Bio-Energy with CCS (BECCS) performance evaluation: efficiency enhancement and emissions reduction

Mai Bui^{a,b}, Mathilde Fajardy^{a,b}, Niall Mac Dowell^{a,b,*}

 ^a Centre for Process Systems Engineering, Imperial College London, South Kensington, London SW7 2AZ UK

^b Centre for Environmental Policy, Imperial College London, South Kensington, London SW7 1NA UK

⁸ Abstract

2

з

6

In this study we evaluate the feasibility of the recovery of waste heat from the power plant boiler system of a pulverised fuel power plant with amine-based CO₂ 10 capture. This recovered heat can, as a function of fuel type and solvent selection, 11 provide up to 100% of the heat required for solvent regeneration, thus obviating 12 the need for withdrawing steam from the power plant steam cycle and signifi-13 cantly reducing the efficiency penalty imposed upon the power plant by the CO₂ 14 capture process. In studying the thermochemistry of the combustion process, it 15 was observed that co-firing with low moisture biomass achieved higher adiabatic 16 flame temperatures (AFT) than coal alone. The formation and emission of SO_X 17 reduced as biomass co-firing proportion increased, whereas NO_X emissions were 18 observed to be a function of AFT. The power generation efficiency of a 500 19 MW 50% co-firing BECCS system increased from $31\%_{\rm HHV}$ with a conventional 20 MEA solvent, to $34\%_{\rm HHV}$ with a high performance capture solvent. The heat 21 recovery approach described in this paper enabled a further efficiency increase 22 up to $38\%_{\rm HHV}$ with the high performant solvent. Such a system was found to 23 remove 0.83 Mt_{CO_2} from the atmosphere per year at 90% capacity factor. 24

25 Keywords: Bio-energy, Carbon Capture and Storage (CCS), BECCS,

²⁶ Greenhouse gas removal (GGR), Negative emissions technologies (NETs)

Preprint submitted to Applied Energy

^{*}Corresponding author

Email address: niall@imperial.ac.uk (Niall Mac Dowell)

27 1. Introduction

Carbon capture and sequestration (CCS) technologies are well accepted as 28 being vital for the mitigation of climate change [1]. There is growing interest in 29 developing long-term CO₂ mitigation strategies that have the potential for deep 30 reductions in atmospheric CO_2 concentrations. CCS with so-called negative 31 emissions technologies (NETs) or greenhouse gas removal (GGR) technologies 32 are expected to play an essential role in limiting global warming below 2°C, 33 as advised by IPCC [2] and in meeting the 1.5°C target proposed by COP21 34 [3]. "Negative emissions" technology that combines biomass-derived energy and 35 CO_2 sequestration was first introduced by Williams (1996) [4] for hydrogen fuel production and Herzog (1996) [5] for electricity generation. Biomass grown 37 and harvested sustainably is considered an appropriate substitute for fossil fuels 38 [6, 7]; during growth, there is a net transfer of atmospheric CO_2 into biomass, 39 and the conversion of the biomass to produce electrical energy and the capture 40 and geological storage of the arising CO_2 enables the permanent removal of that 41 CO_2 from the atmosphere [8, 9]. This is referred to as bio-energy with carbon 42 capture and sequestration, or BECCS [10, 11, 12, 13]¹, and can achieve an overall 43 negative CO_2 balance when carefully deployed [14, 15, 16, 17, 8, 18, 19, 20, 10]. 44 The IPCC highlighted BECCS as an important mitigation option in the fifth 45 assessment report [2], and it was the most widely selected negative emissions technology by integrated assessment models to meet temperature targets [9]. 47

In addition to reducing CO_2 emissions, biomass co-combustion has been shown to reduce NO_X , SO_X and particulate emissions [21]. Full-scale studies demonstrate that high proportions of biomass co-firing is possible without any effect on boiler or combustion efficiency, provided modern burner technology is used [22]. Dedicated biomass combustion at the utility scale is possible with, for instance, the Drax Power Station operating two of its 660 MW generating units with a 100% biomass fuel [23]. The conversion of these units from coal

¹Originally termed BECS by Kraxner *et al.* (2003) [8]

to biomass is reported to have cost $\pounds700M$, which covered all capital required 55 for the storage, handling and conversion of the biomass [24]. On the other 56 hand, biomass-dedicated power plants are typically one-tenth the size (1 to 100 MW) of conventional coal-fired plants, due to limited biomass availability and 58 high cost of transportation [25, 26]. Fuel availability is region specific, as there 59 will be variation in feedstock properties, land/water availability, crop yields, 60 transportation costs and other parameters. However, biomass supply chains in 61 the UK have yet to fully develop. Consequently, large-scale plants such as Drax 62 must import wood pellets to meet fuel requirements, 58% from the US, 21% 63 from Canada, and 7.5% from Latvia [27]. 64

Biomass tends to have a lower heating value and often higher moisture con-65 tent compared to high quality coal (shown by table A1). Therefore, biomass 66 co-combustion tends to reduce power plant output relative to dedicated coal 67 combustion [28], for a constant fuel combustion rate. The addition of CO_2 68 capture technology will impose a further energy penalty, appreciably reducing 69 electricity output per unit of primary fuel utilised [29]. The size of a biomass 70 power plant needs to be large enough to exploit economy of scale, however, size is 71 limited by biomass availability and cost [26]. When the capacity of an electricity 72 generation plant is doubled, capital cost increases approximately 62%. Larger 73 power plants are more thermally efficient than small-scale plants. For instance, 74 a 200 MW power plant converts 30–39% of the thermal energy into electricity, 75 whereas a 25 MW plant converts 20–25% into electricity [30]. Subsequently, the cost of generating electricity is higher for small-scale power plants [31]. Ul-77 timately, the higher thermal efficiency and lower cost of electricity generation 78 make larger facilities more profitable than small-scale plants, thus outweighing 79 the higher construction costs [30]. 80

81 2. Enhancement of BECCS performance

In comparison to other energy systems, BECCS is a promising candidate for
negative emissions (as shown by figure 1). In the near to medium term, most, if

not all, BECCS power plants will continue to compete in liberalised electricity
markets. Thus, efficiency improvements will serve to reduce the marginal cost
of electricity generation, allowing the facility to operate at a higher load factor
[32, 33]. Therefore, further improvements to its performance will encourage
large scale deployment of the technology.

Figure 1: Net carbon balance for various energy conversion systems [34].

In conventional post-combustion capture technology, heat is supplied to the solvent regeneration process in the form of saturated steam. This reboiler heat duty (HD in MJ/t_{CO₂}) is the summation of three contributions: (i) the sensible heat to raise the solvent from absorber to desorber temperature; (ii) the heat of evaporation to produce the steam supplied to the reboiler; and (iii) the heat of absorption, *i.e.* the heat necessary to desorb the CO₂ from the solution [35]:

$$HD = \frac{Cp \times (T_{\rm R} - T_{\rm feed})}{\Delta \alpha} \frac{M_{\rm sol}}{M_{\rm CO_2}} \frac{1}{x_{\rm solv}} + \Delta h_{\rm vap, H_2O} \frac{p_{\rm H_2O}}{p_{\rm CO_2}} \frac{1}{M_{\rm CO_2}} + \frac{\Delta h_{\rm abs, CO_2}}{MW_{\rm CO_2}}$$
(1)

where $_{Cp}$ is the specific heat of the solution, T_R and T_{feed} are the temperatures at the reboiler and desorber inlet, respectively, $\Delta \alpha$ is the difference in CO₂ loading between the absorber outlet (rich) and inlet (lean), x_{solv} is the solvent mole fraction in the solution, $\Delta h_{vap,H_2O}$ is water latent heat of evaporation, p_{H_2O} and p_{CO_2} are the vapor and CO₂ partial pressures in the gas phase at the desorber top, $\Delta h_{abs,CO_2}$ is the heat of absorption of solvent, lastly, MW_{CO_2} and MW_{sol} are the molecular weights of CO₂ and the solution.

This solvent regeneration process requires low grade thermal energy, on the 102 order of 150°C, typically provided by the condensation of steam at ~ 3 bar 103 [36, 29]. The main steam supply for CO_2 capture is extracted from the steam cy-104 cle of the power plant, which incurs an efficiency penalty on the system [37, 38]. 105 To minimise the efficiency penalty associated with CO_2 capture, several options 106 for extracting steam from the power plant steam cycle have been proposed: 107 steam extraction from the cross-over pipe between the intermediate pressure 108 (IP) and the low pressure (LP) steam turbines [39, 40, 41, 42, 43], steam cy-109 cle retrofits designed for optimised integration with CO_2 capture [36, 44], and 110 steam extraction from an appropriate point within the LP turbine [45]. Further 111 improvements to power plant energy efficiency can be achieved through waste 112 heat recovery. Pfaff et al. (2010) used waste heat from the CO_2 capture plant 113 to improve the efficiency of the power station. Heat recovered from the strip-114 per overhead condenser and the CO₂ compressor intercoolers were utilised for 115 pre-heating of the steam cycle condensate and combustion air [46]. Another 116 energy source is flue gas heat recovery, which can be used to improve power 117 plant efficiency through fuel drying [47] or applied in a low pressure economiser 118 to heat the condensate in the steam cycle [48, 49, 50, 51]. Alternatively, the 119 heat recovered from flue gas can provide energy for solvent regeneration in CO₂ 120 capture [52, 53], where the measured flue gas temperature at the economiser 121 outlet is ~ 345 °C [54]. 122

All of these studies on efficiency improvements have focussed on applica-123 tions in fossil fuel-fired power plants. However, there is relatively little work 124 on efficiency improvement in biomass-fired plants. In a 500 MW supercritical 125 power station co-firing biomass and coal, the temperature of the exhaust gas 126 leaving the boiler can reach 370°C [55]. Therefore, the additional recovery of 127 relatively low-grade heat from the boiler system has the potential to improve 128 the power generation efficiency of a BECCS power plant, albeit at the cost of 129 the additional capital associated with the heat recovery system. Importantly, 130

the moisture content of biomass can vary significantly; as table A1 demonstrates it varies between 5–60 wt%. As moisture content increases, lower heating value (LHV) decreases due to reduced content of combustible matter per kilogram of biomass [56], which in turn decreases net efficiency of the power plant [55]. However, increased moisture content in the fuel enhances heat transfer properties of the flue gas, thereby improving heat recovery [57].

The quality of biomass has an impact on the system efficiency and heat 137 recovery potential of the flue gas. Specifically, suppose we have the option of 138 a high quality (low moisture, high heating value and likely higher cost) or a 139 low quality (high moisture, low heating value and likely lower cost) fuel. In 140 order to produce a constant amount of power, less of the high quality fuel 141 will be required, leading to less recoverable heat in the boiler system. In the 142 case of a low quality fuel, the contrary is true. This is simply another way of 143 saving that high quality fuels tend to result in improved thermal efficiency, and 144 reduced stack losses than low quality fuels. Hence, the amount of recoverable 145 heat within the boiler will depend on fuel quality. This study comprehensively 146 evaluates the potential use of this recovered heat for solvent regeneration in 147 BECCS systems. The remainder of the paper is structured as follows: we first 148 present engineering and thermodynamic models of the BECCS system. The 149 effect of biomass quality and co-firing proportion on combustion performance 150 was then studied in terms of their impact on adiabatic flame temperature, NO_X 151 emissions and SO_X emissions. The impact of biomass co-firing, heat recovery 152 and solvent selection on system efficiency and carbon intensity is also evaluated. 153 Lastly, the paper concludes with some perspectives for future work in this area. 154

155 3. Model development

156 3.1. Overall algorithm

This section presents the thermodynamic modelling approach used in this work, with a graphical overview of the algorithm presented in figure 2, which show the following steps (denoted by the circled numbers): 160 1. Selection of the fuels and solvent.

161	2.	Calculation of the fuel flow rate and net power output in the Integrated
162		Environment Controlled Model (IECM, [58]) for different biomass co-firing
163		proportions, based on a 500 MW ultra-supercritical power plant.

- 3. Model the co-combustion of biomass with coal in FactSage to determine
 the exhaust gas composition, flow rate, thermodynamic properties and
 adiabatic flame temperature (AFT).
- 4. Heat recovery calculations to determine the influence of exhaust gas heat
 recovery on overall power plant efficiency and carbon intensity.

169 3.2. Power plant and post-combustion capture model

170 3.2.1. Fuel selection

Different coal and biomass types were selected from the literature in order 171 to have a representative range of fuel composition and quality scenarios, with 172 respect to moisture content, sulphur content and ash content. Wood biomass 173 and herbaceous biomass have very different properties as seen in Table A1. 174 Thus, a biomass was chosen to represent each of these fuel categories. Dried 175 (5% moisture) and raw (50% moisture) clean wood chip were selected as the low 176 ash content biomass; and dried (5% moisture) and raw (16% moisture) wheat 177 straw were selected as the high ash content biomass. Two bituminous coals with 178 medium (0.9%) and high sulphur content (2.5%), and relatively similar moisture 179 content ($\approx 10\%$) were selected. Tables 1 and 2 summarise the higher heating 180 value (HHV) and composition of the biomass and coals; the ash composition is 181 in table A2. The blended fuel composition was then determined for these fuels 182 at different biomass-coal co-firing proportions. 183

184 3.2.2. Solvent selection

The characteristics of the CO_2 capture solvents used in calculations are summarised in table 3. Monoethanolamine (MEA) was used as the base case with a reboiler heat duty of 3600 MJ.t_{CO2}⁻¹ (average calculated by IECM, [58]), and a reboiler temperature of 120°C. The second capture system scenario

Composition	Clean wood chips	Wheat straw
HHV (MJ.kg ⁻¹ dry)	19.16	19.22
C (dry wt%)	50	48.7
H (dry wt%)	5.4	5.7
O (dry wt%)	42.2	39.1
Cl (dry wt%)	0.02	0.32
S (dry wt%)	0.05	0.1
N (dry wt%)	0.3	0.6
Ash (dry wt%)	2.0	5.5
References	[59]	[60,61,62,63]

Table 1: Biomass dry basis composition.

Composition	High sulphur coal	Medium sulphur coal
$\mathrm{HHV}~(\mathrm{MJ.kg^{-1}~dry})$	27.14	27.06
C (wt%)	63.75	64.6
H $(wt\%)$	4.5	4.38
O $(wt\%)$	6.88	7.02
Cl (wt%)	0.29	0.023
S (wt%)	2.51	0.86
N $(wt\%)$	1.25	1.41
Ash $(wt\%)$	9.7	12.2
Moisture (wt%)	11.12	9.5
References	[58]	[59]

Table 2: Coal wet basis composition.

used parameters representative of Cansolv; a commercial solvent with a reboiler heat duty of 2300 MJ.t_{CO2}⁻¹ and a reboiler temperature of 120°C [64, 65]. Ye *et al.* (2015) achieved an overall heat duty reduction of 30% with biphasic solvent compared with conventional MEA systems [66]. Biphasic (or dual-phase) systems can involve liquid-solid separation (*e.g.* aqueous ammonia) or liquidliquid separation, and have lower energy requirements in comparison to single-

phase absorption systems. Liquid-solid systems have the advantages of increased 195 CO_2 absorption capacity and improved energy efficiency in the stripper [67]. In 196 liquid-liquid systems, energy consumption reduces due to: (i) the decrease of 197 the liquid amount sent to the stripper, and (ii) a reduction of the desorption 198 temperature (characteristic of biphasic solvents) [68]. As suggested in Ye et al. 199 (2015) temperatures of between $80-120^{\circ}$ C were chosen for the reboiler operating 200 temperature. As MEA heat duty reported in IECM is quite conservative, and 201 substantially lower values have been reported in the literature, therefore 2900 202 $MJ.t_{CO_2}^{-1}$ [69] was considered to be representative of the limits of what could 203 be achieved with MEA solvent. Thus, using 2,900 $MJ.t_{CO_2}^{-1}$ as a baseline, an 204 energy of regeneration of $2,000 \text{ MJ}.t_{\text{CO}_2}^{-1}$ at 80°C was judged to be on the limit 205 of what is achievable with state-of-the-art solvents [70, 71, 72]. 206

Solvent	Heat duty $(MJ.t_{CO_2}^{-1})$	Reboiler temperature (°C)
MEA	3600	120
Cansolv	2300	120
"New solvent"	2000	80

Table 3: Solvent characteristics.

207 3.2.3. Power plant model

An ultra-supercritical 500 MW coal-fired power plant with a 90% postcombustion capture rate and a cooling tower was modelled in IECM. In this configuration and for a given fuel composition, IECM enables the calculation of the fuel flow rate, F_F (in t/hr), necessary to meet the 500 MW capacity and the power plant net power output, *NPO*, in MW.

In this study, the technical and environmental performance of the power plant is assessed with respect to two metrics: efficiency and carbon intensity. Carbon intensity is defined at the power plant algebraic emissions per MW produced. Based on the fuel higher heating value (HHV, in MWh/t), the net power generation efficiency η (in % HHV) can then be calculated using the 218 following formula:

$$\eta = \frac{NPO}{F_{\rm F} \times HHV} \tag{2}$$

The carbon negativity of BECCS is contingent on 90% of the emitted CO₂ being captured, of which a certain fraction (the co-firing proportion, Cf) has been captured from the atmosphere by the biomass. Based on the fuel carbon content, C_F , the biomass carbon content, C_B , and the co-firing proportion, the overall carbon intensity CI (in kg_{CO2}/MWh) was calculated with the following equation:

$$CI = \frac{F_{\rm F}((1 - R_{\rm CCS}) \times C_F - Cf \times C_B) \times \frac{MW_{\rm CO_2}}{MW_{\rm C}}}{NPO} \times 1000$$
(3)

where MW_{CO_2} and MW_C are the molecular weights of CO_2 and carbon, respectively.

227 3.3. Chemical equilibrium model of biomass co-combustion with coal

A thermo-chemical analysis of coal co-combustion with biomass was conducted using the software FactSage 7.0, which has access to thermodynamic data from the FACT and SGTE² databases. Based on the specified temperatures, pressure and composition of fuel and air, FactSage calculates the species formed once chemical equilibrium is reached after complete or partial reaction [73, 74]. FactSage is capable of handling a wide range of biomass combustion and condensation products³ [75].

Table 4 summarises the fuel blending scenarios of coal and biomass that were modelled in FactSage. For each scenario, biomass co-firing proportion was increased from 0% to 50% in increments of 5%. IECM provided data for fuel

²The FACT databases were developed as part of the FACT Database Consortium Project, whereas SGTE databases were prepared by the international Scientific Group Thermodata Europe (SGTE) consortium [73, 74].

³Condensation products form when volatilised solids are cooled to form droplets, which may deposit on a surface or remain suspended in the gas stream.

²³⁸ firing flow rates based on the blended fuel composition in a 500 MW ultra²³⁹ supercritical power plant. The fuel flow rates in tonnes per hour was used as
²⁴⁰ the mass basis in the equilibrium calculations.

Scenario	Fuel blend
A	Medium sulphur coal and wheat straw of 5% moisture
В	Medium sulphur coal and wheat straw of 16% moisture
C	Medium sulphur coal and wood chip of 5% moisture
D	Medium sulphur coal and wood chip of 50% moisture
E	High sulphur coal and wheat straw of 5% moisture
F	High sulphur coal and wheat straw of 16% moisture
G	High sulphur coal and wood chip of 5% moisture
Н	High sulphur coal and wood chip of 50% moisture

Table 4: Biomass and coal co-firing scenarios modelled in FactSage.

Supplying the optimal amount of air is critical for efficient combustion, to 241 minimise thermal losses and to ensure complete combustion. To achieve com-24 2 plete combustion, the excess air coefficient (λ) typically ranges from 1.1–1.8 for 243 large scale applications and 1.5-2.0 for small scale systems⁴, depending on the 244 combustion technology [76]. In this study, $\lambda = 1.3$ was used for all combustion 245 simulations in FactSage, as this ensured complete combustion and maintained 246 an O_2 concentration of ~5-6% in the flue gas, in line with common industrial 247 practice. 248

FactSage was used to calculate the adiabatic flame temperature (AFT) of each fuel blend of biomass and coal. Then co-combustion of each fuel blend was simulated from 200°C to the AFT. Subsequently, the multi-phase flue gas mixture was cooled from the AFT to 370°C, representing an energy transfer to

⁴Small-scale combustion systems are used for domestic applications (*e.g.* heating boilers, wood stoves) with a nominal boiler capacity of $\sim 100 \text{ kW}_{\text{th}}$. The large-scale combustion applications are the range of MW_{th} or greater, which include district heating, electricity generation, process heating and combined heat and power systems [76].

the power plant steam cycle. The analysis of SO_{X} and NO_{X} emissions were 253 analysed at 370°C (flue gas temperature of the boiler exit predicted by IECM 254 [55]). Note, however, the temperature of the flue gas at the boiler exit is a 255 function of the AFT, which in turn, varies with different fuels and co-firing 256 proportion. Typically, the energy transferred to the steam cycle should be 257 held constant. Thus, increases in AFT represent the potential for greater heat 258 recovery. The AFT for different fuel blends was an important consideration in 259 the heat recovery analysis as it quantified the degree of variation in flue gas 260 temperature at the boiler exit. 261

The objective of this analysis was to study the influence of biomass co-firing 262 proportion on: (i) AFT, (ii) SO_X and NO_X emissions, and (iii) properties of the 263 exhaust gas. The exhaust gas properties (flow rate and specific heat capacity) 264 and AFT were required for the heat recovery analysis in the next section. Fact-265 Sage assumes equilibrium thermochemistry, and whilst it is recognised that this 266 is not representative of all conditions within the boiler, it does provide insight 267 into the limits of species formation [77, 78] and is reliable for the calculation of 268 flame temperatures. 269

270 3.4. Heat recovery calculations

A heat recovery model (figure 3) was designed in MATLAB to calculate the amount of recoverable heat from the boiler system and the exit flue gas temperature for the different co-firing proportion and solvent scenarios.

In a first instance, the reboiler heat duty (HD in $MJ.t_{CO_2}^{-1}$) of the solvent scenario, and the amount of CO₂ (F_{CO2} in $t_{CO_2}.hr^{-1}$) to be processed by the post-combustion capture system for the specific co-firing proportion, are used to calculate the overall heat rate required for the reboiler Q_R :

$$Q_R = HD \times F_{CO_2} \tag{4}$$

For the given reboiler temperature, T_R , in order to ensure efficient heat transfer, it was assumed that the reboiler saturated steam inlet temperature, T_o , was 200 20K greater than the reboiler temperature and that the reboiler sub-saturated

Figure 3: Illustration of the heat recovery model (H=Heater, E=Evaporator, SH=Super heater).

water outlet temperature, T_i , would be 5K below the inlet temperature, *i.e.*, assuming a minimal amount of condensate sub-cooling:

$$T_o = T_R + 20 \tag{5}$$

$$T_i = T_o - 5 \tag{6}$$

The pressure P_o of the reboiler steam inlet is assumed to be the saturation pressure at T_o . The steam flowrate m_s (in t.hr⁻¹) can then be determined:

$$m_s = \frac{Q_R}{\Delta H_q(T_o)} \tag{7}$$

where ΔH_g is the enthalpy of saturated steam at T_o and P_o .

The aim here is to incorporate an additional low pressure steam loop within the boiler system, comprising of a heater, an evaporator and a super-heater [79]. The exit temperature of the heater, T_H , is the saturated temperature at P_o , T_o , the evaporator is isothermal, and the superheater was assumed to heat the steam by 5°C to compensate for heat losses up to the reboiler, in other words, the aim is to deliver saturated steam to the reboiler. Sub-saturated water, saturated steam and super-heated steam thermodynamic properties were taken from steam tables [80], [81]. For the three units, the following thermodynamic relations were used:

$$Q_H = m_s \times C p_w \times (T_H - T_i) \tag{8}$$

$$Q_E = m_s \times \Delta H_{fg}(T_E) \tag{9}$$

$$Q_{SH} = m_s \times Cp_s \times (T_{SH} - T_E) \tag{10}$$

The exhaust gas flow rate, m_g , temperature, T_{gi} and heat capacity, Cp_g , are known for each scenario, and the amount of heat transferred gives the exhaust gas temperature profile along the heat exchanger:

$$T_{gSH} = T_{gi} - \frac{Q_{SH}}{Cp_g \times m_g} \tag{11}$$

$$T_{gE} = T_{gSH} - \frac{Q_E}{Cp_g \times m_g} \tag{12}$$

$$T_{go} = T_{gE} - \frac{Q_H}{Cp_g \times m_g} \tag{13}$$

The heat exchanger area, A, is the sum of area for the three sections, determined with the log mean temperature (ΔTm) model [82] and overall heat transfer coefficients from literature (provided in table 5 for completeness):

$$A_H = \frac{Q_H}{U_H \times \Delta T m_H} \tag{14}$$

$$A_E = \frac{Q_E}{U_E \times \Delta T m_E} \tag{15}$$

$$A_{SH} = \frac{Q_{SH}}{U_{SH} \times \Delta T m_{SH}} \tag{16}$$

$$A = A_H + A_E + A_{SH} \tag{17}$$

Table 5: Overall heat transfer coefficients

Overall transfer coefficient $(W.m^{-2})$	Value	Source
U_H	50	Luyben et al, 2014 [79]
U_E	280	Luyben et al, 2014 [79]
U_{SH}	170	Perry & Green, 2008 [83]

For each solvent and co-firing proportion, the fraction of reboiler heat duty that can be supplied by energy from heat recovery was calculated. Finally, the reduced heat duty value was then implemented in IECM to determine the new system efficiency and carbon intensity.

305 4. Results and Discussion

306 4.1. Co-combustion of biomass with coal

307 4.1.1. Adiabatic flame temperature (AFT)

Adiabatic flame temperature is calculated based on the sensible enthalpy, 308 enthalpy of formation and temperature-dependent specific heat capacity data 309 for the chemical species in the fuel [84]. The calculated AFT changes with 31 0 different fuel compositions (*i.e.* different reactant stoichiometry or chemical 311 species) or initial temperature. Figure 4 illustrates the differences in calculated 31 2 AFT for various biomass and coal blends. The AFT generally increased with 31 3 higher biomass co-firing percentage. The FactSage modelling revealed that AFT 314 continues to increase linearly as the biomass co-firing proportion is increased up 31 5 to 100%. Although higher heating value (HHV) of the blended fuel reduced as 316 biomass co-firing % increased, the fuel firing rate increased to meet the specified 31 7 capacity of the power plant (500 MW). This effect was replicated in FactSage 31 8 by increasing the mass basis in accordance to the fuel firing rates predicted 319 by IECM. The published AFT range for different biomass (dry basis) fuels is 320 1730-2430°C [85], whereas coal varies between 1900-2230°C [86]. Therefore, 321 the values of AFT calculated by FactSage for biomass and coal co-combustion 322 (2182–2324°C) is within the ranges reported in literature. 323

Figure 4: Adiabatic flame temperature for the combustion of various biomass and coal blends at different biomass co-firing % and $\lambda = 1.3$.

The moisture of the fuel limits the combustion performance due to the: (i) 324 reduction in heating value, and (ii) evaporation of water, which is endothermic 325 and hinders the exothermic combustion reaction. To ensure the combustion of 326 biomass is self-sustaining, the limit for maximum moisture content is $\sim 65\%$ wet 327 basis. The ash content also reduce heating value of the fuel as it does not con-328 tribute to the release of heat during combustion [85]. As demonstrated by Sami 329 et al. (2001), increased composition of ash and moisture results in decreased 330 AFT. Additionally, AFT can reduce with increased amount of stoichiometric 331

air⁵ [86]. To prevent flame instability in boilers and furnaces, the temperature needs to remain above 1600 K [86]. Thus, understanding the effect of fuel
content and combustion conditions on AFT is essential.

Variations in composition for different fuel types and blends influence the 335 AFT, and thus can impact the boiler performance. When comparing AFT of 0% 336 and 50% biomass for the different co-firing scenarios in table A3, biomass mois-337 ture content had a significant effect on the degree of increase in AFT. Increasing 338 the co-firing proportion of high 50% moisture wood chip from 0% to 50% with 339 medium sulphur and high sulphur coal increased AFT by 5.26°C and 3.91°C, re-340 spectively. Although moisture content was high, AFT increased slightly due to 341 the reduction in ash content as biomass % increased⁶. In comparison, co-firing 342 coal with moderate 16% moisture straw resulted an increase 108°C in AFT. 343 The greatest increase in AFT was achieved with the co-combustion of low 5%344 moisture biomass with coal, which led to a major increase in AFT of 136°C 34 5 (scenarios A and C of medium S coal and 5% moisture wood/straw). The mois-346 ture content of the medium sulphur coal and high sulphur coal was 9.5 wt% and 347 11.1 wt%, respectively. In other words, co-firing with a biomass of low moisture 348 content enhanced the combustion performance of a low rank coal. 349

The co-combustion of the same biomass type with high sulphur coal led to higher AFT than co-combustion with medium sulphur coal. As indicated by Sami *et al.* (2001), the higher ash content in medium sulphur coal compared to high sulphur coal (table 2) would result in lower AFT values. Additionally, the ash content of wood chip and wheat straw was significantly lower than the two coals. Hence, increased biomass co-firing percentage reduced the overall ash content of the fuel blend, leading to higher adiabatic flame temperatures.

⁵The presence of excessive amounts of air cools down the combustion process, leading to thermal losses and incomplete combustion [76]

 $^{^{6}}$ For the medium sulphur coal case, when the co-firing proportion of 50% moisture wood chip was increased from 0 to 50%, the overall ash content reduced from 12.2 to 6.6 wt% wet basis. In the case of high sulphur coal, ash content reduced from 9.7 to 5.4 wt% wet basis

357 4.1.2. SO_X and NO_X emissions

The emissions of SO_{X} are represented as concentration in the exhaust flue 358 gas at 370°C in units of parts per million weight basis (ppm). Figures 5, 6 and 359 7 demonstrate that co-combustion of biomass with coal significantly reduced 360 SO_X emissions, which concurs with previous research [87, 61, 88, 86, 89, 90, 91]. 361 Although the regions of highest AFT correlate with the lowest SO_X emissions, 362 it is unlikely that these two parameters are related. The main reasons for the 363 decrease in SO₂ emissions are: (i) reduction in sulphur content of the fuel, (ii) 364 presence of specific ash components that can absorb SO_2 [61]. 365

Figure 5: The influence of biomass co-firing % on SO_X emissions in relation to AFT. Letters on the Scenario axis correspond to fuel blends in table 4.

Experimental studies suggest that SO_X emissions decrease linearly with increased biomass co-firing % [87, 61, 88, 90]. This linear trend is apparent for biomass co-combustion with high sulphur coal. As figure 6 illustrates, the de-

Figure 6: The influence of biomass co-firing % on SO_X emissions for high sulphur coal blends in relation to AFT. Letters on the Scenario axis correspond to fuel blends listed in table 4.

crease in SO_X emissions is proportional to the amount of biomass co-fired with high sulphur coal. The major reason for this decrease in SO_X emissions is due to the significantly lower sulphur content of wood chip and wheat straw compared to coal.

In contrast, there is a non-linear decrease of SO_X emissions during biomass 373 co-firing with medium sulphur coal (figure 7), and scenario D has constant SO_X 374 emissions. The non-linear behaviour may be due to the shifting of equilibrium 375 reactions that are concentration driven. The formation of SO_X involves a num-376 ber of mechanisms. During combustion, almost all of the fuel sulphur is oxidised 377 to gaseous compounds (e.g. SO_2 and SO_3). The formation of SO_2 is thermo-378 dynamically favoured at high temperature (>1000 $^{\circ}$ C), thus SO₂ is the principal 379 SO_X [92]. As temperature decreases, the equilibrium shifts towards the forma-380

Figure 7: The influence of biomass co-firing % on SO_X emissions for medium sulphur coal blends in relation to AFT. Letters on the Scenario axis correspond to fuel blends in table 4.

tion of SO₃. However, the formation of SO₃ is very slow and typically, only 0.1–1% SO₂ is converted to SO₃ [92, 93, 94]. The presence of iron oxide can catalyse the formation of SO₃ from SO₂ and O₂ [95, 96, 97]. Therefore, the production of SO₃ depends on iron oxide content in the ash and O₂ concentration in the gas stream. The alkali oxides in ash (*e.g.*, CaO, MgO) favour the capture of SO₃ over SO₂. Subsequently, catalytic conversion of SO₂ to SO₃ by iron oxide enhances SO_X removal by ash, thereby reducing emissions [95, 94, 93, 96].

Although the sulphur content of straw (0.1 wt %) is slightly higher than wood (0.05 wt%), co-firing coal with straw achieved lower SO_X emissions compared to wood (figures 6 and 7). This effect is likely due to the ash content of wheat straw (5.5 dry wt%) being greater than wood chip (2 dry wt%). The species distribution in FactSage of the exhaust gas at 370°C revealed that sulphur re-

Figure 8: The influence of biomass co-firing % on NO_X emissions (flue gas 370°C) in relation to AFT. Letters on the Scenario axis correspond to fuel blends in table 4.

acted with a number of ash components (Al₂O₃, Fe₂O₃, CaO, MgO, Na₂O, K₂O 393 and MnO_2) to form solid compounds. Although the main ash components re-394 ported to have the ability to reduce SO_X are the alkali metal oxides CaO, MgO 395 [61, 95, 98, 93, 94], Na₂O and K₂O [99, 100, 101, 92, 102], it is possible other 396 metal oxides could have a role in SO_X reduction, and may depend on whether 397 equilibrium conditions are satisfied. This analysis highlights the importance of 398 considering ash alkali oxide interactions with sulphur, as they have an essential 399 role in the formation of SO_X . 400

The concentration of NO_X emissions in the exhaust flue gas (at 370°C) is in units of parts per billion weight basis (ppb), which is significantly lower than SO_X emissions by several orders of magnitude. Although fuel nitrogen content decreased, figure 8 indicates NO_X emissions increased with higher biomass

co-firing proportion. Many experimental studies suggest that NO_X emissions re-405 duce as biomass co-firing % is increased [61, 88, 87, 103, 90, 49] due to decreased 406 fuel nitrogen [104, 105]. However, some report that despite co-firing coal with 407 significant proportions of biomass, NO_X emissions increased [91, 106] or remain 408 unchanged [107] compared to coal only combustion. Hence, it was proposed that 409 NO_X emissions are largely dependent on combustion engineering and operating 410 conditions [61, 88, 103, 91]. The emissions of NO_X tend to reduce at lower tem-411 peratures, or conversely, NO_X emission would increase with high temperature 412 combustion [108, 98]. Due to the greater adiabatic flame temperatures with 413 higher biomass co-firing rates, NO_X emissions increased proportionally (figure 414 8). 415

The NO_X concentrations at 0% biomass co-firing in figure 8 are for combus-416 tion of coal alone. Scenarios A, B, C, D correspond to medium sulphur coal, 417 which have higher nitrogen content compared to the high sulphur coal scenar-418 ios (E, F, G, H). During the combustion of coal alone, the medium sulphur 419 coal generates higher NO_X emissions compared to the high sulphur coal, which 420 demonstrates that fuel N-content has a significant role in NO_X formation, which 421 concurs with coal combustion experiments [109]. However, the conversion ra-422 tio to NO_X species depends on the degree of nitrogen volatilisation and how 423 much nitrogen remains in the char [110, 111, 112], which vary depending on the 424 combustion conditions (e.g. burner aerodynamics, residence time) [110, 113]. 425 A coal combustion study by Hu et al. (2000) demonstrates that temperature 426 and the presence of N_2 also significantly influence NO_X emission levels. In-427 creasing coal combustion temperature from 850 to 1300°C increased peak NO_X 428 emissions by 50-70% for N₂-based inlet gas, and 30-50% for CO₂-based inlet 429 gas [114]. Additionally, at combustion temperatures above 1300°C, thermal and 430 prompt reaction pathways can occur, resulting in NO_X formation from N_2 in air 431 [115, 106, 76]. Therefore, the higher AFT (well above 1300°C) that occurs as 432 % biomass increases, enhances the influence of temperature on NO_X formation 433 from N₂, thereby leading to increased NO_X emissions. In practice, combustion 434 must be accurately controlled at specific conditions to achieve reductions in 435

436 NO_X emissions (e.g., air staging, fuel staging) [106].

In many countries, there is increasing demand for improved power efficiency 437 and emissions reduction of SO_X and NO_X due to stringent legislation [116]. 438 Furthermore, the CO_2 capture process requires low levels of SO_X and NO_X 439 in the flue gas to minimise amine solvent loss from the irreversible formation 440 of heat stable salts [117]. For instance, MEA solvent requires SO_X flue gas 441 concentration of 10 ppm to regulate solvent consumption (at ~ 1.6 kg of MEA 442 per tonne CO_2 captured), whereas NO_X concentration should not exceed 20 44 3 ppmv [117, 118]. Thus, inherent reductions of SO_X and NO_X emissions by co-444 firing coal with biomass is extremely advantageous. Across the different co-firing 445 scenarios, the flue gas NO_X concentration (between 118–149 ppb) was well below 446 the NO_X tolerance limits of MEA. Co-firing medium sulphur coal with biomass 447 resulted in SO_X concentrations between 0.2–7.1 ppm, which was also below 44 8 amine requirements. Although co-firing high sulphur coal with 50% biomass 44 9 could reduce SO_X concentrations by 43–80% to 420–1180 ppm compared to coal 450 only combustion (2080 ppm), SO_X levels were still above the tolerance level of 451 MEA. Hence, flue gas desulphurisation (FGD) would be required in all cases 452 of high sulphur coal co-combustion. By selecting an appropriate combination 453 of biomass and coal, it may be possible to satisfy both emission regulations 454 and amine tolerance limits for SO_X and NO_X , without the need for additional 455 pollution control technologies (e.g. FGD or selective catalytic reduction). 456

457 4.2. Heat recovery calculations

458 4.2.1. Recoverable heat

The results presented here are based on the co-combustion scenario of raw wheat straw (16% moisture) and high sulphur coal, where biomass co-firing proportion ranged between 0 to 50%. For scenarios that involved solvents with higher heat duty and reboiler temperature (*e.g.* MEA), heat recovery could not fulfil the energy requirements of solvent regeneration. The amount of recoverable heat was observed to increase with co-firing proportion, as increasing biomass share in the fuel blend resulted in a substantial increase of exhaust gas temperature and flow rate. The range of recoverable heat results for different co-firing proportions and solvent scenarios are gathered in table 6. The minimum outlet temperature of the gas exiting the heat exchanger was found to be 113°C. This was well above the exhaust dew point of 40°C, thereby avoiding condensation in the exhaust and possible material damage (*e.g.* from condensed acids).

Table 6: Recoverable heat and area results for different solvent scenarios.

Solvent scenario	Recoverable heat (% heat duty)	Area (m ²)	Gas outlet temperature (°C)
MEA	53 - 100	6400 - 26000	138 - 271
Cansolv	84 - 100	2100 - 31400	138 - 412
"New solvent"	100	1500 - 8500	113 - 427

As figure 9 shows, at 50% co-firing, 100% of the heat duty in all three solvent scenarios could be supplied through the heat recovery system, clarifying the importance of heat recovery for BECCS efficiency enhancement.

Figure 9: Recoverable heat (% reboiler heat duty) as a function of co-firing proportion (%) and solvent heat duty $(MJ.t_{CO_2}^{-1})$.

475 4.2.2. Efficiency and carbon intensity

The overall system efficiency increased as the performance of the post-476 combustion capture solvent improved (e.g. lower heat duty and reboiler tem-477 perature), shown in figure 10. With 100% heat recovery (HR), an efficiency (% 478 HHV) of 38% was reached in the "new solvent" ("NS") case at 50% co-firing. 479 Owing to their age, the current fleet of coal-fired power plants have efficiencies 480 ranging from 26% (e.g. Australia or India) to 35% (e.g. Europe or US), with 481 the world average of around 30% (LHV or slightly below 29% HHV) [119]. 482 Thus, a 50% co-firing BECCS power plant could be 9% more efficient than the 483 average coal-fired power plant in operation today. 484

Figure 10: Plant efficiency (% HHV) for different solvent scenarios at 50% co-firing. NS = new solvent, HR = heat recovery, BAU = Business As Usual (average efficiencies around the world)

With improved system efficiency, less fuel is burned per MWh produced, *i.e.* 485 less CO_2 is captured per MWh of electricity generated. As figure 11 demon-486 strates, carbon intensity decreases with lower system efficiency (e.g. higher 487 heat duty solvent or increase co-firing %). Hence, the MEA system (31% HHV 488 efficiency at 50% co-firing) captured -295 kg_{CO_2} .MWh⁻¹, whereas the "new 489 solvent" system (34% HHV efficiency) captured -270 kg_{CO_2} .MWh⁻¹. At the 490 same co-firing proportion of 50%, the "new solvent" system combined with 491 100% heat recovery—with higher efficiency of 38% HHV—captured only -245 492 kg_{CO_2} .MWh⁻¹. 493

Figure 11: Plant carbon intensity as a function of co-firing for different solvent scenarios.

As a system with improved efficiency would be more economically compet-494 itive with other power generation systems, its annual dispatch factor would 495 likely be higher than that of a less efficient system. Figure 12 shows the annual 496 avoided carbon emissions as a function of efficiency and annual capacity (load 497 factor %). An MEA capture system operating at 60% capacity would capture 498 $0.66~\mathrm{Mt}_{\mathrm{CO}_2}$ per year. As illustrated on the figure, a more efficient system could 499 capture the same amount of CO_2 on an annual basis if operating at a capacity 500 factor of 72 %. 501

Figure 12: Annual negative carbon emissions $(Mt_{CO_2}.yr^{-1})$ as a function of system efficiency (% HHV) and capacity (%).

It is important to consider the complex trade-offs between carbon intensity and efficiency. On one hand, the low efficiency systems are preferable when it comes to achieving a higher mitigation target on a per MWh basis. However, the power generation efficiency is likely to impact the system's dispatch rate within an electricity market, hence potentially affecting its mitigation potential on a per year basis.

508 5. Conclusions

BECCS is a promising negative emissions technology, which has the potential to provide substantial reductions to CO₂ emissions. However, the CO₂ capture process and the use of biomass fuel both impose a significant efficiency penalty on the power plant. This study demonstrates that waste heat recovery from the boiler system can provide significant improvements to BECCS power plant efficiency, while enabling large emissions reductions.

The equilibrium analysis of biomass co-combustion revealed that AFT was 51 5 strongly influenced by moisture content and ash content. Blending coal with 516 low moisture biomass significantly enhanced combustion performance. Com-517 pared to combustion of coal alone, 50% co-firing of biomass with 5 wt% mois-518 ture increased AFT by 136° C. In contrast, co-firing coal with biomass of 50%519 moisture only increased AFT by 4–5°C. High sulphur coal had lower ash con-520 tent compared to medium sulphur coal, thus generated slightly higher AFT. 521 The emissions of NO_X were much lower than SO_X , and well below the NO_X 522 tolerance levels of amine solvents. Emissions of NO_X were strongly dependent 523 on combustion conditions and increased with higher AFT. In practice however, 524 combustion conditions are controlled to reduce NO_X emissions through air stag-525 ing or fuel staging. 526

Another benefit of biomass co-firing is SO_X emission reduction, which could 527 be attributed to decreased sulphur content and SO_X absorption by alkali oxides 528 in ash. Although fuel sulphur content is a key factor, the analysis indicated 529 that the metal oxides CaO, MgO, Na₂O, K₂O had a role in SO_X reduction. 530 Other metal oxides $(Al_2O_3, Fe_2O_3, MnO_2)$ not yet reported in literature were 531 also involved in sulphur capture. Thus, further research is required on SO_X 532 absorption by ash alkali oxides to understand the chemical mechanism and ki-533 netics, particularly with respect to biomass co-firing applications. The co-firing 534 of medium sulphur coal reduced flue gas SO_X concentration below tolerance 535 limits of MEA solvent, which would eliminate the need for FGD, reducing the 536 capital cost of this process and offsetting the added cost of heat recovery. This 537 highlights the importance of appropriate fuel selection to meet the requirements 538 for combustion performance and tolerance limits of the capture solvents. 539

The effect of waste heat recovery on BECCS system efficiency was investigated. Heat recovery from the boiler system could partially or completely supply heat duty for solvent regeneration as a function of fuel composition and solvent selection. At 0% biomass co-firing, heat recovery supplemented 50% of the heat

duty in the base solvent scenario. In contrast, recovered heat supplied 100% of 544 the duty in the case of high performance solvent. Furthermore, heat recovery 54 5 supplemented a greater fraction of heat duty as biomass co-firing increased, due 546 to the increases in AFT and the exhaust gas flow rate. Subsequently, 100% of 547 the solvent regeneration heat duty could thus be supplied through heat recovery 548 at 50% co-firing for all solvent scenarios. Without the solvent heat duty penalty, 549 the efficiency penalty of a 50% co-firing power plant with post-combustion cap-55 C ture drops from 11.6~% (conventional MEA system) to 4.9~% (using 100% heat 551 recovery). Such a system could reach a 38% efficiency, which is 9% more efficient 552 than the currently installed coal-fired power plant fleet. Thus, this approach has 553 the potential to significantly reduce the limitations of co-firing biomass in power 554 plants. 555

The study of power plant carbon capture potential indicated that an increase 556 in the system efficiency resulted in the decrease of plant carbon negativity. High 557 efficiency power plants burn less fuel per MWh of electricity produced, hence 558 less CO_2 is captured. At 50% co-firing, a low efficiency system using MEA 559 solvent with no heat recovery captures 50 tons more of the CO_2 than a high 560 efficiency system with heat recovery. In a 2050 future, where the main objective 561 would be to drastically curb carbon emissions, low efficiency BECCS, which 562 captures more CO_2 , could possibly be preferable over high efficiency systems. 563 However, these plants would have a substantially greater marginal cost of elec-564 tricity generation, and would therefore likely be economically viable only in the 565 event that a payment is available for removing CO_2 from the atmosphere. This 566 highlights the importance of the metric chosen - power generation efficiency or 567 carbon intensity - in the evaluation of BECCS performance. 568

569 6. Acknowledgements

The authors would like to acknowledge funding from the EPSRC under grants

 $_{\tt 571}$ EP/M001369/1 (MESMERISE-CCS), EP/M015351/1 (Opening New Fuels for

⁵⁷² UK Generation) and EP/N024567/1 (CCSInSupply). Mathilde Fajardy thanks

573 Imperial College London for funding a PhD scholarship.

574 Appendix A. Appendix

575 Appendix A.1. Comparison of fuel properties

Table A1: Typical fuel properties of coal, wood biomass and herbaceous biomass (e.g. straw, grass), adapted from Veijonen *et al.* (2003) [120].

Property	Coal	Wood	Herbaceous biomass
Ash content (wt $\%$ dry)	8.5 - 10.9	0.4 - 4.0	5 - 7.5
Moisture content (wt $\%$ wet)	6-10	5 - 60	15 - 25
Lower heating value, LHV (MJ/kg) $$	26.0 - 28.3	18.4 - 20.0	17.1 - 17.5
C (wt% dry)	76–87	47 - 52	45 - 47
${ m H}~({ m wt\%}~{ m dry})$	3.5 - 5.5	5.8 - 6.7	5.7 - 6.0
O $(wt\% dry)$	2.8 - 11.3	38 - 46	40-46
${ m Cl}~({ m wt}\%~{ m dry})$	< 0.1	0.01 – 0.05	0.09 - 0.97
S (wt% dry)	0.5 - 3.1	0.02 - 0.10	0.05 - 0.2
m N~(wt%~dry)	0.8 - 1.5	0.1 - 0.8	0.4 - 1.04

576 Appendix A.2. Ash composition of the coal and biomass

Table A2: Coal and biomass ash composition used for modelling in FactSage.

Composition	High sulphur coal	Medium sulphur coal	Clean wood chips	Wheat straw
SiO_2 (% ash)	46.8	50	43.1	56.2
Al ₂ O ₃ (% ash)	18.0	30.0	8.9	1.2
Fe_2O_3 (% ash)	20.0	9.8	3.9	1.2
CaO (% ash)	7.0	4.0	28.0	6.5
MgO (% ash)	1.0	0.5	4.2	3.0
$Na_2O~(\% ash)$	0.6	0.1	2.0	1.3
K ₂ O (% ash)	1.9	0.1	5.5	23.7
TiO_2 (% ash)	1.0	2.0	0.4	0.06
$P_2O_5~(\% ash)$	0.2	1.8	2.2	4.4
$SO_3 (\% ash)$	3.5	1.7	1.8	1.1
MnO_2 (% ash)	0	0	0	1.34
References	[58]	[59]	[59]	[61, 121]

577 Appendix A.3. Adiabatic flame temperature (AFT) results

Table A3: AFT for various biomass and coal co-firing scenarios at different biomass % and $\lambda = 1.3$. Refer to table 4 for fuel types in each scenario. Final row shows the temperature difference between AFT at 50% biomass co-firing and 0% co-firing.

AFT ($^{\circ}C$) for different coal and biomass blending scenarios								
Biomass $\%$	А	В	С	D	Е	F	G	Н
0	2181.63	2181.63	2181.63	2181.63	2189.58	2189.58	2189.58	2189.58
5	2194.68	2191.68	2194.40	2182.01	2202.34	2199.20	2202.30	2189.76
10	2207.58	2201.77	2207.03	2182.41	2215.76	2209.64	2215.61	2189.96
15	2220.32	2211.87	2219.51	2182.84	2228.91	2220.10	2228.63	2190.17
20	2232.88	2221.98	2231.82	2183.31	2242.09	2230.34	2242.38	2190.56
25	2245.62	2232.10	2245.43	2183.81	2255.78	2241.02	2256.13	2191.07
30	2259.47	2242.37	2259.81	2184.34	2269.46	2252.12	2269.87	2191.60
35	2273.74	2253.88	2274.40	2184.91	2283.12	2263.34	2283.63	2192.14
40	2288.25	2265.50	2288.97	2185.52	2296.81	2274.68	2297.11	2192.71
45	2302.76	2277.78	2303.51	2186.18	2310.50	2286.15	2309.80	2193.10
50	2317.25	2290.19	2318.00	2186.89	2323.97	2297.71	2322.22	2193.49
T(50%) - T(0%)	135.62	108.56	136.37	5.26	134.39	108.13	132.64	3.91

578 References

- ⁵⁷⁹ [1] C. Marchetti, On geoengineering and the CO_2 problem, Climatic Change ⁵⁸⁰ 1 (1) (1977) 59-68.
- [2] IPCC, Climate Change 2014: Mitigation of Climate Change. Working
 Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2014.
- [3] COP21, The 2015 United Nations Climate Change Conference, 30 November to 12 December 2015, http://www.cop21.gouv.fr/en/.
- [4] R. H. Williams, Fuel Decarbonization for Fuel Cell Applications and Se questration of the Separated CO₂ CEES Report 295, Tech. rep., Center
 for Energy and Environmental Studies, Princeton University (1996).

- [5] H. J. Herzog, E. M. Drake, Carbon dioxide recovery and disposal from
 large energy systems, Annual Review of Energy and the Environment 21 (1996) 145–166.
- [6] L. Gustavsson, P. Börjesson, B. Johansson, P. Svenningsson, Reducing
 CO₂ emissions by substituting biomass for fossil fuels, Energy 20 (11)
 (1995) 1097–1113.
- [7] L. Gustavsson, P. Svenningsson, Substituting fossil fuels with biomass,
 Energy Conversion and Management 37 (6–8) (1996) 1211–1216.
- [8] F. Kraxner, S. Nilsson, M. Obersteiner, Negative emissions from BioEnergy use, carbon capture and sequestration (BECS)-the case of biomass
 production by sustainable forest management from semi-natural temperate forests, Biomass and Bioenergy 24 (4-5) (2003) 285-296.
- [9] S. Fuss, J. G. Canadell, G. P. Peters, M. Tavoni, R. M. Andrew, P. Ciais,
 R. B. Jackson, C. D. Jones, F. Kraxner, N. Nakicenovic, C. Le Quere,
 M. R. Raupach, A. Sharifi, P. Smith, Y. Yamagata, Betting on negative
 emissions, Nature Climate Change 4 (10) (2014) 850–853.
- [10] C. Azar, K. Lindgren, M. Obersteiner, K. Riahi, D. P. van Vuuren, K. M.
 G. J. den Elzen, K. Möllersten, E. D. Larson, The feasibility of low CO₂
 concentration targets and the role of bio-energy with carbon capture and
 storage (BECCS), Climatic Change 100 (1) (2010) 195–202.
- [11] C. Gough, P. Upham, Biomass energy with carbon capture and storage
 (BECCS): a review, Working Paper 147, Report, Tyndall Centre for Climate Change Research, University of Manchester (2010).
- [12] M. C. Carbo, R. Smit, B. van der Drift, D. Jansen, Bio energy with CCS
 (BECCS): Large potential for BioSNG at low CO₂ avoidance cost, in:
 10th International Conference on Greenhouse Gas Control Technologies,
 September 2010, Amsterdam, The Netherlands, Vol. 4, Energy Procedia,
 2011, pp. 2950–2954.

- [13] F. Kraxner, G. Kindermann, S. Leduc, K. Aoki, M. Obersteiner, Bioenergy use for negative emissions potentials for carbon capture and storage (BECCS) from a global forest model combined with optimized siting and scaling of bioenergy plants in Europe, in: First International Workshop on Biomass & Carbon Capture and Storage, October 2010, University of Orléans, France, 2010.
- [14] W. Schakel, H. Meerman, A. Talaei, A. Ramirez, A. Faaij, Comparative
 life cycle assessment of biomass co-firing plants with carbon capture and
 storage, Applied Energy 131 (2014) 441-467.
- [15] K. Al-qayim, W. Nimmo, M. Pourkashanian, Comparative technoeconomic assessment of biomass and coal with CCS technologies in a
 pulverized combustion power plant in the United Kingdom, International
 Journal of Greenhouse Gas Control 43 (2015) 82–92.
- [16] J. R. Moreira, V. Romeiro, S. Fuss, F. Kraxner, S. A. Pacca, BECCS
 potential in Brazil: Achieving negative emissions in ethanol and electricity production based on sugar cane bagasse and other residues, Applied
 Energy 179 (2016) 55-63.
- [17] F. Kraxner, K. Aoki, S. Leduc, G. Kindermann, S. Fuss, J. Yang, Y. Yamagata, K. I. Tak, M. Obersteiner, BECCS in South Korea-Analyzing the
 negative emissions potential of bioenergy as a mitigation tool, Renewable
 Energy 61 (2014) 102–108.
- [18] J. S. Rhodes, D. W. Keith, Engineering economic analysis of biomass
 IGCC with carbon capture and storage, Biomass and Bioenergy 29 (6)
 (2005) 440-450.
- [19] K. Möllersten, J. Yan, J. R. Moreira, Potential market niches for biomass
 energy with CO₂ capture and storage Opportunities for energy supply
 with negative CO₂ emissions, Biomass and Bioenergy 25 (3) (2003) 273–
 285.

- [20] K. Möllersten, L. Gao, J. Yan, M. Obersteiner, Efficient energy systems
 with CO₂ capture and storage from renewable biomass in pulp and paper
 mills, Renewable Energy 29 (9) (2004) 1583–1598.
- [21] D. Loeffler, N. Anderson, Emissions tradeoffs associated with cofiring forest biomass with coal: A case study in Colorado, USA, Applied Energy
 113 (2014) 67-77.
- [22] K. Savolainen, Co-firing of biomass in coal-fired utility boilers, Applied
 Energy 74 (3-4) (2003) 369-381.
- [23] Drax, Annual report and accounts 2014: Power in perspective, Report,
 Drax Group plc, Drax Power Station, North Yorkshire, UK (2014).
- [24] K. Fletcher, Drax's 2014 results show decarbonization project on time,
 budget, no. 17/1/2017, Wood Pellet Services, 2015.
- 658 URL http://www.woodpelletservices.com/documents/Drax% 20FEB2015.pdf
- [25] IEA, IEA Energy Technology Essentials: Biomass for Power Generation
 and CHP, Tech. Rep. 17/1/2017 (2007).
- 662 URL http://www.iea.org/publications/freepublications/
 663 publication/essentials3.pdf
- [26] Z. Liu, T. G. Johnson, I. Altman, The moderating role of biomass availability in biopower co-firing—A sensitivity analysis, Journal of Cleaner
 Production 135 (2016) 523–532.
- [27] S. Evans, Investigation: Does the UK's biomass burning help solve
 climate change?, no. 17/1/2017, CarbonBrief, 2015.
- 069 URL https://www.carbonbrief.org/investigation-does-the-uks-biomass-burning-help-solve-
- 670 [28] L. L. Sloss, Emission from cofiring coal, biomass and sewage sludge,
- 671 CCC/175, IEA Clean Coal Centre, London, United Kingdom, 2010.

- [29] K. Goto, K. Yogo, T. Higashii, A review of efficiency penalty in a coalfired power plant with post-combustion CO₂ capture, Applied Energy 111
 (2013) 710–720.
- [30] A. Austin, Size Matters, no. 17/1/17, Biomass Magazine, BBI International, http://biomassmagazine.com/articles/2309/size-matters, 2017.
- [31] G. Kosmadakis, S. Karellas, E. Kakaras, Renewable and conventional electricity generation systems: Technologies and diversity of energy systems,
 Springer London, London, 2013, pp. 9–30.
- [32] N. Mac Dowell, N. Shah, The multi-period optimisation of an amine-based
 CO₂ capture process integrated with a super-critical coal-fired power station for flexible operation, Computers & Chemical Engineering 74 (2015)
 169–183.
- [33] N. Mac Dowell, I. Staffell, The role of flexible CCS in the UK's future
 energy system, International Journal of Greenhouse Gas Control 48, Part
 2 (Flexible operation of carbon capture plants) (2016) 327–344.
- [34] IEAGHG, Potential for biomass and carbon dioxide capture and stor age, Report 2011/06, IEA Greenhouse Gas R&D Programme (IEA GHG),
 Cheltenham, United Kingdom, 2011.
- [35] J. Oexmann, A. Kather, Minimising the regeneration heat duty of postcombustion CO₂ capture by wet chemical absorption: The misguided focus
 on low heat of absorption solvents, International Journal of Greenhouse
 Gas Control 4 (1) (2010) 36–43.
- [36] L. M. Romeo, S. Espatolero, I. Bolea, Designing a supercritical steam
 cycle to integrate the energy requirements of CO₂ amine scrubbing, International Journal of Greenhouse Gas Control 2 (4) (2008) 563–570.
- [37] M. Lucquiaud, J. Gibbins, On the integration of CO₂ capture with coalfired power plants: A methodology to assess and optimise solvent-based

- post-combustion capture systems, Chemical Engineering Research andDesign 89 (9) (2011) 1553–1571.
- [38] E. Sanchez Fernandez, M. Sanchez del Rio, H. Chalmers, P. Khakharia,
 E. L. V. Goetheer, J. Gibbins, M. Lucquiaud, Operational flexibility options in power plants with integrated post-combustion capture, International Journal of Greenhouse Gas Control 48, Part 2 (Flexible operation
 of carbon capture plants) (2016) 275–289.
- [39] N. Y. Nsakala, J. Marion, C. Bozzuto, G. Liljedahl, M. Palkes, D. Vogel,
 M. Guha, H. Johnson, S. Plasynski, Engineering feasibility of CO₂ capture
 on an existing US coal-fired power plant, in: First National Conference
 on Carbon Sequestration, U.S. Department of Energy (DOE), National
 Energy Technology Laboratory, 2001.
- [40] M. Lucquiaud, J. Gibbins, Effective retrofitting of post-combustion CO₂
 capture to coal-fired power plants and insensitivity of CO₂ abatement
 costs to base plant efficiency, International Journal of Greenhouse Gas
 Control 5 (3) (2011) 427-438.
- [41] N. Ceccarelli, M. van Leeuwen, T. Wolf, P. van Leeuwen, R. van der Vaart,
 W. Maas, A. Ramos, Flexibility of low-CO₂ gas power plants: Integration
 of the CO₂ capture unit with CCGT operation, in: 12th International
 Conference on Greenhouse Gas Control Technologies (GHGT-12), Vol. 63,
 Energy Procedia, pp. 1703–1726.
- [42] M. Thern, K. Jordal, M. Genrup, Temporary CO₂ capture shut down:
 Implications on low pressure steam turbine design and efficiency, in: 7th
 Trondheim Conference on CO₂ capture, Transport and Storage, Vol. 51,
 Energy Procedia, 2014, pp. 14–23.
- [43] M. Lucquiaud, E. S. Fernandez, H. Chalmers, N. M. Dowell, J. Gibbins,
 Enhanced operating flexibility and optimised off-design operation of coal
 plants with post-combustion capture, in: 12th International Conference

- on Greenhouse Gas Control Technologies (GHGT-12), Vol. 63, Energy
 Procedia, 2014, pp. 7494–7507.
- [44] M. Lucquiaud, J. Gibbins, Steam cycle options for the retrofit of coal and
 gas power plants with postcombustion capture, in: 10th International
 Conference on Greenhouse Gas Control Technologies (GHGT-10), Vol. 4,
 Energy Procedia, 2011, pp. 1812–1819.
- [45] T. Sanpasertparnich, R. Idem, I. Bolea, D. deMontigny, P. Tontiwachwuthikul, Integration of post-combustion capture and storage into a pulverized coal-fired power plant, International Journal of Greenhouse Gas
 Control 4 (3) (2010) 499-510.
- [46] I. Pfaff, J. Oexmann, A. Kather, Optimised integration of post-combustion
 CO₂ capture process in greenfield power plants, Energy 35 (10) (2010)
 4030-4041.
- [47] IEAGHG, CO₂ capture in low rank coal power plants, Technical Study
 2006/1, IEA Greenhouse Gas R&D Programme (IEA GHG), Cheltenham,
 United Kingdom, 2006.
- [48] C. Wang, B. He, S. Sun, Y. Wu, N. Yan, L. Yan, X. Pei, Application of
 a low pressure economizer for waste heat recovery from the exhaust flue
 gas in a 600 MW power plant, Energy 48 (1) (2012) 196–202.
- [49] X. Wang, Z. Hu, S. Deng, Y. Xiong, H. Tan, Effect of biomass/coal cofiring and air staging on NO_X emission and combustion efficiency in a drop tube furnace, in: J. Yan, D. J. Lee, S. K. Chou, U. Desideri, H. Li
 (Eds.), International Conference on Applied Energy (ICAE2014), Vol. 61, Energy Procedia, 2014, pp. 2331–2334.
- [50] G. Xu, S. Huang, Y. Yang, Y. Wu, K. Zhang, C. Xu, Techno-economic
 analysis and optimization of the heat recovery of utility boiler flue gas,
 Applied Energy 112 (2013) 907–917.

- [51] G. Xu, C. Xu, Y. Yang, Y. Fang, Y. Li, X. Song, A novel flue gas waste
 heat recovery system for coal-fired ultra-supercritical power plants, Applied Thermal Engineering 67 (1-2) (2014) 240-249.
- T. Harkin, A. Hoadley, B. Hooper, Process integration analysis of a brown
 coal-fired power station with CO₂ capture and storage and lignite drying,
 Energy Procedia 1 (1) (2009) 3817–3825.
- [53] T. Harkin, A. Hoadley, B. Hooper, Reducing the energy penalty of CO₂
 capture and compression using pinch analysis, Journal of Cleaner Production 18 (9) (2010) 857–866.
- ⁷⁶³ [54] S. Basu, A. K. Debnath, Chapter IV General Instruments: Temperature
 ⁷⁶⁴ Measurement Various Measuring Points and Range Selection, Academic
 ⁷⁶⁵ Press (imprint of Elsevier Ltd.), London, UK, 2015, pp. Pages 241–244.
- [55] Mac Dowell, Niall and Fajardy, Mathilde, On the potential for BECCS
 efficiency improvement through heat recovery from both post-combustion
 and oxy-combustion facilities, Faraday Discussions 192 (0) (2016) 241–
 250.
- [56] P. Quaak, H. Knoef, H. E. Stassen, Energy from Biomass: A review of
 Combustion and Gasification Technologies, World bank Technical Paper
 No. 422 Energy Series, The International Bank for Reconstruction and
 Development, Washington, United States, 1999.
- [57] L. Westerlund, R. Hermansson, J. Fagerström, Flue gas purification and
 heat recovery: A biomass fired boiler supplied with an open absorption
 system, Applied Energy 96 (2012) 444-450.
- [58] M. B. Berkenpas, J. J. Fry, K. Kietzke, E. S. Rubin, Integrated Environmental Control Model Getting Started, Tech. Rep. April, Center for
 Energy and Environmental Studies, Carnegie Mellon University (2001).

- [59] IEAGHG, CO₂ Capture at Coal Based Power and Hydrogen Plants, Report, International Energy Agency Greenhouse Gas R&D Programme (IEAGHG) (2014).
- [60] R. Parajuli, M. T. Knudsen, J. H. Schmidt, T. Dalgaard, Life Cycle Assessment of district heat production in a straw fired CHP plant, Biomass and Bioenergy 68 (September) (2014) 115–134.
- [61] H. Spliethoff, K. R. G. Hein, Effect of co-combustion of biomass on emissions in pulverized fuel furnaces, Fuel Processing Technology 54 (1-3) (1998) 189-205.
- [62] T. Heinzel, V. Siegle, H. Spliethoff, K. R. G. Hein, Investigation of slagging
 in pulverized fuel co-combustion of biomass and coal at a pilot-scale test
 facility, Fuel Processing Technology 54 (1998) 109–125.
- [63] ISO, Solid biofuels Fuel specifications and classes. Part 1: General re quirements, Tech. rep. (2014).
- [64] M. Campbell, Technology innovation & advancements for Shell Cansolv
 CO₂ capture solvents, in: 12th International Conference on Greenhouse
 Gas Control Technologies (GHGT-12), Vol. 63, Energy Procedia, pp. 801–
 807.
- [65] A. Singh, K. Stéphenne, Shell Cansolv CO₂ capture technology: Achievement from First Commercial Plant, in: 12th International Conference on
 Greenhouse Gas Control Technologies (GHGT-12), Vol. 63, Energy Procedia, pp. 1678–1685.
- [66] Q. Ye, X. Wang, Y. Lu, Screening and evaluation of novel biphasic solvents
 for energy-efficient post-combustion CO₂ capture, International Journal of
 Greenhouse Gas Control 39 (2015) 205–214.
- [67] L. V. van der Ham, E. L. V. Goetheer, E. S. Fernandez, M. R. M. AbuZahra, T. J. H. Vlugt, Precipitating amino acid solutions, Woodhead Publishing, Cambridge, 2016, pp. 103–119.

- [68] S. Wang, Z. Xu, Dual-liquid phase systems, Woodhead Publishing, Cambridge, 2016, pp. 201–223.
- [69] G. Rochelle, E. Chen, S. Freeman, D. Van Wagener, Q. Xu, A. Voice,
 Aqueous piperazine as the new standard for CO₂ capture technology,
 Chemical Engineering Journal 171 (3) (2011) 725–733.
- [70] L. Raynal, P. Alix, P.-A. Bouillon, A. Gomez, M. I. F. de Nailly,
 M. Jacquin, J. Kittel, A. di Lella, P. Mougin, J. Trapy, The DMXTM
 process: An original solution for lowering the cost of post-combustion
 carbon capture, Energy Procedia 4 (2011) 779–786.
- [71] P. Markewitz, W. Kuckshinrichs, W. Leitner, J. Linssen, P. Zapp, R. Bongartz, A. Schreiber, T. E. Muller, Worldwide innovations in the development of carbon capture technologies and the utilization of CO₂, Energy & Environmental Science 5 (6) (2012) 7281–7305.
- [72] Y. Zhang, B. Freeman, P. Hao, G. T. Rochelle, Absorber modeling for
 ngcc carbon capture with aqueous piperazine, Faraday Discussions 192 (0)
 (2016) 459–477.
- [73] C. W. Bale, P. Chartrand, S. A. Degterov, G. Eriksson, K. Hack,
 R. Ben Mahfoud, J. Melançon, A. D. Pelton, S. Petersen, FactSage thermochemical software and databases, Calphad 26 (2) (2002) 189–228.
- [74] C. W. Bale, E. Bélisle, P. Chartrand, S. A. Decterov, G. Eriksson, K. Hack,
 I. H. Jung, Y. B. Kang, J. Melançon, A. D. Pelton, C. Robelin, S. Petersen,
 FactSage thermochemical software and databases recent developments,
 Calphad 33 (2) (2009) 295–311.
- [75] M. Blander, T. A. Milne, D. C. Dayton, R. Backman, D. Blake, V. Kühnel, W. Linak, A. Nordin, A. Ljung, Equilibrium chemistry of biomass combustion: A round-robin set of calculations using available computer programs and databases, Energy & Fuels 15 (2) (2001) 344–349.

- [76] I. Obernberger, T. Brunner, G. Bärnthaler, Chemical properties of solid
 biofuels-significance and impact, Biomass and Bioenergy 30 (11) (2006)
 973-982.
- [77] A. George, M. Larrion, D. Dugwell, P. S. Fennell, R. Kandiyoti, Co-firing
 of single, binary, and ternary fuel blends: Comparing synergies within
 trace element partitioning arrived at by thermodynamic equilibrium modeling and experimental measurements, Energy & Fuels 24 (5) (2010) 2918–
 2923.
- [78] X. Wei, U. Schnell, K. R. G. Hein, Behaviour of gaseous chlorine and alkali
 metals during biomass thermal utilisation, Fuel 84 (7–8) (2005) 841–848.
- [79] W. L. Luyben, Heat exchanger simulations involving phase changes, Computers and Chemical Engineering 67 (2014) 133–136.
- [80] Thermopedia, http://thermopedia.com/content/1150Begal, 2016.
- [81] Spiraxsarco, http://www.spiraxsarco.com/Resources/Pages/steam tables.aspx, 2016.
- [82] R. Sinnott, G. Towler, Heat-Transfer Equipment, Chemical Engineering
 Design (2008) 815–978.
- [83] R. H. Perry, D. W. Green, Perry's Chemical Engineers' Handbook, 15th
 Edition, The McGraw-Hill Companies, Inc., New York, US, 2008.
- [84] R. C. Flagan, J. H. Seinfeld, Chapter 2 Combustion Fundamentals, Dover
 Publications Inc., New York, United States, 2012.
- [85] B. M. Jenkins, L. L. Baxter, T. R. Miles Jr, T. R. Miles, Combustion
 properties of biomass, Fuel Processing Technology 54 (1-3) (1998) 17-46.
- [86] M. Sami, K. Annamalai, M. Wooldridge, Co-firing of coal and biomass
 fuel blends, Progress in Energy and Combustion Science 27 (2) (2001)
 171–214.

- [87] W. L. Van De Kamp, D. J. Morgan, The co-firing of pulverised bituminous
 coals with straw, waste paper and municipal sewage sludge, Combustion
 Science and Technology 121 (1-6) (1996) 317-332.
- [88] H. Spliethoff, W. Scheurer, K. R. G. Hein, Effect of co-combustion of
 sewage sludge and biomass on emissions and heavy metals behaviour,
 Process Safety and Environmental Protection 78 (1) (2000) 33–39.
- [89] A. Demirbaş, Combustion characteristics of different biomass fuels,
 Progress in Energy and Combustion Science 30 (2) (2004) 219–230.

[90] A. Demirbaş, Potential applications of renewable energy sources, biomass
combustion problems in boiler power systems and combustion related environmental issues, Progress in Energy and Combustion Science 31 (2)
(2005) 171–192.

- [91] L. Cheng, X. P. Ye, B. C. English, D. Boylan, T. Johnson, B. Zemo, Cofiring switchgrass in a 60-megawatt pulverized coal-fired boiler: Effects
 on combustion behavior and pollutant emissions, Energy Sources, Part A:
 Recovery, Utilization, and Environmental Effects 38 (3) (2016) 322–329.
- ⁸⁷⁷ [92] D. Fleig, K. Andersson, F. Johnsson, B. Leckner, Conversion of sulfur
 ⁸⁷⁸ during pulverized oxy-coal combustion, Energy & Fuels 25 (2) (2011) 647–
 ⁸⁷⁹ 655.
- [93] M. Müller, U. Schnell, G. Scheffknecht, Modelling the fate of sulphur during pulverized coal combustion under conventional and oxy-fuel conditions, in: 11th International Conference on Greenhouse Gas Control Technologies (GHGT-11), Vol. 37, Energy Procedia, 2013, pp. 1377–1388.
- [94] R. K. Srivastava, C. A. Miller, C. Erickson, R. Jambhekar, Emissions of
 sulfur trioxide from coal-fired power plants, Journal of the Air & Waste
 Management Association 54 (6) (2004) 750–762.

- [95] P. Marier, H. P. Dibbs, The catalytic conversion of SO₂ to SO₃ by fly ash
 and the capture of SO₂ and SO₃ by CaO and MgO, Thermochimica Acta
 8 (1) (1974) 155–165.
- [96] L. P. Belo, L. K. Elliott, R. J. Stanger, R. Spörl, K. V. Shah, J. Maier,
 T. F. Wall, High-temperature conversion of SO₂ to SO₃: Homogeneous
 experiments and catalytic effect of fly ash from air and oxy-fuel firing,
 Energy & Fuels 28 (11) (2014) 7243-7251.
- [97] K. A. Graham, A. F. Sarofim, Inorganic aerosols and their role in catalyzing sulfuric acid production in furnaces, Journal of the Air & Waste
 Management Association 48 (2) (1998) 106–112.
- [98] S. Li, T. Xu, P. Sun, Q. Zhou, H. Tan, S. Hui, NO_X and SO_X emissions of
 a high sulfur self-retention coal during air-staged combustion, Fuel 87 (6)
 (2008) 723-731.
- [99] V. R. Gray, Retention of sulphur by laboratory-prepared ash from lowrank coal, Fuel 65 (11) (1986) 1618–1619.
- [100] J. V. Ibarra, J. M. Palacios, A. M. de Andrés, Analysis of coal and char
 ashes and their ability for sulphur retention, Fuel 68 (7) (1989) 861–867.
- [101] A. B. Fuertes, V. Artos, J. J. Pis, G. Marbán, J. M. Palacios, Sulphur
 retention by ash during fluidized bed combustion of bituminous coals,
 Fuel 71 (5) (1992) 507-511.
- [102] C. Sheng, M. Xu, J. Zhang, Y. Xu, Comparison of sulphur retention
 by coal ash in different types of combustors, Fuel Processing Technology
 64 (1-3) (2000) 1-11.
- [103] K. V. Narayanan, E. Natarajan, Experimental studies on cofiring of coal
 and biomass blends in India, Renewable Energy 32 (15) (2007) 2548–2558.
- [104] M. M. Roy, K. W. Corscadden, An experimental study of combustion and
 emissions of biomass briquettes in a domestic wood stove, Applied Energy
 99 (2012) 206-212.

- [105] M. M. Roy, A. Dutta, K. Corscadden, An experimental study of combustion and emissions of biomass pellets in a prototype pellet furnace,
 Applied Energy 108 (2013) 298–307.
- [106] T. Nussbaumer, Combustion and co-combustion of biomass: Fundamentals, technologies, and primary measures for emission reduction, Energy
 & Fuels 17 (6) (2003) 1510-1521.
- [107] A. Gani, K. Morishita, K. Nishikawa, I. Naruse, Characteristics of cocombustion of low-rank coal with biomass, Energy & Fuels 19 (4) (2005)
 1652–1659.
- [108] X. Wei, X. Guo, S. Li, X. Han, U. Schnell, G. Scheffknecht, B. Risio,
 Detailed modeling of NO_X and SO_X formation in co-combustion of coal
 and biomass with reduced kinetics, Energy & Fuels 26 (6) (2012) 3117–
 3124.
- ⁹²⁸ [109] R. Yoshiie, N. Hikosaka, Y. Nunome, Y. Ueki, I. Naruse, Effects of flue ⁹²⁹ gas re-circulation and nitrogen contents in coal on NO_X emissions under ⁹³⁰ oxy-fuel coal combustion, Fuel Processing Technology 136 (2015) 106–111.
- [110] D. W. Pershing, J. O. L. Wendt, Relative contributions of volatile nitrogen and char nitrogen to NO_X emissions from pulverized coal flames, Industrial & Engineering Chemistry Process Design and Development 18 (1) (1979) 60–67.
- [111] S. Kambara, T. Takarada, M. Toyoshima, K. Kato, Relation between
 functional forms of coal nitrogen and NO_X emissions from pulverized coal
 combustion, Fuel 74 (9) (1995) 1247–1253.
- [112] M. A. Wójtowicz, J. R. Pels, J. A. Moulijn, The fate of nitrogen functionalities in coal during pyrolysis and combustion, Fuel 74 (4) (1995)
 507-516.

- [113] H. Spliethoff, U. Greul, H. Rüdiger, K. R. G. Hein, Basic effects on NO_X
 emissions in air staging and reburning at a bench-scale test facility, Fuel
 75 (5) (1996) 560-564.
- [114] Y. Hu, S. Naito, N. Kobayashi, M. Hasatani, CO_2 , NO_X and SO_2 emissions from the combustion of coal with high oxygen concentration gases, Fuel 79 (15) (2000) 1925–1932.
- ⁹⁴⁷ [115] EPA, Technical bulletin: Nitrogen oxides (NO_X) , why and how they are ⁹⁴⁸ controlled, Tech. rep., North Carolina, US (1999).
- [116] I. Barnes, Understanding pulverized coal, biomass and waste combustion,
 CCC/205, IEA Clean Coal Centre, London, United Kingdom, 2012.
- [117] D. Adams, Flue gas treatment for CO₂ capture, CCC/169, IEA Clean
 Coal Centre, London, United Kingdom, 2010.
- [118] M. Azzi, S. Day, D. French, B. Halliburton, A. Element, O. Farrell,
 P. Feron, Impact of flue gas impurities on amine-based PCC plants –
 Final Report, Australian National Low Emissions Coal Research and Development (ANLEC R&D), CSIRO, Australia, 2013.
- [119] IEA, OECD, Power Generation from Coal: Measuring and Reporting Efficiency Performance and CO₂ Emissions, Tech. rep. (2010).
- [120] K. Veijonen, P. Vainikka, T. Järvinen, E. Alakangas, Biomass co-firing
 an efficient way to reduce greenhouse gas emissions, Report, European
 Bioenergy Networks (EUBIONET), VTT Processes (2003).
- [121] S. V. Vassilev, D. Baxter, L. K. Andersen, C. G. Vassileva, An overview
 of the chemical composition of biomass, Fuel 89 (5) (2010) 913–933.