1	Disentangling the 'brown world' faecal-detritus interaction web:
2	dung beetle effects on soil microbial properties
3	Eleanor M. Slade ^{1,2*} , Tomas Roslin ¹ , Minna Santalahti ³ , & Thomas Bell ⁴
4	
5	¹ Spatial Foodweb Ecology Group, Department of Applied Biology, PO Box 27, Latokartanonkaari
6	5, FI-00014 University of Helsinki, Finland
7	² Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
8	³ Department of Food and Environmental Sciences, P.O. Box 56, Viikinkaari 9, FI-00014 University
9	of Helsinki, Finland
10	⁴ Division of Ecology and Evolution, Imperial College London, Silwood Park Campus, Ascot SL5
11	7PY, UK
12	*Corresponding author: eleanor.slade@zoo.ox.ac.uk

Page 3 of 25 Oikos

Abstract

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Many ecosystem services are sustained by the combined action of microscopic and macroscopic organisms, and shaped by interactions between the two. However, studies tend to focus on only one of these two components. We combined the two by investigating the impact of mesofauna on microbial community composition and functioning in the context of a major ecosystem service: the decomposition of dung. We compared bacterial communities of pasture soil and experimental dung pats inhabited by one (Aphodius), two (Aphodius and Geotrupes), or no dung beetle genera. Overall, we found distinct microbial communities in soil and dung samples, and that the communities converged over the course of the experiment. Characterising the soil microbial communities underlying the dung pats revealed a significant interactive effect between the micro- and mesofauna, where the diversity and composition of microbial communities was significantly affected by the presence or absence of dung beetles. The specific identity of the beetles had no detectable impact, but the microbial evenness was lower in the presence of both Aphodius and Geotrupes than in the presence of Aphodius alone. These differences in microbial community composition were associated with altered functional profiles. Our study suggests that the presence of mesofauna (dung beetles) will modify the microfauna (bacteria) of both dung pats and pasture soil, including community diversity and functioning. In particular, the presence of dung beetles promotes the transfer of bacteria across the soil-dung interface, resulting in increased similarity in community structure and functioning. The results demonstrate that to understand how microbes contribute to the ecosystem service of dung decomposition, there is a need to understand their interactions with larger co-occurring fauna.

34 **Keywords:** ecosystem functioning, below-ground biodiversity, dung decomposition

Introduction

Dung is a major input of nutrients and carbon into soil food webs, particularly in agricultural systems (Aarons et al. 2009, Yoshitake et al. 2014). Dung also plays an important role in regulating key soil ecosystem processes, such as nutrient cycling and organic matter decomposition (Van Der Heijden et al. 2008; Wagg et al. 2014; Wall et al. 2010). There is thus a need to understand the ecological factors that help or hinder the impact of dung on belowground functioning. However, even though the 'brown' world of faecal-detritus interaction webs and decomposition processes form a fundamental link between above and below ground biodiversity – and play a major role in ecosystem functioning – brown interaction webs remain notoriously understudied as compared to their green, plant-based equivalents (Nichols 2013).

Among the mesofauna involved in the faecal-detritus pathway, dung beetles (Coleoptera: Scarabaeidae) have been a focal group for studies linking biodiversity to ecosystem functioning (Nichols and Gardner 2011; Spector 2006). Dung beetles have been shown to contribute crucially to key processes such as nutrient recycling and dung removal across ecosystem-types across the world (Nichols et al. 2008), and the loss of dung beetle species or changes in beetle community structure following habitat disturbance or environmental perturbations can have detrimental effects on ecosystem functioning (Beynon et al. 2012; Larsen et al. 2005; Slade et al. 2011). Nonetheless, of the benefits attributed to the beetles, only part of these derive from their own removal, burying or digestion of the dung; an unknown fraction comes from the indirect effects of microbes. However, interactions among dung, dung beetles, and soil and dung microbial communities are poorly studied.

Among dung beetles, different functional groups have been hypothesized to have different functional impacts (Rosenlew and Roslin 2008; Slade et al. 2007). Among the dominant dung beetle groups of Northern Europe, large tunnelling *Geotrupes* remove and bury dung outside of the pat, whereas the smaller dung-dwelling *Aphodius* are mainly active within and very close to the

Page 5 of 25 Oikos

dung pat (Hanski and Cambefort 1991; Roslin et al. 2014). We may therefore predict *a priori* that these different taxa will have different impacts on both dung decomposition and on microbial communities. By burying dung, tunnelers may break the dung-soil interface more efficiently than the dung dwellers, whereas the dwellers may contribute to aerating the pats with their tunnels (cf. Penttilä et al. 2013).

In this paper, we explore linkages between micro- and mesofaunal community composition and their effects on ecosystem functioning. We compare the bacterial communities of pasture soil and experimental dung pats inhabited by one (*Aphodius*), two (*Aphodius* and *Geotrupes*) or no dung beetle genera. Specifically, we examine (1) how the microbial community in soil and dung is affected by dung beetle activity, (2) how potential dung beetle-mediated changes in microbial community structure are reflected in microbial functioning, and (3) whether overall, dung beetles may serve as mobile links between above- and below-ground decomposition processes, thus modifying the microbial contribution to dung decomposition.

Methods

75 Dung beetle communities

To explore the direct and indirect impacts of dung beetles on dung decomposition, we used mesocosms to construct dung beetle communities of varying richness and relative abundance. These communities were built from four common early-summer north temperate species: *Geotrupes stercorarius* (Linnaeus, 1758), *Aphodius erraticus* (Linnaeus, 1758), *Aphodius pedellus* (De Geer, 1774), and *Aphodius fossor* (Linnaeus, 1758). The number of species encountered per natural dung pat in temperate regions is typically low (median 2 species per pat, range 1-8 in a sample of 797 dung pats from across Finland; recalculated from Roslin (2001)), so we constrained our experiments to relatively small and thereby realistic species pools. Within experimental assemblages, the

abundance of each species reflected their abundance observed in the field (Rosenlew and Roslin 2008; Roslin and Koivunen 2001).

Our previous work suggested that the presence of large tunnelling *Geotrupes* species have larger effects on ecosystem functions than the species composition of small dung-dwelling *Aphodius* (Kaartinen et al. 2013; Rosenlew and Roslin 2008). Here, we therefore focus on comparisons between mesocosms containing both *Geotrupes stercorarius* and *Aphodius* (n = 20 mesocosms) and mesocosms containing only *Aphodius* species (n = 20 mesocosms). Three mesocosms containing dung pats but no beetles were constructed as controls.

Experimental setup

The experiment was carried out on a grass sward reflecting a multiannual Finnish pasture, located in Viikki, Helsinki, Southern Finland (60° 13' 31" N 25° 1' 0" E). Individual mesocosms were constructed from plastic buckets with their base removed (cylinder 58 cm in diameter at ground level, height 32cm, dug 20 cm into the ground). To prevent the beetles from escaping, the tops of the mesocosms were covered with environmental mesh (1-mm aperture). The mesocosms were laid out in a grid pattern, and the spatial distribution of replicates within each treatment was randomized across the grid.

Dung beetles were collected from the pastures of the Koskis Manor in Salo, Southwestern Finland (60° 22' 49" N 23° 17' 39" E) and Karjalohja (60° 11' 28" N 23° 40' 19" E) between 5-7th June 2012. Beetles were stored in mixed-sex groups in moist paper at 5°C, until being assigned randomly to treatments. Fresh, unmedicated cattle dung was collected from a closed cattle barn at the Viikki Study and Research Farm, owned by the University of Helsinki. No animal in the herd had been given antibiotics or antiparasitic treatments. All dung was homogenized before dividing into 1.21 experimental pats that were then applied to the mesocosms within 5 hours of collection.

Page 7 of 25 Oikos

Dung and beetles were added to the mesocosms on 8th June 2012. The experiment was run for 60 days, roughly corresponding to the adult and larval lifecycle of the beetles included in the experiment. To allow the beetles to emigrate rather than forcing them to artificially stay in the same pat (cf. Roslin 2000), mesh tops were removed after 20 days. Vegetation inside the mesocosms was kept low by manual trimming.

Microbial measurements

SAMPLING – To characterise the microbial community of dung and soil, samples were taken at the early, mid- and late phase of the experiment. Sampling of soil and dung was differently timed due to the successional processes involved. For the soil, the sampling was scheduled to cover the time frame of other measurements (see below). For pats, we compressed the sampling, since dung pats are already mostly decomposed and desiccated after four weeks, and by day 60, there is often only the crust remaining (Kaartinen et al. 2013). Thus, from dung, samples were taken at day 0, 12 and 31 from the underside of the dung pat using a spatula. From soil, samples were taken on days 0, 12 and 60 from directly underneath the pat to 8–9 cm depth using a soil corer (\emptyset 6 mm).

To account for heterogeneity within the pat and soil, each sample consisted of three approximately 1-g dung or soil samples taken from different parts of the pat or the soil underneath. The three replicate samples were collected into a sterile bag, placed immediately in a cool box, homogenised and then transferred to a -80°C freezer within 1-8 hours after collection. To record the microbial communities at the start of the experiment, on day 0, samples were taken only from six control pats and from the soil in 12 mesocosms before the dung was added. As the dung was homogenised before being placed in the mesocosms, we assumed that the starting microbial communities were the same in all mesocosms.

DNA EXTRACTION AND COMMUNITY FINGERPRINTING WITH LH- PCR – For each sample, DNA was
extracted from 0.25 g of dung or soil with an MO BIO PowerSoil DNA Extraction Kit (MO BIO
Laboratories, Carlsbad, CA, USA), following the manufactures instructions with limited
modifications: the bead beating step was done with a FastPrep®-24 Instrument (MP-Biomedicals,
Illkirch, France) for 30 seconds at a speed of 4 m s ⁻¹ . At the last step, dung and soil samples were
eluted in 100 μ l and 70 μ l of elution solution, respectively. DNA concentrations were measured
with NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, Willmington, DE, USA).
Bacterial communities were profiled using the LH-PCR fingerprint method as described in
Mikkonen et al. (2014) .The bacterial 16S rRNA gene was amplified with PCR primes fD1 (AGA
GTT TGA TCC TGG CTC AG) (Weisburg et al. 1991) and FAM-labelled primer PRUN518r (ATT
ACC GCG GCT GCT GG) (Muyzer et al. 1993). PCR reactions were carried out in a 25 µl volume
with 0.5 µl of DNA extract as a template. DNA extract from dung was diluted 1:10 in sterile water
to avoid inhibition. The PCR reaction mix included 1 U of Biotools Ultratools DNA polymerase (1
$U~\mu l^{-1}$, Biotools, Spain), 0.3 μM of both primers (Oligomer, Finland), 0.2 mM of each dNTP (dNTP)
Mix, 10 mM Each, Thermo Scientific Finland), 25 μg BSA (BSA acetylated, 10 mg ml ⁻¹ , Promega,
USA), and 1x Biotools reaction Buffer with 2 mM MgCl ₂ (Biotools, Spain). PCR reactions were
carried out with the following program: initial denaturation at 94 °C for 5 min, followed by 30
cycles of 94 °C for 45 seconds, 55 °C for 1 minute, 72 °C for 1 minute and finalised with an
elongation step at 72 °C for 5 minutes. All PCR products were run on 1 % agarose gel and
visualised under UV light with ethidium bromide (Sigma-Aldrich, USA) to verify the quality and
quantity of the DNA.
PCR amplicons were separated by their length through capillary electrophoresis. Samples
for electrophoresis consisted of 14 μ l of Hi-Di formamide (Hi-Di Formamide, Genetic Analysis
Grade, Applied Biosystems), 1 μ l of 1/200 diluted self-made standard that had three known length
HEX-labelled PCR products (Tiirola et al. 2003) and 1–2 μl of PCR product. Samples were

Page 9 of 25 Oikos

denaturated in 98 °C for 3 minutes, then run in a ABI PRISM® 310 Genetic analyzer (Applied Biosystems) as described in Mikkonen et al. (2011) with a 47 cm long sequencing capillary and POP-6TM polyacrylamide as a polymer (Applied Biosystems). Raw data were scanned with program GeneScan 3.7 (Applied Biosystems) and the data were further analysed with BioNumerics 6.0 (Applied Maths, Sint-Martens-Latem, Belgium) as described in Mikkonen et al. (2011). The active area of the fingerprint was restricted to the expected PCR amplicon size 460-550 bp. FAM labelled sample curves were normalized with the internal HEX-labelled standards. Average fingerprints were created with the 'Create average fingerprint' script.

Ecosystem functioning measurements

To understand how dung beetles, microbes and their interactions affect ecosystem functioning, we measured multiple functional properties associated with the decomposition process.

Dung mass loss was measured as cumulative weight loss over the 60 days of the experiment, calculated from wet weights taken every 10 days. Changes in dung mass established by this method will reflect both desiccation and actual dung removal and/or respiratory loss of mass by pat-dwelling species (Kaartinen et al. 2013; Rosenlew and Roslin 2008; Wall and Strong 1987).

Nonetheless, by the end of the experiment the humidity of all dung pats will have equilibrated with the environment, rendering remaining mass a valid measure of the overall fraction of mass decomposed (see Kaartinen et al. 2013 for an in-depth treatment). Overall respiration (CO₂ fluxes) was measured throughout the experiment using a closed chamber method and a portable EGM-4 infrared CO₂ analyser.

To investigate how different dung beetle communities affect the functional profile of microbial communities, we used Biolog Ecoplates (Biolog Inc., Hayward, CA, USA). Each well of the EcoPlates contains an individual substrate, with 31 carbon substrates overall. While the

substrates represent only a small fraction of those that might be available in natural environments,
the rate of breakdown of individual substrates gives an indication of the metabolic capacity of a
community (Garland 1997; Garland and Mills 1991). Dung and soil samples for inoculation were
collected at the end point of the experiment (dung: day 31, soil: day 60) as described above.
Samples were stored at 20°C overnight, then added to the EcoPlates and incubated for 5 days at
20°C. For each sample, 1 g of dung or soil was suspended in 4 ml (dung) or 8 ml (soil) of PBS
buffer (137 mM NaCl, 10 mM Phosphate, 2.7 mM KCl, at pH 7.4), and the homogenised
suspension was serially diluted in PBS. One set of the 31 carbon substrates was inoculated per
mesocosm by pipetting 150 μ l of 10 ⁻⁴ diluted dung suspension or 10 ⁻³ diluted soil suspension into
the wells. Colour development was measured using an Infinite M200 microplate-reader (Tecan,
Groedig, Austria) at OD_{590} nm at 0 h, 24 h, 30 h, 48 h, 54 h, 72 h, 102 h and 126 h after inoculation.
We scored positive microbial growth if growth exceeded that observed in 95% of the water controls
(Gravel et al. 2011). Substrate usage (single Carbon Substrate Utilisation rates (sCSUR)) was
calculated as the area under the growth curve. The usage of substrates not exceeding water controls
was set to zero. As a measure of overall metabolic capacity, we defined the total substrate usage
across the Ecoplate, summed across all substrates (total carbon substrate utilisation rate (tCSUR)).
To pinpoint differences in the metabolic profile of different communities, we then divided the
substrates into five categories: carbohydrates, amino acids, carboxylic/acetic acids, polymers, and
amines/amides (Berga et al. 2012; Zak et al. 1994), and calculated mean substrate usage within each
category. The richness and diversity of substrate usage within each category was calculated as the
mean number, and the inverse of the Simpson Index (as above), respectively, of substrates showing
positive growth.

Analyses

Page 11 of 25 Oikos

DIFFERENCES BETWEEN SUBSTRATES AND SAMPLING PERIODS – The final sampling date differed between soil and dung (see above), so temporal patterns were analysed separately for the two substrates. To describe the microbial community, microbial operational taxonomic units (OTUs) were defined as peaks in the LH-PCR traces, and OTU richness was defined as the total number of OTUs in each profile. To identify peaks, LH-PCR traces were first smoothed by fitting a cubic spline using the default settings in the smooth spline function in the base stats package of R (R Development Core Team 2013). OTUs were then delimited by identifying the peaks and valleys in the trace. We used relative peak area as a proxy of relative abundance, and calculated Simpson indices (D=1/sum of the squared relative abundances) to describe the diversity and evenness (1/D/species richness) in each sample. For microbial OTU diversity and richness, we built generalised linear models with normally and Poisson-distributed errors, respectively. Each response was modelled as a function of the dung beetle community (Aphodius only, Aphodius and Geotrupes, No Dung Beetles) and day (12, 31 or 60) as categorical fixed effects. In all cases, we started from the full model including all main effects and their interactions, then removed nonsignificant interactions until arriving at the minimum adequate model, for which results are presented.

220

221

222

223

224

225

226

227

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

Interactive effects of Microbes and Dung Beetles on ecological functioning – As both dung beetle and microbial community composition varied in our experiment, we took a multistep approach to examine their respective contributions to decomposition processes:

To establish whether the presence of *Aphodius*, or of *Aphodius* and *Geotrupes* affected microbial community composition *per se*, we used permutational multivariate analysis of variance (permutational MANOVA) calculated using the Bray-Curtis dissimilarity index. Statistical tests were calculated using the R function *adonis* in the package *vegan* (Blackwood et al. 2007; Oksanen

et al. 2009), and communities visualised using nonmetric multidimensional scaling (NMDS) implemented in *metaMDS* in *vegan*.

To examine whether similarity in microbial community composition was reflected in similarity in function, we used Mantel tests to compare matrices of Bray-Curtis dissimilarity in LH-PCR profiles (at day 30 and 60 for Ecoplates and at day 12 for dung decomposition and CO₂ fluxes) to matrices describing similarity in 1) substrate usage on Ecoplates (similarity described by the Bray-Curtis metric at the end of the experiment; 2) dung decomposition, measured as the slope of the regression of dung mass loss on time (with similarity described by Euclidean distance) and 3) CO₂ flux (using the average of fluxes from day 10 and 14, as no flux data was collected on day 12, and again describing similarity by Euclidean distance). In each case, we compared the observed Pearson correlation coefficient to values generated by 999 permutations. A significant association would signal that communities more similar in structure were also more similar in function than expected by chance alone. All analyses were carried out in R version 3.0.1 (R Development Core Team 2013).

Results

Microbial community composition

Overall, distinct microbial communities were found in soil and dung samples, and there were significant temporal changes in community composition (Table 1, Fig.1). Over the course of the experiment and with the drying-out of the dung, the microbiome of the soil and of the dung converged (Fig.1). Further analysis of soil collected from beneath the dung pats indicated that microbial community composition of soil under dung pats was significantly affected by the presence of dung beetles (Table 1a), whereas the specific identity of the beetles (*Aphodius* or

Page 13 of 25 Oikos

251 Geotrupes) had no further detectable impact on this comparison (Table 1b). Within dung, dung 252 beetles had no detectable effect on microbial community composition (Table 1c). 253 The presence of dung beetles also affected the microbial diversity observed in the soil 254 underneath dung pats. Soil microbial diversity significantly changed with the identity of the beetles 255 (F_{2.82}= 3.80, P=0.03). Microbial diversity was lower in the presence of both *Aphodius* and 256 Geotrupes than in the presence of Aphodius alone. There was no significant effect of day on soil 257 microbial diversity ($F_{1.82}$ = 2.44, P>0.1). Although there were no significant effects of day or dung 258 beetle treatment on species richness (P>0.9 in both cases), the evenness of the microbial communities was impacted by the dung beetle treatments ($F_{2.82}$ = 3.79, P=0.03), and was lowest 259 260 when both dung beetle genera were present. Dung microbial OUT richness and diversity did not 261 significantly differ over time or among the dung beetle treatments (P>0.4 in all cases). 262 263 Microbial functioning 264 The microbial communities in soil and dung were associated with different functional profiles as 265 measured by the Ecoplates (Fig. 2). However, the presence or absence of dung beetles, or the 266 particular dung beetle taxa involved had no further detectable impact on this difference 267 (MANOVA: dung: $F_{2,42}$ = 1.14, P=0.29; soil: $F_{2,40}$ = 0.7, P=0.8). When the effect of dung beetles on 268 microbial activity in dung and soil was analysed in further detail (number of substrates utilised, 269 diversity of substrates utilised, total substrate utilisation rate (tCSUR), proportion of substrate 270 categories), the presence of dung beetles had no significant effect on soil microbial activity (P> 0.08 271 in all cases). 272 Carbon substrate utilisation rates (sCSUR's) in dung and soil differed among substrates 273 (dung: $F_{4.208}=21.94$, P>0.001; soil: $F_{4.208}=10.87$, P>0.001), with polymers having the highest rates 274 and amines the lowest (Fig. 3a, b). There were also significant differences among the dung beetle 275 treatments in sCSUR in the dung ($F_{2.208}$ =3.38, P=0.04). In dung, mesocosms with *Aphodius* and

Geotrupes had higher utilisation sCSUR's (Fig. 3a). In soil, the presence of dung beetles did not increase utilisation rates ($F_{2,208}$ =0.0308, P=0.97; Fig. 3b).

Differences in the composition of microbial communities as resulting from either dung beetle treatment or substrate (dung or soil) were correlated with differences in functional rates. Overall, we found a significant positive correlation between similarities in microbial community composition and similarities in substrate usage across dung and soil samples collected on days 31 and 60, respectively (Mantel test: r=0.17, P=0.008). This significant association was also evident when the data were broken down into samples from dung (r=0.14, P=0.05) *versus* soil (r=0.21, P=0.025), as collected on single dates. The similarity of dung decomposition rate was also significantly positively correlated with similarities in dung microbial community composition (r=0.21, P=0.005), but not with similarity in soil microbial community composition (r=-0.001, P=0.52). Similarities in CO₂ fluxes were not detectably associated with similarities in either the soil or dung microbial communities (r=0.01, P=0.41 versus r=0.08, P=0.21, respectively).

Discussion

Our results demonstrate an important interaction between dung beetles and microbial communities in dung and soil, providing a link in biogeochemical cycling in agricultural systems. While the microbial communities of dung and soil are initially different, they converge over time on the pasture. During this process, dung beetle communities modify some aspects of both microbial community structure and functioning in both the dung pats and in the soil underneath them. By doing so, we suggest that the beetles may serve as mobile links between decomposition processes occurring above and below ground. Thus, the bioturbation process offered by beetles may serve to homogenise both microbial community structure and functioning across the soil-surface boundary. Below, we will address each of these observations in turn.

Page 15 of 25 Oikos

Dung is a major source of nutrients and carbon into soil food webs, particularly in agricultural systems (Aarons et al. 2009; Yoshitake et al. 2014). Microbial activity is a key driver behind soil carbon and nutrient cycling (Falkowski et al. 2008), and has been extensively studied, for example in the context of carbon storage (Trivedi et al. 2013). Contrasting with such studies is a major body of literature focusing on the role of macroscopic invertebrates in the decomposition of dung. Among such taxa, dung beetles have been identified as the most important invertebrate contributors to dung decomposition in temperate agricultural grasslands (Lee and Wall 2006). Despite the evident potential to incorporate microbial processes into studies of dung beetles, the link between dung beetles, dung and soil microbes and biogeochemical cycling has never been explicitly explored. With global increases in cattle farming, and hence greenhouse gas emissions from agriculture (Bellarby et al. 2013; FAO 2006), it is important to examine the processes contributing to the decomposition of cattle dung.

Our study revealed substantial differences in the microbial communities of dung and soil – and also differences in microbial functioning among these strata. Initial differences in the microbiome of the dung and the soil reflect both the specific composition of the substrate (cattle fodder versus soil) and the specific conditions prevailing in the digestive tract of the ruminants (de Menezes et al. 2011; Kim et al. 2011). After the dung is deposited in the pasture, the microbiome of the pat is exposed to ambient conditions and eventually converges towards that of the soil – as paralleled by increasing convergence of functioning. On this process, the dung beetles left an imprint. In particular, in terms of community structure, microbial evenness was lower in the presence of both *Aphodius* and *Geotrupes* than in the presence of *Aphodius* alone. However, the presence of dung beetles and their community composition had little effect on affect overall microbial functioning in either dung or soil, although utilisation rates of certain substrate categories increased when dung beetles were present. In particular, amines were utilised more when dung beetles were present and carbohydrates had higher utilisation rates when both *Aphodius* and

Geotrupes were present than with Aphodius alone, thus yielding a different functional profile of microbial communities in the presence versus absence of beetles. One possible explanation for this contrast with a priori expectations is that the soil samples were taken close to the surface (maximum depth 9cm), and that the effects of the tunnelling by Geotrupes may thus be more pronounced deeper in the soil profile. Future studies will be targeted at resolving such effects.

Regardless of the factors giving rise to it, large overall variation in microbial community composition both within and between substrates (soil versus dung) and time periods directly translated to differences in functional rates. Significant association between similarities in microbial community composition and substrate usage add to associations observed for the main function of dung decomposition, where more similar microbial communities were also more similar in terms of how quickly they disposed of dung. Both patterns attest to a general relationship between microbial community composition and functioning (Bell et al. 2009; Bell et al. 2005).

Our study suggests that the presence of mesofauna (dung beetles) will modify the microfauna (microbes), including its diversity and functioning. In particular, the presence of dung beetles appears promote the transfer of microbes across the soil-surface interface, and result in increased similarity in both community structure and functioning. However, the specific impact of dung beetle groups and interactions between them is less clear. While the patterns reported here apply to aerobic bacteria, we propose that an added focus on the anaerobic part of the community – and on associated functions like methane emissions (see Penttilä et al. 2013) – may prove a particularly interesting avenue for further research.

Acknowledgements

We thank Bess Hardwick and Saija Lähteenmäki for help in the field and lab, Kristina Lindström for allowing us to use her laboratory facilities, and Anu Mikkonen for advice on the LH-PCR method and fingerprint data analysis. EMS and TR were supported by a grant from the Academy of

Page 17 of 25 Oikos

350	Finland (grant 138346), MS was supported by an Academy of Finland (grant 263858), and TB was
351	supported by a Royal Society University Research Fellowship.
352	
353	Statement of authorship: EMS, TR, TB designed the study, EMS and MS conducted the study in
354	the field and lab, EMS and TB analysed the data, and all authors contributed to the writing of the
355	manuscript.
356	
357	References
358	Aarons, S., O'Connor, C., Hosseini, H., Gourley, C. P. 2009. Dung pads increase pasture
359	production, soil nutrients and microbial biomass carbon in grazed dairy systems Nutr Cycl
360	Agroecosyst 84:81-92. doi: 10.1007/s10705-008-9228-5.
361	Bell, T., Gessner, M. O., Griffiths, R. I., McLaren, J. R., Morin, P. J., van der Heijden, M., van der
362	Putten, W. 2009. Microbial biodiversity and ecosystem functioning under controlled
363	conditions and in the wild Biodiversity, Ecosystem Functioning, and Human Wellbeing:
364	An Ecological and Economic Perspective:121-133
365	Bell, T., Newman, J. A., Silverman, B. W., Turner, S. L., Lilley, A. K. 2005. The contribution of
366	species richness and composition to bacterial services Nature 436:1157-1160
367	Bellarby, J., Tirado, R., Leip, A., Weiss, F., Lesschen, J. P., Smith, P. 2013. Livestock greenhouse
368	gas emissions and mitigation potential in Europe Global Change Biology 19:3-18. doi:
369	10.1111/j.1365-2486.2012.02786.x.
370	Berga, M., Székely, A. J., Langenheder, S. 2012. Effects of Disturbance Intensity and Frequency on
371	Bacterial Community Composition and Function PLoS ONE 7:e36959. doi:
372	10.1371/journal.pone.0036959.

373	Beynon, S. A., Mann, D. J., Slade, E. M., Lewis, O. T. 2012. Species-rich dung beetle communities
374	buffer ecosystem services in perturbed agro-ecosystems Journal of Applied Ecology
375	49:1365-1372. doi: 10.1111/j.1365-2664.2012.02210.x.
376	Blackwood, C. B., Hudleston, D., Zak, D. R., Buyer, J. S. 2007. Interpreting Ecological Diversity
377	Indices Applied to Terminal Restriction Fragment Length Polymorphism Data: Insights
378	from Simulated Microbial Communities Applied and Environmental Microbiology
379	73:5276-5283. doi: 10.1128/aem.00514-07.
380	de Menezes, A. B., Lewis, E., O'Donovan, M., O'Neill, B. F., Clipson, N., Doyle, E. M. 2011.
381	Microbiome analysis of dairy cows fed pasture or total mixed ration diets FEMS
382	Microbiology Ecology 78:256-265
383	FAO2006. Livestock's long shadow, environmental issues and options. Food and Agriculture
384	Organization of the United Nations, Rome, Italy.
385	Garland, J. L. 1997. Analysis and interpretation of community-level physiological profiles in
386	microbial ecology FEMS Microbiology Ecology 24:289-300. doi: 10.1016/s0168-
387	6496(97)00061-5.
388	Garland, J. L., Mills, A. L. 1991. Classification and Characterization of Heterotrophic Microbial
389	Communities on the Basis of Patterns of Community-Level Sole-Carbon-Source Utilization.
390	- Applied and Environmental Microbiology 57:2351-2359
391	Gravel, D., Bell, T., Barbera, C., Bouvier, T., Pommier, T., Venail, P., Mouquet, N. 2011.
392	Experimental niche evolution alters the strength of the diversity-productivity relationship
393	Nature 469:89-92
394	Hanski, I., Cambefort, Y. (eds) (1991) Dung Beetle Ecology. Princeton University Press, Princeton,
395	New Jersey.
396	Kaartinen, R., Hardwick, B., Roslin, T. 2013. Using citizen scientists to measure an ecosystem
397	service nationwide Ecology 94:2645-2652. doi: 10.1890/12-1165.1.

Page 19 of 25 Oikos

398	Kim, M., Morrison, M., Yu, Z. 2011. Status of the phylogenetic diversity census of ruminal
399	microbiomes FEMS Microbiology Ecology 76:49-63
400	Larsen, T. H., Williams, N. M., Kremen, C. 2005. Extinction order and altered community structure
401	rapidly disrupt ecosystem functioning Ecology Letters 8:538-547
402	Lee, C. M., Wall, R. 2006. Cow-dung colonization and decomposition following insect exclusion
403	Bulletin of Entomological Research 96:315-322. doi: 10.1079/ber2006428.
404	Mikkonen, A., Lappi, K., Wallenius, K., Lindström, K., Suominen, L. 2011. Ecological inference
405	on bacterial succession using curve-based community fingerprint data analysis,
406	demonstrated with rhizoremediation experiment FEMS Microbiology Ecology 78:604-
407	616. doi: 10.1111/j.1574-6941.2011.01187.x.
408	Mikkonen, A., Santalahti, M., Lappi, K., Pulkkinen, AM., Montonen, L., Suominen, L. 2014.
409	Bacterial and archaeal communities in long-term contaminated surface and subsurface soil
410	evaluated through coextracted RNA and DNA FEMS Microbiology Ecology 90:103-114
411	Muyzer, G., De Waal, E. C., Uitterlinden, A. G. 1993. Profiling of complex microbial populations
412	by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified
413	genes coding for 16S rRNA Applied and Environmental Microbiology 59:695-700
414	Nichols, E. 2013. Fear begets function in the 'brown' world of detrital food webs Journal of
415	Animal Ecology 82:717-720. doi: 10.1111/1365-2656.12099.
416	Nichols, E., Spector, S., Louzada, J., Larsen, T. H., Amezquita, S., Favila, M., The Scarabaeinae
417	Research Network 2008. Ecological functions and ecosystem services of Scarabaeine dung
418	beetles: a review Biological Conservation 141:1461-1474
419	Nichols, E. S., Gardner, T. A. 2011. Dung beetles as a candidate study taxon in applied biodiversity
420	conservation research Ecology and evolution of dung beetles:267-291
421	Oksanen, J., Kindt, R., Legendre, P., O'Hara, B., Simpson, G. L., Solymos, P., Stevens, M. H. H.,
122	Wagner, H. 2009. vegan: Community Ecology Package.

423	Penttilä, A., Slade, E. M., Simojoki, A., Riutta, T., Minkkinen, K., Roslin, T. 2013. Quantifying
424	Beetle-Mediated Effects on Gas Fluxes from Dung Pats PLoS ONE 8:e71454. doi:
425	10.1371/journal.pone.0071454.
426	R Development Core Team 2013. R: A language and environment for statistical computing. R
427	Foundation for Statistical Computing, Vienna, Austria.
428	Rosenlew, H., Roslin, T. 2008. Habitat fragmentation and the functional efficiency of temperate
429	dung beetles Oikos 117:1659-1666. doi: 10.1111/j.1600-0706.2008.16904.x.
430	Roslin, T. 2000. Dung beetle movements at two spatial scales Oikos 91:323-335
431	Roslin, T. 2001. Large-scale spatial ecology of dung beetles Ecography 24:511-524
432	Roslin, T., Forshage, M., Ødegaard, F., Ekblad, C., Liljeberg, G. 2014. Nordens dyngbaggar.
433	Hyonteistarvike TIBIALE, Oy, Helsingfors.
434	Roslin, T., Koivunen, A. 2001. Distribution and abundance of dung beetles in fragmented
435	landscapes Oecologia 127:69-77
436	Slade, E. M., Mann, D. J., Lewis, O. T. 2011. Biodiversity and ecosystem function of tropical forest
437	dung beetles under contrasting logging regimes Biological Conservation 144:166-174
438	Slade, E. M., Mann, D. J., Villanueva, J. F., Lewis, O. T. 2007. Experimental evidence for the
439	effects of dung beetle functional group richness and composition on ecosystem function in a
440	tropical forest Journal of Animal Ecology 76:1094-1104
441	Spector, S. 2006. Scarabaeine Dung Beetles (coleoptera: Scarabaeidae: Scarabaeinae): An
442	Invertebrate Focal Taxon for Biodiversity Research and Conservation The Coleopterists
443	Bulletin 60:71-83. doi: 10.1649/0010-065x(2006)60[71:sdbcss]2.0.co;2.
444	Tiirola, M. A., Suvilampi, J. E., Kulomaa, M. S., Rintala, J. A. 2003. Microbial diversity in a
445	thermophilic aerobic biofilm process: analysis by length heterogeneity PCR (LH-PCR)
446	Water research 37:2259-2268

447	Trivedi, P., Anderson, I. C., Singh, B. K. 2013. Microbial modulators of soil carbon storage:
448	integrating genomic and metabolic knowledge for global prediction Trends in
449	microbiology 21:641-651
450	Van Der Heijden, M. G. A., Bardgett, R. D., Van Straalen, N. M. 2008. The unseen majority: soil
451	microbes as drivers of plant diversity and productivity in terrestrial ecosystems Ecology
452	Letters 11:296-310. doi: 10.1111/j.1461-0248.2007.01139.x.
453	Wagg, C., Bender, S. F., Widmer, F., van der Heijden, M. G. A. 2014. Soil biodiversity and soil
454	community composition determine ecosystem multifunctionality Proceedings of the
455	National Academy of Sciences. doi: 10.1073/pnas.1320054111.
456	Wall, D. H., Bardgett, R. D., Kelly, E. 2010. Biodiversity in the dark Nature Geosci 3:297-298
457	Wall, R., Strong, L. 1987. Environmental consequences of treating cattle with the antiparasitic drug
458	ivermectin Nature 327:418-421
459	Weisburg, W. G., Barns, S. M., Pelletier, D. A., Lane, D. J. 1991. 16S ribosomal DNA
460	amplification for phylogenetic study Journal of bacteriology 173:697-703
461	Yoshitake, S., Soutome, H., Koizumi, H. 2014. Deposition and decomposition of cattle dung and its
462	impact on soil properties and plant growth in a cool-temperate pasture Ecological
463	Research:1-12. doi: 10.1007/s11284-014-1153-2.
464	Zak, J. C., Willig, M. R., Moorhead, D. L., Wildman, H. G. 1994. Functional diversity of microbial
465	communities: A quantitative approach Soil Biology and Biochemistry 26:1101-1108. doi:
466	10.1016/0038-0717(94)90131-7.
467	
468	
469	

Table 1. Results of permutational MANOVAs of community composition (measured as arcsine square-root transformed relative abundance) in two substrates (soil versus dung) as functions of sampling dates and treatments.

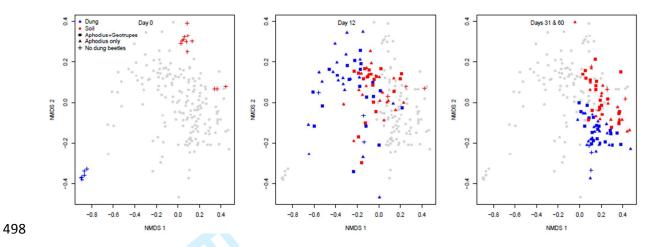
470

471

472

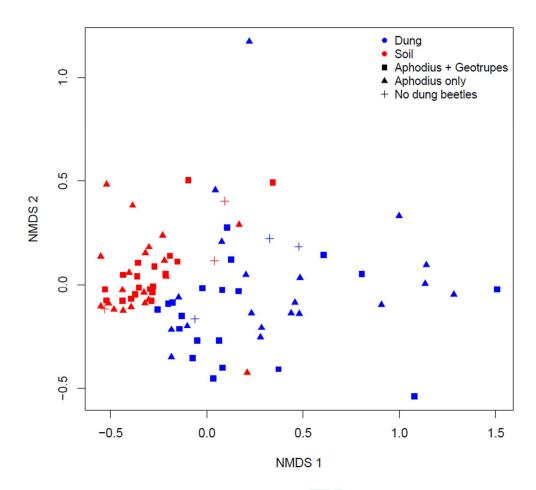
Term	Df	F	P value
1a: Soil			
Day ^a	1,82	27.61	0.001
Treatment ^b	2,82	2.78	0.013
1b: Soil – Dung only con	ntrols removed ^c		
Day	1,77	29.62	0.001
Dung beetle treatment	1,77	1.45	0.18
1c: Dung			
Day	1,82	48.81	0.001
Dung beetle treatment	2,82	1.8	0.087

^aDay 12 & 31 for dung and Day 12 and 60 for soil.

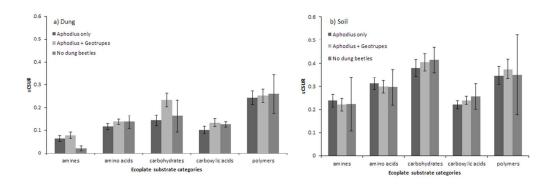

^bThree treatments: mesocosms with 1) *Aphodius* only, 2) *Geotrupes* present, 3) Controls with dung but no dung beetles.

⁴⁷⁷ Conly mesocosms with 1) Aphodius only and 2) Aphodius & Geotrupes present.

All Day by Dung beetle treatment interactions were non-significant (P>0.1 in all cases).


480	Figure Legends
481	Figure 1. NMDS plots showing the changes in the dung (blue points) and soil (red points) microbial
482	community composition over time. The three panels show different points in time, with the
483	complete dataset (grey points) included for reference. Symbols identify mesocosms with G.
484	stercorarius present (■) versus mesocosms with only Aphodius species present (▲).Control
485	mesocosms with dung but no dung beetles are indicated with the symbol +. On day 0, samples
486	were taken only from the six control pats and from the soil in 12 mesocosms before the dung was
487	added (see methods).
488	
489	Figure 2. NMDS plot showing the utilisation of carbon substrates (based on sCSURs of Ecoplate
490	substrates) in dung (day 31) and soil (day 60) in mesocosms with Aphodius and Geotrupes
491	stercorarius present (■);mesocosms with only Aphodius present (▲) and control mesocosms with
492	dung but no dung beetles present (+).
493	
494	Figure 3. Microbial activity and functioning measured as mean single carbon substrate utilisation
495	rates (sCSUR) in a) dung (a) and b) soil in the presence of different dung beetle communities.
496	Shown are means ±SE.
497	

Oikos



499 Figure 1.

Page 25 of 25 Oikos

501502 Figure 2.

505 Figure 3.

