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Abstract

The macro-connectome elucidates the pathways through which brain regions are

structurally connected or functionally coupled to perform a specific cognitive

task. It embodies the notion of representing and understanding all connections

within the brain as a network, while the subdivision of the brain into interact-

ing functional units is inherent in its architecture. As a result, the definition

of network nodes is one of the most critical steps in connectivity network anal-

ysis. Although brain atlases obtained from cytoarchitecture or anatomy have

long been used for this task, connectivity-driven methods have arisen only re-

cently, aiming to delineate more homogeneous and functionally coherent regions.

This study provides a systematic comparison between anatomical, connectivity-

driven and random parcellation methods proposed in the thriving field of brain

parcellation. Using functional MRI data from the Human Connectome Project

and a plethora of quantitative evaluation techniques investigated in the liter-

ature, we evaluate 10 subject-level and 24 groupwise parcellation methods at

different resolutions. We assess the accuracy of parcellations from four different

aspects: (1) reproducibility across different acquisitions and groups, (2) fidelity

to the underlying connectivity data, (3) agreement with fMRI task activation,

myelin maps, and cytoarchitectural areas, and (4) network analysis. This ex-

tensive evaluation of different parcellations generated at the subject and group
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level, highlights the strengths and shortcomings of the various methods and

aims to provide a guideline for the choice of parcellation technique and resolu-

tion according to the task at hand. The results obtained in this study suggest

that there is no optimal method able to address all the challenges faced in this

endeavour simultaneously.

Keywords: brain parcellation, resting-state functional MRI, cerebral cortex,

functional neuroimaging, model selection, network analysis

1. Introduction

Understanding the brain’s behaviour and function has been a prominent and

ongoing research subject for over a century (Sporns, 2011). Neuronal intercon-

nections constitute the primary means of information transmission within the

brain and are, therefore, strongly related to the way the brain functions (Smith5

et al., 2013). These connections constitute a complex network that can be es-

timated at the macro scale via modern imaging techniques such as Magnetic

Resonance Imaging (MRI) (Craddock et al., 2013). While structural connec-

tivity networks are typically inferred from diffusion MRI (dMRI), functional

networks can be mapped using resting state functional MRI (rs-fMRI) (Honey10

et al., 2009; Eickhoff et al., 2015). The former allows estimation of the physical

connections, while the latter elucidates putative functional connections between

spatially remote brain regions. Analysing brain connectivity from a network

theoretical point of view has shown significant potential for identifying organ-

isational principles in the brain and their connections to cognitive procedures15

and brain disorders (Supekar et al., 2008; Bassett et al., 2008; Smith et al.,

2009). This allows to study the brain and its function from a new perspective

that accounts for the complexity of its architecture. One of the critical steps in

the construction of brain connectivity networks is the definition of the network

nodes (Sporns, 2011; Eickhoff et al., 2015). Adopting a vertex- or voxel-based20

representation yields networks that are very noisy and of extremely high dimen-

sionality, making subsequent network analysis steps often intractable (Thirion
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et al., 2014). An alternative approach to node definition is to subdivide the

brain into a set of distinct regions - i.e. parcellate the brain-, where each parcel

corresponds to a node of the connectivity network.25

Traditionally, parcellations derived from anatomical landmarks (e.g. AAL)

or cytoarchitectonic information (e.g. Brodmann areas) have been used to de-

fine ROIs for network analysis (Sporns, 2011). Whereas such parcellations are

of great importance in order to derive neuro-biologically meaningful brain at-

lases, they might fail to fully reflect the intrinsic organisation of the brain and30

capture the functional variability inherent in individual brains, due to brain

maturation or injury. Furthermore, they are typically generated on a single or

small set of individuals, which can make them biased and unable to accurately

represent population variability. This can lead to ill-defined nodes in the con-

structed network. For example, it has been shown that the anterior cingulate35

cortex (ACC) exhibits a great amount of heterogeneity in structural (Beckmann

et al., 2009) and functional connectivity (Margulies et al., 2007), despite the fact

that it is typically represented as a single ROI in a standard anatomical brain

atlas (Tzourio-Mazoyer et al., 2002).

Alternatively, random parcellations can be used to define the network nodes.40

However, this kind of approach could fail to represent the underlying connectiv-

ity faithfully and lead to a loss of information (Smith et al., 2011). More recent

parcellation approaches attempt to overcome these problems by using connec-

tivity information (e.g. rs-fMRI or dMRI data) to drive parcellations (Eickhoff

et al., 2015). Since connectivity-based parcellations are directly obtained from45

the underlying data, such methods can potentially provide highly homogeneous

and functionally coherent parcels and separate regions with different patterns

of connectivity more accurately. With this idea in mind, several connectivity-

driven parcellation methods have been proposed, usually in association with

clustering techniques (Thirion et al., 2014). These methods are based on hier-50

archical clustering (Mumford et al., 2010; Bellec et al., 2010; Arslan and Rueck-

ert, 2015; Moreno-Dominguez et al., 2014), k -means (and its fuzzy counter-

part) (Tomassini et al., 2007; Mezer et al., 2009; Golland et al., 2008), Gaus-
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sian mixture models (Yeo et al., 2011; Lashkari et al., 2010), spectral graph

theory (van den Heuvel et al., 2008; Craddock et al., 2012; Arslan et al., 2015;55

Parisot et al., 2016a; Shen et al., 2013; Arslan et al., 2016), Markov random fields

(MRF) (Ryali et al., 2013; Honnorat et al., 2015; Parisot et al., 2016b), edge de-

tection (Cohen et al., 2008; Laumann et al., 2015; Gordon et al., 2016b), region

growing (Blumensath et al., 2013; Bellec et al., 2006), independent component

analysis (ICA) (Beckmann and Smith, 2004; Smith et al., 2009), Bayesian mod-60

elling (Baldassano et al., 2015), meta-analytic connectivity techniques (Eickhoff

et al., 2011; Power et al., 2011), dictionary learning (Varoquaux et al., 2011),

and many more as extensively reviewed in (Eickhoff et al., 2015; Thirion et al.,

2014; de Reus and van den Heuvel, 2013). Although these methods have been

thoroughly validated against alternative approaches, a different experimental65

setup with varying assumptions was used in each case. In addition, the absence

of ground truth makes the evaluation of different parcellation methods even

more challenging as there is no universally-accepted parcellation that can be

used as reference.

In this paper, we propose a systematic comparison of existing parcellation70

methods using publicly available resources and evaluation measures that are

widely used in the literature through a structured experimental pipeline. We

focus on resting-state fMRI (rs-fMRI), as the majority of connectivity-driven

parcellation methods we are investigating have been developed and tested using

this modality. We aim to provide some insight into the reliability of parcel-75

lations in terms of reflecting the underlying mechanisms of cognitive function,

as well as, revealing their potential impact on network analysis. Thirion et al.

(2014) did a similar study at a lower scale, focusing on the analysis of three

clustering techniques for fMRI-based brain parcellation, but it only approaches

the problem from a clustering point of view. Our study, however, provides a80

large-scale systematic comparison of the state-of-the-art parcellation methods

that encompasses many different aspects in a unified experimental setting.

The main contributions of our study are the following: (1) We evaluate 10

subject-level and 24 group-level methods using publicly available datasets pro-
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vided by the Human Connectome Project (Van Essen et al., 2013b). (2) Our85

experiments consist of quantitative assessments of parcellations at both subject

and group levels and for different resolutions. (3) We evaluate parcellations not

only from a data clustering point of view but also with regards to network anal-

ysis and multi-modal consistency. Our evaluation includes reproducibility (e.g.

Dice coefficient and adjusted Rand index), cluster validity analysis (e.g. Sil-90

houette coefficient and parcel homogeneity) and multi-modal comparisons with

task fMRI activation, myelin and cytoarchitectural maps. In addition, we com-

pute network statistics with respect to the underlying parcellation and devise

simple network-based tasks (such as gender classification) to evaluate the po-

tential impact of parcellations on network analysis at different scales. It should95

be noted that our aim is not to directly compare single subject parcellations

to group level ones as group parcellations are subject to methodological biases

(e.g. registration) which can affect their performance.

The remainder of this paper is organised as follows: Section 2 summarises

the procedures pursued during the generation and evaluation of parcellations.100

Experimental results are presented in Section 3. In Section 4, we discuss the

reliability and applicability of parcellations for network analysis and summarise

the impact of this study with some insight into the future of brain parcellation.

2. Materials and Methods

A summary of the processing pipelines is given in Fig. 1. A brief description105

of subject- and group-level methods is provided in Table 1 and Tables 2-3,

respectively. We provide further algorithmic/implementation details for each

method in Supplementary Material 1.

2.1. Data

This study is carried out using data from the publicly available Human Con-110

nectome Project (HCP) database (Van Essen et al., 2013b), S900 release. All

connectivity-driven parcellations are derived from the rs-fMRI acquisitions of

5



Subject-level	parcella/ons	 Group-level	parcella/ons	

Parcel		
genera*on	

Dataset	2	Dataset	1	 {100	subjects}	

.	.	.	

Group	PCA	

2-level	
parcella*ons	

Group-average	
parcella*ons	

Publicly	available	parcella*ons	

Anatomical,	geometric	parcella*ons	

Stability	graph	

Evalua/on	

rs-fMRI	1	 rs-fMRI	2	

Parcel		
genera*on	

Anatomical,	geometric,	
random	parcella*ons	

Evalua/on	

.	.	.	

Figure 1: Visual outline of parcellation generation steps for the subject- and group-level

parcellations.

100 unrelated subjects (54 female, 46 male adults, aged 22-35). This dataset is

publicly available as the “Unrelated 100” in the HCP database and is referred

to as “Dataset 1” in the remainder of this paper. For evaluation purposes, we115

gather a different set of 100 unrelated subject from the HCP database (Dataset

2) comprising randomly selected 50 male and 50 female adults of age 22-35.

The evaluation is performed on Dataset 2 so as to reduce the possible bias to-

wards parcellations computed from Dataset 1 with respect to the provided ones.

All subjects had their scans successfully completed for all imaging modalities120

covered by the HCP.

We use rs-fMRI as our primary data modality for the generation and eval-

uation of parcellations. This is because most methods selected for this study

were developed for rs-fMRI driven parcellation, and rs-fMRI allows test-retest

measurements across acquisitions, subjects, and groups. The rs-fMRI scans for125

each subject were conducted in two sessions, consisting of a total of four runs

of approximately 15 minutes each. The sessions were held on different days

and during the scans the subjects were presented a fixation cross-hair, pro-

jected against a dark background, which prevented them from falling asleep.

All subjects were preprocessed by the HCP structural and functional minimal130

preprocessing pipelines (Glasser et al., 2013). The output of these pipelines for
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each subject is a standard set of cortical vertices represented as a triangular

mesh M = {V,E}, where the nodes have a 2 mm spacing. V represents the set

of N = 32k nodes, while E describes the connections or edges between neigh-

bouring nodes. This standard mesh is obtained by registering all cortices to a135

common surface reference space, the Conte69 atlas (Van Essen et al., 2012), us-

ing cortical surface based alignment (MSMsulc); implemented using Multimodal

Surface Matching (Robinson et al., 2014). Our choice of MSMsulc over the func-

tional based alignment is motivated by the fact that the majority of publicly

available parcellations driven by HCP data used MSMsulc. This yields a set of140

corresponding mesh coordinates for all subjects. Projection of the 4D rs-fMRI

volumes onto the cortical meshes associates each mesh vertex with a rs-fMRI

timeseries. Following these preprocessing steps, each timeseries is temporally

normalised to zero-mean and unit-variance.

All other modalities are obtained from the HCP dataset (myelin maps, Brod-145

mann areas) (Glasser et al., 2013) or using the HCP processing scripts (task

fMRI). Myelin maps are calculated as the ratio of T1-weighted and T2-weighted

MRI (Glasser and Van Essen, 2011). The Brodmann parcellation was mapped

onto the Conte69 surface atlas (Van Essen et al., 2012) and was then projected

onto each subject’s cortical surface using the cortical folding driven registra-150

tion’s deformation field. The task fMRI data is preprocessed following the HCP

preprocessing pipelines (gradient unwarping, motion and distortion correction,

registration to MNI space and projection to the cortical surface). Task activa-

tion maps are then obtained using standard FSL tools (FEAT) that use general

linear modelling to construct activation maps (Barch et al., 2013). The analysis155

is carried out separately for each of the 86 different functional contrasts, over 7

different tasks, including the motor protocol, the relational protocol, the social

protocol, the language protocol, the emotion protocol, the gambling protocol,

and the working memory protocol (Barch et al., 2013). The analysis is per-

formed across sessions (single subject activation maps) and then across subjects160

(groupwise activation map). We compute the group average myelin maps by av-

eraging all subjects’ myelin maps, while the average Brodmann map is obtained
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with majority voting.

2.2. Parcellation Methods

In order to provide a comprehensive evaluation of the state of the art on165

surface-based brain parcellation, we gathered 10 single subject and 24 groupwise

parcellation methods from the literature. The methods included in this study

satisfy at least one of the following criteria:

1. An implementation is publicly available.

2. Pre-computed parcellations are publicly available. Both surface-based and170

volumetric parcellations are considered.

3. The method can easily be re-implemented.

Subject-level methods

Subject-level methods subdivide the cortical surface of each subject inde-

pendently. We consider connectivity-driven parcellations as well as anatomical175

and random parcellations. All single subject methods considered and their as-

sociated names used in the remainder of this paper are presented in Table 1. A

more detailed description of the different methods is provided in Supplementary

Material 1.

Parcellations based on widely used clustering algorithms such as k -means,180

agglomerative hierarchical clustering (Ward, 1963) and spectral clustering with

normalised cuts (Craddock et al., 2012) are computed using in-house implemen-

tation built on clustering tools from Python’s scikit-learn library and Matlab.

The method proposed by Blumensath et al. (2013) is re-implemented as de-

scribed in the original paper. The remaining connectivity-driven methods (Ar-185

slan and Rueckert, 2015; Bellec et al., 2006) are computed using publicly avail-

able code.

We also evaluate surface-based anatomical atlases that are distributed as

part of the HCP datasets (Desikan et al., 2006; Fischl et al., 2004). These

parcellations are tailored to each individual subject with respect to anatomical190

features, such as cortical folding.
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Name	 Reference	 Resolution	 Description	

Arslan	 Arslan	and	Rueckert	(2015);	codes	available	from	

www.doc.ic.ac.uk/~sa1013/codes.html	

Varying	 A	two-level	approach	that	combines	k-means	and	hierarchical	clustering.	Ward’s	

clustering	with	Euclidean	distance	is	applied	to	an	initial	finer	parcellation	of	

1000	regions	per	hemisphere.		

Blumensath	 Blumensath	et	al.	(2013);	re-implemented	as	

described	in	the	original	paper.	

Varying	 A	two-level	method	that	combines	region	growing	and	hierarchical	clustering.	

Ward’s	clustering	with	Euclidean	distance	is	applied	to	an	initial	finer	

parcellation	of	1000	regions	per	hemisphere.		

Bellec	 Bellec	et	al.	(2006);	codes	available	from	

www.nitrc.org/projects/niak	

Varying	 A	competitive	region	growing	approach	driven	by	parcel	homogeneity.	A	size	

threshold	is	applied	to	avoid	over-growing	of	parcels.		

Ward	 Ward	(1963);	in-house	implementation,	featuring	

scikit-learn’s	AgglomerativeClustering	function.	

Varying	 A	hierarchical	tree	is	built	by	merging	pairs	of	clusters,	if	their	similarity	is	the	

maximal	among	the	other	pairing	clusters.	Only	adjacent	clusters	are	joined	into	

a	higher	level	in	order	to	ensure	the	spatial	contiguity.	Clustering	is	driven	by	

Ward’s	linkage	rule	with	Euclidean	distance.	

K-Means	 k-means	clustering	as	described	in	Thirion	et	al.	

(2014);	in-house	implementation,	featuring	scikit-

learn’s	KMeans	and	PCA	functions.	

Varying	 PCA	is	applied	to	BOLD	timeseries	for	feature	reduction.	PCA	components	that	

explain	50%	of	the	variance	combined	with	spatial	vertex	coordinates	to	

improve	spatial	contiguity	of	parcellations.		

N-Cuts	 Craddock	et	al.	(2012);	in-house	implementation	

of	spectral	clustering	featuring	discretisation	(Yu	

and	Malik	2003).		

Varying	 Spectral	clustering	with	normalised	cuts.	An	affinity	matrix	is	built	by	cross-

correlating	the	adjacent	vertices	with	each	other.	Spectral	decomposition	is	

applied	to	the	normalised	graph	Laplacian.	The	final	parcellations	are	obtained	

by	discretising	the	eigenvectors.	

Destrieux	 Fischl	et	al.	(2004);	available	as	part	of	the	HCP	
datasets	from	db.humanconnectome.org	

150										

(75	L,	75	R)	

A	surface-based	parcellation	that	subdivides	the	cortex	with	respect	to	the	limit	

between	the	gyral	and	sulcal	regions.	

Desikan	 Desikan	et	al.	(2006);	available	as	part	of	the	HCP	

datasets	from	db.humanconnectome.org	

70													

(35	L,	35	R)	

A	surface-based	parcellation	that	subdivides	the	cortex	with	respect	to	

anatomical	landmarks	based	on	the	gyri.	

Geometric	 Geometric	parcellations	as	described	in	Thirion	et	

al.	(2014);	in-house	implementation,	featuring	

scikit-learn’s	KMeans	function.	

Varying	 k-means	clustering	is	applied	to	the	spatial	vertex	coordinates.	No	connectivity	

information	is	accounted	for.		

Random	 Random	parcellations	as	described	in	Schirmer	et	

al.	(2015)	

Varying	 Poisson	disk	sampling	is	used	to	generate	regions	of	approximately	equal	size	by	

ensuring	that	two	region	centres	are	not	closer	than	a	given	threshold	that	

controls	the	number	of	parcels.	

Table 1: Subject-level parcellation methods.

Last but not least, we include two more approaches to our experiments that

do not account for any functional data, with the aim of having a baseline towards

data-driven approaches. We generate (1) random parcellations using Poisson

disk sampling as described in (Schirmer, 2015) and (2) geometric parcellations195

using k -means clustering of the spatial coordinates of the cortex (Thirion et al.,

2014).

Two of the single-subject parcellation methods (Blumensath and Arslan)

require an initialisation with a high resolution parcellation (1000 parcels per

hemisphere). We use the approach proposed in (Blumensath et al., 2013) as it200

is the only method that is driven by seed vertices generated from the underlying

data, rather than a set of pre-determined centroids. Using the same initial

parcellation for both methods facilitates their comparison.
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Group-level methods

Groupwise parcellations build representative models of a population. Meth-205

ods to obtain a group-level parcellation typically rely on the assumption that

spatial correspondence between subjects has been ensured a priori by register-

ing subjects to a common template. Hence, each vertex (or voxel) represents

the same spatial location for each subject. This allows concatenating or aver-

aging connectivities of different subjects for population-level analysis. The two210

more popular ways of computing a data-driven groupwise parcellation (Crad-

dock et al., 2012) are (1) performing parcellation for each subject individually

and applying a second level clustering algorithm to subject-level parcellations

(i.e. 2-level approach), and (2) computing a representative feature matrix from

the population, for instance by concatenating BOLD timeseries across subjects,215

and submitting this combined matrix to a parcellation method (i.e. group-

average approach). All the computed and publicly available group-level meth-

ods considered in this study are presented in Tables 2 and 3, respectively, along

with their associated names. A more detailed description of each method is

provided in Supplementary Material 1.220

2-level approach. This technique is similar to majority voting, in the sense that

vertices assigned to the same region across subject-level parcellations are clus-

tered together. As a result, group-level parcellations obtained via this method

can capture the shared characteristics of the population as approximated by the

individual parcellations. To this end, a graphical model of the “parcel stability”225

is computed across all individual parcellations (Craddock et al., 2012; van den

Heuvel et al., 2008). This is achieved by constructing an N × N adjacency

matrix A (i.e. stability graph), in which an edge between vertices vi and vj is

weighted by the number of times both vertices are assigned to the same parcel

across all individual subject parcellations. Notably, as long as the initial par-230

cellations are spatially contiguous, the spatial integrity of the parcellations is

also guaranteed, since only vertices sharing the same cluster membership can

be connected in the adjacency matrix. Finally, the graph is subdivided into
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Name	 Reference	 Resolution	 Description	

JOINT	 Arslan	et	al.	(2015a);	codes	available	from	
www.doc.ic.ac.uk/~sa1013/codes.html	

Varying	 A	surface-based	parcellation	method	based	on	a	joint	spectral	
decomposition	of	individual	subjects.	An	initial	finer	parcellation	of	2000	
regions	per	hemisphere	is	used	for	spatial	feature	reduction	in	order	to	
compensate	for	the	computational	cost.	

2-LEVEL	 Group-level	parcellations	from	subject-level	
Arslan,	Blumensath,	Bellec,	Ward,	K-Means,	and	
N-Cuts	parcellations.	

Varying	 2-level	approach	is	applied	to	the	subject-level	parcellations	of	various	
methods	to	obtain	group-level	parcellations.	Parcellations	computed	in	
this	setting	are	referred	as	the	method’s	name	followed	by	"2"	(e.g.	
Ward-2).	

Ward-AVR	 Ward	(1963);	in-house	implementation	featuring	
scikit-learn’s	AgglomerativeClustering	function.	

Varying	 The	group	average	matrix	is	fed	into	the	Ward’s	agglomerative	
hierarchical	clustering	algorithm	using	the	same	setting	as	for	the	
subject-level	Ward	parcellations.	

K-Means-AVR	 k-means	clustering	as	described	in	Thirion	et	al.	
(2014);	in-house	implementation	featuring	scikit-
learn’s	KMeans	and	PCA	functions.	

Varying	 The	group	average	matrix	is	fed	into	k-means	clustering	after	being	
concatenated	with	the	average	spatial	coordinates	to	improve	spatial	
contiguity	of	parcellations.	

N-Cuts-AVR	 Craddock	et	al.	(2012);	in-house	implementation	
of	spectral	decomposition	featuring	
discretisation	(Yu	and	Malik	2003).		

Varying	 A	temporal	correlation	matrix	is	derived	from	the	group	average	matrix	
and	transformed	into	a	spatially	constrained	affinity	matrix.	Spectral	
clustering	with	normalised	cuts	is	used	as	in	the	same	setting	as	the	
subject-level	N-Cuts	parcellations.	

GRASP	 Honnorat	et	al.	(2015);	codes	available	from	
cbica.upenn.edu/sbia/software/grasp/index.html	

Varying	 A	method	based	on	Markov	Random	Field	(MRF)	that	can	subdivide	the	
cortex	into	spatially	contiguous	parcels	by	using	shape	priors.	The	group	
average	matrix	is	parcellated	into	10000	initial	clusters	by	running	the	
method	in	the	hierarchical	clustering	mode.	Final	parcellations	are	
derived	from	this	low-dimensional	matrix.		

GRAMPA	 Parisot	et	al.	(2016);	codes	available	from	
www.doc.ic.ac.uk/~sparisot	

Varying	 An	MRF	model	that	iteratively	updates	parcel	centres	and	parcel	
assignments	based	on	modality	specific	costs.	The	parcellation	is	
computed	using	the	group	average	matrix.	

Geometric	 Geometric	parcellations	as	described	in	Thirion	et	
al.	(2014);	in-house	implementation	featuring	
scikit-learn’s	KMeans	function.	

Varying	 k-means	clustering	is	applied	to	the	average	spatial	vertex	coordinates.	
No	connectivity	information	is	accounted	for.		

	

Table 2: Computed group-level parcellation methods.

different number of regions, typically by a graph partitioning algorithm, such as

spectral clustering with normalised cuts (van den Heuvel et al., 2008; Craddock235

et al., 2012). An illustration is provided in Fig. 2 that explains the construction

of a stability graph with 4 toy parcellations. This approach is used to gener-

ate a group-level parcellation from the individual subject parcellation methods

K-Means, Ward, N-Cuts, Arslan, Blumensath, and Bellec.

Group-average approach. This technique aims to capture shared patterns be-240

tween individuals within a population, by computing a group average repre-

sentation of connectivity. This is achieved by concatenating the timeseries

of each subject and applying PCA for dimensionality reduction before par-

cellation (Thirion et al., 2014; Smith et al., 2014). However, using the full-

concatenated timeseries with traditional PCA quickly becomes computationally245

prohibitive when the population’s size increases. To overcome this, we follow

the methodology employed by the HCP for the generation of group average ma-
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Name	 Reference	 Resolution	 Description	

Gordon	 Gordon	et	al.	(2016);	parcellation	available	from	
www.nil.wustl.edu/labs/petersen/Resources.html	

333																			
(161	L,	172	R)	

A	surface-based	parcellation	computed	from	the	average	gradients	of	
resting-state	functional	connectivity	networks.	Provided	parcellation	is	
iteratively	dilated	to	cover	the	entire	cortical	surface.	

Power	 Power	et	al.	(2011),	parcellation	available	from	
balsa.wustl.edu/study/show/WG33	

130																				
(65	L,	65	R)	

Resting-state	communities	originally	identified	in	volume	space	are	
projected	onto	the	cortical	surface	and	made	publicly	available	by	Van	
Essen	et	al.	(2016).	Connected	components	within	each	parcel	are	
relabeled	to	ensure	spatial	contiguity.		

Yeo	 Yeo	et	al.	(2011);	parcellation	available	from	
balsa.wustl.edu/study/show/WG33	

96																								
(49	L,	47	R)	

17-cluster	resting-state	networks	originally	derived	in	volume	space	
from	average	resting-state	functional	connectivity	data	using	a	GMM-
based	clustering	algorithm	are	projected	onto	the	cortical	surface	and	
made	publicly	available	by	Van	Essen	et	al.	(2016).	Connected	
components	in	each	parcel	are	relabeled	to	ensure	spatial	contiguity.		

ICA	 Group-ICA	parcellations	available	from	
db.humanconnectome.org/data/projects/HCP_500	

Varying	 Group-average	parcellations	by	means	of	group-ICA	(Beckmann	et	al.	
2004)	are	obtained	at	several	different	dimensionalities	(25,	50,	100,	
200,	300),	using	a	group-PCA	output	(Smith	et	al.	2014)	from	the	HCP	
S500	subjects.	Connected	components	within	each	parcel	are	relabeled.	 

Baldassano	 Baldassano	et	al.	(2015);	parcellation	available	from	
www.princeton.edu/~chrisb/code.html	

171																					
(84	L,	87	R)	

A	multi-purpose	clustering	algorithm	based	on	nonparametric	Bayesian	
modeling	is	applied	to	dense	connectome	derived	from	the	HCP	S500	
group	PCA	output	(Smith	et	al.	2014)	in	order	to	compute	a	surface-
based	parcellation.		

Glasser	 Glasser	et	al.	(2016);	parcellation	available	from	
balsa.wustl.edu/study/show/RVVG	

360																			
(180	L,	180	R)	

A	cortical	parcellation	generated	from	multi-modal	images	of	210	adults	
from	the	HCP,	using	a	semi-automated	approach.	Cortical	regions	are	
delineated	with	respect	to	function,	connectivity,	cortical	architecture,	
and	topography,	as	well	as,	expert	knowledge	and	meta-analysis	results	
from	the	literature.	

Fan	 Fan	et	al.	(2016);	parcellation	available	from	
atlas.brainnetome.org	

210																					
(105	L,	105	R)	

A	volumetric	brain	parcellation	is	obtained	using	both	anatomical	
landmarks	and	connectivity-driven	information.	Anatomical	regions	
defined	by	Desikan	et	al.	(2006)	are	parcellated	into	subregions	using	
functional	and	structural	connectivity	data	from	40	adults	provided	by	
the	HCP.	Cortical	parcels	are	projected	from	volume	to	surface.		

Shen	 Shen	et	al.	(2013);	parcellation	available	from	
www.nitrc.org/frs/?group_id=51	

200																					
(102	L,	98	R)	

A	spectral	clustering	approach	is	used	to	compute	a	volumetric	
groupwise	parcellation	based	on	an	optimization	process	that	
guarantees	functional	homogeneity	within	each	parcel	and	ensures	that	
computed	parcels	are	consistent	across	subjects.	Volumetric	parcels	
from	the	provided	1	mm	sampled	268-parcel	atlas	are	projected	to	
cortical	surface.		

AAL	 Tzourio-Mazoyer	et	al.	(2002);	available	from	
www.gin.cnrs.fr/AAL2_files/aal2_for_SPM12.tar.gz	

82																						
(41	L,	41	R)	

A	popular	volumetric	atlas	that	is	manually	delineated	with	respect	to	
anatomical	landmarks,	in	particular,	by	following	the	sulci	course	in	the	
brain.	Cortical	parcels	are	projected	from	volume	to	surface.		

Destrieux	 Fischl	et	al.	(2004);	parcellations	available	from	
db.humanconnectome.org	

150																					
(75	L,	75	R)	

Majority	voting	used	across	subject-level	Destrieux	parcellations	to	
obtain	a	group-level	parcellation.	

Desikan	 Desikan	et	al.	(2006);	parcellations	available	from	
db.humanconnectome.org	

70																							
(35	L,	35	R)	

Majority	voting	used	across	subject-level	Desikan	parcellations	to	obtain	
a	group-level	parcellation.	

	

Table 3: Pre-computed, publicly available group-level parcellation methods.

trices. We use FSL’s incremental group PCA (Smith et al., 2014), a technique

developed for computing “pseudo-timeseries” that can (to good approximation)

estimate the real PCA output applied to the original combined dataset, while250

relying on a limited amount of memory.

We apply this technique to generate group level pseudo-timeseries from both

Dataset 1 and Dataset 2. Group-level parcellations are computed from each of

these datasets using our in-house implementations of clustering techniques (K-

Means, Ward and N-Cuts) as well as connectivity-driven methods for which255

implementations are available (Honnorat et al., 2015; Parisot et al., 2016b).
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Figure 2: Illustration of how to compute a symmetric 16 × 16 adjacency matrix A from four

toy parcellations (4 × 4 matrices) where each colour represents a different label/parcel. For

example, vertex v7 (with its corresponding row and column highlighted in A) is assigned to

the same parcel as v3, v4, and v6, for 4, 3, and 2 times, respectively, giving A7,3 = 4, A7,4 = 3

and A7,6 = 2. A7,1 = A7,2 = A7,5 = A7,8 = 1, since it shares the same label with v1, v2, v5,

and v8 in just one parcellation, while the rest of the entries in row 7 of the adjacency matrix

are 0, since there does not exist a shared label between the other vertices and v7 in any of the

toy parcellations.

Other computed parcellations. Alternative to 2-level and group-average approaches,

we provide parcellations obtained from a spectral clustering technique that is

simultaneously driven by within- and inter-subject connectivity features (Arslan

et al., 2015). In addition, a groupwise geometric parcellation is derived using260

k -means clustering of the average spatial coordinates of all cortical vertices as

described in (Thirion et al., 2014).

Publicly available parcellations. Pre-computed, publicly available group-level

parcellations are also included in this study (Gordon et al., 2016b; Yeo et al.,

2011; Power et al., 2011; Baldassano et al., 2015; Fan et al., 2016; Shen et al.,265

2013; Smith et al., 2014; Glasser et al., 2016). Details on the method and the

resolution of the parcellations are provided in Table 3. In particular, it should

be noted that the parcellations provided by Baldassano et al. (2015) and the
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ICA parcellations (Beckmann and Smith, 2004; Smith et al., 2014) are computed

from a much larger HCP cohort (group average of 500 subjects) which can com-270

prise our evaluation dataset. This may introduce a bias in the evaluation of

both methods.

The methods proposed by Yeo et al. (2011) and Power et al. (2011) as

well as the ICA parcellations (Beckmann and Smith, 2004; Smith et al., 2014)

were originally developed for identifying communities or resting state networks275

(RSNs) that span across the cortical surface, hence do not naturally provide

spatially contiguous parcellations. Since this can affect the quality of the eval-

uation measures, we overcome this by relabelling connected components within

each parcel. We then remove very small parcels and slightly dilate the remain-

ing ones to adjust for vertices lost. k -means (both subject-level, 2-level, and280

group-average versions) and another connectivity-driven approach, GRAMPA,

can also provide spatially disjoint parcels. In our experiments, we do not apply

any post-processing to the parcellations derived by these methods, as we aim

to obtain roughly the same number of regions for all computed parcellations

for the sake of consistency. Nonetheless, we perform additional experiments to285

analyse the impact of relabelling connected components for these methods and

discuss how their performance changes compared to the original parcellations.

The multi-modal parcellation of the human cerebral cortex (Glasser et al.,

2016) is computed through expert manual annotation of imaging data from

several modalities, including function, connectivity and cortical architecture.290

To date, only group level parcellations have been made publicly available, and

therefore, we only incorporate this parcellation to our group-wise experiments.

We also include anatomical atlases to our study, including the Automated

Anatomical Labelling (AAL) atlas (Tzourio-Mazoyer et al., 2002) and two other

parcellations provided by the HCP (Fischl et al., 2004; Desikan et al., 2006).295

We obtain a groupwise representation of the surface-based anatomical parcella-

tions (Fischl et al., 2004; Desikan et al., 2006) using majority voting across the

subject-level parcellations.

Several parcellations are only available in volume space (Tzourio-Mazoyer
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et al., 2002; Shen et al., 2013; Fan et al., 2016). We use volume-to-surface and300

surface-to-surface sampling techniques to project volumetric parcels onto the

HCP average cortical atlas (Conte69) (Van Essen et al., 2012). AAL (Tzourio-

Mazoyer et al., 2002) and the volumetric parcellation by Shen et al. (2013) are

projected onto the cortical surface generated from the Colin27 brain (Holmes

et al., 1998) using FreeSurfer (Fischl, 2012), which is then registered to the305

Conte69 standard space using Multimodal Surface Matching (Robinson et al.,

2014). Our last volumetric parcellation (Fan et al., 2016) is provided in the

HCP volumetric space, and is therefore directly projected onto the HCP’s stan-

dard surface. Finally, all volumetric parcellations are post-processed and each

parcel is slightly dilated to fill holes that may have emerged during projection.310

Unfortunately, volume-to-surface resampling is not a straightforward process,

and hence, it is impossible to retain all volume-based parcels after projection.

However, we ensure that the parcellation boundaries and relative positions of

parcels to each other remain as faithful to the original atlas as possible.

2.3. Parcellation Evaluation Techniques315

Evaluating the quality of parcellation methods is a challenging task since

there is no ground-truth parcellation of the cerebral cortex. We gather here

the most commonly used evaluation techniques from the literature to evaluate

parcellations at both subject and group levels with respect to varying resolu-

tions. These techniques can be separated into four categories with regards to320

the parcellation aspects they assess: (1) reproducibility, (2) clustering validity

measures, such as homogeneity and Silhouette analysis, (3) multimodal compar-

isons with cytoarchitecture, task fMRI activation, and myelination, (4) network

analysis. A summary of the evaluation techniques is given in Table 4.

2.3.1. Reproducibility325

Reproducibility is a widely-accepted technique for evaluating the robustness

of a parcellation method with respect to the underlying data/subjects. It aims

at quantitatively measuring the extent of alignment in parcellation boundaries
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Evaluation	
technique	

Description	 Quantitative	
measurements	

Level	 Previously	used	in	literature	

Reproducibility	 Assesses	the	similarity	between	two	sets	of	
parcellations	either	obtained	from	different	
acquisitions	of	an	individual	(scan-to-scan)	
or	different	groups	(group-to-group).	

Dice	coefficient;	
Adjusted	Rand	index	

Subject/Group	 Craddock	et	al.	(2012);	Blumensath	et	al.	
(2013);	Shen	et	al.	(2013);	Thirion	et	al.	
(2014);	Honnorat	et	al.	(2015);	Arslan	et	al.	
(2015);	Parisot	et	al.	(2016a)	

Cluster	validity	
analysis		

Evaluates	the	quality	of	parcellations	from	a	
clustering	point-of-view	by	measuring	the	
faithfulness	of	the	parcellation	to	the	
underlying	data	source.		

Homogeneity;	
Homogeneity	relative	to	
null	models;	Silhouette	
coefficient	

Subject/Group	 Yeo	et	al.	(2011);	Craddock	et	al.	(2012);	
Arslan	et	al.	(2015);	Parisot	et	al.	(2016a);	
Gordon	et	al.	(2016b);	Arslan	et	al.	(2016)	

	

Agreement	with	
cytoarchitecture	

Assesses	the	overlap	with	known	
cytoarchitectonic	areas	as	delineated	by	the	
Brodmann	atlas.	

Dice	coefficient	 Subject/Group	 Blumensath	et	al.	(2013);	Arslan	et	al.	(2016);	
Parisot	et	al.	(2016a)	

Goodness-of-fit	
to	task	activation	

Evaluates	how	well	the	parcellations	agree	
with	the	task	activation	maps.	

Bayesian	information	
criterion	

Subject/Group	 Thirion	et	al.	(2014);	Parisot	et	al.	(2016a)	

Alignment	with	
myelination		

Assesses	the	agreement	between	the	
parcellations	and	highly	myelinated	cortical	
areas,	identified	by	a	coarse	myelin-driven	
parcellation		

Dice	coefficient	 Subject/Group	 Blumensath	et	al.	(2013);	Arslan	et	al.	(2016)	

Network-based	
classification	

Evaluates	the	ability	of	parcellations	to	
capture	population	differences	with	a	simple	
gender	classification	task	on	functional	
connectivity	networks.	

Classification	accuracy	 Group	 Vergun	et	al.	(2013);	Satterthwaite	et	al.	
(2014)	

Graph	theoretic	
analysis	

Investigates	different	topological	properties	
of	connectivity	networks	with	a	focus	on	the	
underlying	parcellation.	

Clustering	coefficient;	
characteristic	path	
length;	small-world	
index;	average	node	
degree	

Group	 Equiluz	et	al.	(2005);	Salvador	et	al.	(2005);	
Achard	et	al.	(2006)	

	

Table 4: Techniques used to evaluate parcellations.

between different parcellations. Reproducibility can be evaluated between par-

cellations obtained from a) different subjects, b) the same subject but different330

rs-fMRI acquisitions, c) different groups, and d) different initialisations (if the

method depends on the initialisation). Due to the high inter-subject variability

within a population, it is not expected to obtain high reproducibility values

between different subjects. Nevertheless, a robust parcellation method should

yield very similar parcellations for the same subject with different acquisitions.335

The same should be expected of group level parcellations, assuming the group

size is large enough.

We perform a reproducibility analysis for each subject by comparing their

parcellations obtained from two different rs-fMRI acquisitions (i.e. scan-to-scan

reproducibility). At the group level, we compare the parcellations obtained340

from Dataset 1 with the ones derived from Dataset 2 (i.e. group-to-group

reproducibility). Unfortunately, we are limited to performing the groupwise

reproducibility analysis only for the computed parcellations, as only one parcel-
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lation/atlas is publicly available from each external source.

Dice coefficient. The Dice coefficient (Dice, 1945) is a very popular measure of345

overlap between two labelled areas. It has been extensively used for evaluating

brain parcellations (Craddock et al., 2012; Honnorat et al., 2015; Blumensath

et al., 2013; Yeo et al., 2011; Arslan and Rueckert, 2015; Parisot et al., 2016a).

Given two parcels X and Y , the Dice coefficient is calculated as:

Dice =
2|X

⋂
Y |

|X|+ |Y |

350

where | · | indicates the number of vertices in a parcel. In order to obtain a

global measure of parcellation reproducibility, we follow the approach proposed

in (Blumensath et al., 2013). We first compute Dice coefficients for every pair

of parcels and match the parcels with the highest overlap. The Dice coefficients

of matching parcels are then averaged to obtain a global reproducibility score.355

The matching process is performed in an iterative manner, where matching

pairs identified in one iteration cannot be matched with other parcels at the

next iterations. This process is repeated until all pairs are identified. A Dice

coefficient of 1 implies a perfect match (identical parcellations).

Low SNR in functional connectivity data or high variability within a group360

may yield a subdivision of some regions from one parcellation to the next, even

when the same algorithm is performed on different acquisitions/subsets. To

account for this effect and reduce its impact on reproducibility, we also use a

modified version of Dice coefficient that merges the subdivided regions so as to

maximise the overlap with the other parcellation as described in (Blumensath365

et al., 2013). This is done by iteratively matching each parcel in one parcellation

to those in the other, if their overlap ratio is ≥ 0.5 (i.e. one parcel comprises

at least half of the other parcel). After this process, parcels that are matched

with the same parcel are merged and the average Dice coefficient is computed

between the matched pairs as described above.370
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Adjusted rand index. The adjusted Rand Index (ARI) (Hubert and Arabie,

1985) is also considered for the evaluation of parcellation reproducibility (Thirion

et al., 2014). In contrast to Dice coefficient, it measures the agreement of two

parcellations without the necessity of initially matching parcels. As a result,

it can more effectively measure the agreement between two parcellations with375

different numbers of clusters (Milligan and Cooper, 1986). The details of the

method are given in Appendix A. An ARI of 1 indicates a perfect correspon-

dence between parcellations, whereas a value of 0 implies that the parcellations

do not agree on any of the labels.

2.3.2. Cluster validity measures380

This second category of validation measures aims to evaluate the similarity

of vertices aggregated in the same parcel. Parcellation can be seen as a clus-

tering problem, and there exist many tools targeted at evaluating the quality

of clustering solutions. Here, we focus on highly popular measures of clustering

quality for brain parcellation, namely parcel homogeneity and Silhouette coef-385

ficients. In addition, we adopt the evaluation technique proposed in (Gordon

et al., 2016b) that compares parcellations to a set of “null models” obtained

by randomly relabelling the parcellation without altering the relative parcel

locations with respect to each other.

Homogeneity. A good parcellation should have the ability to group cortical ver-390

tices with highly similar functional connectivity (Craddock et al., 2012; Gordon

et al., 2016b). It might be particularly important for subsequent network anal-

ysis where network nodes are typically represented by the average signal (e.g.

BOLD timeseries) within each parcel (Shen et al., 2013; Gordon et al., 2016b).

This can be evaluated by computing the functional homogeneity within a parcel,395

a highly popular parcellation measure (Craddock et al., 2012; Shen et al., 2013;

Gordon et al., 2016b; Arslan and Rueckert, 2015; Parisot et al., 2016a; Honno-

rat et al., 2015). The homogeneity of a parcel is measured by calculating the

average similarity between every pair of vertices assigned to it. This similarity

can be defined as the Pearson’s correlation coefficient between the “connectivity400
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fingerprints” of vertices (Power et al., 2011; Craddock et al., 2012). A connec-

tivity fingerprint is computed for each vertex vk, by correlating vk to the rest of

the cortical vertices and applying Fisher’s r-to-z transformation to the resulting

correlation coefficients (Power et al., 2011). A global homogeneity value is ob-

tained by averaging the homogeneity values across all parcels (Craddock et al.,405

2012).

A shortcoming of homogeneity is its dependency on the parcel size distribu-

tion. Smaller parcels tend to have a higher homogeneity than large ones, such

that, a parcellation mostly composed of many small parcels and a few large

regions will perform better than one with similarly sized parcels. To reduce this410

bias, we compute a weighted arithmetic mean, where each parcel’s contribution

to the global homogeneity is proportional to its size.

Comparison to null models. While computing homogeneity by means of a weighted

mean reduces the bias towards small parcels, homogeneity values remain depen-

dent on the resolution of the parcellations so that fair comparison between dif-415

ferent resolutions is not possible. An alternative is proposed in (Gordon et al.,

2016b) which consists of comparing a parcellation with so-called “null models”

of the same resolution.

In order to obtain such null models, we perform the following procedure: for

each hemisphere, we project the parcellation onto a standard spherical surface420

provided by the HCP and randomly rotate each point in this sphere around

the x, y, and z axes. This process moves each parcel to a new location on

the cortical surface without altering their relative positions. We then measure

the homogeneity of the rotated parcellation and repeat the same process for

1000 different null models. Parcels that move to the medial wall, where no425

connectivity information is available, are discarded from computations. The

advantage of this approach is that it reduces the observed biases with respect

to parcel shape and size, as the parcellations are compared to their rotated

versions, which have the same resolutions and similar parcel shapes.

In order to quantitatively evaluate parcellations with respect to their null430
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models, we (1) count the number of rotated parcellations with lower homogene-

ity scores than the original parcellation and (2) compute the difference between

the homogeneity of the original parcellation and the mean homogeneity score

of null models, scaled by their standard deviation (i.e. z-scores relative to null

models) (Gordon et al., 2016b).435

Silhouette coefficient. Another useful and popular technique to quantify par-

cellation reliability is the Silhouette coefficient (SC) (Rousseeuw, 1987), which

can be used as an indicator of how well vertices fit in their assigned parcel. For

each vertex, it compares the within-parcel dissimilarity defined as the average

distance to all other vertices in the same parcel, to the inter-parcel dissimilarity440

obtained from those assigned to other parcels (Yeo et al., 2011; Craddock et al.,

2012). SC not only evaluates the compactness of parcels, but also their degree

of separation from each other. It is defined as follows:

SCi =
bi − ai

max(ai, bi)

Given a parcellation U = {U1, U2, . . . UK}, ai and bi correspond to within-parcel445

and inter-parcel dissimilarity of vertex vi ∈ Uk, respectively, and are defined as

follows:

ai =
1

nk − 1

∑
j∈Uk,i6=j

d(vi, vj)

bi =
1

M

∑
j∈N(Uk)

d(vi, vj)

Here, nk denotes the number of vertices in Uk, N(Uk) denotes the set of parcels

that are neighbours with Uk, with M =
∑

j∈N(Uk)
nj being the number of ver-450

tices within these neighbouring parcels and d(vi, vj) is the distance measure

defined as 1− r, where r is Pearson’s correlation computed between the connec-

tivity fingerprints of vi and vj . Instead of computing the inter-parcel dissimilar-

ity with respect to the vertices in all other parcels, we restrict the computations
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to the neighbouring parcels. This is because (1) it is unlikely for a vertex to be455

assigned to a remote parcel due to spatial constraints imposed on the parcella-

tions, and (2) computing inter-parcel dissimilarity with respect to all vertices

outside a parcel can easily yield a bias towards obtaining high Silhouette coef-

ficients, as the inter-parcel dissimilarity tends to be extremely high due to the

many vertices with low similarity contributing to its computation.460

Due to the fact that we use correlation distance as the dissimilarity measure,

SC ranges within [−1,+1]. A negative SC implies misclassification of a vertex,

while a value close to 1 indicates that the vertex is clustered with a high degree

of confidence. If most vertices possess high Silhouette values, the parcellation is

considered to be of high quality. A global score is obtained for each parcellation465

by averaging the Silhouette coefficients across all vertices.

2.3.3. Comparisons with other modalities

The previously proposed measurements assess the accuracy of parcellations

from a clustering point of view. However, when defining regions of interest

for neuro-anatomical purposes, the consistency of these areas with well-defined470

neuro-biological features also constitutes a critical aspect of evaluation. To this

end, we expand our comparisons to those with other modalities. We test the

parcellation quality by evaluating their agreement with task activation maps

and myelination patterns, and their overlap with well known cortical regions

delineated from cytoarchitectonic features.475

It should be noted that Glasser is not only driven by connectivity, but also

uses information from cortical architecture, task fMRI activation, and myelin

content. As a result, it may develop a positive bias towards these modalities.

This should be taken into consideration while interpreting the performance of

Glasser with respect to the inter-modality comparisons.480

Bayesian information criterion. The Bayesian information criterion (BIC) is

proposed in (Thirion et al., 2014) as a means of quantifying the agreement

of parcellations with task fMRI activation maps. Each vertex is associated
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with a task activation map (or the concatenated task activation maps of all

subjects if a groupwise parcellation is considered). The BIC criterion measures485

the goodness of fit of a probabilistic model of the concatenated task activation

maps by penalising the negative log likelihood by the complexity of the model

(number of parcels).

Overlap with cytoarchitectonic areas. We measure the agreement of our parcella-

tions with the Brodmann cytoarchitectonic areas (Brodmann, 1909). Although490

functional connectivity obtained from BOLD timeseries does not necessarily re-

flect the cytoarchitecture of the cerebral cortex (Wig et al., 2014), agreement

with some known cytoarchitectonic areas could indicate a parcellation’s ability

to reflect the underlying cortical segregation (Gordon et al., 2016b). Our stand-

point to include comparisons with the cytoarchitecture is to show the extent of495

such agreement with at least certain areas, such as the motor and visual cortex,

for which several parcellation techniques report a noticeable alignment (Blu-

mensath et al., 2013; Wig et al., 2014; Gordon et al., 2016b). To this end, we

use the Brodmann parcellations provided by the HCP, which contain labels for

the primary somatosensory cortex (BA 3, 1, and 2), the primary motor cortex500

(BA 4), the premotor cortex (BA 6), Broca’s area (BA 44, 45), the visual cortex

(BA 17 and MT), and the perirhinal cortex (BA 35, 36) as shown in Fig. 3.

Quantitative comparisons are performed using the joined Dice coefficient ap-

proach as explained in Section 2.3.1. Similarly, overlapping parcels are matched

with the Brodmann areas before we compute the Dice coefficient between the505

matching pairs. It is worth noting that several parcels can be matched to the

same area and therefore merged into a larger parcel.

Agreement with structured myelination patterns. Strong similarities have been

observed between myelin maps and resting-state fMRI gradients (Glasser and

Van Essen, 2011). We should therefore expect the boundaries of rs-fMRI driven510

parcellations to align with myelination patterns. To evaluate this, we compute

a coarse-resolution myelin-driven parcellation (25 parcels) using the method de-

scribed in (Parisot et al., 2016b) for each subject and a group-level one. This
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Figure 3: Cyto- and myelo-architecture of the cerebral cortex as defined respectively by (a)

Brodmann areas and (b) a coarse-resolution myelin-driven parcellation.

method simply regroups vertices with similar myelin values and, as shown in

Fig. 3, effectively delineates the major changes in myelination across the cortex.515

We compare the parcellations obtained by different methods to these coarse

parcellations using the joined Dice coefficient approach (2.3.1) which can ac-

curately compare parcellations of different resolutions. Regarding this coarse

parcellation we only consider the highly myelinated cortical areas, i.e. cortical

areas with a mean myelin value below a certain threshold are discarded.520

2.3.4. Network analysis

Parcellations can significantly reduce the dimensionality of the dense human

connectome without eliminating valuable information about the interactions

between different brain regions and the mechanisms through which these in-

terconnections give rise to complex cognitive processes. It has been common525

practice in recent neuroscience studies to explore several neurological (Tijms

et al., 2013; Fornito et al., 2015) and neuro-developmental disorders (Jafri et al.,

2008; Liu et al., 2008; Dennis et al., 2011; Fornito et al., 2012) from a network

perspective. These disorders have often been linked to a disruption or abnormal

integration of spatially distributed brain regions that would normally be part of530

a single large-scale network, leading to their characterisation as disconnection

syndromes (Catani et al., 2005). Apart from the clinical value of network anal-

ysis, efforts to explore potential correlations between connectivity patterns and
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certain phenotypes like fluid intelligence (Smith, 2016), or to predict an individ-

ual’s biological age (Robinson et al., 2008; Dosenbach et al., 2010; Pandit et al.,535

2014; Qiu et al., 2015) have been made. Therefore, a parcellation method can

also be evaluated in terms of its ability to capture the inter-individual variability

and to reveal patterns that explain observed cognitive performance.

Once the parcellation has been generated, a network representation can eas-

ily be obtained by mapping each network node vi ∈ V to a parcel. The edge540

weights in functional networks usually represent the statistical dependency be-

tween the brain regions underlying the connected nodes. In our analysis of func-

tional networks, we use temporal correlation of the representative timeseries as

an estimate of the connection strength between two brain parcels.

We explore different ways in which the underlying parcellation can affect545

network analysis: (1) a network-based classification task and (2) a standard

graph theoretic analysis of brain connectivity networks.

Network-based classification. Several studies suggest that differences have been

identified in both structural and functional connectivity between genders (Gong

et al., 2011). More specifically, in terms of functional connectivity derived from550

rs-fMRI data, which is the focus of the current survey, significant differences

in the topological organisation of functional networks have been found between

males and females (Tian et al., 2011). For this reason we choose a gender clas-

sification task to evaluate the impact of the parcellation on network based clas-

sification tasks. We employ linear Support Vector Machines (SVMs) (Burges,555

1998), a well-established classifier from the machine learning literature and a

10-fold cross-validation procedure to get an estimate of each method’s perfor-

mance. Previous studies (Robinson et al., 2008; Vergun et al., 2013; Satterth-

waite et al., 2014) have used SVM as a machine learning classifier, which is

designed to make predictions based on high-dimensional data, to investigate sex560

differences in functional connectivity.

Given a set of p-dimensional feature vectors, SVM aims to identify a (p−1)-

dimensional hyperplane that represents the largest separation or margin between
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the feature vectors of the two classes. The hyperplane is chosen in a way that

the distance from the nearest data point of each class is maximized. The weights565

assigned to the normalised features to obtain a low-dimensional representation

of the feature vectors can, additionally, be used to describe how heavily weighted

the connectivity feature is within the multivariate model (Satterthwaite et al.,

2014).

Since node correspondences are ensured with groupwise parcellations, an570

embedding of each subject’s connectivity matrix can be employed to get a gen-

eral vector representation (Varoquaux and Craddock, 2013), rendering the use

of the aforementioned classifier straightforward. This approach is often referred

to as “bag of edges” (Craddock et al., 2013) and has been widely used when the

underlying parcellation is the same among all subjects.575

Graph theoretic analysis. The first step of the analysis involves the computation

of partial correlation matrices for all subjects. Partial correlation is considered

to discard the “indirect” connections that are preserved by Pearson’s correla-

tion, only maintaining the “direct” connections between two regions. It can be

computed from the inverse of the empirical covariance matrix, P = Σ−1, as580

πvu = −Pvu(PvvPuu)−1/2. It is common practice to perform graph theoretic

analysis on partial correlation networks, since correlation coefficient captures

the effect of both direct and indirect paths minimizing the information added

by the analysis (e.g. the shortest path length between two nodes is already

captured by full correlation (Fornito et al., 2016)). In order to estimate the585

group average functional connectivity matrix from the individual partial cor-

relation matrices, we follow the procedure described in (Salvador et al., 2005):

in this, a binary network for the group of subjects can be obtained by testing

the null hypothesis that the (mean) partial correlation is zero between any pair

i, j of regions. Fisher’s r-to-z transform is applied to improve normality and,590

subsequently, a one-sample t-test is performed for all possible pairs of regions.

The False Discovery Rate approach is applied to find the appropriate thresh-

old and to correct for multiple comparisons, according to the steps described
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in (Benjamini and Yekutieli, 2001), which takes into account the lack of inde-

pendence between tests. Proportional thresholding is applied after this step, to595

preserve the top 20% of the edges and reduce threshold effects on the network

measures Garrison et al. (2015); Alexander-Bloch et al. (2010).

Once the binary network representing the group is generated for each method,

a graph theoretic analysis can be performed to investigate topological properties

of the network. Network measures of healthy human functional brain connectiv-600

ity have previously been explored with simple correlation (Eguiluz et al., 2005),

partial correlation (Salvador et al., 2005) as well as wavelet correlation (Achard

et al., 2006) networks. Here we investigate how some of the most commonly

used graph theoretic measures, namely clustering coefficient C, characteristic

path length L, their respective normalised versions, γ and λ, as well as the605

small world index σ, are affected by the underlying parcellation technique and

its resolution using partial correlation networks. The details of graph theoretic

measures are given in Appendix B.

3. Results

3.1. Experimental Setup610

All parcellations included in the subject-level analysis are generated from the

individual rs-fMRI data in Dataset 1. The data for each subject was acquired

in two sessions that were held on different days and divided into four runs of

approximately 15 minutes each. We concatenate the timeseries of two scans

acquired on the same day, obtaining two 30-minute rs-fMRI datasets (rs-fMRI 1615

and rs-fMRI 2) for all 100 subjects and use them to obtain two different parcel-

lations for each subject for test-retest reproducibility analysis. The groupwise

parcellations using the 2-level approach are generated from the individual par-

cellations obtained from the rs-fMRI 1 set. This set is also submitted to MIGP

to obtain the group-PCA matrix, which is subsequently used to compute par-620

cellations using the group-average approach. The rs-fMRI 2 set is exclusively
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used for the cluster validity measurements (i.e. homogeneity and Silhouette

coefficients) of the subject-level parcellations.

Dataset 2 is primarily used to evaluate the group-wise parcellations (publicly

available and computed ones from Dataset 1). A second set of group-level625

parcellations is also generated using Dataset 2 in order to assess reproducibility

across different groups. It is worth noting that, this second set is solely used to

assess group-to-group reproducibility and excluded from any other stage of the

analysis pipelines.

Most of the pre-computed parcellations comprise a fixed number of regions,630

while the methods for which an implementation is available can be explored at

different resolutions, allowing us to assess the sensitivity of quantitative mea-

sures with respect to the number of parcels. For these methods, we generate

parcellations containing between 50 and 500 regions (i.e. 25 to 250 per hemi-

sphere), in increments of 50.635

Finally, results are reported using the following naming scheme: groupwise

parcellations obtained using the 2-level approach will be referred to via their

associated method name followed by “2” (e.g. Ward-2 ), whereas parcellations

derived from the group-average approach will be accompanied by the “AVR”

suffix (e.g. Ward-AVR).640

3.2. Subject-level Results

For ease of comparison between different methods, we report average evalu-

ation measures in the form of line graphs for all computed resolutions. In order

to represent the variability across individuals we show box plots alongside the

line graphs, but only for a subset of granularity levels (i.e. for 100, 200, and 300645

regions).

Reproducibility results are given in Fig. 4. Cluster validity results, including

homogeneity values and Silhouette coefficients, are presented in Fig. 5 and 6,

respectively. Bayesian information criterion results obtained from the task acti-

vation maps on a per subject basis are given in Fig 8. Finally, comparisons with650

Brodmann areas and myelin maps are presented in Fig. 9 and 10, respectively.
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3.2.1. Reproducibility

Reproducibility results computed by Dice coefficient and adjusted Rand in-

dex (ARI) indicate that Geometric and N-Cuts yield the most reproducible

results. Although Geometric shows a better performance than N-Cuts at rel-655

atively low resolutions, this trend shifts towards the favor of N-Cuts at higher

resolutions. The performance of N-Cuts can be explained by the hard spatial

constraints imposed to the adjacency matrices that drive the spectral clustering

algorithm, which promotes uniformly sized and/or singleton parcels (Craddock

et al., 2012; Blumensath et al., 2013). Obtaining highly reproducible parcel-660

lations for Geometric is also expected, as the parcellations of a subject are

generated from the same set of spatial coordinates.

Two general-purpose clustering methods, K-Means and Ward, show poor

reproducibility scores, in particular when compared to methods derived from

an initial finer parcellation such as Blumensath and Arslan. It is interesting to665

note that Dice overlap measurements indicate a more favourable performance

by Blumensath with respect to Arslan, while a reverse trend is observed in

ARI. These results suggest that methods initialised with a finer parcellation

may be more robust, which could be due to the fact that the impact of noise

is reduced by the initialisation scheme. Bellec generally shows the poorest670

performance. Nevertheless, it should be noted that this method is originally

developed to obtain parcellations with much finer resolutions (over 1000 regions

per hemisphere) (Bellec et al., 2006), hence, it may not be adapted to this range

of resolutions. Indeed, we can observe that the reproducibility is constantly

increasing with the number of parcels. Inversely, the reproducibility of K-Means675

parcellations rapidly decreases with the number of parcels, and Bellec surpasses

K-Means at higher levels of granularity with respect to ARI.

As expected, the Dice coefficient is strongly increased by merging subdivided

regions. In particular, this process yields more favourable results for the meth-

ods based on hierarchical clustering, namely Ward, Arslan and Blumensath,680

for which the improvement is up to 15%. Blumensath even surpasses N-Cuts
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Figure 4: Subject-level reproducibility results. Left : Average reproducibility values obtained

using Dice coefficient (top), joined Dice coefficient (middle), and adjusted Rand index (bot-

tom). Right : Box plots indicate the reproducibility distribution across subjects for 100, 200,

and 300 regions, from left to right, for each method.

and Geometric over resolutions with more than 150 parcels, becoming the top

performing method regarding reproducibility. Other approaches tend to have

a less significant improvement, mostly at a rate of 5 − 8%, while N-Cuts and
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Geometric are minimally affected. This trend can be attributed to the fact that685

hierarchical clustering subdivides the cortex with a bottom-up process, where

boundaries derived at lower resolutions are propagated to higher levels. Joining

over-parcellated regions may therefore increase the similarity between parcel-

lations that subdivide the same regions at different levels of the hierarchical

clustering tree.690

3.2.2. Cluster validity measures

Cluster validity measurements show a clear tendency in favour of connectivity-

driven approaches. The most prominent trend is that regardless of the parcel-

lation resolution, K-Means outperforms all other methods in terms of both

homogeneity (Fig. 5) and Silhouette analysis (Fig. 6). This would indicate that695

K-Means generates the best clustering of the underlying data. It is followed by

the hierarchical approaches, each of which performs almost equally regarding

Silhouette coefficients, while Ward is the best with respect to homogeneity. In

particular, Arslan consistently generates more homogeneous parcellations than

Blumensath, which might be attributed to the different techniques used by each700

method for computing an initial parcellation of the cerebral cortex before apply-

ing hierarchical clustering. This initial stage also helps obtain parcellations with

a slightly higher degree of confidence than Ward. Amongst the connectivity-

driven parcellations, N-Cuts shows the poorest performance. This can be due to

the size bias inherent in this parcellation scheme that could limit the agreement705

with the underlying data. On the other hand, anatomical parcellations Desikan

and Destrieux, yield the worst measurements and are surpassed by Geometric

and Random. This might suggest that anatomical information alone does not

allow to map the brain’s functional organisation.

All methods show a performance increasing with the number of parcels com-710

puted. This is linked to the fact that both measurements depend on the size of

the parcels (e.g. smaller parcels yield better results). It should be noted that

this trend may benefit the K-Means parcellations, which comprise of several

small discontinuous parcels.

30



# of parcels
50 100 150 200 250 300 350 400 450 500

H
om

og
en

ei
ty

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Desikan

Destrieux

Arslan
Blumensath
Bellec
Ward
K-Means
N-Cuts
Geometric
Random

Ars
lan

Blum
en

sa
th

Bell
ec

W
ar

d

K-M
ea

ns

N-C
ut

s

Geo
m

et
ric

Ran
do

m

Des
ika

n

Des
tri

eu
x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5: Subject-level homogeneity results. Left : Lines show homogeneity values for all res-

olutions, averaged across subjects, whereas black dots correspond to the average homogeneity

obtained from the Desikan and Destrieux atlases, at a fixed resolution of 70 and 150 parcels,

respectively. Right: Box plots indicate the homogeneity distribution across subjects for 100,

200, and 300 parcels, from left to right for each computed method.
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Figure 6: Subject-level Silhouette analysis results. Left : Lines show Silhouette coefficients

(SC) for all resolutions, averaged across subjects, whereas black dots correspond to the average

SC obtained from the Desikan and Destrieux atlases, at a fixed resolution of 70 and 150 parcels,

respectively. Right: Box plots indicate the SC distribution across subjects for 100, 200, and

300 parcels, from left to right for each computed method.

Another important observation is the higher inter-subject variability of clus-715

ter validity results compared to reproducibility, especially with respect to ho-

mogeneity. While one can infer that cluster validity measures are more sensitive

than Dice coefficients, this could also be attributed to the fact that reproducibil-

ity measures the spatial similarity of parcellations that have been registered onto
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the same standard cortical surface; as a result, an inherent alignment already720

exists across subjects. This yields a lower inter-subject variability, especially for

the spatially constrained methods and with respect to increasing resolution. On

the other hand, functional organisation of the brain as estimated by rs-fMRI can

dramatically change from one subject to the next and even between different

acquisitions of the same subject. Combining this with the impact of low SNR725

inherent to rs-fMRI, it may not be possible to parcellate all subjects with high

homogeneity and/or confidence. This can be a critical point for consideration,

for example, when a group-level study is devised.

Impact of relabelling connected components in disjoint parcellations

K-means clustering applied to the subject-level connectivity data can yield730

spatially disjoint parcellations. In Fig. 7, we show how certain evaluation mea-

sures change when the k -means parcellations are forced to become spatially

contiguous by relabelling connected components in each parcel. As can be seen

in Fig. 7(a), a large amount of new parcels are generated for all subjects and

resolutions after subdividing discontinuous regions. This unsurprisingly yields735

more homogeneous regions, as homogeneity depends on the resolution and likely

to increase when the cortex is parcellated into more sub-regions (i.e. homoge-

neous regions still stay homogeneous when subdivided). On the other hand,

as we alter the clustering configuration unnaturally by forcing parcels to split,

fidelity to the underlying data is negatively affected, yielding lower Silhouette740

coefficients. Newly generated parcellations provide lower Dice scores at low reso-

lutions, most likely due to the decrease in the overlap ratio between large parcels

after splitting. However, it appears that newly obtained (smaller) parcels can

be matched better with each other across parcellations, as the joined Dice co-

efficients and adjusted Rand indices show a more favourable performance after745

the splitting process.
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Figure 7: Quantitative evaluation measures obtained from subject-level k -means parcellations,

before and after disjoint parcels are split into spatially contiguous regions. Points represent-

ing the original and relabelled parcellations (shown in red and blue, respectively) are matched

with dashed lines for ease of comparison. The blue points correspond to the average number

of parcels acquired at each resolution after splitting, and therefore, are plotted further to the

right with respect to the red points, which align with the resolutions of the original parcella-

tions (50 to 500, in increments of 50) along the x axis. (a) The number of newly generated

parcels after splitting, where box plots show the variability across subjects. (b-d) Scan-to-scan

reproducibility obtained via Dice similarity, joined Dice similarity, and adjusted Rand index.

(e-f) Clustering accuracy measured via parcel homogeneity and Silhouette analysis.

3.2.3. Multi-modal comparisons

The agreement between the subject-level parcellations and the task fMRI

activation maps is evaluated using the Bayesian information criterion (BIC),

with respect to all contrasts available in the HCP (a total of 86 activation750

contrasts from 7 different protocols (Barch et al., 2013)). The results presented

in Fig. 8 show a very similar trend to cluster validity measures, with anatomical

parcellations having the worst performance and K-Means leading all methods.
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Figure 8: Subject-level Bayesian information criterion (BIC) results showing agreement with

task activation. Left : Lines show BIC values for all resolutions, averaged across subjects,

whereas black dots correspond to the average BIC obtained from the Desikan and Destrieux

atlases, at a fixed resolution of 70 and 150 parcels, respectively. Right: Box plots indicate the

variability across subjects for 100, 200, and 300 parcels, from left to right for each computed

method. It should be noted that a lower BIC indicates higher agreement.

Interestingly, Blumensath has a very poor performance, even being surpassed

by Random and Geometric at high levels of granularity.755

The average overlap between the parcellations and the Brodmann areas (BA)

across all subjects for all resolutions is given in Fig. 9. In general, all methods

have good overlap with the primary somato-sensory cortex (BA[3,1,2]), pre-

motor cortex (BA6), and primary visual cortex (BA17). Relatively low mea-

sures are obtained for the rest of the Brodmann areas, especially for the perinatal760

cortex (BA[35,36]). On average, the anatomical parcellations outperform other

approaches with the same number of parcels considered, while N-Cuts and Ran-

dom yield the best overlap for the rest of the resolutions. On the other hand,

Blumensath produces the least favourable results at almost all scales.

Average overlap scores obtained by comparing each parcellation with highly765

myelinated cortical regions are given in Fig. 10. In general, results follow simi-

lar trends to those obtained with the comparisons to cyto-architecture. N-Cuts

and Random yield the best overlap scores for all resolutions and anatomical

parcellations show a higher degree of agreement with the myelination than the

rest of the approaches. Once again, Blumensath has the lowest overlap, which770
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Figure 9: Agreement with the cytoarchitecture of cerebral cortex. Left : Overlap of all

subject-level parcellations with several Brodmann areas, averaged across individuals. For

the connectivity-driven, random and geometric parcellations (top 8 rows), each cell shows

overlap scores for 100, 200, and 300 regions, from top to bottom. For the rest of the parcel-

lations, resolutions are indicated aside their names in parentheses. Right : Dice coefficients

averaged across all considered Brodmann areas for all methods/resolutions

# of parcels
50 100 150 200 250 300 350 400 450 500

D
ic

e 
co

ef
fic

ie
nt

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Desikan

Destrieux

Arslan
Blumensath
Bellec
Ward
K-Means
N-Cuts
Geometric
Random

Ars
lan

Blum
en

sa
th

Bell
ec

W
ar

d

K-M
ea

ns

N-C
ut

s

Geo
m

et
ric

Ran
do

m

Des
ika

n

Des
tri

eu
x

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 10: Agreement with the myelo-architecture of the cerebral cortex. Left : Dice-based

overlap measures of all subject-level parcellations with highly myelinated cortical areas, aver-

aged across individuals. Right: Box plots indicate the variability across subjects for 100, 200,

and 300 parcels, respectively from left to right for each computed method.

might indicate that Blumensath parcellations generally do not agree with other

cortical features. Similarly, despite its high degree of agreement with task ac-

tivation, K-Means also yields relatively low overlapping scores with both the

cyto- and myelo-architecture of the cortex.

35



3.3. Group-level Results775

Evaluation results obtained for the groupwise parcellations are summarised

below.

3.3.1. Reproducibility

The reproducibility values (Fig. 11) are only reported for methods that allow

the derivation of multiple parcellations. As expected, the spectral techniques780

have the best reproducibility results, with N-Cuts and JOINT leading the oth-

ers. In general, more favourable results are achieved by 2-level parcellations.

This may be attributed to the fact that these parcellations are obtained from a

set of individual parcellations that already provide a means of spatial smoothing.

Furthermore, the parcellations are computed using normalised cuts, a technique785

known to increase the reproducibility of parcellations (Craddock et al., 2012;

Blumensath et al., 2013). Among the parcellations derived from the average

matrix, Ward-AVR shows the least favourable performance. MRF-based meth-

ods (i.e. GRASP and GRAMPA) and K-Means-AVR also have a relatively poor

performance. While joining over-parcellated regions generally increases repro-790

ducibility for the group-average approaches, it has a lesser impact on the 2-level

parcellations as most of them only show a marginal improvement.

3.3.2. Cluster validity results

Clustering validity results in terms of parcellation homogeneity are sum-

marised in three figures. First of all, homogeneity values obtained by each795

method/resolution are given in Fig. 12. The homogeneity of each method for a

set of selected resolutions together with the homogeneity of their respective null

parcellations are presented in Fig. 13. The difference between the homogene-

ity of the computed parcellations and the distribution of homogeneity models

measured as z-scores is shown in Fig. 14. Although group-level homogeneity800

results are obtained from the average connectivity fingerprints of all subjects,

very similar results are achieved when homogeneity is computed on a per sub-

ject basis by using each subject’s connectivity fingerprints and then averaged
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Figure 11: Group-level reproducibility results. Reproducibility values for each method are

obtained using Dice coefficient (top, left), Dice coefficient after joining over-parcellated regions

(top, right), and adjusted Rand index (bottom).

across subjects (Supplementary Material 2).

Homogeneity results in Fig. 12 show a relatively poor performance for most805

of the provided parcellations. The methods that generate the most repro-

ducible parcellations (e.g. spectral methods JOINT, N-Cuts-2, and N-Cuts-

AVR) as well as Geometric also obtain poor homogeneity values. In general,

other connectivity-driven computed parcellations tend to generate highly ho-

mogeneous parcellations with the group-average and 2-level methods obtaining810

very similar results. Among them, K-Means-AVR especially excels at lower

resolutions, but is outperformed by Baldassano, one of the publicly available

parcellations based on functional connectivity when similar resolutions are con-

sidered. It should be noted, though, that Baldassano is obtained from a larger

HCP cohort (500 subjects) which may contain our evaluation set and positively815
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Figure 12: Group-level homogeneity results. Whereas lines show the homogeneity values for

all computed resolutions, black dots correspond to the homogeneity scores obtained from the

publicly available parcellations with fixed resolutions.

bias homogeneity results.

As shown in Fig. 13 and 14, we observe similar performance trends for most

of the computed parcellations by comparing to null models. Anatomical parcel-

lations (AAL, Destrieux, and Desikan), and some of the provided parcellations

(Fan, Gordon, and Shen), regardless of their respective resolutions perform820

similar to or worse than their null models. Among the publicly available parcel-

lations, Baldassano is on par with K-Means-AVR, while Yeo, Power, and ICA

also yield good results.

Group-level Silhouette coefficients (Fig. 15) mostly follow the tendency ob-

served in homogeneity. K-Means-AVR outperforms the other approaches at825

all resolutions. It is followed by another group-average technique, GRAMPA,

which shows a good performance at low levels of granularity. All 2-level ap-

proaches, apart from N-Cuts-2, perform equivalently well and produce more

distinct parcels than most of the group-average methods. In contrast to the ho-

mogeneity results, Gordon and Power are the top-performing provided parcella-830
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Figure 13: Homogeneity of each parcellation (red and cyan dots) and their respective 1000

null models (gray dots). Null models yield different homogeneity scores due to variation

across parcel size and location. + shows the average homogeneity obtained by each set of null

parcellations. ∗ indicates that the computed homogeneity is higher than at least 950 of its null

parcellations (i.e. p < 0.05). Top: Results of publicly available parcellations with relatively

low resolutions (comprising around or fewer than 200 regions) and the computed parcellations

with 150 parcels. Bottom: Results of publicly available parcellations with higher resolutions

(e.g. comprising around or greater than 300 regions), with the computed parcellations having

a fixed resolution of 300 parcels. The exact number of parcels for each method is indicated

aside the method name in parentheses.

tions. Interestingly, despite producing homogeneous parcellations, Baldassano,

Yeo, and ICA show an average performance in terms of Silhouette coefficients.

This shows that generating homogeneous parcellations does not necessarily guar-

39



# of parcels
50 100 150 200 250 300 350 400 450 500

   
   

   
   

 Z
 s

co
re

s 
re

la
tiv

e 
to

 n
ul

l m
od

el
s

-5

-3

-1

1

3

5

7

9

11

13

15

17

Gordon

Power

Yeo Baldassano

Glasser

Destrieux

Desikan Shen

AAL

Fan

ICA
Arslan
Blumensath
Bellec
Ward-2
K-Means-2
N-Cuts-2
Geometric
JOINT
GRASP
Ward-AVR
K-Means-AVR
N-Cuts-AVR
GRAMPA

Figure 14: Difference between the actual homogeneity and the homogeneity distribution of

null models. Lines show the z scores relative to null models for all computed resolutions, while

black dots correspond to the z scores obtained from the publicly available parcellations with

fixed resolutions.

antee a good separation between parcels. Overall, spectral techniques perform

poorly but still surpass the anatomical and geometric parcellations.835

Similarly to homogeneity, we obtain group-level Silhouette coefficients from

the average connectivity fingerprints derived from Dataset 2, however, equiva-

lent trends can be observed when Silhouette coefficients are computed for each

subject separately and then averaged across subjects (Supplementary Material

2).840

Impact of relabelling connected components in disjoint parcellations

Among groupwise parcellation methods, two k -means variants, K-Means-

AVR, and K-Means-2 as well as GRAMPA can generate spatially disjoint par-

cellations. In particular, K-Means-AVR yields many discontinuous parcels,

which significantly increases the total number of parcels after the relabelling845

process and consequently affects several different evaluation measures as shown

in Fig. 16. The changes in reproducibility and cluster validity measures show
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Figure 15: Group-level Silhouette analysis results. Lines show the Silhouette coefficients (SC)

for all computed resolutions, while black dots correspond to the SC obtained from the publicly

available parcellations with fixed resolutions.

a similar tendency to those obtained by the subject-level k -means. Although

more homogeneous parcels are obtained, the indirect alteration of the clustering

configuration leads to lower Silhouette coefficients and z scores relative to null850

models. However, this change in the spatial structure of the parcellations in

general appears to yield a positive impact on reproducibility, as indicated by

the joined Dice coefficients and adjusted Rand indices. The other two methods,

GRAMPA and K-Means-2, only produce few parcels that are discontinuous,

thus relabelling does not lead to a significant change in the evaluation measures855

as shown in Supplementary Material 5.

3.3.3. Multi-modal comparisons

The agreement with concatenated single-subject task activation maps is re-

ported in Fig. 17. In general, all provided parcellations yield relatively poor BIC

values compared to the computed parcellations with similar resolutions. The860

2-level approaches tend to yield better results than their group-average (AVR)
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Figure 16: Quantitative evaluation measures obtained from K-Means-AVR parcellations, be-

fore and after disjoint parcels are split into spatially contiguous regions. Points representing

the original and relabelled parcellations (shown in red and blue, respectively) are matched

with dashed lines for ease of comparison. The blue points correspond to the number of parcels

acquired at each resolution after splitting, and therefore, are plotted further to the right with

respect to the red points, which align with the resolutions of the original parcellations (50 to

500, in increments of 50) along the x axis. (a) The number of parcels before and after the

split process. (b-d) Group-to-group reproducibility obtained via Dice similarity, joined Dice

similarity, and adjusted Rand index. (e-h) Clustering accuracy measured via parcel homo-

geneity, comparison to null models (only for one resolution), z scores relative to null models,

and Silhouette analysis.
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Figure 17: Group-level Bayesian information criterion (BIC) results for measuring the agree-

ment with task activation. Lines show the BIC values for all computed resolutions, while

black dots correspond to the BIC obtained from the publicly available parcellations with fixed

resolutions. A lower BIC indicates higher agreement with the task activation. ?: It should be

noted that Glasser is derived from group average task activation maps, which can influence

this evaluation.

counterparts, in particular at higher resolutions, with K-Means-2 showing the

best performance for most resolutions. This could be linked to the fact that

the parcellations are derived from the subject level, where the individual task

activation is also estimated from. The only provided methods that show a com-865

petitive performance are Yeo and Baldassano, while GRASP yields the worst

results amongst the computed parcellations. Glasser has a poor performance

despite being driven by task average data. This can be attributed to the fact

that it is generated from a different dataset which does not necessarily reflect

the single subject task data in our test set.870

The overlap between the groupwise parcellations and the average Brodmann

areas (BA) for all resolutions is given in Fig. 18. Similarly to the subject-

level results, most methods show a high degree of agreement particularly with

the primary somato-sensory cortex (BA[3,1,2]), premotor cortex (BA6), and
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primary visual cortex (BA17). Relatively low measures are obtained for the875

rest of the Brodmann areas, especially for the perinatal cortex (BA[35,36]).

Overall, Glasser shows the best performance and yields the highest overlap

for most areas. Similarly, other provided parcellations Fan and Gordon, as

well as the anatomical parcellations show a relatively high performance. Yeo,

Power, and ICA yield the lowest overlap measures, and in contrast to the general880

tendency in the group, do not align well with BA[3,1,2]. Interestingly, K-Means-

AVR produces the poorest results amongst the computed parcellations for all

resolutions. This can be linked to the fact that K-Means-AVR parcels are

not necessarily spatially contiguous and may be spread across the cortex. In

particular, the 2-level approaches perform better than the group-average ones,885

with Bellec leading them at almost all levels of granularity.

Average overlap scores with myelin based parcellations are given in Fig. 19.

In general, the 2-level approaches show similar performance and outperform the

group-average methods for most resolutions. Bellec, Ward-2 and K-Means-2

have the highest agreement among the computed parcellations, while GRAMPA890

and Geometric yield relatively poor measures. Glasser and Gordon show the

best performance amongst provided parcellations and outperform most of the

other approaches when similar resolutions are considered. This is to be expected

for Glasser since it is derived from myelin maps. Other provided parcellations

generally yield relatively low measures.895

3.3.4. Network analysis

The accuracy achieved for a gender classification task is presented in Fig. 20

and the values of network measures derived with respect to different parcella-

tions/resolutions are shown in Fig. 21.

Connectivity networks are generated using the same set of nodes for all sub-900

jects in Dataset 2. The nodes correspond to non-overlapping regions specified

by the anatomical atlases, provided parcellations or groupwise data-driven par-

cellations obtained from Dataset 1. In order to explore the performance of

different parcellation methods in capturing population differences, we show the
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Figure 18: Top: Agreement of all group-level parcellations with Brodmann areas. For the

computed parcellations (top 13 rows), each cell shows Dice coefficients for 100, 200, and

300 regions, respectively from top to bottom. For the other parcellations, resolutions are

indicated aside their names in parentheses. Bottom: Average Dice coefficients for each

method/resolution. ?: It should be noted that Glasser uses expert knowledge and priors

from the neuro-anatomical literature for the delineation of parcellation borders, which can

influence this evaluation.
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Figure 19: Dice-based overlap measures of all group-level parcellations with highly myelinated

cortical areas, derived from a coarse parcellation of the average myelination map. ?: It should

be noted that Glasser is derived from myelin maps and is therefore expected to have a good

performance here.

results of a gender prediction task with r-to-z transformed full correlation net-905

works. Before the classification step, dimensionality reduction through Principal

Component Analysis is performed (Pereira et al., 2009) and the components ex-

plaining 100% of the variance (Robinson et al., 2010) in the training data are

preserved for both training and testing. The results with a well-established

linear classifier, SVM, and 10-fold cross-validation are illustrated in Fig. 20.910

Although there is no single winner across all different resolutions, anatomical

parcellations are generally outperformed by several data-driven methods with

similar number of parcels. Overall, results obtained with SVM are not very

consistent across resolutions, since there is no obvious upward/downward trend

with increasing resolution. In fact, most methods demonstrate a similar average915

performance, being able to classify males and females with above 60% accuracy

for granularities below 150 parcels and above 70% for higher resolutions.

More specifically, Geometric tends to perform poorly compared to the rest
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Figure 20: Gender classification results. Left: Average Gender classification accuracy on 100

subjects with SVM. Right: Variation across results is shown with respect to 10-fold cross-

validation.

of the methods, both at lower and higher resolutions. The highest SVM clas-

sification accuracy (86%) is achieved with Ward-AVR and Glasser at the scale920

of 350 and 360 parcels, respectively. Moreover, we can observe that increasing

the resolution of the parcellation in data-driven approaches beyond a certain

value (350 parcels) does not necessarily provide additional information about

population differences. However, lower resolutions lead to lower classification

scores, perhaps due to the fact that functional information valuable for the925

discrimination between the two classes fades by averaging the signal in larger

parcels. Interestingly, N-Cuts-AVR, Bellec and Arslan perform quite well for

several resolutions, while GRASP yields the top accuracy among all methods

for 50 parcels across the cortex. It is also worth mentioning that the parcel-

lations provided by Yeo, Shen and Gordon have below average performance,930

while Fan and Glasser have good performance compared to parcellations with

similar resolutions.

Our experimental setting allows us to explore the effect of both the parcel-
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lation method and the level of granularity on the graph theoretic measures. We

compute the most commonly reported network measure in comparative connec-935

tomics studies of structural (Sporns et al., 2004; van den Heuvel et al., 2016) and

functional (Sporns et al., 2004; Bassett and Bullmore, 2006) brain connectivity,

namely, the average clustering coefficient (C), characteristic path length (L),

their respective normalised versions, γ and λ (obtained after their division by

the mean corresponding values of a set of 1000 random networks with the same940

density and degree distribution), the small-world index (σ) and average node

degree of the network (k), i.e. the ratio of present connections to the number

of nodes divided by 2 (since networks are undirected). The network measures

are computed on binarised functional networks obtained by individually testing

the elements of the group mean partial correlation matrix (all pairwise con-945

nection strengths) for non-zero mean (using P < 0.01%) with correction for

multiple comparisons, followed by sparsity-based thresholding (keeping 20% of

the edges). Results are presented in Fig. 21.

It can be observed that all six network measures reported are relatively ro-

bust with respect to the parcellation method. However, there is an evident effect950

of parcellation granularity on the calculated measures, which needs to be taken

into consideration when performing this kind of network analysis to investigate

population differences. This effect is partly attenuated, though, by the use of

sparsity-based thresholding that keeps the average node degree k levelled for

networks with above than 150 nodes. More specifically, clustering coefficient955

decreases for resolutions between 100 and 200 nodes to 0.3 and gradually in-

creases to about 0.35 for higher resolutions. On the contrary, γ, its normalised

equivalent, increases progressively for resolutions above 150 nodes. The char-

acteristic path length and the normalised λ also increase with resolution, for

resolutions above 150 nodes, while a negative trend is observed at lower res-960

olutions. This can be attributed to the fact that k increases with resolution

for networks consisting of up to 150 nodes. In general, GRASP appears to

yield networks with lower γ than the rest of the methods, while K-Means-AVR

produces networks with higher γ. Similarly to the characteristic path length,
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Figure 21: Network measures computed for different parcellations on the group binary net-

works, including clustering coefficient, C, normalised clustering coefficient, γ, characteristic

path length, L, normalised characteristic path length, λ, small-world index, σ and average

node degree k.
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the small-world index also increases with resolution with values spanning from965

4.7 to 5.3 for the highest resolutions, but always remains above 1 which in-

dicates a small-world topology of functional connectivity networks. The three

key measures, γ, λ and small-world index σ demonstrate higher variability be-

tween methods at higher resolutions, while they are relatively consistent at low

resolutions. Finally, the average node degree increases with resolution up to970

150 nodes, but remains stagnant afterwards due to fewer connections surviving

the significance test after correction for multiple comparisons and proportional

thresholding. This has a profound effect on the clustering coefficient and path

length.

4. Discussion975

In this paper, we presented a large-scale comparison of existing parcella-

tion methods using state-of-the-art evaluation measures and publicly available

data provided by HCP. The generation and evaluation of the parcellations is

based on resting state functional connectivity, which is thought to express the

interactions underlying high level cognitive processes. In the absence of a gold980

standard parcellation, we considered several criteria simultaneously to evalu-

ate the quality of the parcellations, such as reproducibility, parcel homogeneity,

and Silhouette analysis. While, these measurements assessed the performance

from a cluster quality point of view, the neuro-biological interpretation of the

obtained parcels is also investigated by comparing parcel boundaries with well-985

defined neuro-biological properties, such as cytoarchitecture and myelination,

as well as task activations. In addition, we devised a simple network analysis

task, i.e. gender classification, in order to measure the impact of the underly-

ing parcellation on network analysis, and explored how parcellations affect the

structure of connectivity networks based on several network measures.990

Our experiments show that there is no clear trend in favour of a specific

method - or type of method - regarding all evaluation metrics considered. For

instance, k -means clustering appears to be largely leading in terms of cluster-
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ing quality. It, however, shows a poor performance regarding reproducibility

and agreement with other modalities. In addition, while cortical delineation995

intrinsically requires a relatively large number of parcels, this does not appear

to be a requirement for effective network analysis. This may suggest that differ-

ent types of parcellations are to be investigated depending on the task at hand

(e.g. one should use different methods when considering network analysis or

cortical delineation). We observe that connectivity-driven parcellations have a1000

much better agreement with the underlying rs-fMRI connectivity compared to

anatomical and random parcellations as expected. The benefit of using connec-

tivity to parcellate the brain is not as clear regarding the delineation of cortical

areas (agreement with other modalities and established brain delineations) and

subsequent network analysis. In particular, anatomical parcellations appear to1005

yield equivalent or better results with respect to cytoarchitecture. A general

suggestion regarding network analysis would be to use any parcellation avail-

able, since this decision seems to have a very limited impact. However, while

this may be true for simple analysis of healthy subjects, it would have to be

investigated further in the context of largely different brains (such as subjects1010

within a large age range or diseased subjects).

Parcellating the cerebral cortex: Aim and scope

The foundations of parcellation were already set in the nineteenth and twen-

tieth centuries, by neuroscientists like Ramn y Cajal, Wernicke and Brodmann,

who emphasized the importance of connectivity in understanding nervous sys-1015

tems and reported insights that underpinned the way we think about nervous

systems nowadays (Zilles et al., 2010). Although the concept of parcellation

spans more than a century in the field of neuroscience and has historically been

carried out on the basis of careful studies of the underlying tissue properties,

it is currently supplemented with modern in-vivo neuroimaging based parcel-1020

lations (Thirion et al., 2014). The ultimate goal of any kind of parcellation,

either based on cytoarchitecture, structural or functional information, is to pro-

vide meaningful and homogeneous subdivisions of the brain into regions that
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are specialised in a certain function. The idea stems from the fact that specific

facets of cognition, emotion and behaviour are considered to be anatomically1025

localised and segregated in the brain. This further allows to reduce the com-

plexity of connectivity, an aspect that is highly critical for the study of brain

dynamics with whole-brain models.

Therefore, parcellations provide a high-level abstraction of the fundamental

organisation of the brain at macroscopic scales (Sporns et al., 2005; Craddock1030

et al., 2013). Over the last few decades, image acquisition techniques have

boosted the potential of in-vivo brain mapping and facilitated the multi-scale

subdivision of the brain using varying modalities and methods. As a matter of

fact, there is not a unique brain parcellation, but rather a spectrum of parcella-

tions that encapsulate fundamental neuro-biological information about cortical1035

organisation and allow the mapping of brain function and anatomy with respect

to different aspects. A parcellation may, thus, refer to (1) a reference atlas

model that summarises certain properties across the cerebral cortex (e.g. Brod-

mann atlas, AAL), (2) specialized subunits involved in cognitive functions, (3)

high-level structures of functional connectivity (e.g. resting-state networks), or1040

(4) whole-brain subdivisions of the cerebral cortex constituting a few hundred

anatomically or functionally distinct parcels (Van Essen et al., 1998; Glasser

et al., 2016).

Connectivity estimated from resting state fMRI and its impact on parcellations

Resting state fMRI is the most commonly used state-of-the-art technique to1045

map whole-brain functional connectivity, with its high spatial resolution favour-

ing its application over alternative electro-physiological recordings, like EEG

and MEG. Its effectiveness to map the function of the brain has been consis-

tently shown across a wide range of studies (Damoiseaux et al., 2006; Salvador

et al., 2005; van den Heuvel et al., 2008; Power et al., 2011). However, the true1050

biological interpretation of the BOLD signals is still unknown (Eickhoff et al.,

2015), and its low temporal resolution (commonly at the order of seconds) is a

limiting factor for the observation of high-frequency patterns. Several sources of
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noise can influence BOLD signals, including imaging artefacts, head motion, as

well as, cardiac and respiratory pulsations (Craddock et al., 2013). This, subse-1055

quently, leads to a complex connectivity structure, which comprises of linear and

nonlinear patterns and is contaminated with noise (Thirion and Faugeras, 2004;

Lindquist, 2008). As a consequence, functional connectivity estimated from rs-

fMRI usually suffers from false positives and/or indirect connections mediated

by third-party regions (Smith et al., 2011; Eickhoff et al., 2015).1060

In order to account for the inherently high dimensional and complex struc-

ture of the connectivity data, clustering algorithms may a priori make various

assumptions or introduce implicit/explicit constraints, depending on the task

under consideration. This could explain why different parcellation methods per-

form better or worse with respect to different aspects of the problem. For ex-1065

ample, ICA assumes that the fMRI data consist of a mixture of statistically

independent components and that spatially distributed functional networks can

be effectively separated from signals of non-neural (e.g. artifactual) origin. With

a similar objective, but from a different perspective, nonlinear manifold learn-

ing techniques rely on the assumption that structures of interest in the con-1070

nectivity data live in a low dimensional embedding, which can be captured, for

example, using spectral decomposition (Thirion and Faugeras, 2004; Shen and

Meyer, 2006; Langs et al., 2014). Other techniques alter the structure of the

connectivity network to obtain more robust parcellations, such as, by applying

thresholding to suppress negative and weak correlations, assuming that corre-1075

lations under a threshold correspond to spurious connections (van den Heuvel

et al., 2008; Power et al., 2011; Craddock et al., 2012; Arslan et al., 2015). It is

also common to rely on spatial constraints for computing what is expected to be

physiologically more plausible parcellations. Similarly, various methods include

a spatial smoothing stage (such as a fine-resolution parcellation) or average sub-1080

ject-level connectivity data for improved SNR and stability in parcellations (Yeo

et al., 2011; Blumensath et al., 2013; Arslan and Rueckert, 2015; Gordon et al.,

2016b). As a general note, it is important to realise that each assumption and

processing decision made by a clustering algorithm comes with advantages, as
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well as, limitations, and hence, will inevitably bias the resulting parcellations1085

in many ways, such as the shape, number, size, and spatial contiguity of the

parcels (Eickhoff et al., 2015).

Evaluation of parcellations from a clustering point of view

When parcellations are evaluated, both implicit constraints inherent to the

method and explicit constraints imposed to the data should be taken into consid-1090

eration, as they yield inevitable biases towards the computed parcellations Blu-

mensath et al. (2013). It is, therefore, highly critical to evaluate clustering

accuracy from different perspectives.

Hierarchical clustering, k -means, and spectral clustering (as well as their

variants) are frequently used to obtain connectivity-driven parcellations, ulti-1095

mately serving the task of brain mapping (Eickhoff et al., 2015). Their impact

on the parcellation configuration as well as their limitations and advantages

over each other have been extensively reviewed in (Thirion et al., 2014; Eickhoff

et al., 2015). In general, our results align with the previous literature regarding

the performance of these clustering algorithms. For example, k -means gener-1100

ally provides the best performing regroupings of the data, but suffers from low

reproducibility due to the fact that it does not inherently rely on hard spa-

tial constraints. On the contrary, spectral techniques are usually dominated

by spatial constraints, and consequently, capture stable features regarding the

geometry of the cortical mesh (Thirion et al., 2014). This appears to confer a1105

strong advantage for reproducibility, but constrains the parcellation task and

leads to an inaccurate alignment with the brain’s underlying functional organ-

isation. Hierarchical clustering yields a performance that resides in-between:

it offers the advantage of generating spatially contiguous parcels, which can

contribute to yielding more reproducible parcellations, while still capturing the1110

functional features with high fidelity.

Several other connectivity-driven parcellations computed on a different dataset

yield relatively good cluster quality results. One can infer from this observation

that similar characteristics shared by healthy adults can be robustly detected
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across different datasets as long as the analysis is performed on a large cohort1115

(for example ICA and Baldassano are originally obtained from a group of 500

subjects where this number increases to 1000 for Yeo). It should be also noted

that, ICA, Baldassano, and Glasser can also comprise some subjects from our

test dataset as they are computed from a larger HCP cohort. This may con-

stitute an important factor promoting a more favourable performance for these1120

methods compared to the others.

Predictably, anatomical parcellations yield the lowest performance in terms

of clustering quality. However, they allow a more intuitive neuro-biological inter-

pretation which can make network analysis more insightful. On top of that, our

network based experiments show that a better clustering does not necessarily1125

benefit network analysis. One limitation is their relatively low resolution which

is typically addressed by partitioning each parcel into subunits without altering

the anatomically delineated boundaries. This can be achieved randomly (Hag-

mann et al., 2008; Honey et al., 2009) or using functional connectivity (Patel

et al., 2008; Fan et al., 2016). This approach is adopted by Fan, but appears to1130

provide a limited improvement compared to anatomical parcellations.

Agreement of parcellations with other neuro-biological properties of the cortex

The anatomical parcellations based on cortical folding, i.e. Desikan and De-

strieux, as well as the anatomo-functional atlas based on the Desikan parcels (i.e.

Fan) interestingly show a high degree of agreement with the cytoarchitecture1135

of the cerebral cortex. Although these results may reflect a better alignment

between anatomy and cytoarchitectural atlases than with rs-fMRI, this might

also be linked to registration errors as the Brodmann maps are registered to

each individual subject based on cortical folding. While we can expect a good

overlap in the motor and visual cortex, where the folding patterns are more1140

consistent across subjects, stronger misalignments could occur in other regions.

Similar observations can be made for connectivity-driven parcellations, in

which case a higher degree of alignment is found within the motor and visual

cortex. Despite the fact that functional connectivity obtained from BOLD time-
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series is not necessarily expected to reflect the cytoarchitecture of the cerebral1145

cortex, these results agree with several rs-fMRI based studies that report simi-

lar findings regarding these regions (Blumensath et al., 2013; Wig et al., 2014;

Gordon et al., 2016b). On the other hand, a more consistent agreement can be

expected between the connectivity-driven parcellations and highly myelinated

areas, as the gradients in rs-fMRI-driven connectivity have been observed to1150

align well with the myelination patterns (Glasser and Van Essen, 2011).

One should also take into consideration the reliability of the evaluation tech-

niques used to compare the different modalities. For example, overlap-based

measures, such as the Dice coefficient, are biased by the size of the parcels.

Evenly sized/shaped parcels are easier to match with their target parcels, while1155

differences in Dice scores will be much more striking when comparing small

parcels over big ones. This bias can lead to more favourable results for some of

the parcellations, such as Geometric, N-Cuts, and Random, all of which comprise

more uniformly shaped/sized parcels than the rest of the approaches. Although

such quantitative measures can provide a means of comparing different methods,1160

the quality of a parcellation with respect to cytoarchitecture or myelin content

should also be visually assessed before drawing any conclusion. To this end,

we provide visual examples of all the subject-level and groupwise parcellations

tested in Supplementary Material 3 and 4, respectively.

Similarly, the Bayesian information criterion has a bias towards more com-1165

plex models, i.e. parcellations with higher resolution are always favoured (Thirion

et al., 2014). It should be also noted that there may exist redundant and contra-

dictory information in the different tasks/contrasts which could bias the results.

On top of that, the SNR in the task activation maps is low, therefore, it is likely

that the results might be compromised by noise. Finally, our experiments have1170

compared group-level parcellations to single subject level task activation maps.

While the objective is to evaluate whether these group parcellations provide a

good representation of the population, one could also consider comparing to

group average task activation maps. This would alleviate single subject noise

and could yield better results, in particular for provided parcellations. For ex-1175
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ample, the Glasser parcellation is expected to have a much better performance

with respect to group level task maps on which it is derived.

Additionally, this multi-modal parcellation (Glasser) can give a clearer in-

tuition on the behaviour of inter-modality comparisons. This method does not

only rely on resting-state functional connectivity, but also embodies information1180

from task activation, myelin content, and the cortical architecture. It yields very

good overlap with the Brodmann areas and myelin content, especially on some

parts of the cortex (e.g. motor cortex, highly-myelinated areas), indicating that

the overlap measures used for multi-modal comparisons do provide accurate

information.1185

Impact of parcellation on network analysis

Although classification analysis has previously been applied in studies of

functional connectivity to predict demographic measures including gender (Sat-

terthwaite et al., 2014; Robinson et al., 2008) and age (Vergun et al., 2013), our

experiments suggest that the classification score alone is not a valuable tool for1190

the evaluation of parcellation quality. Instead, the number of features selected

(edges in the connectivity matrix) to achieve the same classification performance

might be a better means of evaluation provided that a larger number of subjects

is available, assuming that a good parcellation should give a sparse selection of

features and a more interpretable result. The results obtained with a linear1195

SVM classifier do not favour any particular method, either anatomy, or data

driven, to subdivide the brain into regions that would better reflect population

differences. In fact, anatomical atlases, like AAL, which are purely based on

anatomical landmarks, appear to perform as well as data-driven approaches, de-

signed and tailored to fit the underlying rs-fMRI data. This could be attributed1200

to the specific task at hand, since anatomical and, more specifically, cerebral

volume differences have been reported between males and females that signif-

icantly influence the volume of white and gray matter (Leonard et al., 2008).

Therefore, volume/anatomy-related differences and sex-related differences are

hard to disentangle under the current experimental setting, despite the fact1205
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that all subjects have been registered to the same anatomical space.

On a different note, the fact that there is no negative effect of higher parcel-

lation resolutions on classification performance indicates that a SVM classifier

is appropriate for performing predictions on brain connectivity networks, which

are represented by high-dimensional feature vectors. Interestingly, parcellations1210

producing more evenly sized parcels, like N-Cuts-AVR, demonstrate a relative

advantage (at least for certain resolutions) over alternative data-driven methods

that generate parcels of variable size. According to Stanley et al. (2013), re-

gions of interest (ROIs) comprised of more voxels than other ROIs might exhibit

greater variability in connectivity, simply due to the fact that a greater vari-1215

ety of signals is included in the ROI itself. As a result, correction mechanisms

might be required to account for this variability in parcel extent, which are not

required in parcellations consisting of evenly sized parcels. Finally, choosing

a different classification task, like disease state or age group, could be more

suitable for evaluating parcellation performance in summarizing a population’s1220

brain connectivity, but the healthy state and narrow age range of the current

dataset does not allow this kind of analysis.

As far as graph theoretical analysis is concerned, the measures of network

segregation and integration, as well as the small-world topology, seem to be

robust to the underlying parcellations. Despite that, all measures are highly1225

susceptible to the granularity of the parcellation (i.e. the number of nodes

within the network). These findings align with a previous study on structural

connectivity and the sensitivity of network measures to the resolution of the

parcellation scheme (Zalesky et al., 2010). The robustness of these network

measures to the parcellation method renders them a convenient means for the1230

analysis of population differences and explains their popularity in recent neuro-

science studies on healthy and diseased subjects (Wang et al., 2010; Rubinov and

Sporns, 2010; Bullmore and Sporns, 2009; Stam et al., 2009, 2007). Nevertheless,

the prominent effect of network size on the calculated measures is a factor that

needs to be taken into consideration when interpreting the results of relevant1235

studies. To this date, it is difficult to correct for and set limitations to the di-
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rect comparison of graph invariants between networks of different order (de Reus

and van den Heuvel, 2013). Moreover, the threshold value or significance level

chosen to obtain the binarised versions of the functional connectivity networks

directly impacts the network density and needs to be reasonably selected and1240

always accompany the reports of network segregation and integration measures.

Use of parcellations in future subject- and group-level studies

In this paper, evaluations are made on both individual and group level parcel-

lations, with the aim of providing some insight into different techniques that can

be used to represent the brain’s functional organisation. The results presented1245

as part of this empirical study may indicate parcellation techniques and/or res-

olutions that are more appropriate for the problem under investigation.

While groupwise parcellations represent shared characteristics within a pop-

ulation, subject-level parcellations serve the purpose of better investigating the

functional organisation of an individual brain and understanding the neural ba-1250

sis that results in the observed human behaviour. Evidence suggests that the

human connectome possesses connectional traits that are unique to each in-

dividual (Mueller et al., 2013; Barch et al., 2013; Wang et al., 2015; Gordon

et al., 2016a). A recent study Finn et al. (2015) has further shown that rs-fMRI

can be used to derive distinct features to successfully distinguish one individual1255

from another. These features, however, may not be observed in group-averaged

datasets Gordon et al. (2016a). Therefore, parcellating the cerebral cortex on

a single subject basis can provide a natural starting point for detecting such

features, which may further help neuroscientists understand how connectivity

varies within a population and how this affects human behaviour and cogni-1260

tion (Wang et al., 2015).

In addition, using subject-level and groupwise parcellations collaboratively

may provide more insight into inter-subject variability. For example, cortical

regions that are most consistent and/or least similar across subjects can be

localized by comparing individual subject parcellations to a group represen-1265

tation obtained via the same clustering method. However, understanding the
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source of variability across subjects constitutes an additional challenge. While

alterations in connectivity can be associated with brain disorders, these could

also be attributed to genetic variations Dubois and Adolphs (2016), topological

differences between subjects Langs et al. (2014), varying connection strengths1270

between brain areas in some individuals Gordon et al. (2016a), or even purely

caused by registration errors or low SNR in the data. Given many parcellation

techniques available at both subject and group levels, analysis of this variability

could be an interesting problem to tackle and constitutes one of our planned

future directions.1275

As far as network analysis is concerned, not only the parcellation scheme

itself, but its resolution might also have an impact, depending on the task

at hand. A recent study suggests that increasing the parcellation resolution

yields more reliable biomarkers for studying brain disorders Abraham et al.

(2016). Similarly, using more ROIs for network analysis appears to improve1280

the performance of age prediction tasks Liem et al. (2016). This might be

linked to the fact that parcellations with fewer ROIs may not be able to capture

structural patterns of interest from the underlying data due to their resolutions.

In such case, data-driven parcellations provide a greater flexibility to study

the impact of resolution on network analysis, as they allow the construction1285

of a set of parcellations at different resolutions, as opposed to pre-computed

parcellations with fixed resolutions. On a similar note, the heterogeneity of a

dataset, e.g. inter-subject variability, could pose additional challenges regarding

the performance and interpretability of network analysis. One way to better

account for this variability could be generating several group-level parcellations1290

from subsets of the population, preferable on a multi-scale basis, rather than

constructing one atlas for a population.

Most of the parcellations included in this study can be used to represent

the functional organisation of the brain and derive distinct features for network

analysis. However, additional information might be required to enhance the1295

information provided by rs-fMRI and identify areas of interest on the cerebral

cortex. Evidence suggests that a single modality is too limited to reveal the

60



complex structure of the cerebral cortex, which consists of a mosaic of multi-

ple properties nested at different levels of detail (Glasser et al., 2016; Eickhoff

et al., 2015). From a neuro-biological point of view, the integration of other1300

modalities to the parcellation generation task may provide more accurate and

robust cortical segregation of the cerebral cortex, as shown in the recently pro-

posed multi-modal cortical parcellation (Glasser et al., 2016). A prospective

future work therefore would be to use a similar technique and expand the cur-

rent evaluation pipeline towards parcellations obtained from different modalities1305

and their combinations.

Limitations

While we did not explore structural connectivity, estimating and analysing

brain connectivity from diffusion MRI (dMRI) using tractography techniques

is also an important aspect of brain mapping. In contrast to the indirect esti-1310

mation of connectivity achieved with rs-fMRI, dMRI can estimate the physical

white matter connections in the brain. Parcellations derived from dMRI have,

therefore, a more intuitive interpretation, and tend to be more robust than

rs-fMRI (Parisot et al., 2016a). The estimation of structural connectivity is

plagued by several limitations introduced by the imaging technique (a very in-1315

direct measurement of white matter connectivity) and processing methods (e.g.

tractography) which can suppress existing structural connections, and thus, al-

leviate the reliability of the connectome analysis. These limitations include the

dominance of large fibre bundles, impaired detection of crossing and kissing

fibres and long range connections, difficulty to determine the origin or termi-1320

nation of the tracts and a possible bias with ending tracts in gyri (Van Essen

et al., 2013a; Ng et al., 2013). As a result, different tractography algorithms can

yield very different estimations of white matter connectivity, while parcellation

boundaries tend to align with cortical folding due to this gyral bias. Structural

connectivity is, however, a very important aspect of connectomic analysis and1325

parcellations exploiting this modality should be investigated further.

In this empirical study, we considered both surface-based and volumetric
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parcellations. Whilst efforts are made to be fair to all methods, several im-

portant methodological choices have been made, which may have an impact

on the evaluation and possibly promote some parcellations over the others. In1330

particular, decisions were made early on to use cortical folding-based align-

ment to project group parcellations onto individual subjects’ functional imaging

data. This choice allows greater consistency with popular volume-based analy-

sis, however it is likely to bias results against groupwise comparisons, especially

for comparisons of resting state homogeneity, and BIC comparisons against1335

task data, where results have consistently shown that resting-state-driven align-

ment improves the correspondence of resting state, myelin and task across a

group (Robinson et al., 2014; Glasser et al., 2016; Sabuncu et al., 2010; Con-

roy et al., 2013). Furthermore, parcellations are not the products of the same

processing pipeline. Most of the publicly available parcellations have been gen-1340

erated under different assumptions, from different sets of subjects with varying

cohort size and after being subject to a series of processing steps. Additional

processing was applied to certain methods to make parcellations comparable on

a more standard basis. Parcellations that do not naturally provide spatially con-

tiguous cortical areas (e.g. Yeo, Power, ICA) were relabelled while methods that1345

do not cover the entire cortical surface (e.g. Gordon) were dilated. Similarly, we

used the group-average Glasser parcellation in our experiments, despite the fact

that this method also provides individual parcellations tailored to each subject.

If these subject-specific parcellations are made available, it is likely that their

performance with our proposed evaluation measures would see further gains. In1350

particular, the performance of parcellations sampled from a volumetric space

should be interpreted carefully due to the complicated transformation steps.

Nevertheless, we believe these parcellations are an essential aspect of our

evaluation. Please see Supplementary Material 3 and 4, for figures showing

subject-level and groupwise parcellations used in this study, respectively. All1355

the parcellations and evaluation code will be made publicly available via the

webpage: http://biomedia.doc.ic.ac.uk/systematic-comparison-of-parcellations,

in case one may need interest in using these parcellations for their own analysis
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on a different dataset.
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Appendix A: Adjusted Rand Index

ARI is built upon counting the number of items (in our case, vertices) on1370

which two parcellations agree or disagree (Vinh et al., 2009). It classifies
(
N
2

)
pairs of vertices into one of the four sets (N11, N00, N01, N10), based on their

labeling in each parcellation. For parcellations U and V, N11 corresponds to

the number of pairs that are assigned to the same parcel in both U and V, N00

corresponds to the number of pairs that are assigned to different clusters in both1375

U and V, N01 corresponds to the number of pairs that are assigned to the same

parcel in U, but different parcels in V, and N10 corresponds to the number

of pairs that are assigned to the same parcel in V, but different parcels in U.

Intuitively, N00 and N11 account for the agreement of parcellations, whereas

N01 and N10 indicate their disagreement (Vinh et al., 2009). After counting the1380

number of pairs, ARI for parcellations U and V is computed as follows:

ARI(U,V) =
2(N00N11 −N01N10)

(N00 +N01)(N01 +N11) + (N00 +N10)(N10 +N11)
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Appendix B: Graph Theoretical Measures

Graph theory has played an integral role in recent efforts to understand

the structure and function of complex systems like the human brain, and has

been widely used to characterise patterns and explore topological properties of1385

connectivity networks. Watts and Strogatz (1998), particularly, focused on two

key properties of a network, i.e. the clustering coefficient and the characteristic

path length. The clustering coefficient is one of the most elementary measures

of local segregation, which measures the density of connections between a node’s

neighbours. The average of the clustering coefficients for each individual node1390

is the clustering coefficient of the graph. Clustering is significant in a neuro-

biological context because neuronal units or brain regions that form a densely

connected cluster or module communicate a lot of shared information and are

therefore likely to constitute a functionally coherent brain system. The cluster-

ing coefficient of a binary network can be computed by:1395

Ci =
1

ki(ki − 1)

∑
j,k∈N

(aijajkaki) (1)

where N is the set of all nodes in the network, ki is the degree of node i,

and aij is connection status between i and j, with aij = 1 if there is a link and

aij = 0 otherwise. The degree of a node is the number of edges attached to it

and connecting it to the rest of the network.

While clustering evaluates local connectivity and the segregation of the net-1400

work into communities, another set of measures captures the capacity of the

network to engage in more global interactions that transcend the boundaries of

modules and enable network-wide integration. One of the most commonly used

measures of integration in brain networks is the characteristic path length, usu-

ally computed as the global average of the graph’s distance matrix (Watts and1405

Strogatz, 1998). The characteristic path length is a measure of functional inte-

gration of the network, demonstrating its ability to quickly combine specialised

information from distributed brain regions. A short path length indicates that,

on average, each node can be reached from any other node along a path com-
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posed of only a few edges. The path length between nodes i and j is given1410

by:

dij =
∑

auv∈gi↔j

auv (2)

where gu↔v is the shortest path between u and v. However, the absolute value

of the path length varies greatly with the size and density of individual graphs

and, hence, provides only limited information on integration in the network.1415

The network path length should therefore be compared to path lengths of ap-

propriately constructed random networks. For this reason it is customary to

compare the obtained path length to that of randomized reference networks

with the same number of nodes and edges and identical node degrees as the

original network. Such reference networks can be provided by randomizing the1420

original network using a random switching procedure (Rubinov and Sporns,

2010). The calculated values for the clustering coefficient and the path length

can, then, be normalised by dividing them with the average corresponding val-

ues of the randomized networks. In this study we normalise these metrics using

a set of 1000 random networks with the same degree distribution as the original1425

ones.

An important shared feature of complex networks like the human brain is

small-world topology (Bullmore and Sporns, 2009). In a small-world network,

most links are among neighbouring nodes, but there are a few connections to

distant nodes that create shortcuts across the network. As a result, small-world1430

networks are characterised by the prevalence of exquisitely small path lengths

among pairs of nodes within very large networks.A prior belief about the small-

worldness of the brain arises from the fact that it supports both segregated and

distributed information and is also likely evolved to maximise efficiency and

minimise the cost of information processing (Bassett and Bullmore, 2006). The1435
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small-world index can be calculated as:

σ =
γ

λ
(3)

where γ is the normalised clustering coefficient and λ the normalised path length.
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