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Brain dynamics are thought to unfold on a network determined by the pattern of axonal

connections linking pairs of neuronal elements; the so-called connectome. Prior work has indi-

cated that structural brain connectivity constrains pairwise correlations of brain dynamics

(“functional connectivity”), but it is not known whether inter-regional axonal connectivity is

related to the intrinsic dynamics of individual brain areas. Here we investigate this relationship

using a weighted, directed mesoscale mouse connectome from the Allen Mouse Brain

Connectivity Atlas and resting state functional MRI (rs-fMRI) time-series data measured in 184

brain regions in eighteen anesthetized mice. For each brain region, we measured degree,

betweenness, and clustering coefficient from weighted and unweighted, and directed and undi-

rected versions of the connectome. We then characterized the univariate rs-fMRI dynamics in

each brain region by computing 6930 time-series properties using the time-series analysis tool-

box, hctsa. After correcting for regional volume variations, strong and robust correlations

between structural connectivity properties and rs-fMRI dynamics were found only when edge

weights were accounted for, and were associated with variations in the autocorrelation properties

of the rs-fMRI signal. The strongest relationships were found for weighted in-degree, which was

positively correlated to the autocorrelation of fMRI time series at time lag s¼ 34 s (partial

Spearman correlation q ¼ 0:58), as well as a range of related measures such as relative high fre-

quency power (f> 0.4 Hz: q ¼ �0:43). Our results indicate that the topology of inter-regional

axonal connections of the mouse brain is closely related to intrinsic, spontaneous dynamics such

that regions with a greater aggregate strength of incoming projections display longer timescales

of activity fluctuations. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4979281]

Nervous systems are complex networks with a topology gov-

erned by the pattern of axonal connections linking distinct

neural elements. Highly connected and topologically central

elements are thought to play an important role in meditat-

ing the flow of information across different parts of the sys-

tem. However, it is unclear how the intrinsic dynamics of a

given neuronal population relates to the pattern of connec-

tions that population shares with other network nodes. In

this work, we show that there is a strong and robust corre-

lation between the structural connectivity properties of a

brain region and its blood-oxygenation-level-dependent

(BOLD) signal dynamics, as measured with resting-state

fMRI (rs-fMRI) in the mouse. The strongest relationship is

found with the total weight of incoming connections to a

brain region, or weighted in-degree, which is associated

with longer dynamical timescales of rs-fMRI dynamics.

Our findings indicate that structural connection weights

convey important information about neural activity, and

that the aggregate strength of incoming projections to a

brain region is closely related to its BOLD signal dynamics.

I. INTRODUCTION

The principle that structure constrains function is ubiq-

uitous in biology. For example, the molecular structure of a

protein determines the species with which it can interact.

Similarly, the evolution of opposable thumbs in some pri-

mate species enabled high-precision motor control. Brains

are no exception, with neuronal dynamics unfolding on an

intricate and topologically complex network of axonal con-

nections; a network that is commonly referred to as a con-

nectome.1 In a graph representation of this network, nodes

comprise functionally homogeneous or anatomically local-

ized neurons or populations of neurons (depending on the

scale of measurement), and axonal connections between

these neural elements are represented as edges connecting

pairs of nodes.

The network representation of the brain has provided a

convenient framework for understanding the relationship

between connectome structure and brain dynamics. This

relationship has typically been examined at the level of

inter-regional structural connectivity and inter-regional

coupling of brain dynamics, or functional connectivity.

Correlations between structural and functional connectivity

have been demonstrated using a range of approaches and
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datasets, with computational modeling playing a key

role.2–8 Computational models of brain networks typically

simulate dynamical systems (which define the dynamics of

each brain region) coupled via a network topology deter-

mined by the structural connectome.4–6,9–12 Some models

can predict empirical measurements of functional connec-

tivity in humans with model predictions correlating with

empirical data in the range 0:4 < r < 0:6,13 and can be

optimized up to r¼ 0.75.14 These results are impressive

given the known limitations of diffusion MRI in recon-

structing anatomical brain connections.7,15 The success of

dynamical systems models, as well as simplified network

spreading models,16–18 in reproducing the correlation struc-

ture of inter-regional brain dynamics suggests that the

structural connectome plays a key role in constraining brain

dynamics.

While there is a growing evidence base linking the

structural topology of a brain network to the inter-regional

coupling of functional connectivity, less is known about

how connectome structure relates to the intrinsic dynamics

of an individual brain region. Understanding this relation-

ship would provide insight into how patterns of neuronal

activity within a specific brain area may support its special-

ized function. In addition to inter-regional variation in

microstructural properties and gene transcription,19,20 it has

long been thought that the functional specialization of a

given brain region is, in large part, determined by its unique

profile of axonal inputs and outputs—its so-called connec-

tional fingerprint.21 Moreover, recent work using magneto-

encephalography (MEG) has suggested that the dynamics

of individual brain regions (captured using power spectral

estimates through time) are sufficiently distinctive to be

predicted across individuals.22 Other evidence indicates

that brain dynamics are governed by a hierarchy of intrinsic

timescales across regions, from slowly varying prefrontal

areas high in the anatomical hierarchy23 (that are thought to

accumulate information over longer durations), to the rela-

tively rapid dynamics of sensory regions low in the hierar-

chy.24–29 This hierarchical organization of timescales

across the brain may facilitate the processing of (and pre-

dictions about) the diverse timescales of stimuli in the

world around us. Computational modeling has begun to

shed light on the role of connectivity in shaping this inter-

regional heterogeneity in characteristic timescales,11

including the emergence of slower dynamics in densely

connected, high-degree brain network hubs in identical,

connectome-coupled neural mass models.30 Thus, although

preliminary modeling work has suggested that the connec-

tome may play a role in shaping patterns of dynamical het-

erogeneity across the brain, empirical data have been

lacking to allow a characterization of the relationship

between structural connectivity and dynamics at the level

of individual brain regions.

Compared with measures of pairwise correlation

between time series that yield estimates of functional con-

nectivity, a key challenge of analyzing the univariate dynam-

ics of individual brain regions is the vast array of properties

that can be estimated for a given time series recording of

neuronal activity. Previous analysis of univariate fMRI

dynamics has focused on properties of the power spectrum,

such as the total power in particular frequency bands.31

However, quite apart from properties of the power spectrum,

thousands of alternative time-series analysis methods exist

that might contain useful information, such as those devel-

oped for applications in statistics, electrical engineering, eco-

nomics, statistical physics, dynamical systems, and

biomedicine.32 Here we leverage this vast interdisciplinary

library of time-series analysis methods to characterize the

fluctuations of spontaneous regional activity using resting-

state fMRI (rs-fMRI), applying a recently developed highly

comparative analysis framework that extracts over 7700

properties from univariate time series.32,33 In this way, we

computed thousands of properties of the intrinsic rs-fMRI

dynamics in each brain region using data from 18 anesthe-

tized mice. Structural network connectivity properties of

each brain region were also computed using a mesoscale

mouse connectome estimated from viral tract-tracing experi-

ments.34 Comparing these two measurements, while correct-

ing for confounding variations in region volumes, we

demonstrate robust correlations between a brain region’s

structural connectivity and dynamics, with the strongest rela-

tionship found between weighted in-degree and autocorrela-

tion properties of the signal. Our results are consistent with

the idea that the structural connectome constrains regional

rs-fMRI dynamics and underline the importance of measur-

ing weighted connectomes for probing the structure–function

relationship.

II. DATA AND METHODS

Our approach for relating structural connectivity to

regional rs-fMRI dynamics is shown schematically in Fig. 1.

It involves: (i) extracting topological measures from each

node in the network from the structural connectome; (ii)

extracting dynamical properties from the fMRI time series

measured in each brain region; and (iii) correlating each net-

work property to each dynamical feature. In this section, we

first summarize the structural connectivity and functional

MRI data used in this study, and then detail the methods

used for each of the above steps.

A. Functional MRI data

1. Mice

All experiments were performed in accordance to the

Swiss federal guidelines for the use of animals in research,

and under a license from the Z€urich Cantonal veterinary

office. Animals were caged in standard housing, with food

and water ad libitum, and 12/12 h day/night cycle.

2. Magnetic resonance imaging

Eighteen C57BL/6 J mice (age P57 6 7) were used for

this experiment. During the MRI session, the levels of anes-

thesia and mouse physiological parameters were monitored

following an established protocol to obtain a reliable mea-

surement of functional connectivity.36 Briefly, anesthesia

was induced with 4% isoflurane and the animals were endo-

tracheally intubated and the tail vein cannulated. Mice were
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positioned on a MRI-compatible cradle, and artificially

ventilated at 80 breaths per minute, 1:4 O2 to air ratio, and

1.8 ml/h flow (CWE, Ardmore, USA). A bolus injection of

medetomidine 0.05 mg/kg and pancuronium bromide

0.2 mg/kg was administered, and isoflurane was reduced to

1.5%. After 5 min, an infusion of medetomidine 0.1 mg/kg/

h and pancuronium bromide 0.4 mg/kg/h was administered,

and isoflurane was further reduced to 0.5%. The animal

temperature was monitored using a rectal thermometer

probe, and maintained at 36:560:5 �C during the measure-

ments. The preparation of the animals did not exceed

20 minutes. After the scans, mice were kept under observa-

tion in a temperature-controlled chamber with mechanical

ventilation (isoflurane-only, 1%) in order to fully recover

from the muscle relaxant agent, the effects of which may

last longer than the anesthetic. All animals fully recovered

after 30 minutes from the end of the experiment and were

transferred back to their own cages. Data acquisition was

performed on a Pharmascan 7.0 small animal MR system

operating at 300 MHz (Bruker BioSpin MRI, Ettlingen,

Germany). A high SNR receive-only cryogenic coil

(Bruker BioSpin AG, F€allanden, Switzerland) is used in

combination with a linearly polarized room temperature

volume resonator for transmission. Images were acquired

using Paravision 6 software. After standard adjustments,

shim gradients were optimized using mapshim protocol,

with an ellipsoid reference volume covering the whole

brain. Resting-state fMRI (rs-fMRI) was performed with

gradient-echo echo planar images (GE-EPI) that were

acquired with repetition time TR ¼ 1000 ms, echo time

TE ¼ 15 ms, flip angle ¼, matrix size ¼ 90� 50, in-plane

resolution ¼ 0:22� 0:2 mm2, number of slice¼ 20, slice

thickness ST ¼ 0:4 mm, slice gap SG ¼ 0:1 mm, and 2000

volumes, for a total scan time of 38 min. Anatomical T1-

weighted images were acquired with same orientation as

the GE-EPI using a FLASH-T1 sequence (TE ¼ 3:51 ms,

TR ¼ 522 ms, flip angle ¼ 30�, in-plane resolution ¼
0:05� 0:02 mm2, and ST ¼ 0:5 mm).

3. Data preprocessing

Resting state fMRI datasets were preprocessed using an

existing pipeline for removal of unwanted confounds from

the time series,36 with modifications (Fig. S1, supplementary

FIG. 1. Relating structural connectivity properties to the intrinsic dynamics of individual brain regions. A schematic illustration of the mouse structural

connectome (top), in which the brain is represented as a set of nodes (macroscopic brain regions), with weighted axonal connections between regions

represented as directed edges (shown as arrows). Different properties can then be computed for each brain region according to their network connectivity; the

example plotted here is number of connections projecting from a brain region, also known as “out degree” (shown using color from low, yellow, to high, red).

Resting state BOLD dynamics were measured for each brain region using fMRI (shown as time series). Here we compute 14 different network properties for

184 brain regions from the mesoscale structural connectome (lower, left) and, independently, compute 6930 time-series properties of the univariate fMRI

dynamics measured in the same set of brain regions (lower, right). In these lower plots, each row represents a brain region (labeled by broad anatomical divi-

sions of the mouse brain 34,35), and each column represents a property computed for all brain regions, derived from either the structural connectome (lower,

left), or the BOLD time-series dynamics (lower, right). Color encodes the output of each property, from low values (blue) to high values (red). The aim of this

study was to determine whether the fMRI dynamics of a brain region are related to its structural connectivity properties by computing correlations between the

two quantities across the brain.
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material). Briefly, each rs-fMRI dataset was fed into

MELODIC (Multivariate Exploratory Linear Optimized

Decomposition of Independent Components37) to perform

within-subject spatial-ICA with a fixed dimensionality esti-

mation (number of components set to 100). This included

high-pass filtering (>0.01 Hz), correction for head motion

using MCFLIRT38 and in-plane smoothing with a 0:3� 0:3
mm kernel. We applied FSL-FIX with a study-specific clas-

sifier obtained from an independent dataset of 15 mice and

used a “conservative” removal of the variance of the artifac-

tual components (for more details, see Ref. 39). Thereafter,

FIX-cleaned datasets were co-registered into the skull-

stripped T1-weighted images and normalized into AMBMC

template (www.imaging.org.au/AMBMC) using ANTs v2.1

(picsl.upenn.edu/ANTS). Time series were extracted from

370 anatomical regions using the Allen Reference Atlas

ontology,35 as in Oh et al.34 Only regions that were fully

covered by the field of view used for fMRI acquisition were

included in the analysis. These regions were then matched to

the Allen Mouse Connectivity Atlas, above, yielding a total

of 184 matching brain regions for each hemisphere. Here we

focus on regions in the right hemisphere, for which full

structural connectivity data are available (see above). Thus,

the final rs-fMRI dataset consisted of 2000-sample time

series in 184 brain regions for 18 mice; a total of 3312 time

series.

B. Structural connectivity data

The mesoscale structural connectome of the mouse brain

was derived from 469 viral microinjection experiments in

the right hemisphere of C57BL/6 J male mice at age P56,

obtained from the Allen Mouse Brain Connectivity Atlas

(AMBCA).34 These data were summarized in the form of a

weighted, directed connectivity matrix containing 213 brain

regions from the Allen Reference Atlas ontology35 using a

regression model.34 The model outputs a normalized connec-

tion strength and a p-value for each edge in the connectome,

which can be used to construct a 213� 213 ipsilateral con-

nectivity matrix. We include only edges with p< 0.05 (and

exclude self-connections), resulting in a link density of

6.9%. Note that our results are not sensitive to this choice;

similar results were obtained from denser connectomes

derived using higher p-value thresholds (up to p¼ 1, an edge

density of 37.4%).

The “normalized connection strength” edge weight,

estimated directly from the regression model of Oh et al.,34

scales the injection volume in a source region to explain

the segmented projection volume in a target region.

Alternative edge weight measures can also be used, which

rescale these weights to normalize for the volume of source

and target regions,34 including: “connection strength”

(multiplies each edge by the source region’s volume, yield-

ing edge values proportional to the number of axonal fibers

projecting from the source to target regions), “normalized

connection density” (multiplies each edge by the target

region’s volume, yielding edges that measure the fraction

of infected volume in the target region resulting from

infection of a unit voxel of the source region; used in

Rubinov et al.40), and “connection density” (multiplies

each edge by the source region’s volume and divides by

the target region’s volume, yielding edges that measure the

fraction of target region’s volume that would be infected

from the entire source region), as visualized in Fig. S2

(supplementary material). Given the different interpreta-

tion of each edge measure, we compared results using each

edge weight definition.

We focus here on results using the full ipsilateral con-

nectome, but also tested the robustness of the results when

including contralateral connectivity from the right hemi-

sphere to the left hemisphere.34 From contralateral connec-

tivity data, we inferred a complete connectome under the

assumption of hemispheric symmetry (as Rubinov et al.40),

in which connections from the left to the right hemisphere

match those from right to left hemisphere exactly, and ipsi-

lateral connectivity within the left hemisphere mirrors that

within the right hemisphere.

C. Topological node measures

To characterize the connectivity of each brain region, we

used the 213-node, ipsilateral connectome described above to

calculate the node properties (note that, due to data availabil-

ity, only 184 of these brain regions were subsequently

matched to rs-fMRI dynamics). To assess the role of edge

weights and edge directionality, we compared four different

representations of networks, where possible: (i) the original

directed, weighted connectome (see above); (ii) a directed,

unweighted connectome; (iii) an undirected, weighted connec-

tome; and (iv) an undirected, unweighted connectome. For

weighted measures, we compared edge weights estimated

using each of the different normalizations of the source and

target region volumes: the “normalized connection strength,”

“connection density,” “connection strength,” and “normalized

connection density” (Fig. S2, supplementary material). To

transform weighted networks to unweighted networks, we

assigned a unit weight to all edges with non-zero weight; to

transform directed networks to undirected networks, we

assigned edge weights as the sum of the edge weights in and

out of each node in the original network. We computed three

topological properties for each node in each network: (i)

degree; (ii) betweenness centrality; and (iii) clustering coeffi-

cient. These measures are described in turn below.

1. Degree

For a directed, unweighted network, the in-degree,

kinðiÞ, of node i is defined as the number of incoming edges,

and the out-degree, koutðiÞ, is defined as the number of outgo-

ing edges. On undirected networks, the lack of directional

information means that only the total degree, k(i), can be

computed, which is defined as the total number of connec-

tions involving node i. On weighted networks, the concept of

degree can be extended to incorporate edge weights, where

the weighted counterpart of node degree (also known as

“node strength”) sums the weights on edges rather than

counting them.
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2. Betweenness centrality

The betweenness centrality of a node, i, is given by

b ið Þ ¼ 1

n� 1ð Þ n� 2ð Þ
X

h; j 2 N
h 6¼ j; h 6¼ i; j 6¼ i

qhj ið Þ
qhj

; (1)

where N is the set of all nodes in the network, n is the num-

ber of nodes, qhj is the total number of shortest paths

between nodes h and j, and qhjðiÞ is the number of those

paths that pass through node i.41 For shortest path informa-

tion transfer, a node with high betweenness centrality is

involved in mediating more signal traffic across the network.

For a binary network, all edges have the same weight, and

the shortest path between nodes h and j is the path that mini-

mizes the number of edges that must be traversed. In a

weighted network, a distance metric is defined for each link

as the inverse of the edge weight.

3. Clustering coefficient

The clustering coefficient of a node, i, in an unweighted

undirected network is given by

C ið Þ ¼ 2e ið Þ
k ið Þ k ið Þ � 1ð Þ ; (2)

where k(i) is the degree of node i and e(i) is the number of

connected pairs between all neighbors of node i.42 The clus-

tering coefficient of node i is equivalent to the link density of

its neighbors, such that C(i)¼ 1 indicates that node i and its

neighbors form a clique, i.e., a fully connected subgraph. On

an unweighted, directed network, the clustering coefficient of

node i is defined similarly as C!ðiÞ ¼ eðiÞ=½kðiÞðkðiÞ � 1Þ�.
Weighted generalizations of the clustering coefficient aim to

capture the average intensity with which the neighbors of a

node are connected. For weighted undirected networks, we

use the measure given by Onnela et al.,43 and for weighted

directed networks we use the measure of Fagiolo.44

For a given edge weight definition, we computed a total

of fourteen topological measures for each node: in-degree, out-

degree, betweenness, and clustering coefficient on the directed

weighted and unweighted networks, and degree, betweenness,

and clustering coefficient on the undirected weighted and

unweighted networks. All measures were calculated using

implementations provided in the Brain Connectivity Toolbox45

(functions used are listed in Supplementary Table S1 of sup-

plementary material).

D. Feature-based representation of rs-fMRI time series

Having quantified different network connectivity prop-

erties, we next aimed to characterize the rs-fMRI dynamics

in each brain region. BOLD time series have commonly

been summarized using features like the amplitude of low-

frequency (0.01–0.08 Hz) fluctuation, ALFF.31 Although

spectral properties like ALFF are a natural representation of

stationary oscillatory signals (as is often approximately the

case in brain recordings), there are thousands of alternative

time-series analysis methods that could be used to

meaningfully quantify regional rs-fMRI dynamics. These

methods include measures of autocorrelation, temporal

entropy, distributional spread, outlier properties, stationarity,

wavelet transforms, time-delay embeddings, and fits to vari-

ous time-series models. Rather than manually selecting a

small number of such time-series features, here we aimed to

determine the most informative features for understanding

structural connectivity properties in a purely data-driven

way. To achieve this, we used the highly comparative time-

series analysis software package, hctsa (v0.91, github.com/

benfulcher/hctsa)32,33,46 to extract a total of 7754 informative

features from each of the 3312 BOLD time series in our

dataset (cf. Fig. 1, lower right). Each of the 7754 features

corresponds to a single interpretable measure of a regional

BOLD time series, that could then be related to structural

network connectivity properties.

Features that did not return a real number for all 3312

time series in the full dataset (e.g., methods that relied on fit-

ting positive-only distributions to our real-valued rs-fMRI

data or methods attempting to fit complicated nonlinear

time-series models that were not appropriate for these data)

or features that returned an approximately constant value

across the dataset (standard deviation <2� 10�15) were

removed from the set of features prior to analysis, resulting

in a reduced set of 6930 well-behaved time-series features.

The results of the massive feature extraction facilitated by

hctsa were represented as a 184 (brain region) � 6930 (time-

series feature) matrix that summarizes a diverse array of

BOLD time-series properties in each mesoscale brain region

for each mouse. To obtain a group-level summary, we aver-

aged features across all 18 mice for each brain region, yield-

ing an 184� 6930 (brain region)� (time-series feature)

matrix, which is plotted in Fig. 1 (lower, right). This ensured

that the features capture overall characteristics of the BOLD

signal at each brain region, averaging over inter-individual

and inter-scan variability. In addition to obtaining group-

averaged results, we also investigated robustness at the level

of each individual mouse by separately analyzing time-series

feature matrices for each individual mouse (i.e., 18 different

184� 6930 matrices).

E. Relating regional connectivity to rs-fMRI dynamics

Having characterized each brain region in terms of its (i)

structural connectivity properties and (ii) BOLD time series,

we next sought to find correlations between these two inde-

pendent measurements. Spearman rank correlations were used

(instead of Pearson correlations) to allow statistical compari-

son between the frequently non-normally distributed nodal

properties (especially those derived from weighted connec-

tomes) and time-series features. To control the family-wise

error rate, we used the Holm–Bonferroni method,47 correcting

across 6930 independent tests at a significance level of

pcorrected < 0:05.

Structural connectivity properties and time-series fea-

tures are both strongly affected by the potentially confound-

ing effect of region volume. We estimated region volume by

counting the number of 1.2lm3 isotropic voxels assigned to

each brain region; volumes vary markedly across 184
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regions, from 17 voxels (subparafascicular area, SPA, in the

thalamus) to 5052 voxels (caudoputamen, CP, in the striatum).

A total of 3688 time-series features of the rs-fMRI signal were

significantly correlated with region volume (pcorrected < 0:05),

with the strongest correlations obtained for spread-dependent

measures for which larger regions exhibit reduced variance

(e.g., standard deviation: q ¼ �0:71). Region volume was

also related to measures of time-series entropy, spectral

power, stationarity, and information theory-based properties.

Topological measures were also correlated with region volume

for all edge weight definitions; e.g., for “connection strength,”

weighted topological measures all exhibited correlations

q > 0:5, reaching up to q ¼ 0:87 for weighted in-degree, as

shown in Fig. S3 (supplementary material). To ensure that our

results reflect the contribution of structural connectivity, and

are not a consequence of regional variations volume, we com-

puted partial Spearman rank correlation coefficients, q (and an

associated p-value), when comparing connectivity properties

to time-series features.

The high quality of these data allowed us to estimate

the relationship between nodal network connectivity and

rs-fMRI time-series properties using mass univariate test-

ing with family-wise error correction. We correct for 6930

independent tests, even though there are only approxi-

mately 200 linearly independent time-series behaviors in

our feature set due to the existence of highly correlated

time-series features, cf. Fulcher et al.32 Our results thus

constitute a highly conservative estimate of the number of

time-series features that are significantly related to each

topological quantity, minimizing the false positive rate

(type I error) at the cost of increasing the false negative

rate (type II error). In the absence of such a strong signal,

future work could use multivariate methods (such as canon-

ical correlation analysis or partial least squares) to find

informative component-wise relationships between the two

types of data. This may be especially useful when using

connectomes estimated using MRI, which lack directed

information and are noisier than the tract tracing-based

connectomes analyzed here.

III. RESULTS

We present our results in three parts. First, we compare

nodal network properties derived from weighted/unweighted

and directed/undirected connectomes, in their (partial) correla-

tions to the properties of rs-fMRI dynamics across the brain

(correcting for region volume). We show that robust correla-

tions between structural network topology and dynamics exist

at the level of individual brain regions for weighted connectiv-

ity measures, with the strongest relationship found for

weighted in-degree, kw
in. We go on to characterize the correla-

tion properties of rs-fMRI time-series that are most strongly

correlated to kw
in. Lastly, we demonstrate that the group-level

correlations also hold for the majority of individual mice.

A. Comparison of topological measures

We first address the question of whether the extrinsic

axonal connectivity of a brain region is related to its intrinsic

rs-fMRI dynamics. We computed fourteen structural network

measures: degree, betweenness, and clustering coefficient,

computed from weighted and unweighted, and directed and

undirected versions of the connectome, from each of the 184

brain regions. We independently computed 6930 time-series

features derived from the rs-fMRI BOLD signal in the same

set of brain regions. The relationship between each structural

network property and each rs-fMRI time-series property was

quantified as a partial Spearman correlation coefficient

(using region volume as a covariate), as depicted in Fig. 1

(see Methods for details).

The comparisons using weighted connectome properties

were repeated for each of the four connectome edge weight

definitions (depicted in Fig. S2, supplementary material):

connection strength, connection density, normalized connec-

tion strength, and normalized connection density, as shown

in Fig. S4 (supplementary material). Although all definitions

exhibit qualitatively similar trends, the strongest correla-

tions between rs-fMRI dynamics and topological structure

were found when connection weights were proportional to

the number of axons connecting two regions (i.e., using

“connection strength” or “connection density”), providing

an estimate of axonal bandwidth. In the remainder of this

study, we focus on results using connection strength edge

weights.

Results summarizing the relationship between each

structural network property and rs-fMRI dynamics are shown

in Fig. 2(a). For each network measure, the figure shows: (i)

the magnitude of the strongest partial Spearman correlation,

jqj, across all 6930 rs-fMRI time-series features (color); and

(ii) the number of time-series features that exhibit a signifi-

cant correlation, (Holm–Bonferroni pcorrected < 0:05; text

annotations). Note that since in- and out-degree cannot be

computed from undirected networks, rectangular boxes in

the upper right hand quarter of Fig. 2(a) indicate results for

degree: k (unweighted) and kw (weighted).

Although we summarize the results using the maxi-

mum correlation, maxðjqjÞ, in Fig. 2(a), the comparison of

each network property to 6930 rs-fMRI time series proper-

ties is best represented as a distribution of correlations,

such as that shown in Fig. 2(b) for weighted in-degree, kw
in.

Figure 2(b) indicates the thresholds for Holm–Bonferroni

pcorrected < 0:05 (vertical blue lines), revealing a large num-

ber of rs-fMRI properties that correlate strongly and signif-

icantly with kw
in across 184 mouse brain regions, with

correlations reaching up to jqj ¼ 0:58. Similar distributions

for all node measures are in Fig. S5 (supplementary

material).

Connection strengths vary over many orders of magni-

tude, from a connection strength of 0.15 for the weakest con-

nection to 7:03� 103 for the strongest connection (arbitrary

units, cf. Fig. S6, supplementary material). Node-level struc-

tural network properties are therefore highly sensitive to

the incorporation of edge weights. Strong and robust correla-

tions to time-series properties were only found for network

properties derived from weighted connectomes, whereas

unweighted connectome measures exhibited weak correla-

tions after controlling for region volume (jqj < 0:31), with

none exhibiting statistically significant correlations after

Holm–Bonferroni correction. Amongst the weighted measures,
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most connectivity properties exhibit stronger correlations to

rs-fMRI dynamics when edge directionality was taken into

account, pointing to an important role of edge directionality

for uncovering the relationship between structural connectiv-

ity and dynamics.

Of the three nodal structural connectome properties ana-

lyzed here, the immediate measure of connectivity, degree,

k, showed the strongest correlations to regional rs-fMRI

dynamics. While a significant correlation was found using

the weighted total degree, kw (up to jqj ¼ 0:53), when distin-

guishing incoming and outgoing connection pathways, our

results reveal an asymmetry, with weighted in-degree, kw
in,

showing the strongest correlations to rs-fMRI dynamics of

all topological properties (up to jqj ¼ 0:58); weighted out-

degree, kw
out, showed weaker correlations (up to jqj ¼ 0:39).

This increase in correlation for kw
in over kw

out demonstrates the

relative importance of incoming structural connectivity for

understanding regional BOLD dynamics (and this trend

holds across all edge weight definitions, cf. Fig. S4, supple-

mentary material). In addition to degree, we found signifi-

cant but weaker correlations between clustering coefficient

and properties of the rs-fMRI dynamics. In the directed net-

work, C!;w significantly correlated with 477 time-series fea-

tures (pcorrected < 0:05, with correlations reaching as high as

jqj ¼ 0:51), while in the undirected network, Cw was signifi-

cantly correlated with 369 time-series features (up to

jqj ¼ 0:48). Note that the number of significant features

depends on the shape of the distribution (like that shown in

Fig. 2), and that the maximal partial correlation, jqj, of any

single topological measure does not necessarily reflect the

total number of features with pcorrected < 0:05. Betweenness

centrality was the least correlated nodal connectivity prop-

erty to properties of rs-fMRI dynamics (a result that was con-

sistent across all edge weight definitions, cf. Fig. S4,

supplementary material). Only three of the 6930 time-series

features were significantly correlated with weighted undi-

rected betweenness, bw, (up to jqj ¼ 0:33) and there were no

significant correlations for b!;w, bw, or b.

Noting that network connectivity measures are them-

selves non-independent and interrelated (perhaps due

to redundancy in the space of allowed networks48), we cal-

culated the Spearman rank correlation coefficients between

all pairs of the fourteen topological measures, across all

184 brain regions (Fig. S7, supplementary material).

Topological measures that showed the strongest partial cor-

relations with time-series features (kw
in, kw, C!;w, and Cw)

formed a strongly intercorrelated group (jqj > 0:7 for all

pairs), while the unweighted measures C!, C, b!, b, and k,

were also strongly intercorrelated. The high level of inter-

correlation between kw
in, kw, C!;w, and Cw suggests that they

are measuring similar connectivity properties in different

ways, and may therefore be related to similar properties of

the rs-fMRI signal.

Given that weighted in-degree, kw
in, shows the strongest

relationship to rs-fMRI dynamical features, and forms a cor-

related cluster with other types of weighted connectivity

properties, we tested the idea that the variation of kw
in is suffi-

cient to explain the relationship of the other informative

weighted connectivity properties: Cw, C!;w, and kw. For each

of these topological measures, we computed partial correla-

tions to all 6930 rs-fMRI time-series features, controlling for

kw
in (and region volume). The number of time-series features

that were significantly related to these measures dropped dra-

matically after controlling for kw
in (pcorrected < 0:05): C!;w

(477! 4), Cw (369! 1), and kw (138! 0), indicating that

the much of the signal relating Cw, C!;w, and kw with rs-

fMRI dynamics can be explained by their correlation with

kw
in. However, it is not the case that kw

in is uniquely capturing

information about rs-fMRI time-series. For example, com-

puting a partial correlation between kw
in and time-series

properties controlling for both region volume and kw

reduces the number of significant features (pcorrected < 0:05)

to just two; controlling for C!;w reduces the number to 25;

and controlling for all other topological quantities together

reduces the number to zero. Thus, although it does not cap-

ture distinct information from other connectivity properties,

kw
in exhibits the strongest correlation to time-series features,

with a variation across brain regions that can mostly

account for the relationship of other topological quantities

to rs-fMRI properties.

FIG. 2. Regional structural network connectivity properties correlate with properties of regional rs-fMRI dynamics. (a) We compare the degree, k, between-

ness, b, and clustering coefficient, C, for (i) directed and undirected, and (ii) weighted and unweighted structural brain networks (where weights represent con-

nection strengths between regions). For each nodal network property, we computed the magnitude of the strongest partial Spearman correlation, jqj,
controlling for region volume, across 6930 time-series features of the rs-fMRI signal (shown using color), and the number of time-series features that are sig-

nificantly correlated with that property (Holm–Bonferroni pcorrected < 0:05) across all 184 brain regions (annotated with numbers; missing numbers indicate

zero significant features). We see that taking edge weights into account is crucial for obtaining a strong correlation between regional connectivity and dynam-

ics. (b) The distribution of Spearman correlations, q, of weighted in-degree, kw
in, with 6930 time-series features of rs-fMRI (correlations computed across 184

brain regions). Vertical blue lines indicate Holm–Bonferroni significance thresholds at pcorrected ¼ 0:05.
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B. Informative time-series features

Having demonstrated a strong relationship between the

weighted structural connectivity properties of a brain region

and its rs-fMRI dynamics, and that weighted in-degree, kw
in,

shows the strongest correlation, we next characterize the

types of rs-fMRI time-series properties that drive the effect,

focusing on this key topological measure, kw
in. The 229 rs-

fMRI time-series properties that were significantly correlated

with kw
in (jqj � 0:32; pcorrected < 0:05) constitute different

measures of autocorrelation-related properties of the fMRI

signal. For example, of the five features with partial

Spearman correlations jqj > 0:5 (correcting for region vol-

ume variations), four were direct measures of autocorrelation

computed at extended timescales (s ¼ 16; 23; 26; 34 s), with

the top feature being autocorrelation at s¼ 34 s: AC34 (par-

tial Spearman correlation, q ¼ 0:58). Other related features

include nonlinear autocorrelations (e.g., hx2
t xt�5i, with the

average taken across the time series, x: q ¼ 0:46), automu-

tual information (e.g., Gaussian estimator at time lag

s¼ 34 s: q ¼ 0:44), power in spectral frequency bands (e.g.,

power in the range of frequencies from 0.125 Hz � f �
0:375 Hz: q ¼ �0:48), parameters of model fits (e.g., a5

parameter of an autoregressive AR(5) model: q ¼ �0:51),

measures of randomness (e.g., p-value from an Ljung-Box

Q-test:49 q ¼ �0:39), and entropy (e.g., normalized permu-

tation entropy, PermEnðm ¼ 3; s ¼ 2Þ:50 q ¼ �0:36).

Between themselves, these features have highly correlated

outputs across brain regions, indicating that they are measur-

ing similar properties of the data in different ways (Fig. S8,

supplementary material). Thus, using a highly comparative

data-driven approach to univariate time-series analy-

sis,32,33,46 our results indicate that regions with increased kw
in

(relative to their volume) exhibit increased autocorrelation,

which can be measured directly, or with related measures,

such as power in specific frequency bands, or some classes

of entropy/predictability measures.

To investigate the variation in these time-series features

across brain regions, we first focus on the feature correlating

most strongly with kw
in, autocorrelation at a lag of s¼ 34 s

(AC34: q ¼ 0:58). The rank residuals of both kw
in and AC34

(after correcting for region volume using a partial Spearman

correlation) are plotted as a scatter in Fig. 3(a). The clear

positive trend (q ¼ 0:58) indicates that brain regions with a

larger weighted in-degree exhibit stronger autocorrelations

at this extended, 34 s timescale.

Given the ubiquity of power spectral analysis in neuro-

imaging, we next focus on a related spectral feature, which

measures relative high-frequency power, f � 0:4 Hz (up to

the Nyquist frequency, 0.5 Hz), and correlates strongly with

kw
in (q ¼ �0:43). The power spectral density of the BOLD

signal is estimated using a periodogram with a Hamming

window applied, and this feature calculates the logarithm of

the proportion of the power in the top fifth of frequencies

(i.e., f � 0:4 Hz), which we term “relative high frequency

power” (where “high” is the range from 0.4 Hz up to the

Nyquist frequency, 0.5 Hz). This feature displays a negative

correlation with kw
in (q ¼ �0:43) across the brain, shown as

a scatter in Fig. 3(b). That is, brain regions with greater kw
in

have decreased relative power in rs-fMRI dynamics for f �
0:4 Hz (or, equivalently, have greater relative power in

f< 0.4 Hz). This is consistent with intuition from AC34,

which increases with kw
in; brain regions with increased

aggregate incoming connection weights exhibit “slower”

BOLD dynamics. To demonstrate the relationship in more

detail, we plotted power spectral density estimates for three

selected brain regions in Fig. 3(b): the magnocellular part

of the subparafascicular nucleus (SPFm) in the thalamus

(kw
in ¼ 115:47), the sensory-related superior colliculus

(SCs) in the midbrain (kw
in ¼ 1660:5), and the ventral part of

FIG. 3. Weighted in-degree is negatively correlated with regional BOLD signal relative high-frequency power. Scatter plots of a brain region’s weighted in-

degree are shown against (a) autocorrelation of the signal at s¼ 34 s, and (b) relative power of the rs-fMRI signal in frequencies f � 0:4 Hz. For each variable

rank residuals are plotted, after correcting for a Spearman correlation to region volume. Brain regions are colored uniquely, corresponding to anatomical divi-

sions (cf. Fig. 1). For three selected brain regions, highlighted and labeled in (b), we show power spectral density estimates of their rs-fMRI signals calculated

using a periodogram (smoothed for visualization) in (c). The relative high frequency power measured in (b) corresponds to the logarithm of the proportion of

the power in the top fifth of frequencies (shaded gray) of the power spectral density estimate, as calculated using a periodogram. This corresponds to the fre-

quency range f � 0:4 Hz, and is lower for regions with increased kw
in.
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the anterior cingulate area (ACAv) in the isocortex (kw
in

¼ 2503:4), as annotated in Fig. 3(c). Frequencies exceeding

f¼ 0.4 Hz are shaded in Fig. 3(c), indicating the decrease in

high frequency power in regions with a higher kw
in.

As noted above, some dynamical properties of the rs-

fMRI signal differ across anatomical divisions (as is evi-

dent by the visual distinction of particularly the isocortex

and hippocampus in Fig. 1, lower right), and may thus

result from broad anatomical differences, or non-specific

spatial gradients in dynamics, rather than reflecting specific

properties of network connectivity. We mapped the spatial

variation of weighted in-degree, kw
in, AC34, and relative high

frequency power (as Spearman rank residuals after correct-

ing for region volume variations) across the brain to better

visualize their spatial variation, as shown in Fig. 4. The ren-

dering for kw
in (residuals) in Fig. 4(a) shows a specific distri-

bution across the brain, with peaks in the ventral striatum

region (i.e., nucleus accumbens, NAc), a region that inte-

grates a large number of cortical and midbrain neural

inputs, in the superior colliculus (SC), a subcortical area

that integrates visual and sensory information, in the thala-

mus, and in the cornu ammonis 1 region of the hippocam-

pus (CA1), which is involved in memory and learning. A

similar spatial specificity is reflected in the variation of rs-

fMRI AC34 residuals across the brain in Fig. 4(b). The

high-frequency power feature [inverted in Fig. 4(c)] is high

in olfactory cortex, midbrain, and cerebellar regions, and

low in isocortex, caudoputamen, and thalamus.

Above, we focused on characterizing the time-series fea-

tures that strongly correlate with kw
in with the expectation that

similar types of properties would be selected for the other

significant connectivity properties that are highly correlated

to kw
in, namely, kw, C!;w, and Cw [see Fig. 2(a)]. Most of the

rs-fMRI time-series features that were significantly corre-

lated to kw, C!;w, and Cw were subsets of the 229 features

selected for kw
in, with all selected features related to linear or

nonlinear autocorrelations and power spectral properties.

Our analysis above was of ipsilateral connectivity in the

complete connectome available in the right hemisphere of the

mouse brain. Inclusion of contralateral projections, under the

assumption of hemispheric symmetry (see Methods), yielded

qualitatively similar results to those presented here. In particu-

lar, kw
in remained the topological property with the strongest

relationship to rs-fMRI dynamics, and exhibited similar corre-

lations to autocorrelation-based measures of the rs-fMRI sig-

nal, including the AC34 (q ¼ 0:49; pcorrected ¼ 9� 10�9) and

relative high frequency power (q ¼ �0:36; pcorrected ¼ 0:003)

features described above.

C. Individual robustness

The results above involved characterizing the rs-fMRI

dynamics of each brain region by averaging time-series

FIG. 4. A three-dimensional rendering

of the spatial mapping of 184 regions

across the right hemisphere of the

mouse brain for: (a) the topological

quantity, weighted in-degree, log10kw
in,

(b) autocorrelation at lag s¼ 34 s, and

(c) relative high frequency BOLD

power (f � 0:4 Hz, note inverted color

scale). All above variables have been

plotted as the rank residuals from a

Spearman partial correlation with

region volume. Labelled regions in (a)

are: MOp¼ primary motor cortex;

MOs¼ secondary motor cortex; AON

¼ anterior olfactory nucleus; CPu

¼ caudoputamen; NAc¼ nucleus

accumbens; Pir¼ piriform cortex; VISp

¼ primary visual area; SC¼ superior

colliculus; PAG¼ periaqueductal gray;

CA1¼ cornus ammonis 1; MRN

¼midbrain reticular nucleus; and ENTI

¼ entorhinal area.
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features across all 18 individual mice. Here we analyze the

relationships at the level of individual mice. The strongest

correlating feature, the autocorrelation of the BOLD signal

at a time lag s¼ 34 s (AC34), showed a group-level correla-

tion with weighted in-degree, kw
in, of q ¼ 0:58. Computing

this relationship for each individual mouse yielded partial

Spearman correlations ranging between �0:22 � q � 0:55,

with a significant relationship found for 14 of the 18 mice

(right-tailed partial Spearman correlations: pcorrected < 0:05,

Holm–Bonferroni corrected for 18 comparisons). A similar

analysis was performed for relative high frequency power

(f � 0:4 Hz, group-level q ¼ �0:43), with Spearman corre-

lation coefficients ranging from �0:64 � q � �0:14 across

the 18 individual mice. A significant correlation was

observed for 17 of the 18 mice (pcorrected < 0:05), with 15 of

the 18 mice exhibiting a stronger partial correlation than at

the group level (i.e., q < �0:43). Although there is variabil-

ity across individual mice, these results indicate that the

group-level relationships are not a consequence of averaging

over a group of mice, but hold for the majority of individual

mice.

IV. DISCUSSION

In this work we used a weighted, directed mesoscale struc-

tural connectome and high quality rs-fMRI measurements

across 184 anatomical brain regions to demonstrate a robust

relationship between a brain region’s topological role in the

structural connectome and its resting state dynamics in the

mouse. Rather than analyzing pairwise structure–function rela-

tionships, our results characterize a potential role of structural

connectivity in shaping the dynamics of individual brain

regions. We show that weighted connectivity information is

required to uncover the regional structure–function relation-

ship, and that the weight of incoming projections to a region is

a key correlate for regional BOLD dynamics, particularly with

respect to its autocorrelation (and related spectral power and

other measures). As well as providing new insights into poten-

tial functional implications of structural brain connectivity, our

empirical results may provide a new means of constraining the

models we use to simulate and understand brain dynamics.

We first note the strong effect of region volume varia-

tions on both rs-fMRI dynamics and connectivity measures.

The number of inter-areal axonal connections is expected

to scale with the volume of brain areas and, consequently,

other properties derived from the weighted connectome (cf.

Fig. S3, supplementary material). Similarly, the strong rela-

tionship found between a large number of time-series prop-

erties of rs-fMRI dynamics is partially accounted for by

image processing steps that involve averaging over differ-

ent numbers of voxels to produce an overall BOLD time

series for a given brain region. We found that larger brain

regions had lower standard deviation and reduced high fre-

quency power. However, although corrected for here using

partial Spearman correlations, region volume is unlikely to

be a pure confound to the relationship between structural

connectivity and rs-fMRI dynamics, as the mean parcella-

tion size varies markedly across the brain, from very small

average region sizes in the thalamus, medulla, and pons, for

example, and moderate to larger volumes in the isocortex,

olfactory areas, and hippocampal formation. By computing

partial correlations that correct fully for linear covariance

with areal volumes, we may therefore be conservative in

the effects we report, as this correction may remove some

signal of structure-function coupling, due to the properties

of the anatomical parcellation used.

After correcting for the volume of brain areas, the

strongest correlations between structural connectivity and

rs-fMRI dynamics were found for measures of immediate

connectivity (degree) and neighborhood connectivity (clus-

tering coefficient), with the strongest individual correlation

found for weighted in-degree, kw
in. By contrast, the global

measure of betweenness centrality showed minimal correla-

tions to dynamics (potentially related to the fact that infor-

mation transmission across brain networks may more

closely follow an unguided, diffusion-like process rather

than shortest paths6,16,18). Weighted in-degree was signifi-

cantly correlated to 229 rs-fMRI time-series properties

(pcorrected < 0:05, from a set of 6930 features), with partial

Spearman correlation coefficients reaching up to jqj ¼ 0:58

(for linear autocorrelation at lag s¼ 34 s). Given the diver-

sity of regions across the whole mouse brain analyzed here,

that differ in their functional specialization, gene expres-

sion, and cellular and microcircuit properties,19,20 all of

which may affect regional dynamics,11,51 this level of cor-

relation with just the incoming mesoscale connectivity to a

brain region, kw
in, is remarkable. Apart from kw

in, all other

network properties that showed strong and significant corre-

lations to rs-fMRI dynamics—kw, Cw, and C!;w—were

related to similar types of time-series properties as kw
in and

showed minimal correlations to rs-fMRI dynamics when kw
in

was controlled for. Taken together, our findings indicate

that direct influences from other areas, as measured by kw
in

(or highly correlated measures kw, Cw, and C!;w) are

closely tied to a brain region’s spontaneous dynamics. Our

findings may also reflect the hemodynamic measure of neu-

ronal activity provided by the BOLD signal. The strongest

neurophysiological correlate of the BOLD signal is the

local field potential, which is more strongly driven by local

synaptic integration of incoming signals rather than spiking

output.52,53 Whether the close association between incom-

ing connectivity and dynamics reported here for meso-

scopic brain regions would also hold when using single unit

recordings of individual neurons remains an open question.

Rather than hand-picking particular time-series features

to investigate for rs-fMRI, our highly comparative approach

compared over 6930 time-series features of fMRI in a purely

data-driven way, including time-series model fitting and pre-

diction, entropies, distributional measures, and other types of

linear and nonlinear correlation features.32,33,46 Of the 229

properties of regional rs-fMRI dynamics that were signifi-

cantly correlated to weighted in-degree, kw
in, those with the

strongest relationship were measures of autocorrelation,

including power in spectral frequency bands, parameters of

linear models, and entropy measures. Regions with increased

kw
in were most strongly characterized by the autocorrelation

of their BOLD dynamics at a time lag s¼ 34 s (q ¼ 0:58). A

range of autocorrelations at similar lags also exhibited strong
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correlations to weighted in-degree; e.g., the four features

with the highest correlation to kw
in were all autocorrelations at

different time lags: AC34 (q ¼ 0:58), AC26 (q ¼ 0:56), AC23

(q ¼ 0:53), and AC16 (q ¼ 0:52). To be selected in a purely

data-driven way from 6930 features, this result suggests an

importance of these relatively long timescales (lags between

16 s and 34 s). Other features measured similar autocorrela-

tion properties of the signal in less direct ways, such as com-

puting spectral power in the upper fifth of sampled

frequencies, f � 0:4 Hz (q ¼ �0:43). These group-level

effects were robust, being reproduced at the level of 14 of

the 18 mice for AC34 (pcorrected < 0:05), and 17 of the 18

individual mice for relative high frequency power

(pcorrected < 0:05).

Our results are consistent with a connectivity-mediated

hierarchy of timescales in the brain that has been suggested

by some computational models.11,30 In Gollo et al.’s work,30

nonlinear neural mass models were coupled via an

unweighted, directed macaque structural connectome, pro-

ducing an emergent dynamical hierarchy in which highly

connected hub regions exhibited greater temporal persistence

in their dynamics, largely due to their high (unweighted) in-

degree. In Chaudhuri et al.’s work,11 an interplay of intrinsic

variation in timescales across cortical brain regions, inter-

areal connectivity, and input target to the brain determined

the dynamical timescale of a brain region (estimated as the

decay time constant of the autocorrelation function).

Although these models provide candidate mechanisms that

may explain variations in fMRI autocorrelation timescales

across regions of the mouse brain, it remains unclear whether

this relationship is due to the presence of incoming connec-

tions directly altering the dynamics of that brain region.

While this is a compelling possibility, our results could also

be explained by a common underlying factor, with other

types of well-studied heterogeneity in cytoarchitecture and

gene expression giving rise both to differences in inter-

regional connectivity profiles and characteristic BOLD

dynamics, for example. Future work will be crucial to disen-

tangling the causal mechanisms underlying the correlational

relationships presented here.

Our tract-tracing derived mouse connectivity data

allowed us to investigate the role of edge weights and direc-

tionality in contributing to the relationship between the struc-

tural connectome and fMRI dynamics. In particular, we

compared measures computed from the weighted and

directed connectome34 (comparing different edge weight

definitions), as well as unweighted and undirected approxi-

mations of it. Although unweighted brain networks are more

intuitive and amenable to the application of graph theoretic

techniques that have traditionally been popular in network

neuroscience, one might expect that incorporating meaning-

ful estimates of edge weights into brain network analysis is

important, as they vary over several orders of magnitude (see

Fig. S6, supplementary material). Indeed, given recent esti-

mates of cortical connection densities from high-quality

tract-tracing data exceeding 60% for macaque cortex54,55

and 70% for mouse cortex,56 binary representations of such

dense connectomes constitute coarse approximations of true

brain connectivity. Here we demonstrate that network

properties derived from unweighted connectomes do not

show strong correlations to univariate rs-fMRI properties,

highlighting the importance of measuring connectome edge

weights in capturing the relationship between connectivity

and dynamics in the mouse brain. We note that the estima-

tion of edge weights from tract-tracing based experiments is

non-trivial; here we explored different edge weight defini-

tions derived from the regression model of Oh et al.,34 but

note that alternative estimation methods40,56 and datasets57

exist. Of the four edge weight definitions considered here

(that normalize source and target regional volumes differ-

ently, cf. Fig. S2, supplementary material), those that took

into account the source volume (i.e., “connection strength”

and “connection density,” which take into account the vol-

ume of each source region) yielded weighted connectomes

that showed the strongest correlations to rs-fMRI dynamics.

Interpreting this with respect to weighted in-degree, kw
in, for

example, indicates that the connectome representations that

provide the most information about dynamics in a target

region are those in which edge weights account for the vol-

ume of source regions that project it, i.e., weights that are

proportional to the number of projecting axons. Indeed, the

strongest relationships to rs-fMRI dynamics were found

when connectome edge weights were proportional to the

number of axonal pathways between two regions (i.e., using

“connection strength”). Given that human connectomes are

commonly estimated by tractography using diffusion

weighted imaging (DWI), which is noisy and cannot deter-

mine the direction of a pathway, it is important to note that

kw is highly correlated to kw
in (q ¼ 0:91), and is related to

similar types of features of rs-fMRI dynamics as kw
in (most

features are a subset of those selected for kw
in, and all are cor-

related with a feature selected for kw
in with q > 0:59). This

suggests that, if similar connectivity-dynamics relationships

hold in human as in mouse, then weighted degree, kw, calcu-

lated from an undirected connectome should also contain

meaningful information about autocorrelation properties of

rs-fMRI dynamics. Although weighted degree, kw, measured

from the undirected connectome showed strong correlations

to rs-fMRI dynamics (up to jqj ¼ 0:53), directed edge infor-

mation was important for distinguishing the weighted out-

degree of a node, kw
out, which is relatively uninformative of

rs-fMRI dynamics (up to jqj ¼ 0:39), from the most informa-

tive weighted in-degree, kw
in (up to jqj ¼ 0:58). Taking edge

weight and directionality into account when relating struc-

ture to function in brain networks will be crucial to under-

standing whether brain dynamics are causally constrained by

extrinsic axonal connectivity in future work.

The mouse represents an attractive model system to

study the structure–function relationship, while minimizing

the influence of environmental and genetic heterogeneity.

Our findings relied on long (38 min), high-quality rs-fMRI

measurements of BOLD dynamics across the whole mouse

brain, which were compared with a tract-tracing based struc-

tural connectome for the first time in this work. The use of

awake mice in rs-fMRI protocols is impracticable for long

scan times (notwithstanding the use of invasive methods for

head fixation58), making light anesthesia the de facto
option.59 As previously demonstrated in rats60 and
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monkeys,61 decreasing (or abolishing) levels of anesthesia

are mirrored by an increase in BOLD variability. This indi-

cates that data acquired during anesthesia cannot be fully

generalized to the awake status. Yet, to minimize the effects

of anesthesia on BOLD dynamics, we employed a combina-

tion of low-dose isofluraneþmedetomidine, which has been

previously shown to be effective in retaining strong bilateral

brain networks connectivity (one of the signatures of rs-

fMRI observed in both awake humans and rodents).62

Due to the technical and methodological challenges in

obtaining such long functional scans in a light-anesthetized

regime, one must take care that the physiology of the animals

remains stable over time. Several parameters were consid-

ered in this study to achieve this goal; first, we used mechan-

ical ventilation to maintain the same tidal volume and blood

oxygenation throughout the experiment. To keep a low but

steady level of anesthesia, we combined a continue infusion

of medetomidine i/v with a very low dose of isoflurane

(0.5%), optimized from our previous studies;36,62 this

allowed us to overcome the issues related to medetomidine

depletion and isoflurane accumulation over time. As evi-

denced by our results, which showed consistency across the

majority of individual mice, this protocol allows for superior

data reproducibility due to a drastic reduction in motion, sta-

ble physiology, such as animal temperature and stress levels,

and a regular breathing cycle.

V. CONCLUSION

In this work, we provide the first demonstration of a

robust relationship between the connectivity properties of a

brain region and resting state BOLD dynamics. The strongest

relationships were observed for the weighted in-degree of a

brain region, which is positively correlated to autocorrela-

tions at extended time lags (e.g., s¼ 34 s) of its rs-fMRI

dynamics and, similarly, negatively correlated to their rela-

tive high frequency power (f � 0:4 Hz). Our results are con-

sistent with physiological data indicating that BOLD signal

fluctuations reflect the integration of incoming signals, and

support preliminary predictions of computational models

that suggest a role for connectivity in mediating differences

in the intrinsic dynamical timescales of distinct regions

across the brain, with highly connected brain regions exhibit-

ing slower BOLD dynamics. These findings also highlight an

asymmetry between incoming and outgoing connectivity,

and underline the importance of weighted information for

understanding brain communication across structural brain

networks.

SUPPLEMENTARY MATERIAL

See supplementary material for additional figures and

tables referred to in the text.
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