khajuria and 

Pistikopoulos, 2011a, Khajuria and Pistikopoulos, 2011b, Khajuria and Pistikopoulos, 2013). 
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A.1  Global Sensitivity Analysis (GSA) 

GSA is the mathematical procedure according to which the model parameters are 

simultaneously excited, within the range of interest, and their effect on the model outputs is 

monitored. Such procedures enable the examination of the global parameter space, cope well 

with non-linearities, providing a complete set of results that demonstrates both the sensitivity 

of the model to the uncertainty of the parameter values, as well as the effect of one model 

parameter to the other (Li et al., 2002, Kiparissides et al., 2011a). 

In this work, the sensitivity of the model to the parameter values is assessed using High 

Dimensional Model Representation (HDMR) method. HDMR is a global method that 

examines the entire parameter space and is based on the ANOVA decomposition method. 

More specifically, for the purposes of this work Random Sampling HDMR (RS-HDMR) is 

used. RS-HDMR is a technique that was introduced to generate the ANOVA decomposition 

(Equation A.1) of a model function with random input (Li et al., 2002).  

! ! = !! + !!!…!!(!!! ,…
!

!!!⋯!!!

!

!!!
, !!!) Equation A.1 ANOVA decomposition. 

HDMR aims to efficiently build the map of the input-output behaviour of a model function 

involving high dimensional inputs (!~10! − 10!). Li et al. (2002) postulated that in most 

engineering problems the expansion of functions can be truncated to the second order 

component function (Equation A.2).  

! ! ≈ ℎ(!) = !! + !!(!!)
!

!!!
+ !!"(!!

!!!!!!!
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Equation A.2 Second order component 
function. 
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A.2  Multi-parametric Model Predictive Control (mp-MPC) 

A.2.1 Fundamentals of MPC 

Model predictive control (MPC) is an advanced control methodology that is used to predict 

the future state of the system and take the appropriate control actions to ensure that optimal 

operation is always maintained. The aim of MPC is to provide a sequence of control actions 

over a future horizon that will optimize the controller performance based on predictions of the 

system states (Pistikopoulos, 2009). This is realized by solving online the optimization 

problem that describes the system behavior. 

 

Figure A.1 Moving horizon policy used in the MPC implementation (Pistikopoulos, 2009). 

As illustrated in Figure A.1 the method is based on a moving horizon policy, according to 

which the optimal control problem is solved at each time step (Bemporad et al., 2002). 

Starting at the current time interval (k), the optimization problem is solved, aiming to 

minimize the state and control deviations from the setpoint (Pistikopoulos, 2009). Then, the 

computation is repeated for the next time step (k+1) starting from the new state and the 

horizon is shifted by one time interval (Garcia et al., 1989, Bemporad et al., 2002, 

Pistikopoulos, 2009). The sequence is repeated until the values of the setpoint are obtained. 

The key advantage of MPC is that it is designed to handle multivariable applications and take 

into consideration the constraints on the state and control variables (Garcia et al., 1989, 

Pistikopoulos, 2009). However, MPC’s implicit nature requires the optimization problem to 

be solved online for every time interval, demanding large computational effort. 
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Equation A.3 illustrates the standard equation used as objective function in the formulation of 

the MPC problem. 
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Equation A.3 General form of the the MPC problem 
formulation. 

Table A.1 Explanation of the various entities and tuning parameters used in the MPC formulation. 

Entity Description Entity Description 

M Control Horizon (NC) !! Changes in the control actions 

N Output/Prediction Horizon (OH) ! Disturbances 

k Time intervals P 
Terminal weight matrix for states 

(t=N) 

! States Q Objective coefficient for states (!) 

! Outputs QR 
Quadratic matrix for tracked outputs 

(!) 

!! Output setpoints R 
Quadratic matrix for manipulated 

variables (!) 

! Control actions R1 Weight matrix for output moves (!!) 
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A.2.2 Explicit/multi-parametric MPC 

Aiming to simplify the online implementation of MPC, Bemporad et al. (2000) first suggested 

a methodology that has the ability to obtain the MPC control law offline. This is realized by 

reformulating the initial MPC problem into a multi-parametric optimization problem and 

obtaining the complete map of the optimal solution as a function of the problem parameters 

(Pistikopoulos, 2000). The nature of the mathematical model that describes the dynamic 

system indicates the type of functions that formulate the optimization problem (e.g. linear, 

nonlinear, quadratic, convex, differentiable and non-differentiable). Another aspect that is of 

key importance for the choice of the solution procedure is the type of decision variables and 

parameters (e.g. continuous, binary, time-varying or not) (Pistikopoulos, 2009, Pistikopoulos 

et al., 2015). The combination of various types of objective functions and variables gives rise 

to mp-MPC problems of different structure, such as: 

(i) Multi-parametric linear programming (mp-LP) 

(ii) Multi-parametric quadratic programming (mp-QP) 

(iii) Multi-parametric mixed-integer programming (mp-MILP) 

(iv) Multi-parametric mixed-integer quadratic programming (mp-MIQP) 

One of the key advantages of multi-parametric MPC (mp-MPC) is that it reduces the online 

optimization problem to a sequence of function evaluations. The parametric control profiles 

that are obtained by the offline solution can be stored in a computational hardware (e.g. 

microchip) (Pistikopoulos, 2009). “Online optimization via offline optimization” 

(Pistikopoulos, 1997, Pistikopoulos, 2000), enables the mapping of the optimal multi-

parametric solution without the need of an online optimization software. “MPC-on-a-chip” 

technology allows the storage of the parametric profiles on a simple hardware and enables 

thus the incorporation of advanced model-based controllers in portable and/or embedded 

devices (Pistikopoulos, 2004, Pistikopoulos, 2008). Explicit/mp-MPC has been successfully 

applied to a number of case studies. Some of them are illustrated in Table A.2. 
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Table A.2 Applications of the multi-parametric model predictive control (mp-MPC). 

Applicaiton Reference 

Control of a two-input two-output gas-liquid 

separation plant. 

Grancharova et al. (2004) 

Controller development for the attitude of a 

satellite. 

Hegrenæs et al. (2005) 

Control of insulin delivery in patients with 

Type I diabetes. 

Dua et al. (2006) 

Optimal design and optimization of a metal-

hydride based hydrogen storage tank. 

Georgiadis et al. (2009) 

Automatic control of blood glucose to avoid 

hypoglycemia. 

Dua et al. (2009) 

Robust explicit MPC of hydrogen storage 

tank. 

Panos et al. (2010) 

Control of PSA systems. Khajuria and Pistikopoulos (2011a), Khajuria 

and Pistikopoulos (2013) 

Optimization of insulin dosing to patients 

with Type I diabetes. 

Zavitsanou et al. (2014) 
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*The mathematical model of the MCSGP process presented in this chapter has been developed and 
validated by the Morbidelli Group (ETH Zürich). The model is also presented in Appendix A of 
Papathanasiou et al. (2016). Advanced control strategies for the multicolumn countercurrent solvent 
gradient purification process. AIChE J., 62: 2341–2357. doi:10.1002/aic.15203s 
 

**The work on the development of the PID controllers for the single-column system presented here 
have been performed in collaboration with Ms Styliana Avraamidou and are presented in: 
Papathanasiou et al. (2016). Advanced control strategies for the multicolumn countercurrent solvent 
gradient purification process. AIChE J., 62: 2341–2357. doi:10.1002/aic.15203 
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B.1  The Mathematical Model of the MCSGP Process 

B.1.3 Model development 

The mathematical model describing the MCSGP process has been developed by ETH Zürich 

and has been tested for various case studies (see Section 3.3). The model comprises Partial 

Differential and Algebraic Equations (PDAEs) and describes the main events taking place in in 

the chromatographic column. 

(i) Liquid Phase Concentration 

Equation B.1 corresponds to the mass balance equation of chromatography that assumes the 

column is radially homogenous and all column properties are constant in a given cross section. 

The differential equation is derived by material balances, lumping all non-convective transport 

phenomena in a dispersion term (Guiochon et al., 1994).  

∂c(z, t)!,!
∂t = D!"

∂!c(z, t)!,!
∂z! − Q!

A!"#�!

∂c z, t !,!
∂z

− 1 −�!
�!

∂q z, t !,!
∂t  

Equation B.1 Liquid 
phase concentration 

The system considers two independent domains: (i) time (t) and (ii) space (z) with limits from 0 

to column length, as well as the concentration of the liquid phase concentration of species i at 

column h  c(z, t)!,! (mg/mL) and the solid phase concentration of species i at column h, q z, t !,! 

(mg/mL). The indices i and h correspond to the number of species in the column (here: modifier, 

weak impurities, product and strong impurities) and the number of columns used in the setup, 

respectively. The term on the right hand-side of the equation, describes the evolution of the 

liquid phase concentration over time (accumulation in the mobile phase). On the left hand-side, 

starting from left to right: (i) !!" !
!!(!,!)!,!
!!!  corresponds to the dispersion term, where !!" is the 

axial dispersion coefficient (cm2/min), (ii) !!
!!"#�!

!! !,! !,!
!!  describes the convective transport, 

where Q! is the operating flow rate (mL/min) of column h, A!"# (cm2) is the column cross-

section and �! corresponds to the column porosity for component i (dimensionless), the ratio 
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!!
!!"#�!

 describes the local average mobile velocity, and (iii) !!�!
�!

!! !,! !,!
!!  is the term describing 

the adsorptive interaction (accumulation in the stationary phase) for species i at column h  . 

(ii) Solid Phase Concentration 

The mass balance (Equation B.2) is combined with a kinetic equation based on the linear 

driving force model, following lumped kinetics (Guiochon et al., 1994). 

∂q(z, t)!,!
∂t = k! q∗ c z, t !,! − q z, t !,!  

Equation B.2 Solid phase 
concentration 

The term on the left hand side describes the evolution of the liquid phase concentration over 

time (accumulation in the mobile phase), while on the right hand side: k! corresponds to the 

lumped mass transfer coefficient of species i (min-1), q∗ c z, t !,! is the equilibrium solid phase 

concentration as a function of the mobile phase concentration (mg/mL) for species i at column h  

and q z, t !,! is the solid phase concentration of species i at column h (mg/mL). 

 

(iii) Initial Conditions 

At the start of the operation (t=0) columns are considered empty and equilibrated: 

c(z, t = 0)!,! = 0 
Equation B.3 Initial 
conditions 

 

(iv) Boundary Conditions 

At the column inlet (z=0) the concentration of species i is assumed to be equal to its 

concentration in the feed c!,!!"  (mg/mL).  

c(z = 0, t)!,! = c!,!!"  
Equation B.4 Boundary 
conditions at the column 
inlet 

At the column outlet, Danckwerts boundary condition is applied (Guiochon et al., 1994), where 

no axial change in the concentration is assumed. 
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∂c(z = L!"#, t)!,!
∂z = 0 

Equation B.5 Boundary 
conditions at the column 
outlet 

where t represents the time, z the column length, i the component and h the column index: 

! ∈ 0, !!"#   , ! ∈ 0, !!"#  , ! = 1,… , !!"#$  , ℎ = 1, . . , !!"# 

(v) Isotherms: The Competitive Bi-Langmuir Isotherm 

The model uses the competitive bi-Langmuir isotherm to describe the competition between the 

species during adsorption. The solid phase equilibrium concentration !∗ ! !, ! !,!  (mg/mL) is 

calculated by the following equation: 

q∗ c z, t !,! =  c!,! ∙ H!,!!

1 + c!,! ∙ H!,!!
q!,!!

!!"#$
!!!

+ c!,! ∙ H!,!!!

1 + c!,! ∙ H!,!!!
q!,!!!

!!"#$
!!!

 
Equation B.6 Solid phase 
concentration at 
equilibrium 

 

As discussed in Chapter 3, one can consider other types of isotherms, however the bi-Langmuir 

isotherm used here is commonly applied in protein systems (Kraettli, 2012). Equation B.6 is 

valid under the assumption of ideal behavior of the mobile phase and the adsorbed layer and 

equal column saturation capacities of both types of sites for the two components. H!,!!  and H!,!!!  

correspond to the Henry constants for the adsorption sites 1 and 2 of species i in column h 

respectively, while q!,!!  and q!,!!!  are the saturation capacities for the adsorption sites 1 and 2 

(mg/mL). 

The Henry constants and saturation capacities for the mixture components are shown below: 

H!,! =�!,! ∙ c z, t !,!
�!,! 

Equation B.7 Henry 
constants H!,!!! =�!,! ∙ H!,!

�!,! 

H!,!! = H!,! − H!,!!!  

 

q!,!! =�!,! ∙ H!,!!
�!,! Equation B.8 Saturation 

capacities for the two 
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q!,!!! =�!,! ∙ (H!,!!! )�!,! 
adsorption sites 

where  !  here is the number of the components and ℎ  represents the column index. H!,! 

corresponds to the Henry constant of species i in column h, while �! are dimensionless, species 

dependents constants. 

For the modifier, the equilibrium solid phase concentration is solely a function of its liquid 

phase concentration: 

q∗ c z, t !,! =  H!"# ∙ c z, t ! 

Equation B.9 Solid 
equilibrium phase 
concentration for the 
modifier 

 

In addition to the equations shown above, the model includes a set of equations describing the 

mass balance around each column (Chapter 3). Those equations depend on the configuration of 

the setup at any given time point. The efficiency of the separation process can be evaluated 

using two main criteria. The first and most important constraint to be fulfilled is purity. That is 

what defines whether the product is suitable to be used as end-product or needs to be further 

processed. Secondly, the process needs to reach high levels of recovery yield, so as to minimize 

product loss. To calculate purity and yield we use the equations presented by Grossmann et al. 

(2010). 

!"!!"! =
!!"!,!,!

!!"!,!,! + !!"!,!,! + !!"!,!,!
  

Equation B.10 Product 
purity as a function of 
the component 
concentration in the 
product outlet stream 

 

!! =
!!"!,!,!
!!!""#

 Equation B.11 
Recovery yield 

! = 1,… , !!"!#$ , ! = 1,… , !!"#$%#  

Where, !"!!"! and !! correspond to the average purity and recovery yield over a process cycle, 

cav,s,j (mg/mL). is the average concentration of the mixture components at the end of each cycle, 
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!!!""# (mg/mL). indicates the feed concentration of the targeted product, ! indicates the cycle 

index and s the outlet stream. 

Table B.1 illustrates the model parameters used for the simulation of the above presented 

process model. Due to confidentiality agreement, the exact parameter values cannot be 

disclosed in this document, therefore their order of magnitude is provided. 

Table B.1 Model parameters and the respective order of magnitude (data obtained by ETHZ, group of Prof. 
Morbidelli) 

Parameter Significance Value (range) Units 

Acol Column cross-section 0.2-0.5 cm2 

Lcol Column length 10-16 cm 

ki 
Lumped mass transfer coefficient 

of species i 

20-100 

[Species dependent] 
min-1 

Dax 
Effective axial dispersion 

coefficient 
0-0.001 cm2/min 

�  Column porosity for component i 
0.5-0.8 

[Species dependent] 
Dimensionless 

Hmod Henry constant for the modifier  0.2 Dimensionless 

αi Species dependent constants Species dependent Dimensionless 

B.1.4 Model simulation 

The MCSGP process model is simulated in gPROMS® ModelBuilder v4.2.0 (P.S.E, 1997-

2016) (using a first order backward finite discretization method with 50 collocation points) and 

the results are represented below (It should be underlined that for confidentiality agreement 

signed with the Morbidelli Group (ETH Zürich) tables and figures illustrate qualitative 

information, rather than quantitative). The separation process depends highly on the modifier 

concentration, since the latter is responsible for detaching the impurities and/or product from 

the resins and facilitating the elution. Figure B.1 illustrates the dynamics of the modifier 
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concentration over one cycle during CSS. It can be observed that the applied input strategy 

imposes the modifier to move from low to high concentration profiles, aiming to achieve 

gradient elution. Furthermore, the two columns are characterized by identical profiles for both 

the inputs and the outputs, shifted by a phase difference of half a cycle. During Switch 1, 

column 1 starts from a moderate modifier concentration for the elution of the overlapping 

fraction of W and P. Gradually, the modifier concentration increases following a linear change, 

until the maximum concentration is reached and the strong impurities are eluted. Figure B.2 

illustrates the concentration of W, P and S during at the column inlet. It can be observed that 

during the I1 phase, the overlapping fractions of W and P enter the column in order to be further 

separated. Following that, B1 is the phase that the feed is introduced into the system. The feed 

stream contains W, P ,S and the modifier and is introduced once per cycle in each column. B1 

phase is followed by I2 phase, where the overlapping fractions of P and S exit the column 

placed on the right position and enter the column on the left. After the completion of one switch 

(half a cycle) the columns swap places and the input strategy is repeated. 

 

Figure B.1 Modifier concentration over one cycle under CSS for column 1 and column 2. 
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Figure B.2 Inlet concentrations and feeding strategy for one column over a cycle under CSS for weak 
impurities, targeted product and strong impurities. 

The elution profiles of the three components for one column over one cycle are depicted in 

Figure B.3 It can be observed that the three components (W, P, S) are eluted gradually in three 

distinct fractions. However, there are overlapping regions between W & P and P & S that 

according to the process are recycled in order to be separated further. The results illustrated in 

Figure B.3 have been favorably compared to the results generated by ETHZ in FORTRAN 

programming language that have been experimentally validated. 
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Figure B.3 Elution profiles of weak impurities, targeted product and strong impurities for one column over a 
cycle under CSS. 

 

B.1.5 Cyclic Steady State 

The first thing to be investigated was the time point at which the CSS is attained. The steady 

state is defined as the point at which the difference between the initial and the final state of the 

system is less or equal to a number very close to zero:  

!(!!"!#$%&'$)! −  !(!!)!  ≤  !""! 

Here, k is the iteration counter, !(!!)! represents the initial state of the system, !(!!"!#$%&'$)! 

is the state of the system after a cycle and !""! shows the development of !(!!"!#$%&'$)! −
 !(!!)!  of cycles computed. 

Table B.2 summarizes the time-points that CSS is attained for different values of !""!. It can be 

observed that the time point at which the CSS is attained depends highly on the choice of !""!. 

More specifically, for very low values of !""!, a large number of cycles needs to be computed 

for CSS to be attained. Additionally, it should be noted that CSS is not attained for all the 

variables simultaneously. As shown in Table B.2, for a tolerance of 1e-4, the concentration of 
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the weakly adsorbed impurities reached the steady state significantly slower compared to the 

rest of the variables. This has also a physical meaning, since the weak impurities are highly 

affected by small changes in the modifier concentration, whereas the desired product and the 

strong impurities are more resistant. The rest of the variables (not shown here) follow the 

behavior of the concentration of the respective species. 

Table B.2 Monitoring the CSS under different tolerance (!""!).  

Variable  Number of Cycle where CSS is achieved 

!""! Value  10-1 10-2 10-3 10-4 10-5 

Cmod  2nd  2nd  2nd  3rd  15th  

Cweak  2nd 8th  12th  17th  17th  

Cproduct  2nd  3rd 5th  6th  10th  

Cstrong  2nd  2nd  2nd  4th  5th  

 

B.1.6 System Efficiency 

As it has been previously discussed, there are two main criteria that indicate the efficiency of a 

separation process. The first and most important criterion is the purity of the desired product, as 

it indicates whether the latter qualifies for an end- product. For the calculation of purity function 

the approach suggested by Grossmann et al. (2010) was followed and is presented below. As it 

is illustrated in Figure B.3, the elution of the product takes place during the B1 phases and the 

product is extracted only from the column placed on the right position. Consequently, product 

elution is realized twice per cycle and therefore the average concentration needs to be computed 

(Equation 4.5).  

!!"!,! =
!!,!!"# ∙ !!!"!

!!!"!
 

! = 2,… , !!"#$, ! = 1,… , !!"#$%# 

Equation B.12 Average concentration of the mixture 
components over one process cycle. 
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Here ! is the outlet stream, !!,!!"#  (mg/mL). is the outlet concentration,  !! represents the flow 

rate (mL/min) of the respective stream and τ the time (min). for which the elution is realized. 

The average purity is given by the following equation, where ! indicates the cycle index and ! 

the outlet stream. 

 

!"!!"! =
!!"!,!,!

!!"!,!,!!!!"!,!,!!!!"!,!,!
  

! = 2,… , !!"#$, ! = 1,… , !!"#$%# 

Equation B.13 Average product purity over one 
process cycle. 

The second criterion for the evaluation of the purification process is the yield that refers to the 

amount of the product recovered during the separation process, with !!!""# (mg/mL) to indicate 

the feed concentration of the targeted product. 

!! =
!!"!,!,!
!!
!""#   

! = 2,… , !!"#$, ! = 1,… , !!"#$%# 

Equation B.14 Average process yield over one 
process cycle. 

P
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Figure B.4 The evolution of the % purity over 19 simulation cycles. 
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Figure B.4 illustrates the dynamics of purity for a time span of 18 cycles (cycles 0 to 19). For 

the sake of clarity, cycle 0 is not included in the graph. It can be observed, that at the end of the 

first cycle (cycle 0) the extracted product is  ≅ 99% pure. For the first 3 cycles, the value of the 

function shows a relative variation that is in the order of magnitude of 1e-3, while the value is 

stabilized at 0.993 at the end of the 4th cycle. On the contrary, yield (Figure B.5) starts from 

relatively low levels (2%) and rises gradually.  

 

Figure B.5 The evolution of the % yield over 19 simulation cycles. 

Judging by the results discussed above, the need for optimization is evident. Although purity, 

almost instantly reaches the desired levels, yield starts from lower levels. The latter means that 

under the current operational conditions, the system has a product loss of almost 13% for the 

first 9 cycles. Therefore the optimal operation point needs to be found, for the minimization of 

product losses and maintenance of product purity. 
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B.2  Sensitivity Analysis of the Control Tuning Parameters  

The study presented in tis section is complementary to the work demonstrated in Chapter 4. 

Here, we examine the sensitivity of the mp-MPC tuning parameters and their effect on the 

controller behavior. We consider a single-column, chromatographic system (Figure B.6) based 

on the principles of MCSGP. 

 

Figure B.6 Single-column Single Input-Multiple Output system under measured disturbances. 

For the formulation and solution of the mp-MPC problem we use the linear state space model 

presented in section 4.5, where we consider: one input (modifier concentration), 3 outputs (∫CW, 

∫CP, ∫CS) and measured disturbances (feed composition). 

B.2.1 Base case controller 

Firstly, we formulate and test the following base case mp-MPC problem (MPC1). The 

controller is tested in-silico against the high-fidelity process model under the disturbance profile 

(feeding) illustrated in Figure B.7. 
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Table B.3 Tuning parameters used for the development of the base case controller. 

 

 

Tuning 

Parameter 
Explanation Value 

OH Output horizon 2 

NC Control horizon 2 

QR Weights on the outputs [100 10000 100] 

Q Weights on the states 1I 

R Weights for the inputs 1 

P Terminal weight for the states Riccati equation 

Umax Input upper bound 12 

Umin Input lower bound 0.2 

Ymax Output upper bound 100 

Ymin Output lower bound 0 

Dmax Disturbance upper bound [0 0 0] 

Dmin Disturbance lower bound [0.0748 0.4059 0.0462] 

Xmax States upper bound [-10000 -10000 -10000] 

Xmin States lower bound [10000 10000 10000] 
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Figure B.7 Disturbance profile corresponding to the feed composition applied to the system during the closed-
loop, in-silico validation. 

Figure B.8 shows the input profile as indicated by the controller, while the output behavior with 

respect to the setpoints is shown in Figure B.9. 

 

Figure B.8 Input profile indicated by the controller during the closed-loop validation. 
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Figure B.9 Output behaviour under closed-loop validation. 

It can be observed that the controller manages to reach and maintain the desired setpoitnts, 

however, with a significant, repetitive time delay. The latter can be attributed to the 

physicochemical properties of the system and in particular to the operational flow rate. 

!!"#$% =
!!"#$%&
!  

Equation B.15 Time delay as a function of the column 
volume and the operating flow rate. 

Where, !!"#$% is the time delay in minutes, !!"#$%& the volume of the chromatographic column 

and ! corresponds to the flow rate. 

We have previously demonstrated that pre-calculating and adjusting the setpoints based on the 

flow rate can lead to elimination of the delay. However, here, we are interested in exploring the 

effect of the controller tuning parameters on the system behavior. Aiming to explore the 

possibilities of eliminating the time delay in a generic way, we formulate and assess the 

behavior of 7 different mp-controllers (Table B.5). In particular, the problems are solved for a 

wide range of output and control horizons and their performance is assessed. In addition to 
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states and the bounds posed on the input) on the controller behavior. The controllers are tested 

in closed-loop against the high-fidelity process model and their behavior is discussed below 

B.2.2 The effect of the output horizon 

In this section we examine the effect of the output horizon solely. It should be noted that out of 

the 7 mp-MPC designed controllers, mp-MPC5 and mp-MPC7 did not manage to capture the 

setpoints and are therefore excluded from any further analysis, while mp-MPC4 and mp-MPC6 

resulted in identical profiles for all the tested horizons. Moreover, the 2x2 combination (output 

x control horizon) was unsuccessful for all presented cases. For simplicity, in all the graphs 

below we focus on the behavior of 1 output (the product). 

• mp-MPC 1 

Figure B.10 illustrates the results from the closed loop validation for mp-MPC1 for a set of 4 

different output horizons. In this case, no significant difference in the output behavior is 

observed (Figure B.10a, c). The gradient increase occurs of the output for all controllers 

simultaneously, while the differences in the absolute value are not considered significant. 

Interestingly, however, it is observed that changes in the output horizon affect also the input 

profile. In particular, the control actions for the period 14.2 min – 16.2 min (when the 

disturbance occurs) are different for every controller. 
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Figure B.10  Closed-loop validation results for mp-MPC1 using control horizon 2 and output horizons: 3, 4, 5, 
6. (a) Comparison of the setpoint (solid black line) to the controllers output, (b) Input sets as indicated by the 
controllers under closed-cloop validation, (c) Close-up image on the output behaviour of graph 5a, (d) Close-
up on the input profile of graph 5b. 
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Figure B.11 Closed-loop validation results for mp-MPC2 using control horizon 2 and output horizons: 3, 4, 5, 
6. (a) Comparison of the setpoint (solid black line) to the controllers output, (b) Input sets as indicated by the 
controllers under closed-cloop validation, (c) Close-up image on the output behaviour of graph B11.a, (d) 
Close-up on the input profile of graph B.11b. 
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• mp-MPC3 

Figure B.12 illustrates the results from the closed loop validation of MPC3.  

 

Figure B.12 Closed-loop validation results for mp-MPC3 using control horizon 2 and output horizons: 3, 4, 5, 
6. (a) Comparison of the setpoint (solid black line) to the controllers output, (b) Input sets as indicated by the 
controllers under closed-cloop validation, (c) Close-up image on the output behaviour of graph B.12a, (d) 
Close-up on the input profile of graph B.12b. 

It can be observed that with the increase in the output horizon there is a consistent increase and 

therefore improvement in the output (Figure B.12c). Additionally, the input profile (Figure 

B.12b) differs with respect to the maximum value reached that could possibly result in the 

different profiles we observe in the output. Similarly to mp-MPC2, the most significant changes 

are observed in the steepness of the output curve. 

Judging from the closed loop simulation results it could be concluded that the choice of the 

output horizon has a more significant impact on the steepness of the output curve rather than the 

elution times, as one would expect. In particular, a consistent improvement in the output profile 

with the increase of the output horizon is observed. Counter intuitively, the output horizon does 

not seem to affect the controller responses with respect to time. Additionally, it can be 

concluded that the input maximum bound does not play a significant role, as all the controllers 

manage to reach the setpoint value equally efficiently. Therefore, from a process perspective it 
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might be better to operate under a tight control strategy (e.g. MPC1) that could potentially lead 

to decreased modifier use and therefore minimize production costs. 

B.2.3 The effect of the tuning parameters 

Following the investigation of the effect of the output horizon, the next step is to explore the 

impact of other tuning parameters in the problem formulation. Here, we compare 5 out of the 7 

control schemes (excluding the unsuccessful mp-MPC5 and mp-MPC7), using the 3x2 (output 

x control horizon) results. It can be observed that mp-MPC3 & mp-MPC6 result in the best 

output profile, followed by mp-MPC1 & mp-MPC4 and, the input profiles generated by the 

controllers. In particular, the output of schemes 3 & 6 is characterized by the highest steepness 

and reaches the setpoint approximately 0.2 min faster, compared to mp-MPC1 and mp-MPC4. 

In addition, each pair is characterized by the same input actions (Figure B.13b&d). 

Interestingly, all 4 schemes are characterized by the same corrective action when disturbances 

occur (Figure B.13d, 14.2-16.2 min), while mp-MPC2 operates at a lower value. Moreover, mp-

MPC2 follows a smoother, less steep increase in the input profile compared to the rest of the 

schemes. Aiming to relate the resulting profiles to the control parameters, it is observed that all 

four schemes are using the same QR matrix, whereas mp-MPC2 is tuned using weight of an 

order of magnitude less for output 2 (product). It could be concluded therefore that the QR/R 

ratio is the most significant parameter that determines the input profile, both in absolute values 

and steepness. It would be advisable to test control schemes of intermediate upper bounds in 

order to examine whether the actions of mp-MPC1 & mp-MPC4 are saturated. Furthermore, 

comparing mp-MPC3 & mp-MPC6 to mp-MPC1 & mp-MPC4 we observe that the upper bound 

of the input is significantly affecting the steepness of the output slope (i.e. the elution profile). 

That is also in accordance to the physicochemical properties as the modifier concentration is the 

sole factor responsible for the elution. However, the controller performance has to be further 

assessed and the trade-off between modifier use and product elution had to be determined in 

order to be able to avoid unnecessary costs. 
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Figure B.13 Closed-loop validation results for mp-MPC1, 2, 3, 4 & 6 using control horizon 2 and output 
horizon 3. (a) Comparison of the setpoint (solid black line) to the controllers output, (b) Input sets as indicated 
by the controllers under closed-cloop validation, (c) Close-up image on the output behaviour of graph B.13a, 
(d) Close-up on the input profile of graph B.13b. 

Comparing now mp-MPC3 to mp-MPC6 it can be concluded that the weight for the states (Q) 

has no significant effect on the controller behavior and can be therefore eliminated from the 

formulation. Similarly, as expected, the bounds of the disturbances do not affect the 

performance, as mp-MPC1 and mp-MPC4 operate under different disturbance bounds and 

result in the same profiles. 

B.2.4 The effect of the control horizon 

In this section we investigate the effect of the control horizon on the response of the controller. 

In particular we examine mp-MPC2, mp-MPC3, mp-MPC4 and mp-MPC6 for an output 

horizon of 6 and control horizon 2 to 6. Mp-MPC1 is eliminated from the comparison as it is 

characterized by tighter disturbance bounds and it cannot be applied on the twin-column 

system. Table B.4 summarizes the performance of the examined controllers. The sets for which 

the controllers failed to reach the setpoints are not included in the comparative figures. 
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Table B.4 Summary of the performance of the 4 mp-MPC schemes assessed in closed loop validation, using 
output horizon 6 and control horizons 2 to 6. The performance assessment is based on the efficiency of the 
controller to reach the predefined setpoints. 

Control Scheme Control Horizon Performance 

mp-MPC2 

2 Good 

3 Good 

4 Good 

5 Failed 

6 Good 

mp-MPC3 

2 Good 

3 Good 

4 Failed 

5 Good 

6 Good 

mp-MPC4 

2 Good 

3 Good 

4 Failed 

5 Good 

6 Good 

mp-MPC6 

2 Failed 

3 Good 

4 Failed 

5 Good 

6 Good 
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• mp-MPC2 

Figure B.14 illustrates the results from the closed loop validation of mp-MPC2 using an output 

horizon of 6 and 4 different control horizons. It can be observed that the change in the control 

horizon has a significant effect on the controller performance. In particular, the results indicate 

that the control horizon affects the controller behavior much more than the output horizon 

(Figure B.11). Counter intuitively, Figure B.14c demonstrates that the best performance is given 

by the 6x2 controller, as its output elutes significantly earlier, decreasing the system delay by 

approximately 1.2 min (compared to the 6x4 controller). A closer observation in the input 

behavior (Figure B.14d) indicates that the choice of the control horizon affects both the 

steepness of the slope and the absolute maximum value of the input. In addition to that, it can be 

observed that the output behavior does not depend solely on the amount of modifier (input) 

injected in the system, but also on the speed that the input enters the system (steepness of the 

slope). It could be assumed that, in fact, the output behavior depends in a higher extent to the 

speed rather than the actual concentration. A characteristic example that supports this 

assumption is the behavior of the 6x2 controller. Although, it is characterized by the smallest 

control horizon, its input is following the steepest increase compare to the other 3 cases. 

However, its maximum input value is lower than the respective one of the 6x6 controller. 

Moreover, it is observed that the fastest the increase in the modifier concentration is, the fastest 

is the elution. The latter is also in agreement with the system physicochemical properties, as the 

gradient of the modifier (i.e. the steepness of the slope) is one of the most significant parameters 

that determine separation. 
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Figure B.14 Closed-loop validation results for mp-MPC2 output control horizon 6 and control horizons: 2, 3 , 
4, 6. (a) Comparison of the setpoint (solid black line) to the controllers output, (b) Input sets as indicated by 
the controllers under closed-cloop validation, (c) Close-up image on the output behaviour of graph B.14a, (d) 
Close-up on the input profile of graph B.14b. 

In addition to the above, the control horizon affects also the control action against the 

disturbance (Figure B.14 d, 14-16.2 min). In particular, it is observed that for each control 

horizon, the controller chooses a different absolute maximum value. Consequently, this is 

reflected to the output profile. More specifically, the 6x2 controller reached the highest 

concentration amongst the 4 examined controllers for this time period. Therefore, in this case, 

the column is filled faster with modifier and results to earlier elution. 

• mp-MPC3 

Similarly, to mp-MPC2, here we observe that the steepest the change in the input (Figure 

B.15d) the faster the elution (Figure B.15c). In addition, it is clear that the elution profile 

depends almost solely on the gradient of the input rather than the absolute values, as the 6x2 

and 6x6 controllers are characterized by the exact same gradient but different final value in the 

input. If we compare now in pairs the controllers that are characterized by the same gradient in 

the input, it can be observed that the control horizon does impact the output behavior. However, 
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it is indicated by the results that the higher the control horizon, the slower the elution (i.e. the 

output responds slower to the control actions). 

 

Figure B.15 Closed-loop validation results for mp-MPC3 output control horizon 6 and control horizons: 2, 3 , 
4, 6. (a) Comparison of the setpoint (solid black line) to the controllers output, (b) Input sets as indicated by 
the controllers under closed-cloop validation, (c) Close-up image on the output behaviour of graph B.15a, (d) 
Close-up on the input profile of graph B.15b. 

• mp-MPC4 & mp-MPC6 

Mp-MPC4 (Figure B.16) and mp-MPC6 (Figure B.17) behave similarly to the above-described 

controllers. Also, in these two cases it is consistently observed that the gradient of the input has 

the most significant effect on the output behavior. That cannot be linked however to the choice 

of control horizon as there is no repetitive pattern. 

However, in cases where two controllers share the same gradient input profile (Figure B.16d: 

6x2 and 6x6, Figure B.17: 6x3 and 6x5) then the higher the control horizon, the later the output 

elution. 
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Figure B.16 Closed-loop validation results for mp-MPC4 output control horizon 6 and control horizons: 2, 3 , 
4, 6. (a) Comparison of the setpoint (solid black line) to the controllers output, (b) Input sets as indicated by 
the controllers under closed-cloop validation, (c) Close-up image on the output behaviour of graph B.16a, (d) 
Close-up on the input profile of graph B.16b. 
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Figure B.17 Closed-loop validation results for mp-MPC6 output control horizon 6 and control horizons: 2, 3 , 
4, 6. (a) Comparison of the setpoint (solid black line) to the controllers output, (b) Input sets as indicated by 
the controllers under closed-cloop validation, (c) Close-up image on the output behaviour of graph B.17a, (d) 
Close-up on the input profile of graph B.17b.  
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1 The modifier concentration can actually vary between 0 mg/mL and 50 mg/mL. The maximum value of 12 mg/mL is chosen as upper bound for some of the cases as it approximately matches the maximum 

value used in the real process (11.69 mg/mL). The minimum of 0.2 mg/mL is chosen as in reality the modifier concentration never drops to 0 mg/mL. 2 The bounds of the disturbances correspond to a ±10% 

experimentally defined variation range. 3 The maximum bound is increased to meet the specifications of the connected system later on. 

255 

Table B.5 Tuning parameters for all mp-MPC problems tested 

Tuning Parameter Values 

 mp-MPC1 mp-MPC2 mp-MPC3 mp-MPC4 mp-MPC5 mp-MPC6 mp-MPC7 

QR [100 10000 100] [100 1000 100] [100 10000 100] [100 10000 100] [100 1000 100] [100 10000 100] [100 1000 100] 

Q 1I 1I 1I 1I - - - 

R 1 

P 
Riccati 

equation 
Riccati equation Riccati equation Riccati equation - - - 

Umax 121 501 50 12 50 50 12 

Umin 0.21 

Ymax 100 

Ymin 0 

Dmax [0 0 0] 

Dmin [0.0748  0.4059  0.0462]2 [10 10 10]3 [10 10 10]3 [10 10 10]3 [10 10 10]3 [10 10 10]3 [10 10 10]3 

Xmax [-10000  -10000  -10000] 

Xmin [10000  10000  10000] 
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B.3  Comparison of mp-MPC Performance to PID Control 

PID is one of the most common control algorithms used in industry primarily due to its 

simplicity, good control performance and robustness to uncertainties in a wide range of 

operating conditions (Sung et al., 2009). PID control is based on the calculation of an error 

value as the difference between a measured process variable and a desired setpoint. The 

controller computes the desired actuator output by calculating proportional, integral, and 

derivative responses to minimise the original error (Equation B.16). 

! ! = !!! ! + !! ! !  d! + K!
d!(!)
d!

!

!!
 Equation B.16 Output of the PID controller. 

where !(!) is the output of the controller, therefore the control action at time !, !(!) is the 

error between the measured data and the set value (! = !!" − !), !! is the proportional gain, 

K! is the integral gain, and !!   is the derivative gain. Furthermore, ! is the instantaneous time 

(the present), and ! is variable of integration and takes on values from time 0 to the present !. 
The values of !!, !! and !!  correspond to the weights and determine the performance of the 

controller. 

Here we develop a P-only controller for the SIMO system presented above (Section 4.4), with 

three different gains for each control variable. Tracking the integral of the outlet 

concentrations ensures that no oscillation will be observed in the control variables, therefore 

there is no need for the integral (I) and derivative (D) parts of the PID controller. The 

performance of a PI controller for this case has exactly the same performance as the P-only 

controller, and no reduction of the offset is observed. This is because the integral of the outlet 

concentrations is tracked. Once the proportional part (faster) of the controller takes action, the 

output would either reach the set point or overpass it with an offset. This offset cannot be 

decreased by the integral part of the controller due to the integral nature of the controlled 

variables. The developed controller has a control output composed of a linear combination of 

the three different proportional parts, one for every control variable (Equation B.17). Table 

B.6 illustrates the tuning parameters used for the development of the P-controller. 

! ! =  !!!!! ! +  !!!!! ! +  !!!!! !  
Equation B.17 Control output composed of a linear 
combination of the three different proportional 
parts 
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Table B.6 Design parameters of the P-controller. 

Design Parameter (Gain) Value 

!! (weak impurities) 503.80 

!! (product) 727.56 

!! (strong impurities) 707.62 

 

The controller is tested in ‘closed-loop’ using the process model described above and its 

performance is evaluated. The choice of setpoints is made in the same fashion as described 

for the mp-MPC controller. It is observed that the response of the system operating under the 

P-controller is characterized by a significant delay especially when the system operates close 

to the allowed limits. This kind of dead time cannot be decreased by a dead time compensator 

(e.g. Smith predictor). The P-controller cannot project the setpoint change and therefore 

cannot take proactive actions.  

The P-controller is further tested against different flow rate values (Figure B.18). It is 

observed that the setpoint shift leads to the elimination of the delay for all flow rate cases 

except for the 0.2mL/min (Figure B.18c.2). On the contrary, in the case of mp-MPC no delay 

is observed (Section 4.4). That could be due to the fact that in the 0.2 mL/min case the delay 

is significantly higher and affects not only the output elution, but also the speed of the input 

and the disturbances within the column. Therefore, due to the fact that the P-only controller 

does not compensate for disturbances (feed composition) its performance is limited when the 

process operates close to the bounds. Moreover, for the P-only controller an offset is observed 

for most of the setpoints, whereas the mp-MPC controller is able to reach the setpoints with 

no offset due to its predictive nature, as well as the disturbance compensation. Similarly to the 

mp-MPC, the P-controller indicates a cyclic profile for the input for all presented cases 

(Figure B.18).  
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Figure B.18  Results of P-only controller for three flow rate values (Q= 1, 0.66 and 0.2 mL/min).. The 
column on the left represents the input profile (modifier concentration) indicated by the control that leads 
to the output profile (integrals of the components concentrations, right column) [using the setpoint shift 
strategy]. 
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B.4  Investigating the Periodicity in the Control Laws for the 

Single-Column Case 

To elucidate the periodicity in the selection of critical regions, Table B.7 and Table B.8 

illustrate the input expressions for the first group of control actions as functions of the 

problem parameters. Once the cycle has finished, the controller returns to first action and 

repeats the sequence. The tables include the expressions of the critical regions used by the 

designed controller. However, it can be observed that the controller does not operate within 

regions 3, 7 and 8 (omitted from Table B.7 & Table B.8) and that is probably due to the 

particular conditions chosen in the ‘closed-loop’ simulation. The general mathematical 

expression for the input action in this case is given by the following equation: 

! ! = !! ∙ !! + !! ∙ !! + !! ∙ !! + !! ∙ !! + !! ∙ !!!""# !!! + !! ∙ !!!""# !!! + !! ∙

!!
!""#

!!! + !! ∙ !!!""# !!! + !! ∙ !!!""# !!! + !!" ∙ !!
!""#

!!! + !!! ∙ !!!""# !!! + !!" ∙

!!!""# !!! + !!" ∙ !!
!""#

!!! + !!" ∙ !!!""# !!! + !!" ∙ !!!""# !!! + !!" ∙ !!
!""#

!!! + !!" ∙

!!!"#$ + !!" ∙ !!!"#$ + !!" ∙ !!!"#$ + !!" ∙ !!!" + !!" ∙ !!!" + !!! ∙ !!!" + !!"  

Equation B.18 General mathematical expression of the control laws for the single-column case. 

where !!, !!,   !!, !! correspond to the states of the state space representation, !!!""# !!! ,

!!!""# !!! , !!
!""#

!!!  represent the disturbances over output horizon i, !!!"#$ , !!!"#$ ,

!!!"#$  are the outputs and their respective setpoints: !!!" , !!!" , !!!"  and 

!!,…  ,  !!"  are the corresponding coefficients as resulted from the solution of the multi-

parametric programming problem. 

The actions demonstrated here are the same for all flow rate values. The sole difference is that 

the profile is shifted in time depending on how aggressive the control response should be. 
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Table B.7 Coefficients c1, …, c11 for the problem parameters in Equation B.18. 

Critical Region c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 

9 8.88E-16 4.26E-14 2.84E-14 1.42E-14 -1.11E-16 0 0 3.33E-16 1.78E-15 0 1.11E-16 

1 3.210249 47.72769 42.01113 51.42858 0.844549 4.582932 0.521634 0.253192 1.373942 0.156383 -0.0284 

5 5.535566 81.65332 71.76297 87.91981 0.913323 4.956133 0.564112 0.609107 3.305311 0.376214 0.304667 

9 8.88E-16 4.26E-14 2.84E-14 1.42E-14 -1.11E-16 0 0 3.33E-16 1.78E-15 0 1.11E-16 

5 5.535566 81.65332 71.76297 87.91981 0.913323 4.956133 0.564112 0.609107 3.305311 0.376214 0.304667 

1 3.210249 47.72769 42.01113 51.42858 0.844549 4.582932 0.521634 0.253192 1.373942 0.156383 -0.0284 

2 4.44E-16 7.11E-15 7.11E-15 7.11E-15 0 8.88E-16 0 5.55E-17 0 0 -3.47E-18 

4 4.44E-16 7.11E-15 7.11E-15 7.11E-15 0 8.88E-16 0 5.55E-17 0 0 -3.47E-18 

6 8.88E-16 4.26E-14 2.84E-14 1.42E-14 -1.11E-16 0 0 3.33E-16 1.78E-15 0 1.11E-16 

2 4.44E-16 7.11E-15 7.11E-15 7.11E-15 0 8.88E-16 0 5.55E-17 0 0 -3.47E-18 

1 3.210249 47.72769 42.01113 51.42858 0.844549 4.582932 0.521634 0.253192 1.373942 0.156383 -0.0284 

9 8.88E-16 4.26E-14 2.84E-14 1.42E-14 -1.11E-16 0 0 3.33E-16 1.78E-15 0 1.11E-16 
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Table B.8 Coefficients c12, …, c23 for the problem parameters in Equation B.18. 

Critical Region c12 c13 c14 c15 c16 c17 c18 c19 c20 c21 c22 c23 

9 4.44E-16 5.55E-17 5.29E-23 4.24E-22 7.94E-23 0 0 1.39E-17 0 0 -1.39E-17 0.2 

1 -0.15412 -0.01754 -1.15E-07 -6.26E-07 -7.13E-08 -0.0421 -42.1067 -0.06076 0.042099 42.10666 0.060761 0 

5 1.653269 0.188177 1.03E-07 5.60E-07 6.38E-08 -0.04556 -45.6548 -0.06589 0.045565 45.65484 0.065888 -0.18497 

9 4.44E-16 5.55E-17 5.29E-23 4.24E-22 7.94E-23 0 0 1.39E-17 0 0 -1.39E-17 0.2 

5 1.653269 0.188177 1.03E-07 5.60E-07 6.38E-08 -0.04556 -45.6548 -0.06589 0.045565 45.65484 0.065888 -0.18497 

1 -0.15412 -0.01754 -1.15E-07 -6.26E-07 -7.13E-08 -0.0421 -42.1067 -0.06076 0.042099 42.10666 0.060761 0 

2 -2.78E-17 0 -2.65E-23 -1.06E-22 -1.32E-23 -6.94E-18 -7.11E-15 0 6.94E-18 7.11E-15 0 12 

4 -2.78E-17 0 -2.65E-23 -1.06E-22 -1.32E-23 -6.94E-18 -7.11E-15 0 6.94E-18 7.11E-15 0 0.2 

6 4.44E-16 5.55E-17 5.29E-23 4.24E-22 7.94E-23 0 0 1.39E-17 0 0 -1.39E-17 12 

2 -2.78E-17 0 -2.65E-23 -1.06E-22 -1.32E-23 -6.94E-18 -7.11E-15 0 6.94E-18 7.11E-15 0 12 

1 -0.15412 -0.01754 -1.15E-07 -6.26E-07 -7.13E-08 -0.0421 -42.1067 -0.06076 0.042099 42.10666 0.060761 0 

9 4.44E-16 5.55E-17 5.29E-23 4.24E-22 7.94E-23 0 0 1.39E-17 0 0 -1.39E-17 0.2 
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* The mathematical model presented in this chapter has been developed and validated by Dr. A. 
Quiroga (A. Quiroga 2017. “Mathematical modelling and experimental validation for optimisation and 
control of mammalian cell culture systems”, Imperial College London). The model is also presented in 
the Appendix of Papathanasiou et. al (2017). “Advanced multi-parametric Model Predictive Control 
(mp- MPC) strategies towards integrated continuous biomanufacturing”. Submitted (in Review) to 
Biotechnology Progress for the Special Issue based on the Berkeley conference on Integrated 
Continuous Biomanufacturing 
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C.1  Model Development & Experimental Validation for the GS-

NS0 Cell Culture System 

The system presented in Section 4.1.1, is described by an Ordinary and Differential Equation 

(ODE) model that features the main metabolic interactions and pathways. Following the 

framework presented by Kiparissides et al. (2011a) the first step is the construction of the 

equation set, followed by Global Sensitivity Analysis (GSA), Parameter Estimation (PE) and 

experimental validation. Here we present how these steps are applied for the development of 

a dynamic model, describing a GS-NS0 cell culture system. The modeling and experimental 

results presented in this section have been performed by Dr. Ana Quiroga Campano (Imperial 

College London). 

C.1.1 Materials & Methods 

The model is validated against a series of experimental data, the methodology for which is 

described below. 

(i) Cell line and culture conditions: GS-NS0 mouse myeloma cells were cultured in 

triplicate 1L Erlenmeyer flasks (Corning) with 200mL working volume, agitated at 

130rpm, incubated at 37oC and 5% CO2. The media contained Advanced-DMEM X1 

(Invitrogen Ltd.), MEM Non-essential amino acids (Sigma–Aldrich) X2, MEM-

Essential amino acids (Sigma –Aldrich) X2, GS-Supplement (Sigma-Aldrich) X1, 

MEM-Vitamins (Gibco) X1, Penicillin/Streptomycin (Gibco) X1, 5 mg/L MSX 

(Sigma-Aldrich) and 10% Dialyzed Fetal bovine serum (Gibco). The monoclonal 

antibody produced by the cell is a chimeric IgG4 antibody, cB72.3, which recognizes 

the Tag-72 tumor marker in colorectal cancer. 

(ii) Feeding medium composition: A concentrated medium comprising GS-Supplement 

(SAFC Biosciences, Sigma-Aldrich, UK) X40 and 0.4M glucose was considered as 

fed-batch concentrated medium for the development of the optimization and control 

strategies. 

(iii) Detection of viable and dead cells: The number of cells in different states was 

determined by flow cytometry using Guava ViaCount® assay (Merck Millipore). 

Every 24 hours 50µL of the culture were extracted and subsequently incubated with 

450µL of ViaCount®, for 5 min at room temperature. The data was acquired using a 

bench top flow cytometer, Guava EasyCyte™ (Merck Millipore) and processed using 

GuavaSoft software (V 2.6). 
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(iv) Glucose and toxic metabolites analysis: Extracellular glucose and lactate 

concentrations were measured using Nova BioProfile 400 Analyser. 700µL samples 

were collected from each flask on 24h intervals and centrifuged at 800rpm for 5 

minutes to remove cells and analyze the supernatant.  

(v) Amino Acids Analysis: High-pressure liquid chromatography (HPLC) assay was 

used to determine the concentration of amino acids in samples collected every 24 

hours. The samples were centrifuged for 5 minutes at 800 rpm; the supernatant was 

filtrated through a 10kDa cut-off ultrafiltration membrane at 22,000 rpm, 4oC for 1 

hour and stored at -20oC prior to analysis. Amino acid analysis was performed with 

Agilent 1260 Infinity Quaternary LC, equipped with RRLC in-line filter, 4.6mm, 

0.2um; and ZORBAX Eclipse Plus C18 LC, 4.6 mm, 100 mm, 1.8 µm column 

(Agilent Technologies).  

(vi) Monoclonal antibody production: The product was measured using HPLC techniques. 

The samples were centrifuged for 5 minutes at 800rpm, the supernatants were 

filtrated through 0.2µm filter and stored at -20oC prior to analysis. The mAb assay 

was performed with Agilent 1260 Infinity Quaternary LC, equipped with RRLC in-

line filter, 4.6mm, 0.2um; and Bio-Monolith Protein A, 4.95 mm x 5.2 mm column 

(Agilent Technologies Ltd). 

C.1.2 Model Development and Validation 

The proposed model describes a simplified metabolic network of GS-NS0 cells, based on four 

key nutrients and glucose. The model equations as well as the interactions considered in this 

work are described below. 

Cell growth depends on the availability of a wide variety of nutrients, in particular 

carbohydrates and amino acids. Glucose is the most predominant carbohydrate consumed by 

mammalian cells and it follows different metabolic pathways: (1) the pentose phosphate 

pathway (PPP) to produce DNA precursors, (2) the anaerobic pathway or glycolysis to 

produce energy and (3) the aerobic pathway where glucose is completely oxidized through 

the tricarboxylic acid (TCA) cycle that also incorporates amino acids to produce energy. 

Amino acids are considered as the building blocks for the production monoclonal antibodies 

and proteins that correspond to 70% of the cell composition. In the case of GS-NS0 cells, 

glutamate is considered as the main source of glutamine used for biosynthesis of cellular 

structures and product. However, it has been reported that glutamate is not only used as a 

biosynthesis precursor but also as one of the main energy sources in mammalian cells, 

contributing more than 50% of the produced ATP (Reitzer et al., 1979, Fitzpatrick et al., 
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1993, Altamirano et al., 2001). Cells require glutamate also for glutamine production, 

proliferation, mAb assembly and energy production. The depletion of glutamate and aspartate 

are followed by decreased growth rate and two metabolic shifts where arginine and 

asparagine uptakes are increased. Metabolic shifts have been extensively reported in NS0 and 

CHO cultures but their mechanism still remains an open challenge (Ma et al., 2009, Luo et 

al., 2012, Mulukutla et al., 2012, Toussaint et al., 2016). 

Table C.1 Model equations for the GS-NS0 cell culture system. 
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The suggested model assumes that arginine and asparagine are used to supply glutamate and 

aspartate, respectively, as well as for cell proliferation and survival. Cell growth rate depends 

on the availability of nutrients in the culture. Namely, the depletion of glutamate and/or 

aspartate leads to decrease in the growth rate, while cell growth is diminished with the 

exhaustion of either glutamate/arginine or aspartate/asparagine (Table C.1, E14 & E19). In 

addition, cell starvation (exhaustion of nutrients) produces cellular stress and activates 

apoptosis pathways and subsequently cell death. The independent effect of each nutrient has 

been depicted as an additive effect (Table C.1). 

The specific glucose consumption for biomass production (Qx,glc) is described by biomass 

yield from glucose (Yx,glc ), that is modeled as a function of the growth rate (µ) and considers 

the consumption of glucose for biosynthesis of multiple structural components of the cell, 

including non-essential amino acids, lipids, nucleotides and DNA. Furthermore, Qglyc,glc 

corresponds to the specific consumption of glucose per cell for the production of energy 

through glycolysis, while QMET depicts the effect of glutamate concentration in glucose 

uptake for the production of energy trough glycolysis (Kiparissides et al., 2015). The specific 

consumption of glucose per cell to produce energy through the TCA cycle is described by 

Qtca,glc. Moreover the specific consumption of amino acids is linked to both biomass (Qx,glu) 

and energy (Qtca,glu) production. The balance for the mAb is described by a non-growth 

associated/maintenance term that (!!"#,!") that describes the constant production of mAb by 

viable cells. 

The model consists of 22 differential and algebraic equations, 24 variables and 27 parameters. 

The model is simulated in gPROMS ModelBuilder ® v.4.2.0. Following the framework 

presented by Kiparissides et al. (2011a), the model is subjected to sensitivity analysis for the 

identification of the significant parameter set.  

C.1.3 Global Sensitivity Analysis (GSA)  

Following the formulation of the mathematical equations presented above, the model is 

subjected to Global Sensitivity Analysis (GSA). GSA (Appendix A) is the mathematical 

procedure according to which the model parameters are simultaneously excited, within the 

range of interest, and their effect on the model outputs is monitored. The procedure allows the 

identification of the factors that contribute most to output variability (Kontoravdi et al., 

2005a, Kiparissides et al., 2009, Kiparissides et al., 2011a). Such procedures enable the 

examination of the global parameter space, cope well with non-linearities, providing a 

complete set of results that demonstrates both the sensitivity of the model to the uncertainty 
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of the parameter values, as well as the effect of one model parameter to the other (Li et al., 

2002, Kiparissides et al., 2011a). 

Here we apply RS-HDMR for the analysis of 27 parameters. The parameters are allowed to 

vary ± 50% from their base case value and data is collected every 24 hours (i.e. at 24, 48, 72, 

96, 120 and 144 h). This strategy is decided in order to be in line with the collection of 

experimental data and covers all three phases of the cell culture (lag, growth/exponential and 

death phase) (Kiparissides et al., 2015). In particular, the chosen intervals correspond to the 

early exponential growth phase (up to the 24th hour) the exponential growth (48th hour), 

aspartate and glutamate exhaustion (approximately at the 72nd hour) and the beginning of the 

stationary phase, the end of the stationary phase (96th hour) and the death phase (120th – 140th 

hour). The sampling intervals are chosen based on the process dynamics as well as the 

mathematical complexity of the studied model. Here intervals of 1-hour frequency are chosen, 

allowing the solver to converge in a smoother manner. The data used for the sensitivity 

assessment, however, is collected at the time points mentioned above (every 24 hours), in 

order to be in accordance with the experimental sampling.  

The 27 parameters (Table C.2) are studied all together and assessed choosing a 10% 

significance threshold for the sensitivity index for viable cells and volumetric mAb 

concentration. The latter are chosen as two of the most representative indicators of culture 

efficiency (Bibila and Robinson, 1995). Indices higher than 10% indicate that the respective 

parameters can be considered as “significant”, while any index <10% renders the parameter 

“non-significant”. The 10% threshold corresponds to the minimum experimental error 

(Kontoravdi et al., 2005a, Kiparissides et al., 2009, Kiparissides et al., 2011b). The GSA 

results indicate 6 significant parameters related either to viable cells and/or monoclonal 

antibody concentration (Figure C.1).  
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Figure C.1 Sensitivity indices for all 27 parameters at all simulation times for: (a) viable cells and (b) mAb 
concentration. The parameter indices (1-27) correspond to the numbering used in Table C.2. 

Figures C.2 & C.3 illustrate the individual sensitivity indices for all 27 parameters for the two 

examined differential variables. In particular, it is observed (Figures C.2a & C.3a) that at the 

early culture stages (24 h – 72 h) and until the culture enters death phase (approximately after 

the 96th hour) the maximum theoretical growth rate (!!"#) is the most significant parameter 

for both monitored variables (Figure C.1). This is in accordance with the underlying biology 

as especially during the exponential phase, the cells experience maximum growth. 

Conversely, after the 96th hour and until the end of the culture, the maximum theoretical death 

rate (!!,!"#) becomes significant (Figures C.2c & C.3b). Interestingly, the significance of 

these two parameters increases in an inverse fashion. More specifically, as the significance of 

!!"# decreases over time, !!,!"# becomes more significant. This finding agrees with the 

principles of such culture systems, where the cells experience growth until approximately the 

90th hour of the culture, while cell viability declines past this time point (Kontoravdi et al., 

2005a, Kiparissides et al., 2009). 

Another parameter significant for both examined entities is the requirement of glutamate for 

the production of energy for maintenance purposes (!!"#,!"#) (Figure C.2d & C.3c) that is 

participating in Eq. 15 (Table C.1) for the calculation of the specific consumption of 

glutamate. More specifically, in the case of viable cells (Figure C.2d), the parameter starts 

becoming significant at the 72nd hour that corresponds to the beginning of the stationary phase 

and the exhaustion of glutamate, while the index reaches its highest value (20%) at the end of 

the stationary phase (96 h). For the case of the volumetric monoclonal antibody concentration 
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(Figure C.3), the significance of !!"#,!"# varies from 10% - 20% throughout the culture 

period. The latter is expected, as glutamate is one of the key amino acids considered in this 

model (Table C.1) and is essential for basic cell functions, involving the maintenance of the 

homeostasis in the cell and mAb assembling, and consequently mAb production.  

The saturation Monod constant for growth on aspartate (!!"#) (Figure C.2b) is the fourth and 

last significant parameter in the case of viable cell concentration (Eq. 4, Table C.1). In 

particular, the parameter becomes significant on the 96th and 120th hour of culture that 

corresponds to the beginning of death stage of the culture and aspartate depletion. Although, 

aspartate is a non-essential amino acid, and can be derived from asparagine, it affects the cell 

metabolism and its depletion reduces the growth rate. 

 

Figure C.2 Results of sensitivity analysis for viable cells for: (a) !!"# , (b) !!"# , (c) !!,!"# and (d) !!"#,!"#. 
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Figure C.3 Results of sensitivity analysis for mAb concentration for: (a) !!"# , (b) !!,!"# , (c) !!"#,!"# , (d) 
!!"# and (e) !!"#,! 

For the case of the volumetric monoclonal antibody concentration the sensitivity analysis 

resulted into two more significant parameters, namely !!"# and !!!",! (Figure C.3d & e). 

The former participates in Eq.13 (Table C.1)  and corresponds to the consumption of arginine 

to produce energy. The parameter becomes significant towards the end of the culture period 

(120 h – 144 h) (Figure C.3d) that translates into the culture death stage, where almost all 

amino acids are depleted. At this point, glutamate has been depleted (72 h) and the cells use 

arginine as the source to produce glutamate, essential for mAb assembly. Consequently, the 

depletion of arginine as well (120 h) renders parameters related to its consumption significant 

at this time point. Lastly, the production of mAb per viable cells per hour (!!"#,!) is 
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significant throughout the culture period (Figure C.3e) as cells produce the antibody as part of 

their normal metabolic functions throughout the culture time.  

C.1.4 Parameter Estimation (PE) 

The 6 significant parameters discussed in section C.1.3 are estimated using the Minimum 

Likelihood Estimation method available in gPROMS ModelBuilder® v.4.2.0, considering a 

constant relative variance of 25% that captures the variation amongst for 4 independent 

experimental replicates. Table C.2 illustrates the initial and final values of the six significant 

parameters, as well as the 95% confidence intervals. For most of the parameters the t-values 

showed 95% accuracy apart from !!"#  and !!"#  that presented t-values (0.17 and 1.2 

respectively) lower than the reference (1.69), indicating that more experimental data is 

required for their estimation. However, the Lack of Fit test showed that the weighted residual 

(40.5191) is smaller than the Chi-squared value (48.6024) indicating that the model can 

adequately represent the physical system.  

Table C.2 Initial and final values of re-estimated parameters. 

Parameter Initial Guess Final Value 
95% Confidence 

Interval 
Units 

!!"# 0.021 0.0229552 1.201 h-1 

!!"# 0.5 0.465278 0.1764 mM 

!!,!"# 0.0033 0.0033736 3.694 h-1 

!!"#,!"# 2.8E-11 2.54E-11 2.386 mmol/Cell/h 

!!"# 0.4 0.33818 3.156 - 

!!"#,! 7.05E-10 6.59E-10 3.295 mg/Cell/g 
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Figure C.4 Parameter estimation results for: (a) viable cells and (b) mAb concentration. The graphs 
demonstrate the model simulation output (continuous black line), the average experimental value of the 
variable with the respective standard deviation (square points) and the 95% confidence interval (lower and 
upper with grey lines).  

Figure C.4 & C.5 correspond to the experimental data (square points) used for the parameter 

estimation in comparison to the process model simulation results (continuous black line) 

using the same initial conditions, after parameter estimation. The grey lines shown on the 

graphs depict the 95% confidence intervals for: viable cells (Figure C.4a), monoclonal 

antibody concentration (Figure C.4b), the 5 nutrients (Figure C.5a-e) considered here and 

lactate (Figure C.5f). For most of the monitored variables, the experimental data points with 

the corresponding standard deviation and/or the model simulation lie within the 95% 

confidence interval, indicating that the designed model can be considered reliable. An 

exception to this is the profile of glucose (Figure C.5a), where the model fails to capture the 

trend indicated by the experimental data. In this case, it would be advised to consider glucose 

in the sensitivity analysis and re-perform the estimation of the parameters. However, the 

focus of this work is the development of a control scheme to maximize the monoclonal 

antibody concentration. Therefore, the analysis is focused on the output variable of interest, 

while it is demonstrated that the model is able to adequately capture the main events taking 

place in the cell culture system. Of course one could design a more detailed model and/or re-

perform the analysis to conclude to more accurate simulation results for all presented 

variables, however there is also a trade-off between model rigor and computational demand 

that needs to be considered. Consequently, having successfully assessed the model also using 

the Lack of Fit test, it is concluded that the presented model can be used to efficiently 

describe the effect of the manipulated inputs (feed composition) on the output variable of 

interest (volumetric monoclonal antibody concentration) and therefore it can be used for 

control studies. As discussed in Chapter 6, current and future work look into the development 

of a similar control concept based on a more sophisticated process model based on energy 

metabolism (Quiroga, 2017).  
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Figure C.5 Parameter estimation results for: (a) glucose and (b) glutamate, (c) arginine, (d) aspartate, (e) 
asparagine and (d) lactate. The graphs demonstrate the model simulation output (continuous black line), 
the average experimental value (square points) of the variable with the respective standard deviation and 
the 95% confidence interval (lower and upper with grey lines).   
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Table C.3 Results of the GSA procedure and the final parameter values. (*) corresponds to the significant 
parameters that are re-estimated using experimental data 

Order 

number 
Parameter Value Units 

Order 

number 
Parameter Value Units 

1 !!"#∗  0.0229552 h-1 15 !!"#$,!"# 9.00E+07 Cell/mmol 

2 !!"# 0.09 mM 16 !!"#$,!"# 2.00E-11 mmol/Cell/h 

3 !!"# 3.5 mM 17 !!"#,!"# 3.00E+08 Cell/mmol 

4 !!"# 0.5 mM 18 !!"#,!"# 2.00E-11 mmol/Cell/h 

5 !!"#∗  0.465278 mM 19 !!"#,!"# 2.00E+07 Cell/mmol 

6 !!"# 0.001 mM 20 !!"#,!"# 2.00E-11 mmol/Cell/h 

7 !!"# 0.001 mM 21 !!,!"# 9.25E+09 Cell/mmol 

8 !!,!"#∗  0.0033736 h-1 22 !!"#,!"# 4.00E+09 Cell/mmol 

9 !!"#,!"# 3.5 mM 23 !!"#,!"#
∗  2.54E-11 mmol/Cell/h 

10 !!"#,!"#  0.5 mM 24 !!"# 0.6 - 

11 !!"#,!"# 0.5 mM 25 !!"# 0.2 - 

12 !!"#,!"# 0.5 mM 26 !!"#∗  0.33818 - 

13 !!"#,!"# 0.5 mM 27 !!"#,!
∗  6.59E-10 mg/Cell h 

14 !!,!"# 1.00E+09 Cell/mmol     
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C.1.5 Model validation 

The model validation is performed comparing the model simulation results to the 

experimental data obtained from 3 experiments with 3 independent replicates each, using 3 

different initial cell densities. Table C.4 illustrates the initial conditions used for the 

experiment and/or simulation results.  

Table C.4 Experimental conditions and initial conditions used for the simulation of the 3 scenarios. 

Variable Scenario1 Scenario2 Scenario3 Units 

Viable Cells  (E2) 2,76E+08 3,49E+08 4,43E+08 Cells/L 

Dead Cells  (E2)  8,12E+07 6,72E+07 1,76E+08 Cells/L 

Total Cells  (E2) 3,57E+08 4,17E+08 6,19E+08 Cells/L 

Glucose  (E2) 19,20 19,13 21,33 mM 

Lactate  (E2) 0,00 0,00 0,00 mM 

Glutamate  (E2) 1,04 1,03 1,04 mM 

Arginine  (E2) 1,02 1,02 1,03 mM 

Aspartate  (E2) 0,45 0,45 0,45 mM 

Asparagine  (E2) 1,03 1,03 1,04 mM 

mAb  (E2) 0,00 0,00 0,00 mg/L 

Viable & dead cell concentration  

It is observed (Figure C.6a) that the suggested model efficiently captures the culture entry to 

exponential phase (post 24th hour) after a short lag period. In addition, the peak in the viable 

cell concentration is also predicted as the results from the model simulation fall within the 

range of the reported experimental error. The population of dead cells is also accurately 

described by the process model. 

Monoclonal antibody concentration 

In the case of the mAb concentration, a quite good agreement between the model simulation 

and the experimental data is observed (Figure C.6d). However, a significant discrepancy is 

observed from 120 to 144 hours, where the model under predicts antibody concentration and 

the predicted value does not lie within the experimental error. At the end of the culture, when 

the growth is inhibited and the death process is more prominent, the unspecific release of 
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product increases, and this phenomenon is not described in the model equations. It has been 

documented that apoptosis triggers the Golgi apparatus fragmentation (Mukherjee et al., 

2007) and there is a passive release of the product in the culture medium (Al-Rubeai and 

Emery, 1990), to capture this phenomenon, a term should be included a term that accounts for 

mAb release during dead phase. 

 

Figure C.6 Model validation: comparison of 3 different simulation results (grey, black and grey dotted lines 
) against 3 different experimental data sets (points) for: populations of (a) viable, (b) dead and (c) total cells 
and (d) the concentrations of mAb.	
Glucose uptake and lactate production  

Although the initial decrease in the glucose concentration (Figure C.7a) is efficiently 

captured, the model does not manage to describe the experimentally defined plateau reached 

after the 96th hour. Nevertheless, as mentioned earlier, for the purposes of this work, this 

model is designed as the basis for development of a control concept for the maximization of 

the volumetric antibody concentration. Therefore, the description of the effect of the model 

inputs to the outputs is of outmost importance. Consequently, this discrepancy in the glucose 

profile can be accepted, as long as the behavior of the output variable of interest is efficiently 

described. On the other hand, lactate production is adequately described (Figure C.7f). 
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Glutamate, arginine, asparagine and aspartate uptake 

The model captures efficiently the depletion of both glutamate and aspartate at the 48th hour 

of the culture (Figure C.7b & d). Similarly, the profiles of asparagine and arginine (Figure 

C.7c & e) are also characterized by good agreement between the simulation results and the 

experimental data. It should be underlined that amino acids are the building blocks for the 

production of mAb (output variable). Consequently, accurate monitoring of those components 

is of high importance, particularly in cases where they are exhausted (e.g. batch cultures).  

 

Figure C.7 Model validation: comparison of 3 different simulation results (grey, black and grey dotted lines 
) against 3 different experimental data sets (points) for: (a) glucose, (b) glutamate, (c) arginine, (d) 
aspartate, (e) asparagine and (f) lactate. 
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C.2  Testing the Controller under Disturbance (no sampling) 

The 2-hour interval controller designed in section 6.4 is validated in-silico, in ‘closed-loop’ 

fashion against the process model, considering a periodic disturbance, where a total of 0.5 mL 

of the culture volume is removed (Figure C.9) in pulses of 1 min. For this case study no 

sampling is considered. The validation is facilitated using the gO:MATLAB interface that 

allows seamless data exchange between MATLAB® (control actions) and gPROMS® 

ModelBuilder (process model). We use the concentration of antibody as resulted from the 

optimization studies (Section 6.3) as setpoint and we simulate model for 168 hours (7 days). 

The behaviour of the controller is compared to the profiles of the batch system, where the 

same disturbance profile is applied.  

 

Figure C.8 Sampling considered as disturbance for the controller validation. 

It is observed that the designed controller inherently suggests fed-batch feeding (Figure C.9a), 

while the first pulse is introduced 8 hours after the beginning of the culture and the feeding is 

intensified only after the 20th hour. Similarly to the results presented earlier, the controller 

intensifies the feeding after the 20th hour of culture and terminates it on the 76th hour, contrary 

to the results presented in Chapter 6 where the controller continued the feeding until the 168th 

hour. This difference observed in the controller behaviour could be attributed to the sampling 

that significantly reduces the culture volume in the case presented above (Section 6.4). 

Moreover, also in this case the suggested input is introduced based on the culture needs. More 

specifically, in the beginning of the culture, where nutrient concentrations are high, the pulses 

are scarcer and they are intensified later on, when nutrients start to be depleted (Figure C.11). 

Despite the disturbance introduced to the system and the absence of sampling that would 

compensate for the increase in the culture volume, the controller manages to maintain the 
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latter within the permitted range (± 10% from the starting value) (Figure C.9b). Furthermore, 

the feeding strategy suggested by the controller (Figure C.9a) in this case results in improved 

culture productivity and higher cell population (Figure C.10) compared to the batch system. 

 

Figure C.9 (a) Control input (inlet feed flow rate) as designed by the presented controller, (b) Evolution of 
culture volume under the suggested feeding strategy. 

 

 

Figure C.10 Comparison between the fed-batch (continuous black line) and the batch (dotted grey line) 
system for: (a) the mAb concentration and (b) the population of viable cells over 168 hours of culture. 
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Figure C.11 Comparison between the fed-batch (continuous black line) and the batch (dotted grey line) 
system for the concentrations of: (a) glucose, (b) glutamate, (c) aspartate, (d) asparagine, (e) arginine and (f) 
lactate over 168 hours of culture. 
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D.1  Model Integration 

As mentioned in Chapter 7, the vision of this work is the development of a computational 

platform that will allow the investigation, as well as the optimization of the integrated, 

continuous bioprocess (Figure D.1). However, for this to be realized, all process parts need to 

be modeled under the same platform. The latter will allow seamless communication of the 

process models and therefore facilitate not only their integration, but also further optimization 

and control studies. On-going and future work is focusing on the in silico integration of the 3 

main process units: (i) the bioreactor system as presented in Chapter 6, (ii) a capture step and 

(iii) the twin-column MCSGP process as discussed in Appendix B. The project on process 

integration and control is being performed in collaboration with the Morbidelli Group (ETH 

Zürich), Dr. Ana Quiroga Campano (Imperial College London) and Ms Montaña Elviro Perez 

(University of Salamanca). Here we demonstrate preliminary results on: 

(i) The upstream system, where terms for the formation of aggregates and fragments 

are included in the process model and  

(ii) The capture step, where we model the process described by Steinebach et al. 

(2016a) in gPROMS® ModelBuilder v.4.2.0. 

 

 

Figure D.1 Conceptual design of the integrated bioprocess. 
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D.1.6 Upstream Model: Modeling the formation of aggregates and fragments 

The model described in Appendix C does not consider the formation of aggregates and 

fragments during the culture. However, the latter are essential for the in silico integration of 

the bioprocess as they represent the impurities present in the mixture that is fed in the 

downstream purification processes. Here we assume that the formation of aggregates and 

fragments is taking place following second and first order kinetics respectively (Equation D.1 

and Equation D.2) (Vázquez-Rey and Lang, 2011, Vlasak and Ionescu, 2011, Arosio et al., 

2012). Therefore, the equation set presented in Appendix C is modified to include the 

following two equations: 

![! !"" ]
!" = !!""! !"# ! 

Equation D.1 Aggregates formation following 
second order kinetics. 

![! !"# ]
!" = !!"#! !"#  

Equation D.2 Fragments formation following first 
order kinetics. 

As a result, the equation describing the antibody is modified accordingly to account for the 

formation of the impurities (Equation D.3). 

![! !"# ]
!" = !!!!!"#,! − !!""! !"# !

− !!"#! !"#  
Equation D.3 Monoclonal antibody concentration. 

 

For the preliminary simulations, the values of the kinetic constants for the formation of 

aggregates and fragments are extrapolated based on the results presented by Müller-Späth et 

al. (2010a) (Table D.1). The model is simulated in open loop using the initial conditions and 

parameter values as presented in Appendix C and the results for the three examined entities 

are presented in Figure D.2. For the simulation we assume that no aggregates and/or 

fragments are present in the culture at time zero. 

Table D.1 Initial parameter values used for the kinetic constants of aggregates and fragments based on the 
results presented by   

Parameter Value Units 

!!"" 1.339 ∙ 10!! Lmg-1h-1 

!!"# 1.029 ∙ 10!! h-1 
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Figure D.2 Profiles of the: (a) monoclonal antibody concentration, (b) aggregates and (c) fragments under 
open loop model simulation.  

It can be observed that the dynamics of the newly introduced model entities are in line with 

data presented in the open literature However, for completion, following the framework 

presented by (Kiparissides et al., 2011a) the next step is the execution of tailor-made 

experiments for the exact determination of the aforementioned kinetic parameters and the 

validation of the new model. 

D.1.7 Capture step: simulation of the process model 

For the capture step we use the model described by Steinebach et al. (2016a). The setup 

considers the continuous operation of two chromatographic columns based on Protein A 

chromatography. Figure D.3 illustrates the steps followed during the operation of the capture 

process presented by Steinebach et al. (2016a). In particular, the two columns start 

interconnected and feed is introduced to the column in the left position aiming to exceed its 

dynamic binding capacity. This is followed by a second interconnected step, where the 

column on the left is washed and any unbound protein is transferred to the column on the 

right position, mixed with additional feed (cell culture harvest). During the last step, the 

column in the left position is regenerated, while the second one is loaded in batch mode.  

The process model describing the above process is based on a lumped mass-transfer model 

coupled with a heterogeneous binding model. It considers PDAEs and is simulated in 

gPROMS® ModelBuilder v.4.2.0, using a first order backward finite discretization method 

with 50 collocation points. The results have been favorably compared to experimental results 
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provided by Steinebach et al. (2016a) and the Morbidelli Group (ETH Zürich). Figure D.4 

illustrates a set of indicative results from the open loop simulation of the process model for 

one process cycle. The results demonstrate the profiles for the inlet product concentration, the 

operating flow rate and the product concentration at the pore phase for both columns (Figure 

D.3). It can be observed that the column profiles are identical with half a cycle difference. 

Feed
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Feed

Feed

Regenerate

1

1

1

2

2

2
Product

 

Figure D.3 Step sequence of the continuous capture step presented by Steinebach et al. (2016a). 

 

Figure D.4 Results from the open loop simulation of the capture model (Steinebach et al., 2016a) 
(gPROMS® ModelBuilder v.4.2.0) for one process cycle for: (a) the product concentration at the column 
inlet, (b) the operating flow rate and (c) the concentration of the pore phase, at the column inlet. 
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D.2  Conclusions 

In this section we focused on the modeling work required for the seamless integration of the 

bioprocess (Figure D.1). In particular, the mathematical model describing the upstream 

system (cell culture) is updated to account for the formation of aggregate and fragments 

during the culturing of the cells. For the initial guesses of the kinetic parameters, experimental 

data from similar works in the open literature are employed (Müller-Späth et al., 2010a). As 

illustrated by the open loop simulation results, the model can successfully capture the 

dynamics of the proposed kinetics and therefore the current model structure can be used for 

further studies. In addition, aiming to design a interoperable environment for in silico 

experimentation of the continuous bioprocess, the capture step as suggested by Steinebach et 

al. (2016) is modeled in gPROMS® ModelBuilder. The presented model has been previously 

validated using experimental data (Steinebach et al., 2016a). 

The results presented here provide the missing link for the integration of the three process 

models considered in the bioprocess. Currently, all the models are simulated under the same 

unit system and software platform, facilitating therefore further tests and analysis of the 

bioprocess performance. The connection of the three models can be easily realized using: (i) 

the upstream model output (antibody concentration) as feed for the capture model and (ii) the 

concentration of aggregates & fragments resulting from the upstream as well as the 

concentrated mAb from the capture step as input for the MCSGP process model. 

On-going and future research is looking into the optimization of the bioprocess as well as 

investigation of the economic impact of the upstream performance on the downstream. 

Moreover, as shown in Figure D.1 the development of a global control strategy is 

investigated. The latter can be seamlessly facilitated as the controllers for the upstream 

system and the purification process have been previously developed (Chapter 6 & 5 

respectively), while the design of a control strategy for the capture step will follow the 

procedure of the model-based control of single-/multi-column systems as presented in 

Chapter 4 & 5. 


