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Fig. 1. In fingertip-based within-hand manipulation, or precision 
manipulation, a grasped object is repositioned within the hand 
workspace without breaking or changing the assumed contact model 
between each fingertip and the object. 

 

Abstract—Fingertip-based within-hand manipulation, also 
called precision manipulation, refers to the repositioning of a 
grasped object within the workspace of a multi-fingered robot 
hand without breaking or changing the contact type between 
each fingertip and the object. Given a robot hand architecture 
and a set of assumed contact models, this paper presents a 
method to perform a gross motion analysis of its precision 
manipulation capabilities, regardless of the particularities of the 
object being manipulated. In particular, the technique allows the 
composition of the displacement manifold of the grasped object 
relative to the palm of the robot hand to be determined as well as 
the displacements that can be controlled—useful for high-level 
design and classification of hand function. The effects of a 
fingertip contacting a body in this analysis are modeled as 
kinematic chains composed of passive and resistant revolute 
joints; what permits the introduction of a general framework for 
the definition and classification of non-frictional and frictional 
contact types. Examples of the application of the proposed 
method in several architectures of multi-fingered hands with 
different contact assumptions are discussed; they illustrate how 
inappropriate contact conditions may lead to uncontrollable 
displacements of the grasped object. 
 

Index Terms—Within-hand Manipulation, Multi-fingered 
Hands, Dexterous Manipulation, Kinematic Manipulation. 

I. INTRODUCTION 

HE purposeful movement of an object within a multi-
fingered robot hand by the relative motion of its fingers is 

generally known as robotic dexterous manipulation [1, 2]. 
Despite the importance of this functionality for the successful 
deployment of robots in real-world tasks, and the recent 
progress in the area [3, 4], the development of mechanical 
systems that reliably perform autonomous dexterous 
manipulation outside controlled environments is still an open 
problem [5]. 

Much work remains to be done in both robot hand design 
and control to enable dexterous manipulation capabilities. In 
this paper, we present a technique useful for both of these 
domains. The method is based on the analysis of the 
capabilities of robot hands for performing dexterous 
manipulation; in particular, manipulation activities in which a 
grasped object is repositioned within the hand without 
breaking or changing contact. These kinds of tasks can be 
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classified as within-hand prehensile manipulation with no 
motion at contact via the manipulation taxonomy presented in 
[1]. More specifically, we say herein that this type of 
dexterous manipulation task is performed without 
modifications in the assumed contact model between each 
fingertip and the object, and refer to it as precision 
manipulation (Fig. 1) for the remainder of this paper (although 
the term has been used for a broader class of manipulation in 
other works [6, 7]). 

The aim of the suggested approach is to characterize the 
precision manipulation capabilities of a given robot hand 
architecture by determining the feasible movements to 
reposition a grasped object within the hand workspace without 
breaking or changing the assumed contact models. In this 
analysis, the feasibility of motion refers to the composition of 
the displacement manifold of the object relative to the palm of 
the robot hand. The proposed characterization of manipulation 
ends by defining which of these possible displacements can 
actually be controlled by the hand actuators without depending 
on external factors to the hand (e.g. forces).  

Given that our interest is in general displacement 
characteristics (i.e., gross motion) regardless of the 
particularities of the grasped object and the infinitesimal (or 
local) motion features and limitations resulting from the 
dimensions of the fingers and the relation between the 
locations of the links composing them, we call this study: 
finite precision manipulation analysis. The proposed method 
is based on the Hervé’s approach for the kinematics of 
mechanisms using the continuous group of displacements [8], 
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TABLE I 
SUBGROUPS OF DISPLACEMENTS 

 

Subgroup Lower kinematic 
pair 

Description 

  The identity displacement. Rigid connection between bodies, no relative motion  (0 degrees of freedom)

,  Revolute joint Rotation about the axis determined by the unit vector  and point  (1 degree of freedom) 

 Prismatic joint Translation parallel to the unit vector  (1 degree of freedom) 

,  Cylindrical joint Cylindrical motion about the axis determined by the unit vector  and point  (2 degrees of freedom) 

  Planar translation on the plane determined by the unit normal vector  (2 degrees of freedom) 

 Spherical joint Spherical rotation about a point  (3 degrees of freedom) 

 Planar joint Planar gliding motion on the plane determined by the unit normal vector  (3 degrees of freedom) 

a mathematical tool that has found its milestone application in 
the type synthesis of parallel platforms [9, 10]. Approaches 
based on screw theory could also be taken [11]; but special 
attention should be paid to identify the finite motion of the 
resulting instantaneous analysis, a step that could be difficult 
for some robot hand architectures. Table I presents a 
description of some of the subgroups of displacements - with 
their associated lower kinematic pair - that are relevant for our 
discussion. For a complete list of subgroups, the interested 
reader is addressed to [12]. A comprehensive list of non-
identity intersections between subgroups of displacements can 
be found in [11](Table C.3). 

A preliminary version of the presented framework for 
manipulation characterization was introduced in [13], where it 
was limited to contacts modeled as point contact with friction. 
In this work, we further extend that framework by modeling 
the effects of a fingertip contacting a body as kinematic chains 
using an extension of the Bruyninckx-Hunt approach of 
surface-surface contact [14], what allows using all standard 
contact categories of robotic manipulation (e.g., point contact 
with friction, soft finger) as well as other contact models, such 
as ball, tubular, and frictional adaptive finger contacts. 
Moreover, the proposed technique extends the standard notion 
of finite (gross) kinematic manipulation, which has been 
historically restricted to the mobility analysis of multi-finger 
grasps [15-17]. The identification of the uncontrollable 
displacements of a grasped object as herein suggested is 
relevant for the implementation of robotic dexterous tasks 
because it naturally leads to modifications in the design of the 
robot hand under study (fingers, fingertips, and palm layout) 
or its control scheme in order to avoid the resulting 
undesirable circumstances. The computation of the 
composition of the displacement manifold of the grasped 
object using the proposed analysis is also significant to robot 
hand design and control as it can be used to incorporate 
explicit motions in the system to perform specific tasks.  
 The rest of this paper is organized as follows. Section II 
discusses some of the essential ideas and tools required for 
understanding the proposed kinematic manipulation method. 
Section III details the steps to perform the precision 
manipulation analysis of a given robot hand using, as 
reference to introduce the different stages, a simple two-
fingered hand with revolute-revolute opposed fingers. Two 

additional examples of more complex fingertip-based in-hand 
manipulation analyses are detailed in section IV, namely a 
three-fingered hand layout commonly found in commercial 
robot hands and a four-fingered hand with revolute-revolute-
revolute fingers. We finally conclude in section V. 

II. BACKGROUND 

A. Kinematic Chains and Mobility  

A kinematic chain can be characterized by its structural 
factors: number L of links, number J of joints, and total 
number of degrees of freedom F of the joints; the set of 
relations  between link locations; the set of relations  
between joint axes; and the set of dimensions  of the links. 
The essential property of a kinematic chain is its mobility, 
which can be defined as the minimum number of independent 
parameters to make a kinematic chain rigid. The mobility of a 
kinematic chain usually indicates the number of joints that 
have to be actuated to control a robot mechanism. 

It is widely known that the total mobility of a kinematic 
chain, say , is a function not only of the structural 
parameters L, J, and F but also of the sets , , and  [18]. 
The so-called overconstrained mechanisms, such as the 
Bennett spatial four-bar linkage or the Bricard spatial six-bar 
linkage, are the classical examples of this fact. Thus, in 
general,  

 

L, J, F, , , L, J, F 														
L, J, F, , , L, J, F , , , 

(1) 
 

where L, J, F  corresponds to the structural mobility (or 
generic mobility) of the kinematic chain and , ,  is the 
degree of mobility added to the system by the conditions on 
the sets , , and . 

The factor , ,  in equation (1) can be divided into the 
contribution given by the geometry of the joint axes  and 
that given by the geometry of the links , , that is, 

, , , . Then, since L, J, F  
does not depend on the dimensions or locations of the links, it 
is called the finite mobility of the mechanism. Given that 
formulas for  and ,  are unknown, recursive 
processing methods or algorithms based on the rank of the 
Jacobian matrix at a given configuration are used for the 
computation of   instead [18]. However, it has been proven 
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Fig. 2. The Bruyninckx-Hunt model, a general kinematic-chain-based 
model of point contact without friction. The model consists of five 
serially-connected passive revolute joints whose location and 
direction are unequivocal. 

that if  is computed using the extended Chebychev–
Kutzbach–Grübler criterion it is unlikely that  when a 
kinematic chain is selected at random [19]. According to this 
criterion, the generic mobility of a mechanism is 

 

F ∑ , (2) 
 

where J L 1 is the number of independent 
(fundamental) loops of the kinematic chain and  is the 
motion type of the i-th independent loop ( 3 in the planar 
and spherical case, and 6 in the spatial case), with 0 
if F ∑ . 
 

B. Kinematic Equivalents of Contact Models 

According to the notation of Fig. 2, given two bodies 
touching at a single point  with Φ  and Φ  being smooth 
surfaces representing their boundaries in the neighborhood of 
the contact point (i.e., Φ  and Φ  has the same tangent plane 
at ), let  

 A  and A  (correspondingly B  and B ) be the centers 
of maximum and minimum curvature of Φ  (Φ ), 
respectively,  
  and  (correspondingly  and ) be the 
directions of maximum and minimum curvature of Φ  
(Φ ), respectively, and 
  a unit normal vector defining the common contact 
tangent plane. 

From elementary differential geometry, it is known that , 
, and  ( ,  are orthogonal with directions uniquely 

defined unless the surface is locally a sphere or a plane. For 
these particular cases, there exist an infinite number of 
directions for the vectors  and . 

Figure 2 corresponds to the generalized kinematic-chain-
based model of point contact without friction, called herein the 
Bruyninckx-Hunt model. It consists of five serially-connected 
passive revolute joints whose location and direction are 
unequivocal. The model is built by serially connecting 
revolute joints at points A , A , B , B , and  in the direction 
determined by vectors , , , , and , respectively, 
and rigidly connecting the revolute joints at A  and B  to Φ  
and Φ . The resulting mechanism is a five-revolute chain of 
six links that provides five independent degrees of freedom of 
motion between the touching objects. By applying serial 
reduction to this kinematic chain we get  

 

, ∙ , ∙ , ∙	
, ∙ , . 

(3) 
 

The above equation is the kinematic equivalent of the 
Bruyninckx-Hunt model. A kinematic equivalent simply 
corresponds to a single kinematic constraint (i.e., a subset of 
the continuous group of displacements) that represents the 
constrained motion between two contacting bodies.  

Despite the explicit local definition of the Bruyninckx-Hunt 
model, useful novel finite kinematic equivalents of contact 
types can be defined since suppositions about the Gaussian 
curvature of the fingertip (and the object) can be made. 
Additionally, non-frictional and frictional cases can be 

considered by replacing the three passive revolute joints of 
one of the surfaces (including the revolute joint at the contact 
point) by resistant passive joints, that is, passive joints able to 
resist moments till some value  before entering in motion. 	

A general classification of contact types for robot precision 
manipulation based on the above extended Bruyninckx-Hunt 
model was introduced in [14]. In such classification, all 
standard contact categories used in robotic manipulation, 
namely the Salisbury’s taxonomy plus line-line contact 
without friction, appeared as special cases, and new contact 
models are defined and characterized via kinematic 
equivalents. Examples of these new contact models include 
ball, tubular, planar translation, and frictional adaptive finger 
contacts. 

III. PRECISION MANIPULATION ANALYSIS 

The objective of this study is, first, to define the feasible 
movements to reposition a grasped object within the hand 
workspace without breaking or changing the assumed contact 
model between each fingertip and the object, a task we refer to 
as precision manipulation and, second, to determine which of 
these possible displacements are controllable. By feasible 
movements we mean the displacement manifold (finite 
motion) of the object relative to the base or palm of the robot 
hand. Controllable movements refer to the subset of these 
feasible displacements that can actually be controlled by the 
hand actuators.  

The proposed approach is based on a group-theoretic 
analysis of the kinematic constraints associated to the hand-
object system. We are interested in general displacement 
characteristics—the instantaneous (or local) motion features 
and limitations resulting from, for instance, the particular 
dimensions of the hand-object system or the friction 
conditions of the contacts, are not considered. The result of the 
method is a mathematical characterization of the finite within-
hand manipulation capabilities of the hand regardless of the 
particularities of the grasped object. Next, we describe the five 
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Fig. 3. Top: A 2F-2RR robot hand grasping an object with the 
notation used for its finite precision manipulation analysis with point 
contact with friction contacts. Bottom: The graph of kinematic 
constraints of the hand-object system for the 2F-2RR hand (a) and its 
corresponding reduction (b, c). 

steps to perform such analysis for a given robot hand; the two-
fingered hand with revolute-revolute opposed fingers (2F-
2RR) of Fig. 3 will be used as reference to introduce the 
different stages.  

A. Initial steps for the analysis of precision manipulation 

Figure 3(top) shows a 2F-2RR hand grasping, with its 
fingertips, a general object—represented as an egg-shaped 
body in the image. This hand is composed of two identical 
fingers with two links (proximal and distal) arranged in an 
opposed configuration. In each finger, the proximal link is 
connected to the palm through a revolute joint, which 
determines the motion plane of the finger. The proximal and 
distal links are connected by another revolute joint whose axis 
is parallel to the proximal one. The motion plane of both 
fingers is parallel.  

Given a robot hand composed of serial fingers, the first step 
to analyze its finite precision manipulation capabilities is to 
select a contact model, with its corresponding kinematic 
equivalent according to [14], for each of its fingertips. For the 
case of the 2F-2RR, we select the model of point contact with 
friction for the two fingertips, which corresponds to a limit 
instance of the elliptic contact model. The second step of the 
analysis is to determine the resulting kinematic chain of the 
hand-object system, given the robot hand topology and the 
assumed contact models for the fingertips, and compute its 
corresponding structural mobility  using equation (2).  

In our example, the hand-object system of the 2F-2RR hand 
with point contact with friction is equivalent to a closed 
kinematic chain composed of six links with two revolute-
revolute-spherical serial limbs that connect the palm of the 
robot hand, or base, to the grasped object. The mobility of 
such closed kinematic chain (6 links, 6 joints in  with a total 
number of 10 degrees of freedom in the joints) is 4. This 
implies that the feasible movements of a grasped object 
respect to the base correspond to a 4-manifold (immersed 
in	 ), in other words, the object has 4 degrees of freedom.  

The third step in our analysis is to construct a graph of 
kinematic constraints of the resulting kinematic chain. For the 
case of our introductory example, according to the notation of 
Fig. 4(top), for the left finger, the axis of the ground revolute 
joint (or proximal joint) is determined by a unit vector , that 
is parallel to the -axis of the palm’s reference frame ( ∥ ), 
and any point, say , that belongs to the line defined by the 
rotational axis. This kinematic pair corresponds to a kinematic 
constraint that forms the subgroup of displacements 

, ,  that restrict the movement between 
the proximal link and the palm. Similarly, for the case of the 
distal joint, the generated subgroup is , = , . 
Finally, assuming that the contact point between the fingertip 
and the object is , the motion constraint between the two 
bodies under the supposition of point contact with friction 
generates the subgroup . By replicating this analysis in 
the right finger, we can construct the graph of kinematic 
constraints of this hand-object system as depicted in Fig. 
3(bottom[a]).  

B. Reduction of the graph of kinematic constraints 

Given a robot hand (or subset of it) of n serial fingers 
grasping an object with all its fingertips; the resulting graph of 
kinematic constraints of the hand-object system, under the 
assumed contact models, has L nodes, J edges, and J
L 1 fundamental loops (cyclomatic number). For each of 
these loops it is possible to compute its structural mobility 
using equation (2). The fourth step in the finite precision 
manipulation analysis is to reduce such graph to a single edge 
connecting the nodes associated to the robot’s palm and the 
grasped object.  

The above reduction process is carried out by first applying 
n operations of serial reductions (i.e., composition of the 
kinematic constraints involved in the nodes), one per each of 
the fingers in the hand-object system. Then, we get a graph of 
two nodes and n edges with  fundamental loops. If  
operations of parallel reduction are applied to this graph (i.e., 
intersection of the kinematic constraints associated to two 
selected edges), we obtain a new graph of n 1 edges and 

1 fundamental loops. Thus, systematically, after 
	

 

operations of parallel reductions we get a graph of two nodes 
and a single edge. In these operations is fundamental to take 
into account that variations in the expected structural mobility 
of each fundamental loop can appear from the factor  of 
the total mobility. Moreover, some parallel reductions can be 
avoided if all their involved edges have been already covered 
by other reductions. The final edge indeed corresponds to the 
kinematic constraint describing the composition of the 
displacement of the grasped object. The degrees of freedom of 
this last kinematic constraint should be equal to the structural 
mobility  computed in the second step unless that 
contributions from  have been detected in the reduction 
process of the graph.  

In the case of the 2F-2RR hand with the model of point 
contact with friction, the original graph has 6 nodes, 6 edges, 
and 1 fundamental loops. Then, first, using the notation of 
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Fig. 4. Top: A 3F-2UR1R robot hand grasping an object with the 
notation used for its precision manipulation analysis with point 
contact with friction contacts. Bottom: The graph of kinematic 
constraints of the hand-object system for the 3F-2UR1R hand (a) and 
its corresponding reduction (b, c, d). 

Fig. 3(bottom[a]), we apply serial reduction to the nodes 1, 2, 
3, and 6. Thus, we get,    

 

	 , ∙ , ∙ , (4) 
 

where  is a kinematic constraint defined as the subset of the 
group of rigid-body displacements resulting from the 
composition operation of the subgroups involved in the related 
nodes. Now, since the subgroup ,  is a proper subset 
of the subgroup , that is, , ⊂ , then, 
by the property of closure, we get , ∙

			 ∀ , ∈ , ∙ , ∈ . Hence,  
can be written as 

 

, ∙ , ∙ , ∙
						 ∙ .																																										  

(5) 
 

Applying the same serial reduction to the nodes 1, 4, 5, and 
6, we get (with ∥ ∥ ) 

 

∙ .			 (6) 
 

Thus, after the application of the two serial reductions to the 
original graph of kinematic constraints, a reduced graph of 
two nodes with two edges is obtained, see Fig. 4(bottom[b]). 
The nodes of such graph are the base (the palm of the robot 
hand) and the grasped object, both connected by the kinematic 
constraints  and . 

Since 1 in this particular example, a single parallel 
reduction operation applied to  and  is needed for 
reducing the graph to two nodes and one edge [Fig. 
4(bottom[c])]. Then, we finally have 

   

∩ 																																																									
∙ 	∩ 	 ∙ 	
∙ ∩ 															
∙ , . 																								 

(7) 

 

The above equation implies that the feasible movements of a 
grasped object with a 2F-2RR hand under the assumption of 
point contact with friction are the composition of a planar 
gliding displacement parallel to the -plane (two translations 
and one rotation about the normal to the plane) and a rotation 
about the axis defined by the contact points 	and . Note 
that, as expected from the structural mobility of the closed 
kinematic chain of the hand-object system, the obtained finite 
displacement is a 4-manifold. 

C. Uncontrollable displacements 

The fifth (and final) step of the finite precision manipulation 
analysis is to determine if the feasible displacements of the 
grasped object can be controlled by the actuated joints of the 
robot hand. The minimum number of actuated joint axes for 
the hand-object system is given by the structural mobility  
computed in the second step. Then, for determining if the 
resulting degrees of freedom of the grasped object can be 
controlled by the possible hand actuators, we just have to lock 
the joint axes affected by the actuation scheme when it is 
active, provided that this number is greater or equal than , 
and repeat the four steps previously discussed.  By locking we 
mean equating all the controlled joint axes to , the identity 
displacement. If the resulting finite displacement after 
repeating the steps is the identity	 , then the selected scheme 

of actuation can control the different degrees of freedom 
because of the system becomes rigid. Otherwise, the result 
corresponds to the uncontrollable displacements of the grasped 
object.  

In the case of the 2F-2RR hand with the model of point 
contact with friction, at least four joint axes have to be 
actuated since 4. This implies that both the proximal and 
distal joints of each finger in the hand have to be locked (i.e., 

, , , , ). 
After repeating the steps one to four with these inputs, it can 
be verified that, in such a case, the obtained subset of  
following the explained procedure is , . In 
consequence, only 3 of the 4 degrees of freedom of the 
grasped object are controllable with the assumption of point 
contact with friction regardless of the friction conditions of the 
contacts. The rotation about the axis defined by the contact 
points 	and  cannot be controlled by the actuators under 
the contact suppositions, thus depending on other external 
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factors such as mass/disturbance forces.  

IV. EXAMPLES 

We present two additional examples of finite precision 
manipulation of robot hands. The first case details the 
manipulation analysis for a hand layout commonly found in 
commercial robot hands, assuming a point contact with 
friction model in all the fingertips. The second example 
focuses on the manipulation analysis of a 4-fingered hand with 
revolute-revolute-revolute fingers manipulating an object with 
soft finger contacts.  

A. 3-Fingered Hand with UR Fingers and Opposable RR 
Thumb (3F-2UR1RR) 

Figure 4(top) shows a 3-fingered hand with two universal-
revolute (UR) fingers and an opposable revolute-revolute (RR) 
thumb, called herein the 3F-2UR1RR hand, grasping with its 
fingertips a general object. The 3F-2UR1RR hand layout is 
used in some popular commercial robot hands such as the 
Schunk Hand [20] or the ReFlex Hand [5]. During tasks of 
precision manipulation, with the assumption of point contact 
with friction (step 1), the hand-object system of the 3F-
2UR1RR hand is equivalent to a closed kinematic chain 
composed of eight links with two universal-revolute-spherical 
serial limbs and a revolute-revolute-spherical serial chain that 
connect the base of the robot hand to the grasped object. The 
mobility of this closed kinematic chain (8 links, 9 joints in  
with a total number of 17 degrees of freedom in the joints) is 5 
(step 2).  

According to the notation of Fig. 4(top), let us call finger 1, 
finger 2, and finger 3, the fingers with contact points ,  , 
and , correspondingly. For the first finger, the proximal 
joint is a universal pair whose axes of rotation are determined 
by the unit vectors  and , that are parallel to the -plane 
and to the -axis, respectively, and the meeting point of the 
axes, say . This kinematic pair corresponds to a kinematic 
constraint that forms the submanifold , ∙

, , defined as the composition of two different 
subgroups of rotations whose axes meet at a single point. 
Taking into account that finger 1 and finger 2 have the same 
configuration, and that finger 3 is equivalent to the fingers of 
the 2F-2RR hand, then, for the hand-object system of the 3F-
2UR1RR hand, we get the graph of kinematic constraints (step 
3) that is depicted in Fig. 4(bottom[a]).   

In order to reduce the graph of kinematic constraints (step 
4), we initially apply serial reductions. Thus, for the case of 
nodes 1, 2, 3, and 6—related to the hand’s first finger, we 
have (with ∥ ) 

 

	 ∙ , ∙ 																				  
			 , ∙ , ∙ , ∙
			 .															 

(8) 

 

A list of some of the generators of the subgroup  (  is a 
subgroup of itself) can be found in [9](p. 22). In the same way, 
for the case of nodes 1, 4, 5, and 6—related to finger 2, we 
obtain    

 

	 , ∙ , ∙ , ∙
							 . 

(9) 
 

Finally, for the third finger (nodes 1, 6, 7, and 8), we have 
 

, ∙ , ∙ 	
, ∙ , ∙ , ∙
∙ . 

(10) 

 

 After the above reductions we get a graph of kinematic 
constraints of two nodes and three edges [Fig. 4(bottom[b])].  
To obtain a graph with a single couple of kinematic 
constraints, we apply parallel reduction to, for instance, the 
kinematic constraints  and  (equations (8) and (10)), and 

 and  (equations (9) and (10)). We can choose in fact any 
possible combinations of edges (e.g.  and , and  and 

). In any case, since 2 in the original graph of kinematic 
constraints, up to 3 parallel reductions are needed to reduce 
the graph to two nodes and a single edge.  Now, for  and , 
we have  
 

∩ ∩ 																 
∙ ∩ 	 

 ∙ .												 
(11) 

 

	 	is a 5-manifold, as expected from the structural mobility of 
the closed kinematic chain associated to the kinematic 
constraints  and . Analogously, for  and , we get 
 

∩ ∩ 																 
∙ ∩ 	 

 ∙ .												 
(12) 

 

After the application of the two above parallel reductions, a 
graph of kinematic constraints of two nodes with two edges is 
obtained [Fig. 4(bottom[c])]. Finally, for obtaining the subset 
of displacements of the grasped object, we apply a last parallel 
reduction to the constraints 	and  [Fig. 4(bottom[d])]. 
Thus, we get 

   

∩ ∩ ∩ 																						  
∙ ∩ 	 ∙
∙ . 																													

 

(13) 

The above equation implies that the feasible movements of 
a grasped object with a 3F-2UR1RR hand, under the 
assumption of point contact with friction, are the composition 
of a planar gliding displacement parallel to the -plane (two 
translations and one rotation about the normal to the plane) 
and two rotations about any two linearly independent axes, 
different to , , that meet at point . The obtained finite 
displacement is a 5-manifold, as expected from the structural 
mobility of the closed kinematic chain of the hand-object 
system. Moreover, it can be verified that any selection of five 
actuated axes in the hand from the possible eight joints 
(considering the universal joints as two revolute joints that can 
be independently actuated), generates the identity 
displacement. Hence, there are not uncontrollable degrees of 
freedom in the hand-object system (step 5). This example was 
also discussed in [13] with equivalent results, but here we 
amend some of the steps in the deduction of equation (13). 

B. 4-Fingered Hand with RRR Fingers (4F-4RRR) 

 Figure 5(left) shows a 4-fingered hand with four revolute-
revolute-revolute fingers (4F-4RRR) grasping, with its 
fingertips, a general object. During tasks of precision 
manipulation, assuming soft finger contacts in all the 
fingertips (step 1), the hand-object system of this hand is 
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Fig. 5. Left: A 4F-4RRR robot hand grasping an object with the notation used for its precision manipulation analysis with soft finger contacts. Right: The 
graph of kinematic constraints of the hand-object system for the 4F-4RRR hand (a) and its corresponding reduction (b, c, d). 

equivalent to a closed kinematic chain composed of fourteen 
links with four revolute-revolute-revolute-universal serial 
limbs that connect the base of the robot hand to the grasped 
object. The mobility of this closed kinematic chain (14 links, 
16 joints in  with a total number of 20 degrees of freedom 
in the joints) is 2 (step 2). The corresponding graph of 
kinematic constraints (step 3), according to the notation of Fig. 
5(top), is depicted in Fig. 5(right[a]).  

Let us call finger 1, finger 2, finger 3, and finger 4, the 
fingers with contact points , , , and , 
correspondingly. Then, in order to reduce the graph of 
kinematic constraints (step 4), we initially apply serial 
reductions. For the case of the first finger (nodes 1, 2, 3, 4, and 
14), we have (with ∥ ∥ ) 

 

						 	 , ∙ , ∙ ,
∙ 	 

	 ∙ 	
	 ∙ , ∙ 	 

∙ .																									 

(14) 

 

Similarly, for the case of fingers 2, 3, and 4, with ∥ ∥
, ∥ ∥ , ∥ ∥ , ∥ , and	 ∥ , we 

obtain    
 

	 ∙ ,							 (15) 

	 ∙ , and (16) 

	 ∙ ,								 (17) 
 

respectively.    
After the above reductions we get a graph of kinematic 

constraints of two nodes and four edges [Fig. 5(right[b])].  To 
obtain a graph with a single couple of kinematic constraints, 
we apply parallel reduction to, for instance, the kinematic 
constraints  and  (equations (14) and (16)), and  and  
(equations (15) and (17)). For  and , we have 
 

∩ ∩ 																																						  
	 ∙ ∩ ∙ 	

(18) 

 ∙ , .																			  
 

Correspondingly, for  and , we get 
 

∩ ∩ 																													  
∙ ∩ ∙

 ∙ , .																		  
(19) 

 

After the application of the above parallel reductions, a graph 
of kinematic constraints of two nodes with two edges is 
obtained [Fig. 5(right[c])]. Finally, we apply a last parallel 
reduction to the constraints 	and  [Fig. 5(right[d])]. Thus, 
we obtain 

 

∩ 																												  
∙ , 	∩							 

∙ , 		
∙ , ,														

 

(20) 

since  and , and  and  are linearly independent 
vectors. 

The above equation implies that the feasible movements of 
a grasped object with a 4F-4RRR hand, under the assumption 
of soft finger contacts, are the composition of a translational 
displacement along the -axis and a rotation about the axis 
defined by the contact points 	and . As expected from the 
structural mobility of the closed kinematic chain of the hand-
object system, the obtained finite displacement is a 2-
manifold. It can be verified that any selection of two actuated 
axes in the hand from the possible twelve joints generates the 
identity displacement when the contacts are in general 
position. Hence, under these circumstances, there are not 
uncontrollable degrees of freedom in the hand-object system 
(step 5). However, if the contact points of fingers 1 and 3, and 
those of fingers 2 and 4, are at the same level respect to the 
palm, an uncontrollable displacement can be indeed identified. 
1)  Case of uncontrollable displacement 

When contact points 	and  are located at the same level 
respect to the palm of the robot hand, vectors  and  are 
parallel. In this case, equation (21) becomes  
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∗ ∙ , .	 (21) 
 

Likewise, for contact points 	and  located at the same 
level ( ∥ , equation (19) becomes  
 

∗ ∙ , .	 (22) 
 

Then, the parallel reduction of the kinematic constraints 
∗	and ∗ that finally gives the feasible movements of the 

grasped object yields  
 

				 ∗ ∗ ∩ ∗																																															 
∙ , 	∩							 

																																				 ∙ , 	
																	 ∙ ,

∙ , ,																												
 

(23) 

since .   
The above equation indicates that the resulting finite 

displacement of the grasped object is a 3-manifold rather than 
a 2-manifold as expected from the structural mobility of the 
closed kinematic chain of the hand-object system. This implies 
that a contribution from  has been detected in the 
reduction process of the graph. In consequence, under the 
consideration of the contact locations, selections of two 
actuated axes in the hand from the possible twelve joints 
cannot control all the feasible displacements of the grasped 
object. For instance, if we just controlled the proximal joints 
of fingers 1 and 3, it results that the finite displacement of the 
object is ,  instead of  as in the case of contacts in 
general position. In consequence, in such instances, the 
grasped object has a rotation about the axis defined by the 
contact point 	and the vector  that is not controlled by the 
actuators but by external factors such as mass/disturbance 
forces. 

V. CONCLUSIONS 

Precision manipulation can be considered the repositioning 
of a grasped object within the hand workspace without 
breaking or changing the assumed contact model. In this work, 
we have presented a method based on the continuous group of 
displacements and the reduction of graphs of kinematic 
constraints to analyze the finite precision manipulation 
capabilities of a given robot hand. Finite manipulation refers 
to the information on the motion of the object that does not 
depend on its geometry or the particular dimensions of the 
fingers and the relations between the locations of the links 
composing them. The analysis allows determining the feasible 
movements to reposition any grasped object within the hand 
workspace as well as defining which of these possible 
displacements can actually be controlled by the hand actuators 
without depending on external factors to the hand.  

The effects of a fingertip contacting a body in the presented 
analysis are modeled as kinematic chains, what permits using 
all standard contact categories of robotic manipulation (e.g., 
point contact with friction, soft finger) as well as other more 
complex contact models. The introduced precision 
manipulation analysis approach is general and can be applied 
to any finger/palm layout or subset of it. In terms of possible 
applications, the presented technique can be used, for instance, 
in early stages of robot hand and fingertip design to 

incorporate manipulation primitives needed to perform 
specific tasks. However, if a study of the topological 
properties of the resulting displacement manifolds is required, 
other techniques should be implemented.  
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