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ABSTRACT 
 
For water-cooled nuclear reactors an ability to predict various aspects of boiling is important for both 
safety and design. Practical component-scale modelling is necessarily done by semi- mechanistic, semi-
empirical approaches, generally based on heat flux partitioning. This needs to be informed by multiple 
detailed experimental observations of boiling behavior. Such measurements are difficult to make, 
especially at conditions of relevance to nuclear reactors, and now much effort is being applied to 
microscopic computational modelling of the detailed boiling process. Such analyses are difficult, with 
interface motion, heat transfer, phase change and mass transfer, alongside ‘normal’ fluid mechanics. They 
are also hard to validate. In this paper we attempt to predict one of the few cases for which there is an 
analytical solution of a reasonably representative model; the case of an isolated bubble growing in 
superheated fluid. We employ the interface-tracking code PSI-Boil (Y. Sato, B. Niceno, Journal of 
Computational Physics, Volume 249, 15 September 2013, Pages 127-161). Good results are obtained, but 
the work did highlight issues in studies of these microscopic phenomena, when the vapour flows 
associated with the mass transfers become the dominant flow. Spurious currents are generated associated 
with imperfect modelling of the high-curvature geometries. Eliminating these imposes particularly 
stringent requirements on aspects of the modelling. This problem is identified, and methods to eliminate 
the spurious currents under the relatively simple conditions of the present study are developed. These 
methods in turn provide pointers to a treatment in more general cases. 
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1. INTRODUCTION 
For water-cooled nuclear reactors one of the major challenges to greater use of computational fluid 
dynamics for understanding and predicting their thermal hydraulic and safety performance is the ability of 
such tools to deal reliably with issues associated with a phase change [1]. These issues include boiling, 
void distribution, heat transfer performance, and so on. 
The gross range of length scales associated with such a prediction is a major contributor to its difficulty. 
The component-scale to which models must be applied is of order meters (example a fuel assembly). 
However, the length scale associated with the fundamental processes at work extends down to microns, 



for bubble nucleation and initial growth, up to millimetres for bubble departure and advection into the 
flow. 
This component-scale modelling is generally tackled via "normal" Eulerian-Eulerian two phase CFD 
models, augmented with particular closure relations at the wall that attempt semi-mechanistically to 
incorporate boiling effects [2]. Such incorporation normally involves an approach broadly classed as 
"heat flux partitioning", where the postulated heat transfer mechanisms associated with boiling are 
represented in a semi-empirical, semi-mechanistic fashion. This semi-empirical, semi-mechanistic 
representation is largely based upon experimental observations, but these are understandably fairly sparse, 
particularly at conditions relevant to operating reactors. 
Modern interface-tracking computational fluid dynamics in principle allows highly detailed predictions to 
be made of the processes associated with bubble growth and departure, covering both the hydrodynamic 
and the thermal phenomena. In a nuclear context, the need to provide insights and data to improve 
component-scale representations has provided motivation for intense study in recent years of the 
fundamental processes of boiling, and the associated attempts to represent these by "exact" mechanistic 
CFD models. 
This present work is in this spirit. Whilst in principle such treatments might be exact, they are of course 
highly challenging, involving interface tracking, phase change, and heat transfer, along with surface-
contact effects. As part of the activity of developing, improving and validating computational models for 
this purpose, we here study a simpler subset of the full problem. We investigate the growth of an isolated 
bubble in a uniform body of superheated stationary fluid. As will be seen, this is a useful and challenging 
exercise in its own right, but it is also directly relevant to the case of the growth of vapour bubbles in very 
high-pressure conditions. Here surface tension effects limit the contact of bubbles with the heated surface 
[3], possibly favouring the generation of vapour from surrounding superheated "bulk" liquid, rather than 
the “micro-layers" believed to be important at low pressures. 
 
In this contribution, we present a CFD analysis of bubble growth at high (up to 45 bar) pressure in the 
absence of gravity. We use Direct Numerical Simulation coupled with an interface tracking method to 
simulate the growth of a spherical vapor bubble expanding in a stationary, superheated pool of water. We 
predict the bubble growth rate as a consequence of the initial temperature distribution. A short review of 
the relevant published works is given in section 2. In section 3 the details of our computational model are 
explained, and a discussion of the results of our simulations is presented in section 4. Conclusions are 
drawn in section 5. 
 
2. LITERATURE REVIEW 
2.1. Analytical studies on bubble growth 
The first physical models of bubble growth in a body of liquid are due to Plesset et al. [4, 5] and Forster et 
al. [6, 7]. Bubble expansion in a pool of superheated liquid in the absence of gravity was modeled under 
the assumption that the bubble is spherical in shape and that the vapor inside it has uniform temperature 
and pressure, equal respectively to the liquid temperature at the vapor-liquid interface and to the 
equilibrium vapor pressure at such temperature. 
 
2.1.1. Inertia and heat diffusion controlled bubble growth regimes 
Just after nucleation, the bubble radius can be small enough for the Laplace pressure (the externally-
imposed system pressure, plus the pressure associated with the surface tension) to increase the liquid 
surface temperature required for phase stability [8], [9]. This condition is only metastable, and if the 
system is perturbed, the bubble can grow or collapse. If perturbing the system results in growth, during its 
expansion the interface temperature reduces, and eventually, at a large radius, reaches the saturation value 
at the system pressure when the Laplace pressure is small compared to the system pressure. 
This initial growth stage is not fully understood yet, but it is believed that inertia plays a role[5] [10]. 
Once inertial forces cease to be significant, the bubble growth rate is essentially determined by the rate of 



transport of heat to the gas-liquid interface. This generates vapour that causes the bubble to grow, and 
quasi-static quantitative modelling to predict growth rate is possible.  
Assuming that inertia and viscous forces are negligible, Scriven [11] modelled bubble growth as a 
transient heat conduction problem in a spherical system with a moving boundary (the liquid-vapor 
interface). The vapor is assumed of constant and uniform temperature. In particular, the dependence of the 
saturation temperature on pressure changes associated with changes in bubble size, and hence Laplace 
pressure, are neglected. The heat conduction problem is solved in the liquid. The production of vapor is 
taken as being proportional to the heat flux at the bubble wall, with this wall taken to be at the saturation 
temperature. The vapour production rate is thus limited by the rate of transfer of heat across the thermal 
boundary layer that is formed in the liquid due to the presence of the bubble. In this heat diffusion-
controlled regime, it turns out that the bubble growth rate reduces at a rate proportional to the square root 
of time, and the constant of proportionality can be evaluated semi-analytically. Mikic et al. [12] quantified 
diffusion-controlled bubble growth on the basis of a Jakob number; essentially the product of the ratio of 
sensible to latent heat, multiplied by the expansion rate. Non-dimensional growth curves were developed, 
and within the limit of diffusion-controlled growth, the non-dimensional bubble radius was found to 
depend on the square root of the non-dimensional time: 

    R
+ = t+1/2

  (1). 
A model based on heat conduction through a near-wall superheated liquid layer was introduced by Han et 
al. [13] to quantify the growth rates of bubbles growing at a heated wall, in the presence of gravity. A 
similar approach was applied to micro gravity conditions by Lee et al. [14]. 

2.2. Experimental investigations 
The complexity of the nucleate boiling process constitutes an obstacle to the quantification of bubble 
growth rates given an initial temperature distribution in the fluid. Only limited control of the temperature 
near the heater is achievable, due to the randomness of the mechanism of growth and detachment of 
bubbles. The main cause for this is bubble detachment and rise, and the associated turbulence, which are 
promoted by buoyancy forces. Reduction of the gravitational acceleration allows increased control of the 
temperature distribution near the heater.   
 
2.2.1. Growth of bubbles in zero gravity  
Boiling experiments in reduced gravity have been reported by numerous authors over several decades 
[15-22]. Pool boiling curves and CHF data were collected at several gravity levels for various operating 
fluids. As regards single bubble growth, a comparison between theory and experiment was conducted by 
Lee et al. [14], who performed boiling experiments with R-113 on a gold heater at a high (~ 50) Jakob 
number in microgravity. In their work, it was found that the experimental results can be predicted with a 
transient conduction model [10]. The model can predict the bubble growth rate given an initial 
temperature distribution in the liquid. Two limiting cases exist for the initial temperature distribution, 
namely that of uniform superheat within the body of liquid, whose temperature is thus equal to the wall 
temperature, and that of a thermal boundary layer completely enclosing the bubble surface. The authors 
found that the experimental results were reproduced choosing an appropriate weighted average of the two 
cases. The weights were obtained a posteriori using the experimental growth rate.   
  
2.3. CFD modelling of bubble growth 
Simulation of bubble growth using Computational Fluid Dynamics requires more “modeling” than does 
single phase DNS. A means for incorporating the force associated with the gas-liquid interface is 
necessary, as is a model for evaluation of the interphase mass flux. Surface tension effects are modeled 
via a term in the momentum balance equation that vanishes anywhere except at the interface itself. The 
most common implementation treats this term as a body force [23] active in a few cells (typically three) 
around the interface. The motion of the gas-liquid interface can be captured with interface tracking 
techniques, which involve the solution of an additional advection equation for a scalar quantity used to 



locate the interface, which is assumed to have zero mass and thickness [24]. As regards accounting for the 
production of vapour at the gas-liquid interface, at moderate (~  1  𝑘𝑔/𝑚!𝑠) interphase mass fluxes, and in 
systems that are large in terms of thermal capillary lengths [25], it is appropriate to use the so called 
“Stefan condition” [26]. With this model, the interphase mass flux is evaluated as proportional to the 
jump in heat flux across the interface. Welch et al. [27] coupled this approach with the mass-conservative 
Volume Of Fluid interface tracking method, while Gibou et al. [28] did with the Level Set method and 
Sato et al. [29] used a mass-conserving Constrained Interpolation Profile (CIP-CISL2) technique.  
 
In this work, bubble growth is studied assuming that gas and liquid are incompressible Newtonian fluids 
with constant mechanical and thermophysical properties, here evaluated at the saturation temperature at 
the system ambient pressure. It is assumed that the vapour is at the equilibrium saturation temperature 
corresponding to the externally imposed system ambient pressure: the effect of the Laplace pressure on 
the equilibrium saturation temperature of the vapour is neglected here. Also the interface temperature is 
assumed equal to the saturation value at the system ambient pressure, and the curvature correction of the 
interface temperature is neglected. In the conditions of interest, these effects are relevant only for bubble 
radii at least two orders of magnitude smaller than those considered in this work. Based on the 
assumptions summarised above, application of the Stefan condition to the present problem reduces to 
calculating the rate of production of vapour occurring at the interface as proportional to the heat flux on 
the liquid side of the interface. A consequence of this approach is that, if the numerical computation is 
correct, throughout the whole time of the computation the bubble conserves its spherical shape and the 
vapour remains at the saturation temperature  

 
3. COMPUTATIONAL MODEL  

3.1. The numerical method 
3.1.1. Navier-Stokes solver coupled with the CIP-CISL2 Interface Tracking method 
Use is made of a Finite Volume Navier-Stokes solver employing a staggered arrangement on a Cartesian 
grid [30]. The pressure-velocity coupling is obtained with a projection method [30]. The Constrained 
Interpolation Profile (CIP-CISL2) method [31] is used to track the motion of the gas-liquid interface. 
With this method, an advection equation is solved for the liquid volume fraction 𝜙, termed a ‘colour 
function’, whose 0.5 contour is identified as the gas-liquid interface. To avoid the smearing of 𝜙, a 
sharpening equation [32] is employed. The coupling of CIP-CSL2 and the sharpening equation is given in 
[31]. The details of the evaluation of temperature gradient in the liquid near the interface, performed with 
a strategy similar in spirit to that employed by Gibou et al. [28], are reported in [29]. The solution 
procedure starts with computing the vapor production per unit volume at the interface at the current time 
step based on the color function and temperature distribution at the previous time step: 
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Then the velocity and pressure fields are updated by the projection method: 
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where a generic property a (density, viscosity or thermal conductivity) is expressed as 𝑎 = 𝑎! +
1 − 𝜙 𝑎! and surface tension (the last term on the RHS on equation (3)) is treated as a body force as in 

[23].  The next step is updating the color function: 
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Given the resulting color function distribution field, the temperature distribution is determined solving the 
energy equation: 
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With the interface temperature taken as the saturation temperature at the system ambient pressure, as 
noted above, updating of the temperature field ends the solution procedure for that step. More details 
about the numerical procedures involved are available in [29]. 
 
3.1.2. Curvature calculation 
Curvature of the liquid-vapor interface is calculated from: 

    
κ =− ∇⋅n( ) ,  (5) 

where n  is the unit normal vector to the liquid-vapor interface. For the present case of very small cavities 
with high curvature, the approximations associated with evaluating this in a discrete form contribute to 
causing spurious circulatory currents to be generated in the adjacent fluids. This is referred to in the 
following as original curvature calculation. However, for this particular study of spherical voids, we are 
able to use a particular, and very accurate, curvature value of 2/R (referred to in the following as improved 
curvature calculation), and this contributes greatly to their reduction [33]. We will return to this point. 
 
4. SIMULATION OF A SCRIVEN BUBBLE 
 
4.1. Test cases 
The simulation setup and material properties for the Scriven bubble test cases are shown in Figure 1 and 
Table 1.    

 
 

Figure 1. Simulation setup for the Scriven 
bubble test cases. 

The conditions simulated are chosen to be broadly similar to published nucleate boiling experiments at 
high pressure conducted in normal (Earth) gravity [34]. The spherical symmetry of the problem is 
exploited to simulate a sector corresponding to only 1/8 of the physical domain; one quarter of the ‘top 
half’ of a bubble. The computational domain is a cube of side LX, with symmetric boundary conditions at 
the boundaries crossed by the gas-liquid interface and outlet conditions elsewhere. The normal pressure 
and temperature gradients are set to zero at the outlet boundaries. The domain size has to be chosen to 

 
Property 

Water at 22.7 bar Water at 45 bar 
Liquid Gas Liquid Gas 

𝝆  [𝒌𝒈/𝒎𝟑] 830.0 13.5 787.6 22.7 
𝝁  [𝑷𝒂 ∙ 𝒔] 117.3x10-6 16.6x10-6 103.0x10-6 17.7x10-6 

𝒌  [𝑾/(𝒎 ∙ 𝑲)] 641.0x10-3 45.2x10-3 608.0x10-3 53.7x10-3 
𝒄𝒑[𝑱/ 𝒌𝒈 ∙ 𝑲 ] 4667.6 3486.3 4940.0 4230.0 

𝝈[𝑵/𝒎] 31.2x10-3 24.5x10-6 
𝒉𝒇𝒈[𝑱/𝒌𝒈] 1821.5x103 1675.9x103 
𝑻𝒔𝒂𝒕  [𝑲] 500.7 530.0 

Table 1. The properties of water at 22.7 and 45 
bar. 



accommodate the bubble and minimise the disturbance due to the outlet condition, albeit constrained by 
computational cost. Geometrical and physical parameters for the two cases of interest are reported in 
Table 2. Initial conditions need to be specified. Inside the bubble, the vapor is set to the saturation 
temperature T!"#. 

Table 2. Scriven bubble simulation setup 

Parameter 22.7 bar 
case 45 bar case 

LX [𝝁𝒎] 238.0 78.36 
R0 [𝝁𝒎] 79.4 30.05 
𝚫𝒕𝟎 [𝒎𝒔] 5 1.295 
𝚫𝐓 [𝑲] 6.13 6.13 

Ja 0.966 0.627 
 
Specification of the initial temperature field in the liquid is more complex. The remote liquid is initially 
taken to be superheated by an amount ΔT = T! − 𝑇!"#. The computational model cannot start from a zero 
bubble radius. Whilst one would expect the influence of an arbitrary choice of initial conditions to decline 
rapidly, if the initial bubble size specified were small enough, it is sensible to use what we believe is a 
plausible set of initial conditions. This is done by taking one of the results due to Scriven, from which we 
can estimate the initial radius believed to obtain after some corresponding early time: 
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The density ratio in the present case is high enough to allow use of the following asymptotic expansions 
for the growth constant 𝛽 [11]: 
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The initial temperature distribution is evaluated based on the analytical solution obtained in the original 
work by Scriven. The formula for evaluating the temperature profile in the liquid as a function of distance 
from the interface - 𝑇(𝑅 − 𝑅!,Δ𝑡!) - is[29]: 
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where 𝜉 represents a dummy variable. This is specified as the initial temperature distribution. 
 
4.1.1. Numerical issues 
 
We have mentioned spurious currents above, in the context of poorly calculated interface normals. The 
currents are caused because these normals appear in the surface tension term of the momentum balance 
equation. When there is little fluid motion (as in bubble growth at high pressure, which is rather slow 
compared to low pressure), the currents can pollute significantly the solution (particularly, in our case, the 
temperature distribution). Several approaches have been proposed to alleviate this problem. In this 



particular case, since the only fluid motion expected is radially outwards, with the original curvature 
calculation, we impose a high value of the viscosity (ten times the viscosity of the liquid phase) in both 
the gas and liquid to limit spurious currents. With the improved curvature calculation, use of the physical 
viscosity is made.  However, in order to apply the present methodology to a broader range of problems, it 
will be necessary to adopt a different calculation of the interface curvature. In the following, we present 
results for three cases: i) original curvature calculation with real viscosity, ii) original curvature 
calculation with artificial viscosity, iii) modified curvature calculation with real viscosity.  
  
4.1.2. Results: 22.7 bar case 
 
Results from a mesh independence study for the 22.7 bar case with the artificial viscosity are shown on 
the left hand side of Figure 2, where the analytical and numerically computed growth curves are plotted. 
Since the production of vapour is calculated based on the heat flux jump at the interface, the refinement is 
dictated by the need of resolving the thermal boundary layer in the water. In addition, a finer 
discretization can in principle help in limiting the spurious currents. Three cases of equal-spacing grid 
with different resolution – 48, 72 and 144 cells per side – have been tested. Convergence towards the 
analytical solution is observed if the artificial viscosity is used. On the other hand, with the physical 
viscosity, the computed bubble radius differs significantly from the analytical solution, as seen in the right 
hand side of Figure 2.  

 
Figure 2. Left: mesh independence study for the 22.7 bar case with artificial viscosity. Right: 

growth rate obtained with the finest mesh with the real viscosity. 

The difference in computed temperature and volumetric vapor production (𝑘𝑔/𝑚!𝑠) fields after 8 ms 
between the real (fine mesh) and artificial (intermediate mesh) viscosity cases is shown in Figure 3. The 
spurious currents cause recirculating flow patterns near the gas-liquid interface that distort the 
temperature distribution in the liquid water. Since the production of vapor is calculated based on the 
temperature gradients in the water at the interface, non-uniform vapour production is predicted. It is seen 
that as a consequence of the increased viscosity, the intensity of the spurious currents is reduced and the 
large recirculation that appears near the bubble poles and equator if the real viscosity is used is damped. 
As a consequence, physically plausible temperature and volumetric vapor production distributions are 
obtained. On the other hand, the artificial viscosity does not seem to help limiting the absolute value of 
the spurious currents that does not seem to be reduced with respect to the physical viscosity case. In fact, 
some localized maxima of the velocity vector – pointing approximately in the normal direction to the 
interface - are localized at a few locations around the interface. The origin of these vectors is purely 
numerical, since they point in the direction opposite to bubble expansion. 
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Figure 3. Scriven bubble, 22.7 bar. Temperature (left) and volumetric vapor production (center 

left) distributions after 8 ms using the real viscosity; the temperature varies from 500.7 K (blue) to 
506.83 K (red), the maximum 𝒎 is 86400 𝒌𝒈/𝒎𝟑𝒔, the maximum velocity vector intensity is 0.072 
m/s. Temperature (center right) and volumetric vapor production (right) distributions after 8 ms 

using the artificial viscosity; the maximum 𝒎 is 32100 𝒌𝒈/𝒎𝟑𝒔, the maximum velocity vector 
intensity is 0.039 m/s.  

Growth rates obtained with an improved calculation of the interface curvature are shown in Figure 4. 
Convergence towards the analytical solution is observed if the mesh is refined and better agreement with 
the analytical growth rate is observed with respect to both the real viscosity and artificial viscosity cases 
with the original curvature calculation. The temperature and volumetric vapor production predictions are 
also improved. The thermal boundary layer remains spherical, as a consequence of the disappearance of 
the recirculating areas near the bubble poles and equator. In addition, the abnormally high velocity 
vectors appearing at some locations along the interface if the fictitious viscosity is prescribed are no 
longer present. 

  
Figure 4. Left: mesh independence study for the 22.7 bar case using the improved curvature 

calculation and physical viscosity. Right: comparison between growth rates obtained with the finest 
mesh using artificial viscosity (original curvature computation), physical viscosity (original 

curvature computation) and the improved curvature computation. 
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Figure 5. Temperature (left) and volumetric vapor production (right) distributions obtain for the 

22.7 bar case after 11.75 ms using the real viscosity and improved curvature calculation; the 
maximum 𝒎 is 53000 𝒌𝒈/𝒎𝟑𝒔, the maximum velocity vector intensity is 0.047 m/s. 

4.1.3. 45 bar case: results 
 
The methodology described for the 27 bar case is also applied to the 45 bar case. The conditions of the 
simulation at 45 bar result in a thicker – compared to the bubble radius - thermal boundary layer than the 
22.7 bar case. Since the need to resolve this boundary layer is the main constraint on mesh size, no further 
refinement is required with respect to the 22.7 bar case (despite the smaller initial bubble radius), and the 
same discretisations as the previous case are used. The simulation begins at an earlier stage of bubble 
growth than did the 22.7 bar case considered in this study. As a consequence, the thermal boundary layer 
is thinner and having the same superheat the interphase mass transfer is more vigorous. In these 
conditions, the spurious currents have a smaller effect, and the temperature and volumetric production of 
vapor distributions are less distorted. A comparison between the analytical and numerical bubble growth 
curves obtained with the improved curvature calculation is shown on the left hand side of Figure 6. The 
growth rate obtained numerically with artificial viscosity agrees reasonably with the analytical solution. 
Interestingly, no significant difference in terms of growth rate is observed between the results obtained 
with the original curvature computation (using both artificial and physical viscosities) and the improved 
curvature computation, as is shown on the right hand side of Figure 6.   
 



  
Figure 6. Left: mesh independence study for the 45 bar case using the improved curvature 

calculation and physical viscosity. Right: comparison between growth rates obtained with the finest 
mesh using artificial viscosity (original curvature computation), physical viscosity (original 

curvature computation) and the improved curvature computation.  

However, significant differences appear in terms of temperature and volumetric production of vapor 
distributions, as shown in Figure 7.  
 

    
Figure 7. Scriven bubble, 45 bar. Temperature (left) and volumetric vapor production (center left) 

distributions after 2.5 ms using the real viscosity; the temperature varies from 530.0 K (blue) to 
536.13 K (red), the maximum 𝒎 is 504000 𝒌𝒈/𝒎𝟑𝒔, the maximum velocity vector intensity is 0.06 
m/s. Temperature (center righ) and volumetric vapor production (right) distributions after 2.5 ms 

using the artificial viscosity; the maximum 𝒎 is 439000 𝒌𝒈/𝒎𝟑𝒔, the maximum velocity vector 
intensity is 0.029 m/s. 

As in the previous case, the increased viscosity has eliminated the two recirculating patterns at the polar 
and equatorial regions of the interface, and the velocity distribution results are improved. We notice 
however a small number of localized peaks of the velocity perturbation that have not been eliminated by 
increasing the viscosity.   
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Figure 8. Temperature (left) and volumetric vapor production (right) distributions obtained for the 
45 bar case after 2.5 ms using the real viscosity and improved curvature calculation; the maximum 

𝒎 is 400000 𝒌𝒈/𝒎𝟑𝒔, the maximum velocity vector intensity is 0.04 m/s. 

 
The benefit of the improved curvature calculation is evident from Figure 8, where the temperature and 
volumetric production of vapor distributions after 2.5 ms are shown. Although localized peaks of the 
velocity vectors are still present, and some perturbations of the velocity field still affect a narrow region 
enclosing the interface, the recirculating patterns are no longer present, and overall the flow is radially 
outwards, as expected. No significant distortion of the thermal boundary layer is observed; as a 
consequence, the interphase mass transfer rate is evenly distributed along the interface. It is worth noting 
that the combined use of both of the methods devised to limit spurious currents was not sufficient to 
eliminate all perturbation of the velocity field near the interface. An abnormally high magnitude of the 
velocity vector – which is however directed radially, as expected - is observed near the poles and equator 
of the bubble. These perturbations are oscillatory. The spurious velocity vectors have been observed to 
point both inwards (as in Figure 3) and outwards. This occurrence does not have a measurable influence 
on the computed temperature and interphase mass transfer distributions, however the issue needs to be 
addressed in the future.  
 
5. CONCLUSIONS AND FUTURE WORK 
 
The results presented show that the interface tracking approach with phase change is able to produce 
predictions that are in very good agreement with the analytical solution for this problem. As such, they 
provide encouragement for the development of the approach for its application, in particular, to support 
the component-scale modelling of two phase flows in a nuclear context. However, there are various 
aspects where further research is plainly required. There are some simplifications in the approach taken 
associated with the use of conditions at the vapour-liquid interface that did not fully take into account the 
pressures associated with the high curvatures of bubbles in their early stages. Some work here may be 
valuable, albeit the importance of this will be first need to be assessed via a consideration of the actual 
physical conditions likely to be of practical interest. Probably the greater issue is associated with the 
spurious currents generated in the solution. That these are indeed spurious, and that without them very 
accurate solutions can be obtained, was clearly demonstrated. However, whilst the approaches adopted to 
remove their effect, of non-physical use of a high viscosity, and the use of surface normals computed 
based on our a priori knowledge of the surface geometry, were very effective, these approaches are 



unlikely to be acceptable under the more general circumstances of real interest. Perhaps the major 
conclusion from this study is that the cause of, and remedy for the spurious currents needs to be more 
fundamentally identified and more generally based, in order for these methods to be used with confidence 
for the purposes discussed. 
 
NOMENCLATURE 
 
Roman: 

A  nondimensionalisation constant, equal to 

    

2ΔTh
fg
ρ

g

3T
sat
ρ

l

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
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B  nondimensionalisation constant, equal to 
    

12
π
α

l

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

1/ 2

Ja   

𝐶!  volumetric specific heat at constant pressure 𝐽/𝑚!𝐾  
 
g  gravity acceleration vector 𝑚/𝑠!  
 
ℎ!"  latent heat of vaporization 𝐽/𝑘𝑔  
 

Ja  Jakob number, equal to 

   

ρ
l
c

pl
ΔT

ρ
g
h

fg

  

k  thermal conductivity 𝑊/𝑚𝐾  
𝑚  volumetric vapor production rate 𝑘𝑔/𝑚!𝑠  
n  interface normal unit vector 
p  pressure 𝑃𝑎  
q  heat flux vector 𝑊/𝑚!  

𝑅!  Non-dimensional radius, equal to 
  

R
B2 / A

  

𝑆!"#  interface surface in a cell 𝑚!  

𝑡!  Non-dimensional time, equal to 
  

t
B2 / A2

  

u  velocity vector 𝑚/𝑠  
𝑉!"##  cell volume 𝑚!  
 
Greek: 
𝛽  bubble growth constant 
𝜅  interface curvature 𝑚!!  
𝜇  dynamic viscosity 𝑃𝑎 ∙ 𝑠  
𝜌  density 𝑘𝑔/𝑚!  
𝜎  surface tension coefficient !

!
 

 
Subscripts: 
∞  referring to the bulk fluid 
sat  referring to saturation conditions 
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