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Abstract
It is widely recognised that future smart grids will heavily rely upon intelligent communication
and signal processing as enabling technologies for their operation. Traditional tools for power
system analysis, which have been built from a circuit theory perspective, are a good match for
balanced system conditions. However, the unprecedented changes that are imposed by smart
grid requirements, are pushing the limits of these old paradigms.

To this end, we provide new signal processing perspectives to address, some fundamen-
tal operations in power systems such as frequency estimation, regulation and fault detection.
Firstly, motivated by our finding that any excursion from nominal power system conditions re-
sults in a degree of non-circularity in the measured variables, we cast the frequency estimation
problem into a distributed estimation framework for noncircular complex random variables.
Next, we derive the required next generation widely linear, frequency estimators which in-
corporate the so-called augmented data statistics and cater for the noncircularity and a widely
linear nature of system functions. Uniquely, we also show that by virtue of augmented complex
statistics, it is possible to treat frequency tracking and fault detection in a unified way.

To address the ever shortening time-scales in future frequency regulation tasks, the devel-
oped distributed widely linear frequency estimators are equipped with the ability to compen-
sate for the fewer available temporal voltage data by exploiting spatial diversity in wide area
measurements. This contribution is further supported by new physically meaningful theoreti-
cal results on the statistical behaviour of distributed adaptive filters. Our approach avoids the
current restrictive assumptions routinely employed to simplify the analysis by making use of
the collaborative learning strategies of distributed agents. The efficacy of the proposed dis-
tributed frequency estimators over standard strictly linear and stand-alone algorithms is illus-
trated in case studies over synthetic and real-world three-phase measurements.

An overarching theme in this thesis is the elucidation of underlying commonalities between
different methodologies employed in classical power engineering and signal processing. By re-
visiting fundamental power system ideas within the framework of augmented complex statis-
tics, we provide a physically meaningful signal processing perspective of three-phase trans-
forms and reveal their intimate connections with spatial discrete Fourier transform (DFT), op-
timal dimensionality reduction and frequency demodulation techniques. Moreover, under the
widely linear framework, we also show that the two most widely used frequency estimators in
the power grid are in fact special cases of frequency demodulation techniques.

Finally, revisiting classic estimation problems in power engineering through the lens of non-
circular complex estimation has made it possible to develop a new self-stabilising adaptive
three-phase transformation which enables algorithms designed for balanced operating condi-
tions to be straightforwardly implemented in a variety of real-world unbalanced operating con-
ditions. This thesis therefore aims to help bridge the gap between signal processing and power
communities by providing power system designers with advanced estimation algorithms and
modern physically meaningful interpretations of key power engineering paradigms in order
to match the dynamic and decentralised nature of the smart grid.
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Nomenclature
ACRONYMS

ACEKF (Augmented) Complex extended Kalman filter

ACLMS (Augmented) Complex least mean square

AR Autoregressive

CRLB Cramer-Rao lower bound

D-ACEKF Diffusion-augmented complex extended Kalman filter

D-ACLMS Diffusion-augmented complex least mean square

DFT Discrete Fourier transform

FM Frequency modulation

MLE Maximum likelihood estimation

MSE Mean square error

RoCoF Rate of change of frequency

SLAR Strictly linear autoregressive

TSO Transmission system operator

WLAR Widely linear autoregressive

SYMBOLS

1
N

N ⇥ 1 column vector of ones

A Matrix

a Vector

¯

x Augmented input vector

C Field of complex numbers

R Field of real numbers

⇢ Circularity quotient

a Scalar

j Imaginary unit,
p�1

I
M

M ⇥M Identity matrix
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Nomenclature Nomenclature

OPERATORS

(·)⇤ Complex conjugation

(·)H Vector/Matrix conjugate transposition

(·)T Vector/Matrix transposition

def
= Defined as

E {·} Statistical expectation

Im {·} Imaginary part

⌦ Kronecker product

Re {·} Real part

blkdiag(·) Creates a block-diagonal matrix of its arguments

col(·) Creates a column vector of its arguments

diag(·) Creates a diagonal matrix of its arguments

arg[·] Argument (extracts angle of a complex-valued scalar)

Tr [·] Trace of a square matrix

%(·) Spectral radius of a square matrix
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Chapter 1

Introduction

It is not knowledge, but the act of
learning, not possession but the act of
getting there, which grants the greatest
enjoyment.

Carl Friedrich Gauss

1.1 Perspective

Modern electricity grids are undergoing unprecedented changes to meet several ambitious
goals. These goals include the need to reduce our reliance on fossil fuels and better manage-
ment of the current ageing infrastructure, while creating economic benefits for society [1]. For
example, legally binding CO2 emissions targets require the UK to reduce emissions by 32% by
2020 and 60% by 2050 compared to the baseline emissions levels in 1990 [2]. Fulfilling each of
these demands compounds the number of challenges and their impact on transmission system
operators (TSOs), utilities, and end-consumers alike.

It is widely expected that these challenges are to be met by the next generation power net-
work, commonly known as the “smart grid”. The smart grid aims to make a paradigm shift
from the top-down mode of operation of the current grid by incorporating distributed genera-
tion, typically from renewable sources (wind, solar), distributed storage from plug-in-vehicles
and demand response technologies [1]. The backbone to this future grid is an intelligent real-
time wide area monitoring system (WAMS) capable of estimating key indicators of the stability
of the grid [3].

One of the most closely monitored indicator is the system frequency as its deviation from
the nominal frequency of 50 Hz or 60 Hz indicates a mismatch between the supply and de-
mand of electricity or a fault. Since electricity is a non-storable commodity, its generation and
demand have to balanced in real time. If demand is greater than generation, the frequency
drops, whereas if generation is greater than demand, the frequency rises. Therefore, accurate
tracking of the system frequency is a prerequisite for the task of balancing the demand and
generation of electricity [4]. Figure 1.1 shows a scene form the National Grid control centre
where the system frequency is monitored continuously.

Current power system frequency tracking algorithms were designed in the early 1980s and
would be adequate for the smart grid if the dynamics of the grid remain within the status quo
[5]. However, future grids are expected to have vastly different dynamics including more rapid
frequency deviations [6], together with a multitude of power quality issues (e.g. more noise,
voltage sags, harmonics). To understand the evolution of the issues surrounding these prob-
lems, we shall briefly discuss the history of the electricity grid, the present frequency regulation
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System Frequency 

Figure 1.1: National Grid control centre. Scene taken from the show “Fully Charged”, aired on
May 2012.

landscape and the anticipated challenges that are transforming the requirements for frequency
tracking algorithms in the future.

1.2 System Frequency: Past, Present and Future

1.2.1 Historical Context

The electrification of objects has been one of mankind’s greatest triumphs, earning it the title
“the greatest engineering achievement of the 20th Century” [7]. In its early years, the electric grid
was far less homogeneous than it is today, where disparate electricity suppliers and equip-
ment manufacturers adopted different standards which suited their own applications. Of these
standards, the most important debate centred around the choice between alternating current
(AC) and direct current (DC) in the so-called “War of Currents” between Westinghouse who
favoured AC and Edison who favoured DC [8].

The AC system eventually “won” the war since it offered several advantages compared
to DC system. Firstly, using AC allowed for the voltages to be stepped up and down with
transformers which lowered the cost of transmission as cheaper copper wires could be used
to supply the same amount of power with lower currents. Secondly, AC systems could cater
for loads designed for different voltages with the same transmission lines through the use of
transformers, unlike DC systems which required separate DC transmission lines for different
load ratings.

Once the war of currents paved the way for the AC framework, the subsequent standard-
isation debate was regarding the AC system frequency. Prior to the standardisation of the
frequency to 50/60 Hz, the AC supply around the world existed at arbitrary frequencies which
ranged from 16 2

3

Hz to 133 Hz. The choice of the system frequency came from different (often
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times opposing) needs of the various electrical equipments like incandescent bulbs, transform-
ers, induction motors and synchronous converters [9]. Generally, the system frequency needed
to be high enough to have less flickering in light-bulbs and for the flux rate in the transformers
to be sufficiently high for an efficient operation. However, having a high frequency required
generators to spin at higher rotations speeds and contain more poles – this was considered
to be more hazardous than generators operating at lower speeds [10]. Besides that, transmit-
ting power through long distance cables with a high AC frequency worsened the transmission
losses in the cables through what is known as “skin effect” [11].

The 60 Hz frequency was standardised in the US since the 50 Hz frequency introduced
considerable flickering in the arc lighting system which was widespread in the US in the late
19th century [12]. The reason behind the precise choice of 50 Hz and 60 Hz (as opposed to e.g.
52 Hz or 61 Hz) is less clear. Speculations range from the observation that 60 Hz fits into the
units of time where there are 60 seconds in a minute and 60 minutes in an hour [12], while “50”
was chosen since it was a commonly used value in industrial design applications [10].

1.2.2 Present Landscape

Transmission system operators (TSO) have a legal requirement to maintain the system fre-
quency within a pre-determined range. For example, the National Grid in the U.K. is required
to maintain the system frequency within 1% of the nominal frequency of 50 Hz. However,
in the event of an unexpected large generator loss (> 1.8 gigawatts (GW)), the frequency is
allowed to deviate to a minimum of 49.2 Hz [13].

Frequency regulation actions can be broadly split into two categories: (i) under nominal
operating conditions and (ii) during a contingency. During nominal operating conditions, the
TSO plans and manages the supply-demand balance at different timescales:

• Long term (timescale: 1 year to 10 years). The long term planning required to ensure an
adequate supply of power is conducted by the TSO. The National Grid, for example, re-
leases the “Electricity 10-year Statement” outlining the electricity transmission planning
cycle and the future needs of the transmission network [14].

• Monthly to intra-day (timescale: several months to few hours ahead). In this time scale,
electricity generators and consumers trade power contracts to fulfil the demands in the
market. Intra-day balancing is carried out by power schedulers who have a range of
options that include increasing or curtailing generation to load shedding and exporting
any deficits to neighbouring markets [15].

When a contingency occurs, the supply-demand balance is temporarily disrupted due to
either a large generator loss (supply-side), or a sudden change in the load (demand-side). Re-
sponses of the grid during such contingencies typically resemble the following scenario, which
is also graphically depicted in Figure 1.2 [13]:

• Inertial response (timescale: instantaneous up to 10s). Synchronous electrical machines are
electrical motors and generators that rotate at a rate which is directly proportional to the
system frequency (e.g. 50 Hz). Their rotational speed therefore changes when the system
frequency changes. However, by virtue of the kinetic energy stored within them, these
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Figure 1.2: Illustration of the frequency response time-scale during a generation loss.

electrical machines resist any sudden changes to their state of motion and consequently
regulate changes in the supply and demand of electricty in the very beginning of a con-
tingency. The phenomenon which describes the resistance an electrical machine has to
any change in its state of motion is referred to as inertia.

• Primary response (timescale: from 10s up to 30s). As soon as a contingency occurs, a pri-
mary response is automatically supplied by the governors within synchronous electrical
machines which change the power output to stabilise the frequency.

• Secondary response (timescale: from 30s up to 30mins). Additional power is dispatched
by the grid operators from the reserve power available in the grid which may come either
from power plants that operate below their capacity or energy storage devices.

1.2.3 Future Grids: The Challenge

The key challenge for the frequency regulation scheme described in the previous section is
the large penetration of intermittent renewable resources (wind, solar) which is expected to:
(i) shorten the frequency regulation time-scales [16], and (ii) degrade the quality of the cur-
rent/voltage signals used by conventional control and estimation algorithms [17].

Firstly, the frequency regulation time-scales are expected to be shortened in future grids,
since replacing a large fraction of conventional generators by renewable energy sources is ex-
pected to reduce the overall inertia available in the grid [6]. The reason for this is that, unlike
conventional power plants which are interfaced to the grid via synchronous machines, renew-
able sources are interfaced to the grid by power electronic inverters. These inverters are elec-
tronic circuits which do not provide any inertial support to the grid. In the United Kingdom,
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the transmission system operator estimates a 40% – 50% reduction of the available inertia in
the Great Britain (GB) network by 2035 [18], see Figure 1.3.
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Figure 1.3: Forecast of available inertia in the grid, excluding embedded generation under the
“slow progression” scenario, measured in Giga VoltAmpere seconds (GVA.s).

This is of great concern as the system inertia is a key factor in determining the rate of change
of frequency (RoCoF) when a sudden power imbalance occurs (e.g. the loss of a generation
unit) [16], see Figure 1.4. Systems with higher inertia have lower RoCoFs, and are considered
to be more stable than low-inertia systems. Power systems with higher RoCoFs cause more
mechanical stress for generators and exhibit more extreme frequency excursions, necessitating
a rapid response from transmission system operators (TSO) [6].
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Figure 1.4: Forecast of typical RoCoF values occuring at 10% of the year, under the “slow
progression” scenario.

The second challenge is concerned with the degradation of the signal quality (voltage and
current measurements) used in estimation algorithms. This is attributed to the diverse profile
of users who are plugging into and out of the grid at a more rapid pace. For example, uneven
distribution of loads for across the three-phase voltages, as defined in (1.1), result in unbalanced
system conditions almost all the time [19]. Besides that, the increased use of electronic inverter-
based equipment (e.g. consumer electronics) introduces switching noise, and non-sinusoidal
currents and harmonics [17], which are not well-represented by algorithms derived in standard
linear estimation theory [20, 21, 22].
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1.3 Problem Formulation

In light of the challenges facing the frequency regulation landscape in future low inertia grids, it
is paramount that the frequency estimation and tracking problem is revisited. To illuminate this
point, consider a general electricity grid represented by a graph G = (N , E). The N buses in the
network are represented by a node set, N = {1, 2, . . . , N}, while the power lines between the
buses (connections) are represented by an edge set, E . The neighbourhood of a node i, denoted
by N

i

, comprises all the nodes connected to node i including itself, that is N
i

= {j | (i, j) 2 E}
[23], see Figure 1.5.

Node i

Ni

Figure 1.5: A distributed network with N = 20 nodes.

Each node (e.g. node i) has access to sampled three-phase voltage measurements, at the
discrete time instant k, given by
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=
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where the amplitude of the phase voltages v
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. The angular frequency is ! = 2⇡fT , with f the fundamen-
tal power system frequency which is identical throughout the network and T the sampling
interval.

As addressed in Chapter 7, the three-phase representation of the s
i,k

in (1.1) is over-parametrised
and can be compactly represented as “two-phase” Clarke voltages, v
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and v
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via a pro-
jection onto a new orthogonal basis using the so-called “Clarke transform”, given by
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Moreover, the Clarke transform enables, v
↵,i,k

and v
�,i,k

, to be conveniently represented jointly
as a complex-valued scalar,

s
i,k

def
= v

↵,i,k

+ jv
�,i,k

. (1.3)

Figure 1.6 illustrates the operation of the Clarke transform in (1.2).
It can be shown that the complex-valued Clarke voltage (also referred to as the ↵� voltage)
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in (1.3) takes the form

s
i,k

= A
i

ej!k

+B
i

e�j!k, (1.4)

where the positive and negative sequence phasors A
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and B
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are given by1 [24]
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Our task is to estimate the system frequency, !, given noisy observations of the Clarke
voltage s

i,k

in (1.4). In particular, the noisy observations of s
i,k

can be expressed in the form

y
i,k

= s
i,k

+ ⌘
i,k

, (1.6)

where ⌘
i,k

, is a zero-mean complex-valued white Gaussian noise process, with variance �2

⌘

i

=

E
�|⌘

i,k

|2 . This thesis aims to answer, in a systematic way, several questions pertinent to the
estimation problem in (1.6), the first of which is on the signal model suitable for the general
Clark voltage s

i,k

.
Notice from the noise-free signal in (1.5b) the negative sequence phasor vanishes, that is

B
i

= 0, for a balanced system (equal amplitudes, V
a,i

= V
b,i

= V
c,i

, and uniform phase separa-
tion, �
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= �
b,i

= �
c,i

), thus yielding the balanced Clarke voltage

s
i,k

= A
i

ej!k. (1.7)

Figure 1.7 depicts the real and imaginary parts of the balanced signal in (1.7) which exhibits
a circular trajectory. However, for unbalanced systems, B

i

6= 0, and therefore s
i,k

does not fol-
1A detailed explanation of the Clarke transform is given in Chapter 7.
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low a uniform circular trajectory. During a fault in the voltage lines, the currents and voltages
across the three-phases fail to maintain uniformity and can either experience a sag (under-
voltage) or a swell (over-voltage). These sags and swells are classified into distinct categories
denoted by alphabet symbols from A to G [25]. For example, a system with Type C and Type
D voltage sags, as illustrated in the phasor diagram in Figure 1.8, exhibits noncircular Clarke
voltage trajectories as explained by (1.4), see also Figure 1.7.

An unbalanced system condition therefore introduces a problem, as conventional complex-
valued linear estimation theory does not cater for noncircular signals. In fact, it was recently
shown that the standard strictly linear model for (1.4) is inadequate for unbalanced systems
and a widely linear model is required [24, 26]. Widely linear estimation shall therefore be a
cornerstone to this thesis, where we present several contributions, such as the design of com-
putationally efficient widely linear adaptive filters and new results in the convergence analysis
of widely linear adaptive filters, all within a general framework of power systems.
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Figure 1.7: For a balanced system, characterised by V
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and �
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,
the trajectory of Clarke’s voltage v

k

is circular (blue line). For unbalanced systems, the voltage
trajectories are noncircular (red and green lines).

Type C
Sag
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Sag

Figure 1.8: Phasor diagrams of voltage sags where the dashed blue arrows designate a set of
balanced three-phase voltage phasors. Notice the change in magnitudes and phase separations
during a fault (sag).

Furthermore, the multi-sensor nature of the estimation problem in (1.6), calls for the ex-
tension of standard singe-node frequency estimators to a distributed setting. In the particular
application of frequency tracking in low-inertia grids, the distributed estimation algorithms are
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crucial to exploit spatially diverse measurements across the grid, so as to compensate for the
fewer temporal measurements available in the first few hundred milliseconds after a contin-
gency. Although spatially diverse measurements, y

i,k

, from (1.6) can be collected and processed
in a fusion centre, the growth in the number of measurements from phasor measurements units
(PMU) and smart-meters makes the network vulnerable to a single point of failure [27, 28, 29].

The research undertaken for this thesis is motivated by: (i) the need for faster and more
robust frequency estimates in future low-inertia grids, together with (ii) growth in multi-sensor
distributed measurements and (iii) latest developments in widely linear modelling of three-
phase voltages motivated. The main research objective can therefore be summarised as “to
solve the frequency tracking problem in low-inertia grids using complex-valued distributed adaptive
filters.” This thesis aims to achieve the goal from various angles which include formulation
of new algorithms, uncovering their learning behaviour (stability, convergence), giving new
perspectives to some well-established solutions and finally by testing the algorithms with real-
world case studies.

Complex-Valued
Statistical Signal

Processing

Distributed
Adaptive Signal

Processing

This Thesis
Frequency

Tracking in Low
Inertia Grids

Figure 1.9: Subject areas of the thesis.

1.4 Contribution of the Thesis

The contributions of this thesis can be divided into four areas, this roughly corresponds to how
this thesis is organised, as shown in Figure 1.10.

1. Novel adaptive filters for widely-linear estimation

• Dual Channel Estimation: Low Complexity Adaptive Filters

Complex-valued estimation algorithms are computationally intensive (e.g. one com-
plex multiplication requires four real multiplications) while standard methods to
reduce this computational complexity cast the problem in the real domain, where
the physical meaning inherent to working in the complex-domain is lost. A new
estimation method, referred to as “dual channel estimation” is proposed by decom-
posing the standard mean square error (MSE) into the MSE in estimating the real
and imaginary parts. This allows for the development of computationally efficient
complex-valued estimation algorithms while still remaining within the complex do-
main. This contribution is elaborated in Chapter 3 and was introduced in [30].

Relevant Publications:
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[30] C. Jahanchahi, S. Kanna, and D.P. Mandic, “Complex dual channel esti-
mation: Cost effective widely linear adaptive filtering,” Signal Processing,
104:3342, Nov 2014.

• Adaptive Tracking of Complex Circularity

The circularity quotient of a complex-valued signal acts as a “fingerprint” in many
areas including communications, speech processing and power engineering. Since
the circularity quotient is a function of the second order statistics of the signal, cur-
rent methods that test the circularity are block-based. A structurally elegant adap-
tive algorithm to track the circularity quotient is derived using the MSE estimator
of a complex-valued signal from its conjugate. This algorithm was proposed in [31]
and was applied to track the circularity of communication signals in [32], see Chap-
ter 4.

Relevant Publications:

[31] S. Kanna, S.C. Douglas, and D.P. Mandic, “A real time tracker of complex
circularity,” in Proc. of the 8th IEEE Sensor Array and Multichannel Signal Pro-
cess. Workshop (SAM), June 2014, pp. 129–132.

[32] S. Kanna, M. Xiang, and D. P. Mandic, “Real-time detection of rectilinear
sources for wireless communication signals,” in Proc. of the 2015 International
Symposium on Wireless Communication Systems (ISWCS), Aug 2015, pp. 541–
545.

2. Distributed Adaptive Filters with application to Frequency Tracking

• Diffusion augmented complex least mean square (D-ACLMS) for frequency estima-
tion

The problem of estimating the frequency in grid is cast into the distributed learning
setting by applying the D-ACLMS algorithm for tracking the frequency in unbal-
anced three-phase power systems. The proposed D-ACLMS is able to improve the
steady-state estimation performance by allowing individual agents to share their es-
timates. This contribution was presented in [33] and shall be discussed in Chapter 5
and Chapter 8.

Relevant Publications:

[33] S. Kanna, S.P. Talebi, and D.P. Mandic, “Diffusion widely linear adaptive
estimation of system frequency in distributed power grids,” in Proc. of the
IEEE Intl. Energy Conf. (ENERGYCON), May 2014, pp. 772–778.

• Distributed augmented complex extended Kalman filter (D-ACEKF)

The augmented complex extended Kalman filter is proposed in a distributed set-
ting for general complex-valued state estimation problems. Current methods for
distributed Kalman filtering assume circular noise and strictly linear models which
are both inadequate for a wide range of applications including frequency tracking in
unbalanced smart grids. The proposed D-ACEKF is applied to track the frequency
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of both synthetically generated and real-world measurements of unbalanced volt-
age signals. This work has been published in [34] and is outlined in Chapter 6 and
Chapter 8.

Relevant Publications:

[34] S. Kanna, D. H. Dini, Y. Xia, S. Y. Hui, and D. P. Mandic, “Distributed widely
linear Kalman filtering for frequency estimation in power networks,” IEEE
Transactions on Signal and Information Processing over Networks, vol. 1, no. 1,
pp. 45–57, Mar 2015.

3. Learning Behaviour of Distributed Adaptive Filters

• Mean square analysis of complex-valued LMS algorithms

The mean square analysis of widely linear (augmented) least mean square algorithm
is typically not addressed due to the difficulty in diagonalising the augmented co-
variance matrix. By exploiting new results in complex-valued linear algebra, elegant
and physically meaningful bounds for the learning rate and steady-state misadjust-
ment are derived as functions of the degree of non-circularity of the input signal.
The analysis was first published in [35] and is included in the background section in
Chapter 2 and in the analysis in Chapter 5.

Relevant Publications:

[35] D.P. Mandic, S. Kanna, and S.C. Douglas, “Mean square analysis of the
CLMS and ACLMS for non-circular signals: The approximate uncorrelat-
ing transform approach,” in Proc. of the IEEE Intl. Conf. on Acoust. Speech
and Signal Process. (ICASSP), Apr 2015, pp. 3531–3535.

• Mean square analysis of distributed complex-valued LMS algorithms

The mean square analysis of the ACLMS is next extended to bound the steady-state
mean square performance of the diffusion complex least mean square (D-CLMS)
and the diffusion augmented CLMS (D-ACLMS) algorithms. The distinguishing
factor of the proposed analysis is the consideration of the second-order terms in the
weight error covariance matrix recursion, without compromising the mathematical
tractability of the problem. Unlike previous results, the proposed analysis is able
to clearly show the relationship between data noncircularity and estimation perfor-
mance of the D-CLMS and D-ACLMS. This result is introduced in [36] and is the
main discussion point of Chapter 5.

Relevant Publications:

[36] S. Kanna and D. P. Mandic, “Steady-state behavior of general complex-valued
diffusion LMS strategies,” IEEE Signal Processing Letters, vol. 23, no. 5, pp.
722–726, May 2016.

4. New Interpretations of Existing Methods

• Signal processing perspective of three-phase transforms
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Although three-phase transforms are routinely used in signal processing applica-
tions in power engineering, they lack a comprehensive signal processing interpreta-
tion, a prerequisite for their use in the future smart grids. This thesis explores the
three most common power system transforms: the symmetrical, Clarke and Park
transforms. We show that the symmetrical transform can be derived as a spatial
discrete Fourier transform (DFT), while the the Clarke transform is found to be the
optimal dimensionality reduction algorithm for balanced three-phase systems. Fi-
nally, the Park transform is shown to be a frequency demodulation scheme in the
complex-domain. These interpretations strengthen the physical meaning of wide-
class of machine learning, signal processing and control algorithms that employ
three-phase transforms. In addition, an adaptive real-time Clark and Park trans-
formed is also proposed for dynamic power systems. This contribution is outlined
in Chapter 7.

Relevant Publications:

[37] S. Kanna and D. P. Mandic, “Modern view of three phase transforms” Sub-
mitted to IEEE Power Electronics Magazine, 2016.

• Relationship between the Kalman filter and the LMS

The Kalman Filter and the LMS are typically treated as separate entities, with the
former as a realization of the optimal Bayesian estimator and the latter as a recursive
solution to the optimal Wiener filtering problem. We reveal a joint perspective on
Kalman filtering and LMS-type algorithms, achieved through analyzing the degrees
of freedom necessary for optimal stochastic gradient descent adaptation in a system
identification framework. This is included in Appendix A.

Relevant Publications:

[38] D. P. Mandic, S. Kanna, and A. G. Constantinides, “On the intrinsic relation-
ship between the least mean square and Kalman filters [Lecture Notes],”
IEEE Signal Processing Magazine, vol. 32, no. 6, pp. 117122, Nov 2015.

• Relationship Between the DFT and the FM Techniques

We have provided a new, compact framework for the unification of the two best
known frequency tracking algorithms in the context of power system frequency es-
timation. The de facto standard recursive discrete Fourier transform (DFT) based
frequency tracker is shown to be a special case of the frequency demodulation tech-
niques commonly applied in communication systems. This unification is an impor-
tant contribution to the field of power system measurements as it provides deeper
insights into the similarities and differences between the two algorithms. More-
over, our treatment of the recursive DFT and demodulation technique reveals new
opportunities in the design of phasor and frequency tracking algorithms in phasor
measurement units (PMU). This result is outlined in Appendix B and is under re-
view.

Relevant Publications:

[39] S. Kanna, A. G. Constantinides, and D. P. Mandic, “The equivalence of FM
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demodulation and recursive DFT for frequency tracking in power systems,”
Submitted to International Journal of Electrical Power & Energy Systems, 2016.

1.5 Thesis Organisation

Figure 1.10 shows an overview of structure of the thesis which is organised as follows:

• Chapter 2: Estimation in the complex-domain

The aim of this chapter is to provide the reader with the necessary background for the
treatment of unbalanced three-phase voltages and widely linear algorithms. This is achieved
through a discussion on noncircularity of complex-valued signals and widely linear esti-
mation theory. Recent developments in complex-valued matrix factorisations are also in-
troduced, together with widely linear autoregressive (WLAR) modelling and augmented
complex adaptive filters. The latter ideas are instrumental in developing frequency esti-
mator for unbalanced power systems in Chapter 8.

The chapters outlining the contribution of the thesis are grouped into three parts.

Part I: Adaptive filters for widely linear estimation

• Chapter 3: Low-complexity complex-valued adaptive filters

This chapter elaborates the “dual channel” estimation methodology which decomposes
the MSE cost function into the MSE in estimating the real and imaginary parts of a sig-
nal so that separate estimators can be used to minimised the two cost functions inde-
pendently. We proceed to show that the dual-channel estimation scheme allows for the
necessary degrees of freedom to model general complex-valued signals, while enabling
computationally efficient adaptive filters.

• Chapter 4: Adaptive tracking of complex circularity

In this chapter, a new insight into the relationship between the complex circularity quo-
tient and MSE estimation is presented. We show that MSE estimator of a complex random
variable from its complex conjugate is the complex circularity quotient. A sequential (on-
line) version of this estimator, suitable for real time tracking of the degree of complex
circularity, is outlined based on the complex least mean square (CLMS) algorithm.

Part II: Distributed adaptive algorithms

• Chapter 5: Diffusion complex least mean square

The diffusion augmented complex least mean square (D-ACLMS) is introduced in this
chapter. Some background information on distributed learning over graphs and the
diffusion adaptation scheme necessary for this chapter and Chapter 6 is included. The
technical contribution of this chapter is the mean square analysis for the D-ACLMS al-
gorithm. The analyses make use of the similarity assumption to bound the steady-state
mean square performance. As the frequency estimation examples are reserved for Part
III, we apply the D-ACLMS to synthetic data to verify the analysis.
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• Chapter 6: Diffusion complex extended Kalman filter

This chapter introduces the distributed complex and augmented complex extended Kalman
filter (D-ACEKF) for general complex-valued state-space models, while also accounting
for the correlated and noncircular natures of the observation noise. We give a unified
account of existing distributed Kalman filtering approaches and show that the proposed
distributed augmented complex extended Kalman filter is suitable for the generality of
complex-valued signals.

Part III: Distributed frequency estimation in the smart grid

• Chapter 7: Modern view of three-phase transformations

In this chapter, the focus goes back to electricity grid where we introduce the mathemat-
ical models for three-phase power systems. The symmetrical, Clark and Park transforms
are derived from first principles and are connected to well-known signal processing con-
cepts. Specifically, the symmetrical transform is shown to be a spatial DFT scheme, the
Clark transform is derived as the optimal dimensionality reduction algorithm for bal-
anced three-phase systems while the Park transform is shown to be a frequency demod-
ulation technique. The outputs of the Clarke and Park transforms for systems operating
under unbalanced conditions and frequency deviations are revealed to be non-ideal. To
this end, we propose an adaptive Clarke and Park transform for general dynamic sys-
tems.

• Chapter 8: Distributed frequency tracking examples

Using insights developed in the previous chapters, a distributed frequency tracking algo-
rithm is introduced. Both synthetic and real world data are used to perform case studies
over a range of power system conditions, to illustrate the theoretical and practical ad-
vantages of the proposed distributed frequency estimation methodology. Practical im-
plementation issues are also included for the benefit of the reader.

• Chapter 9: Conclusions & future work

Concluding remarks drawn from the thesis and ideas for future works are outlined in
this chapter.

Appendices

• Appendix A: Intrinsic relationship between the Kalman filter and LMS

This appendix provides a much needed link between stochastic gradient algorithms like
the LMS and state-space estimators like the Kalman filter. This appendix can be seen
as a link between the estimators proposed in Chapter 5 and Chapter 6. For notational
simplicity and clarity of ideas, only the real-valued counterparts of the Kalman filter and
LMS are used.

• Appendix B: Equivalence of classical frequency tracking techniques

In a similar fashion to Appendix A, we show that two most well-known frequency es-
timators in the electricity grid can in fact be unified into a single framework. Using
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this framework, the recursive discrete Fourier Transform based frequency tracker can
be viewed as a special case of the frequency demodulation (FM) technique.

• Appendix C: Cramer-Rao lower bound and maximum likelihood estimation

The Cramer-Rao lower bound (CRLB) is derived for the frequency estimation problem
for general unbalanced three-phase voltages. Furthermore, we derive the maximum
likelihood frequency estimation scheme and show that it differs from the standard pe-
riodogram maximiser when the voltage signal is unbalanced. This algorithm is referred
to as the augmented periodogram maximiser. Part of this work has been submitted for
publication [40].

• Appendix D: Rapid Frequency Response for Low Inertia Grids

This appendix describes a potential application of the distributed frequency estimation
schemes proposed in this thesis for the provision of a rapid frequency response in low
inertia grids. We show that exploiting spatially diverse frequency estimates enables wind
turbines to provide synthetic inertia without having to increase their power output levels
to mimic the conventional synchronous generators. Simulations using a detailed 2850-
bus model of the Great Britain system in the DIgSILENT PowerFactory software support
the proposed ideas. This work is currently being prepared for publication [41].

Contribution Panel
Throughout the different chapters and appendices, a visual aid in the form of
this panel will serve to highlight the contributions of the thesis.
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Chapter 2

Estimation in the Complex Domain

The shortest path between two truths in
the real domain passes through the
complex domain.

Jacques Hadamard

Chapter Overview

This chapter provides the required background in complex-valued statistical signal processing
for the ideas presented in this thesis. This includes a brief introduction to noncircular random
variables, widely linear estimation, including widely linear autoregressive (AR) models and
adaptive filters. We also introduce the the notion of mean convergence and mean square sta-
bility in the analysis of adaptive algorithms. The analysis technique introduced in this chapter
shall be instrumental to understanding the convergence proofs in Chapters 3 to 6.

2.1 Benefits of a Complex-Valued Representation

Complex-valued signals are the backbone of many engineering disciplines including commu-
nications, array processing, and power engineering as they are convenient representations of
sinusoidal waveforms and bivariate real-valued signals [42, 43]. Although it may be natural to
process complex-valued data by representing the real and imaginary parts as a bivariate signal
in the real domain, any intuition and physical meaning inherent in processing in the complex
domain would be largely obscured.

Specifically, working in the complex-domain provides conceptual and modelling advan-
tages to describe certain phenomena (e.g. time-delay, phase shifts) which in turn benefits sig-
nal processing engineers at the algorithm design stage. Consider this example of a frequency
estimation task, whereby the goal is to estimate the frequency, !, from signals x

k

= cos(!k)

and y
k

= sin(!k), which are nonlinear functions of ! with k denoting the discrete time index.
Estimating the frequency of the signals x

k

and y
k

is made much simpler by defining a complex
variable, z

k

def
= x

k

+ jy
k

= cos(!k) + j sin(!k) = ej!k. Notice that, the complex-representation
of the signal z

k

can be expressed as

z
k

= ej!k

= ej!(k�1+1)

= ej!ej!(k�1)

= az
k�1

, (2.1)

where estimating the linear coefficient, a = ej! , is sufficient to estimate the frequency, !.
This shows that frequency estimation, which originally presents itself as a nonlinear estima-
tion problem, can be transformed into a linear problem, by virtue of working in the complex-
domain.
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2. Estimation in the Complex Domain

Another example worth mentioning is the modelling of the “XOR” function in neural net-
works. When working in the real-domain, a multilayer perceptron is required to implement a
classifier which takes two binary inputs and outputs a binary variable according the XOR rule.
However, when the problem is represented in the complex-domain, a single linear neuron is
able to accomplish the task of performing the XOR function. We refer the reader to [44], for a
detailed explanation of this problem.

2.2 Circularity of Random Variables

Statistical tools for complex random variables are traditionally treated as generic extensions of
their real-valued counterparts [26, 43]. However, this approach is valid only for second-order
circular random variables. To illustrate this point, consider a zero-mean complex-valued scalar
random variable (r.v.), x 2 C, expressed in its Cartesian form as

x = x
r

+ jx
i

,

where x
r

= Re {x} 2 R and x
i

= Im {x} 2 R. The covariance of x is then given by

r
def
= E

�

xxH
 

= E
�|x|2 (2.2)

= E
�

x2

r

 

+ E
�

x2

i

 

= �2

r

+ �2

i

,

and only reflects the total joint power within the real and imaginary components. To ensure a
sufficient number of degrees of freedom in the processing of general complex-valued data, the
pseudocovariance, p, defined as,

p
def
= E

�

xxT
 

= E
�

x2

 

(2.3)

= E
�

x2

r

 � E
�

x2

i

 

+ 2jE {x
r

x
i

}
= �2

r

� �2

i

+ 2j�
ri

,

needs to also be considered. Notice that the pseudocovariance now accounts for both the power
imbalance, �2

r

� �2

i

and cross-correlation between the real and imaginary parts, �
ri

. Therefore,
in order to cater for the generality of complex-valued signals, both the covariance, r, and pseu-
docovariance, p, have to be taken into account. A special case of signals that have vanishing
pseudocovariance (i.e. p = 0) are referred to as second-order circular or proper signals.

Definition 2.1 (Propriety). A complex random variable, x, is proper if its pseudocovariance, p = 0.
Conversely, an improper complex random variable has a non-zero pseudocovariance, p 6= 0 [43].

It is also often useful to quantify the level of noncircularity of a complex random variable.
This is accomplished using the circularity quotient, defined as the ratio of the pseudocovariance,
p, to covariance, r, as [45]

⇢
def
=

p

r
, (2.4)
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2. Estimation in the Complex Domain

while the circularity coefficient is given by the magnitude of circularity quotient,

|⇢| def
=

|p|
r
. (2.5)

From (2.2) and (2.3), the circularity coefficient is bounded by 0  |⇢|  1 [45].

Definition 2.2 (Circularity). If x is a circular random variable, then its probability density function
(pdf),is rotationally invariant, i.e.,

pdf(xej�) = pdf(x),

for any arbitrary rotation with angle � [43].

Generally speaking, proper random variables are not necessarily circular. For example,
consider a random variable

x̃ = x̃
r

+ jx̃
i

,

where both x̃
i

and x̃
r

are drawn independently from an identical uniform distribution, U( 1
2

,� 1

2

).
As illustrated in Figure 2.1, although x̃ is proper with �2

r

= �2

i

and �
ri

= 0, it is clearly noncir-
cular since the pdf(x̃) is not rotationally invariant.

Real Part
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Figure 2.1: Circularity diagrams of zero-mean uniform random variables: (i) Left: x̃ and (ii)
Right: ej

⇡

3 x̃. Notice the random variable x̃ is proper, i.e. �2

r

= �2

i

and �
ri

= 0, but is is not
rotationally invariant pdf(x̃) 6= pdf(x̃ej�).

For Gaussian random variables, properness implies circularity and therefore for conve-
nience, the terms “circular” and “proper” and shall be used interchangeably. Figure 2.2 shows
a Gaussian random variable with different circularity profiles. Observe that noncircular vari-
ables exhibit either power imbalances E

�

x2

r

 

7 E
�

x2

i

 

, as in the top right and bottom left
panels in Figure 2.2 or have correlated components E {x

r

x
i

} 6= 0, as in the bottom right panel.
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Figure 2.2: Circularity diagrams of zero-mean Gaussian random variables with various non-
circularity profiles. Clockwise from top left: (i) proper variable, (ii) improper variable with
�2

r

> �2

i

, (iii) improper variable with �2

i

> �2

r

and (iv) improper variable with correlated real
and imaginary components, �

ri

6= 0.

2.2.1 Extension to Vector Variables

The definitions for the covariance and pseudocovariance from (2.2) and (2.3) can be extended
for vector-valued variables, x 2 CM⇥1, where x = x

r

+ jx
i

with x

r

= Re {x} and x

i

=

Im {x}. The second order statistics is described by the covariance matrix, R 2 CM⇥M , and
pseudocovariance matrix, P 2 CM⇥M , which are defined as

R
def
= E

�

xx

H
 

, P
def
= E

�

xx

T
 

. (2.6)

For compactness, we shall introduce an augmented data vector, ¯

x 2 C2M⇥1, formed by
concatenating x and its conjugate, x⇤, as1

¯

x

def
=

"

x

x

⇤

#

. (2.7)

The corresponding augmented covariance matrix, ¯R 2 C2M⇥2M , is defined as

¯R
def
= E

�

¯

x

¯

x

H
 

= E
("

x

x

⇤

#

h

x

H
x

T
i

)

=

"

R P

P⇤ R⇤

#

, (2.8)

1The top bar, ¯

(·), is used to denote augmented vectors and matrices.
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and comprises both the covariance and pseudocovariances matrices, R and P, and thus cap-
tures the full second-order statistics of the signal.

2.3 Widely Linear Estimation

2.3.1 Widely Linear MMSE

Minimum mean square error (MMSE) estimation aims to find the optimal estimate of a desired
signal, y 2 C, given a regressor vector, x 2 CM⇥1, in the form [46],

ŷ = E {y|x} . (2.9)

In standard MMSE theory for complex-valued jointly-Gaussian random variables, the solution
to (2.9) is given by the strictly linear model [46],

ŷ = h

H
x, (2.10)

where h 2 CM⇥1 is the optimal weight vector and the estimation error is defined as " def
= y � ŷ.

The optimal value for the weight vector h is found by minimising the mean square error (MSE)
cost function given by

JMSE(h)
def
= E

�|"|2 = E
�|y � h

H
x|2 . (2.11)

Upon expanding (2.11), using the strictly linear model in (2.10), we have

JMSE(h) = E
�|y � h

H
x|2 = �2

y

� h

H
r � r

H
h+ h

HRh, (2.12)

where �2

y

= E
�|y|2 is the signal power, R = E

�

xx

H
 

, is the covariance matrix of the data

vector x, defined also in (2.6), while r

def
= E {xy⇤} is the cross-covariance vector between the

regressor, x, and desired signal, y [43]. The minimum of (2.12) with respect to (w.r.t.) h is found
via

@JMSE(h)

@h⇤ = �r +Rh = 0, (2.13)

where the optimal weight vector is given by the strictly linear Wiener solution

h = R�1

r. (2.14)

The strictly linear Wiener solution in (2.14) can be shown to be restrictive for a general class of
complex-valued signals [26]. To understand this limitation, consider expressing the MMSE in
(2.9) using the real and imaginary parts of the signal y = y

r

+ jy
i

and x = x

r

+ jx
i

as

ŷ = E {y
r

|x
r

,x
i

}+ jE {y
i

|x
r

,x
i

} . (2.15)
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Since the real and imaginary parts of x can be derived from the data x and its complex conju-
gate x

⇤, we have

x

r

=

1

2

(x+ x

⇤
), x

i

=

1

2j
(x� x

⇤
),

thus allowing for the MMSE estimator in (2.15) to be expressed as

ŷ = E {y
r

|x,x⇤}+ jE {y
i

|x,x⇤}
= E {y|x,x⇤}
= h

H
x+ g

H
x

⇤. (2.16a)

Notice that the widely linear model in (2.16a) is linear in both x and x

⇤, giving more degrees
of freedom necessary to model the generality of complex-valued signals. The optimal values
for the widely linear coefficients h and g are found by first expressing (2.16a) in an augmented
form as

ŷ = w

H
¯

x, (2.16b)

with the augmented vectors ¯

x =

⇥

x

T
x

H
⇤T 2 C2M⇥1 and w =

⇥

h

T
g

T
⇤T 2 C2M⇥1. Following

a similar procedure as in (2.11) – (2.14), the MSE now becomes JMSE(w) = E
�|y �w

H
¯

x| and
the widely linear Wiener solution, w, is given by

w =

¯R�1

¯

r, (2.16c)

where ¯R is the augmented covariance matrix defined in (2.8) and ¯

r is the augmented cross-
covariance vector is given by

¯

r

def
= E {¯xy⇤} = E

"

xy⇤

x

⇤y⇤

#

=

"

r

p

⇤

#

, (2.17)

with r being identical to the cross-covariance vector in (2.14) while p is referred to as the
pseudocross-covariance vector.

Remark 2.1. Owing to the use of augmented vectors ¯x and w, the term widely linear and augmented
shall be used interchangeably.

The individual values for the vectors h and g defined in (2.16a) can be derived by expressing
the augmented solution in (2.16c) in terms of its constituent covariance and pseudocovariance
matrices and vectors as

"

R P

P⇤ R

#"

h

g

#

=

"

r

p

⇤

#

. (2.18)
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Solving the simultaneous equation in (2.18) yields the widely linear weight vectors

h =

⇥

R�PR⇤�1P⇤⇤�1

⇥

r �PR⇤�1

p

⇤⇤

g =

⇥

R⇤ �P⇤R�1P
⇤�1

⇥

p

⇤ �P⇤R⇤�1

r

⇤

.
(2.19)

Observe that the standard covariance matrix, R = E
�

xx

H
 

, and cross-covariance vector,
r = E {xy⇤}, in the strictly linear solution in (2.14), do not have the sufficient degrees of free-
dom to explain the complete second order information in the signals x and y. To capture
the second order statistics we also need the pseudocovariance matrix, P = E

�

xx

T
 

, and the
pseudocross-covariance vector, p = E {xy}. The input and desired signal pairs which exhibit
a vanishing pseudocovariance, P = 0 and pseudocross-covariance, p = 0, are referred to as
jointly-circular [26, 47].

2.3.2 Motivating Widely Linear Estimation

An alternative method to motivate the widely linear model for complex signals is by first con-
sidering a standard strictly linear relationship between variables y 2 C and x 2 C which is
given by

y = hx, (2.20)

where h 2 C, is a linear coefficient. Expressing the strictly linear relationship in (2.20) in terms
of its real and imaginary parts gives

y
r

+ jy
i

= (h
r

+ jh
i
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). (2.21)

Next, expressing the complex-valued relationship in (2.21) as a bivariate vector in R2 yields
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Remark 2.2. Notice from (2.22) that the strictly linear relationship in (2.20) restricts the relationship
between real parts of the input and output to be identical to the relationship between the imaginary
parts of the input and output through the coefficient value h

r

. A similar argument applies to the cross-
relationship between the real and imaginary parts of the input and output through h

i

.

If no such restrictions were applied on the estimation procedure, whereby the estimation
rule takes the form
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#

, (2.23)

with a, b, c, d 2 R being different coefficients, then the strictly linear estimation procedure in
(2.21) is not the appropriate “linear” model for the signal. To circumvent the restrictive nature
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of the strictly linear estimation, now consider the widely linear estimation given by

y = hx+ gx⇤
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which can be again represented in R2 as
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Now, observe that the additional complex coefficient g, gives the necessary degrees of freedom
to estimate the signal y. This is equivalent of estimating the complex-valued signal y from data
x by treating the complex-valued signal as a bivariate real-valued vector.

Why widely linear?

An inquisitive reader at this point might be tempted to ask why widely linear estimation is
needed when working directly in the real-domain can solve this problem of classical strictly lin-
ear complex-valued estimation. The answer here is closely related to the motivation of working
in the complex domain in the first place.

Like the complex-valued representation, widely linear modelling provides a useful concep-
tual framework to represent several real-world phenonema, especially in the context of power
engineering, where quantities like currents and voltages are represented and analysed as complex-
valued phasors. For example, as it would be revealed in Chapter 7, the widely linear autore-
gressive model (WLAR) for a complex-valued voltage, s

k

, which is given by

s
k

= hs
k�1

+ gs⇤
k�1

, (2.26)

is a natural way to represent unbalanced Clarke voltages as function of positive and negative
sequence phasors. As opposed to working in the real-domain, the widely linear model offers
greater “interpetability” whereby the conjugate part of the signal, s⇤

k�1

, represents a voltage
phasor rotating at the opposite direction of the signal s

k�1

. Moreover, the widely linear coef-
ficient, g, corresponds to the voltage imbalance factor (VUF), which is standard metric used in
power-systems to quantify the level of system imbalance across the three-phase voltages [19].

In addition, based on the WLAR model in (2.26), an adaptive “balancing” three-phase trans-
form which is capable of yielding a voltage sequence that is non-oscillatory even when the
underlying three-phase voltages are imbalanced will be developed in Chapter 7. A balancing
transform had not been proposed in the past, but by virtue of the enhanced modelling capabil-
ity of the widely linear model in (2.26), a simple closed form solution was made possible. In
a nutshell, both complex-valued and widely linear representations are adopted in this thesis
as they allow for a seamless integration between power-system analysis and signal processing
algorithms.
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2.4 Widely Linear AR modelling

Autoregressive (AR) modelling is a standard tool in time-series analysis, spectral estimation
and machine learning applications involving predictions [48]. The intimate relation between
AR modelling and sinusoidal frequency estimation motivates this brief background and shall
be further explored in Chapter 7. The standard strictly linear AR(M ) model of a signal, x

k

, in
the complex-domain is given by

x
k

=

M

X

i=1

h⇤
i

x
k�i

+ ⌘
k

, (2.27)

where ⌘
k

is a (possibly noncircular) white noise sequence with the variance and pseudocovari-
ance, given by

�2

⌘

= E
�|⌘

k

|2 , p2
⌘

= E
�

⌘2
k

 

. (2.28)

The coefficients h = [h
1

, . . . , h
M

]

T can be estimated by first expressing the conjugate of (2.27)
as
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, (2.29)

which in vector notation takes the form
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, (2.30)

where the input data vector is x
k

= [x
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, . . . , x
k�M

]

T and coefficient vector is h = [h
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, . . . h
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]

T.
Pre-multiplying (2.30) with x
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and taking the statistical expectation, E {·}, gives
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The expression in (2.31) is reminiscent of the MSE solution (2.14), where R = E
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, which yields the cross-correlation vectors in (2.31) in the form,
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Equation (2.31) can therefore be expressed as
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and is referred to as the Yule-Walker equations [48]. Solving the Yule-Walker equations in
(2.32), will yield the coefficient vector, h.

2.4.1 Widely Linear Autoregressive (WLAR) Modelling

As seen in Section 2.3, the standard strictly linear model is restrictive for general complex-
valued signals, and calls for a widely linear variant of the AR model in (2.27). The widely
linear AR(M ) model which is autoregressive on both x

k

and x⇤
k

can therefore be expressed as
[49],
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, (2.33)

where the statistics of the noise term ⌘
k

was defined in (2.28). The WLAR(M ) model in (2.33)
can also be expressed in vector form as
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where the augmented input data vector ¯
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,

h is identical to the strictly linear case and g = [g
1

, . . . , g
M

]

T is the WLAR coefficients that
correspond to the conjugate data terms.

The augmented Yule-Walker equations can be found by pre-multiplying both sides of (2.34)
with the augmented data vector, ¯x
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which uses both the covariance, R, and pseudocovariance, P, of the input data x

k

. Solving the
augmented Yule-Walker equation in (2.35) will then yield the AR coefficient vectors h and g.

2.4.2 Semi-Widely Linear Yule-Walker Solution

Consider the special case of the WLAR(M ) model in (2.33) where g = 0. This corresponds
to the the strictly linear AR model in (2.27). However, the widely linear Yule-Walker solution
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given in (2.35) still holds, as the input data is improper, and the Yule-Walker equations simplify
to
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The expression in (2.36) states that even if the AR model is strictly linear, due to the noncircu-
larity of the driving noise, ⌘

k

, an augmented solution which uses both the covariance, R, and
pseudocovariance, P, leads to more degrees of freedom in estimating h.

2.5 Stochastic Gradient Adpative Filters

Both the widely linear Wiener solution in (2.16c) and Yule-Walker equations in (2.35) require
the processing of the data statistics in the form of the covariance matrices and cross-covariance
vectors. To develop estimators to track signals with time-varying statistics, we require se-
quential estimators which are capable of estimating the weight vectors h and g by recursively
minimising the MSE cost function in (2.11).

For this task, we shall explore the ideas and results from the view of recursive adaptive
algorithms which are closely related to stochastic approximations and online learning algo-
rithms. Although the areas of adaptive algorithms and stochastic approximations are treated
differently by different communities, they essentially describe the same concepts [50]. This
thesis shall therefore adopt the terminology and treatment of this problem from an adaptive
algorithms point of view.

Complex Least Mean Square

Consider an unknown system that is to be estimated and for which the measurements y
k

2
C, and regressor vector, x

k

2 CM⇥1, are related via the strictly linear relationship with true
coefficient vector h 2 CM⇥1 given by

y
k
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H
x

k

+ ⌘
k

, (2.37)

where ⌘
k

is zero-mean white circular noise with variance �2

⌘

= E
�|⌘

k

|2 and is independent to
the regressor x

k

.
The well-established complex least mean square (CLMS) algorithm estimates the signal y

k

as ŷ
k

=

b

h

H
k

x

k

, using an estimated weight vector, bh
k

, while the estimation error is defined as
"
k

= y
k

� ŷ
k

[50, 51]. This is accomplished by minimising the instantaneous squared error cost
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function (stochastic approximation of the MSE) given by [50, 51]
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= |"
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|2,

via gradient descent. The stochastic gradient technique yields the CLMS in the form [52]
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where the real-valued step-size, µ
k

> 0, controls the speed of convergence along the error
performance surface.

In the field of stochastic approximation, the step-size, µ
k

, is chosen to be a sequence which
decays to zero and satisfies the additional conditions of,

P1
k=0

µ
k

= 1 and
P1

k=0

µ2

k

< 1
[50]. However, for applications that require continuous adaptation (like real-time frequency
tracking), choosing a diminishing step-size is problematic since the algorithm might not be
able to continuously track any changes in the signal statistics. Therefore, for the applications
discussed in this thesis, a constant step-size, µ

k

= µ, will be used to ensure the algorithm does
not stop adapting the parameters under non-stationary conditions [97].

The gradient of the instantaneous squared error cost function, ˆJ
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), is derived using
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Since the estimation error is "
k

= y
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� bhH
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, the partial derivatives are given by [42]
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Substituting the gradients obtained in (2.40) and (2.39) into the CLMS step in (2.38) yields the
CLMS weight update equation in the form [52]

b

h
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k

+ µx
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k

. (2.41)

The term “stochastic gradient” stems from the fact that the gradient of the instantaneous
cost function, ˆJ

k

(

b

h

k

), is a “stochastic approximation” of the true gradient @JMSE(h)/@h
⇤. There-

fore, unlike the true gradient, the path taken by the stochastic gradient does not always point to
the true minimum of the error surface of JMSE(h) but takes a noisier route. Since the gradient
update in (2.40) is “stochastic”, the weight vector estimates, bh

k

are also treated as stochastic
variables.
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Augmented Complex Least Mean Square

In a similar fashion, the augmented complex least mean square (ACLMS) can be derived to
estimate widely linear systems given by
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where once again the true augmented weight vector is w = [h

T, gT
]

T 2 C2M⇥1 and the input
vector ¯x
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while the instantaneous
squared error cost function is ˆJ
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via gradient descent yields the ACLMS
in the form
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or equivalently in the individual weight update forms given by [53]
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2.6 Performance Analysis of Adaptive Algorithms

The stochastic nature of the the CLMS and ACLMS weight updates requires their performance
to be analysed in a statistical setting. Specifically, we study the statistical behaviour of the error
of the weight estimates. As an example, let us consider the ACLMS weight error defined as

˜

w

k

def
= w � b

w

k

, (2.45)

where w refers to the true system weights from (2.42) and b

w

k

is the ACLMS estimate from
(2.43). Since the CLMS can be interpreted as a special case of the ACLMS, (i.e. with fewer
parameters to estimate), we shall discuss the statistical performance of the ACLMS without
loss of generality.

Definition 2.3 (Mean convergence). An adaptive algorithm is said to converge in the mean if its
weight estimates, bw

k

, approach the true weight vector, w, asymptotically, that is,

lim

k!1
E {w � b

w
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} = lim

k!1
E { ˜w

k

} = 0. (2.46)

Definition 2.4 (�-Mean square stabilty). An adaptive algorithm is said to be �-mean square stable
if there exists real scalars, �, � > 0 and 0 < # < 1 such that the squared norm of its weight estimation
error, E

�k ˜w
k

k2 , satisfies

E
�k ˜w
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k2  #kE�k ˜w
0

k2 � + �, (2.47)
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for every k � 0, where E
�k ˜w

0

k2 refers to the squared norm of the initial estimation error, while its
steady-state value is bounded by

lim sup

k!1
E
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k

k2  �. (2.48)

Henceforth, �-mean square stability shall be referred to as “mean square stability”.

We shall typically begin with analysing the weight error covariance matrix, K
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]. Technically, the weight error covariance matrix is defined as
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refers to the second moment. However, for convenience, we
shall use both the terms interchangeably.

Steady-state mean square performance. In addition to the mean and mean square perfor-
mance defined in Definitions 2.3 and 2.4, the steady-state errors of adaptive algorithms are
employed to quantify the fluctuations of the filter estimates around their true (optimal) values.
The first metric is the mean square deviation (MSD) defined as
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Next, the steady-state performance can also be evaluated with respect to the mean square error
cost function, whereby
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Upon substituting the true system output, y
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in (2.42) and the ACLMS output
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, into the steady-state MSE cost function in (2.50), the MSE can be de-
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From the decomposition in (2.51), and the definition of the MSD in (2.49) the standard metrics
used to assess the steady-state performance can be summarised as
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where k ˜w
k

k2
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k
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k

and k ˜w
k

k2I =

˜
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H
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. Therefore, the EMSE and MSD can be inter-
preted as the Euclidean norm of the weight error vector weighted respectively by the data
covariance matrix ¯R and the identity matrix, I.
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Mean convergence of the ACLMS

In this section, we shall examine the mean behaviour of the ACLMS algorithm by subtracting
the true weights, w, from both sides of equation (2.43), to give

˜

w

k+1

=

˜

w

k

� µ¯x
k

"⇤
k

. (2.54)

where ˜

w

k

= w � b

w

k

is the weight error vector. Substituting the true system weights which
produced the desired signal y

k

in (2.42) into the ACLMS output error, "
k

= y
k

� b

w

H
k

¯

x

k

, gives

"
k

= w

H
k

¯

x

k

+ ⌘
k

� b

w

H
k

x

k

=

˜

w

H
k

¯

x

k

+ ⌘
k

. (2.55)

Substituting the output error from (2.55) into (2.54) yields

˜

w

k+1

=

˜

w

k

� µ¯x
k

¯

x

H
k

˜

w

k

� µ¯x⌘⇤
k

. (2.56)

Theorem 2.1 (ACLMS Mean Convergence). Consider the ACLMS algorithm in (2.43) for the as-
sociated true widely linear system in (2.42). Suppose that the following assumptions hold:

A.1) The augmented input vector, ¯

x

k

, has zero-mean and is independent and identically distributed
(IID) across time k, with augmented covariance and pseudocovariance matrices respectively given
by ¯R = E

�

¯

x

k

¯

x

H
k

 

, ¯P = E
�

¯

x

k

¯

x

T
k

 

.

A.2) The measurement noise sequence, {⌘
k

}
k2N, is a zero-mean, IID white noise process which is sta-

tistically independent to input vector sequence, {¯x
k

}
k2N, and its variance is given by, �2

⌘

=

E
�|⌘

k

|2 8k.

Then, the ACLMS asymptotically converges in the mean, that is

lim

k!1
E { ˜w

k

} = 0, (2.57a)

if the step-size, µ, satisfies the following condition

0 < µ < 2

�

%
�

¯R
�

, (2.57b)

where %(·) refers to the spectral radius and ¯R denotes the augmented covariance matrix,

¯R = E
�

¯

x

¯

x

H
 

= E
("

x

x

⇤

#

h

x

H
x

T
i

)

=

"

R P

P⇤ R⇤

#

.

Proof.
Consider the ACLMS weight error vector recursion in (2.56). Upon taking the statistical expec-
tation E {·} and noticing that under Assumption A.1 in Theorem 2.1, the input vector, ¯x

k

, at
time instant k is independent to bw

k

[54], we arrive at

E
�

˜

w

k+1

 

= E
�

˜

w

k

 � µE
�

¯

x

k

¯

x

H
k

 

E
�

˜

w

k

 � µE {¯x
k

⌘⇤
k

} , (2.58)
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where E
�

¯

x

k

¯

x

H
k

 

=

¯R, and under Assumption A.2 in Theorem 2.1, the measurement noise ⌘
k

is
zero-mean and independent of the data ¯

x

k

, thereby resulting in E {¯x
k

⌘⇤
k

} = E {¯x
k

}E {⌘⇤
k

} = 0.
This yields the mean weight error recursion for the ACLMS in the form

E
�

˜

w

k+1

 

=

⇥

I� µ ¯R
⇤

E
�

˜

w

k

 

. (2.59)

The recursion in (2.59) involves mutual coupling of the individual elements of E
�

˜

w

k

 

, due to
the non-diagonal augmented covariance matrix, ¯R.

To diagonalise (2.59), we use the fact that the augmented covariance matrix, ¯R, is Hermitian
positive-semidefinite and admits an eigen-decomposition in the form

¯R = VD
r

VH, (2.60)

where V is a unitary matrix with VHV = I and D
r

= diag{�
max

, . . . ,�
min

} is a diagonal matrix
with real-valued eigenvalues, �

i

. Left-multiplying both sides of (2.59) with the eigenvector
matrix, VH, and substituting the eigen-decomposition of ¯R from (2.60) into (2.59) gives the
“rotated” mean error recursion as

VHE
�

˜

w

k+1

 

=

⇥

VH � µVHVD
r

VH
⇤

E
�

˜

w

k

 

. (2.61)

Upon defining ✓
k

def
= QHE

�

˜

w

k

 

, the rotated recursion in (2.61) can be expressed as

✓

k+1

= [I� µD
r

]

| {z }

B

✓

k

. (2.62)

For the ACLMS recursion in (2.62) to converge in the mean, the diagonal matrix, B, needs to
perform a contractive mapping. This is satisfied only if all the diagonal entries of B, given by
(1� µ�

i

), satisfy the condition,

|1� µ�
i

| < 1, i = 1, . . . ,M. (2.63)

The most conservative bound, which guarantees convergence of (2.62), is for the eigenvalues
in (2.63) to be �

i

= �
max

= %( ¯R). This leads to the mean convergence condition of the ACLMS
in the form

|1� µ�
max

| < 1 (2.64)

=) 0 < µ <
2

%( ¯R)

, (2.65)

thereby completing the proof.

2.6.1 Mean Square Analysis of the ACLMS

To aid our discussion on the mean square convergence of the ACLMS as defined in Definition
2.4, we shall first proceed to prove the following lemma.
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Lemma 2.2. For Hermitian positive semi-definite matrices B and ¯K
k

= E
�

˜

w

k

˜

w

H
k

 

, the following
condition holds for all k � 0:

Tr[B ¯K
k

]  %(B)Tr[

¯K
k

], (2.66)

where %(B) denotes the spectral radius of the matrix B.

Proof.
Using the definition of ¯K

k

= E
�

˜

w

k

˜

w

H
k

 

, and the linearity of both the trace and expectation
operators, we have

Tr[B ¯K
k

] = Tr[BE
�

˜

w

k

˜

w

H
k

 

] = E
�

Tr[B ˜

w

k

˜

w

H
k

]

 

.

Next, using the property that for any two matrices, M
1

and M
2

, Tr[M
1

M
2

] = Tr[M
2

M
1

] and
the eigenvalue decomposition of B =

˜V⇤B
˜VH, gives

Tr[B ¯K] = E
n

˜

w

H
k

˜V⇤B
˜VH

˜

w

k

o

 E
n

%(B)k ˜VH
˜

w

k

k2
o

= %(B)Tr[

¯K
k

],

since k ˜VH
˜

w

k

k2 = k ˜w
k

k2 as ˜V is a unitary matrix.

Contribution: Statistical analysis framework
Although this chapter is presented as a background to the thesis, the analysis
framework for the mean square stability of the ACLMS in Theorem 2.3 is novel
as it does not require the diagonalisation of the data covariance matrices. Cur-
rent analyses often impose the requirement of diagonalising the data covariance
matrices, which in many cases can prove to be mathematically intractable. To
this end, Theorem 2.3 bounds the mean square error of the ACLMS in a simple
methodology using the spectral radii of the covariance matrices of the data.

Theorem 2.3 (ACLMS Mean Square Stability). Consider the ACLMS algorithm in (2.43) for the
associated true widely linear system in (2.42). Suppose that in addition to the assumptions in Theorem
2.3, the following assumptions hold:

A.3) The augmented input vector, ¯x
k

, is drawn from a multivariate Gaussian distribution.

Then, the ACLMS is mean square stable, that is, there exits a real-valued scalar 0 < # < 1 such that,
the squared norm of the ACLMS weight error vector, E

�k ˜w
k

k2 , is bounded by

E
�k ˜w

k

k2  #kE�k ˜w
0

k2 +
✓

1� #k
1� #

◆

µ2�2

⌘

Tr[

¯R], (2.67)

for all k � 0 and its steady-state value is bounded by

lim sup

k!1
E
�k ˜w

k

k2  µ2�2

⌘

Tr[

¯R]

1� # . (2.68)
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Proof.
We start from the augmented weight error vector recursion from (2.56) which is given by

˜

w

k+1

=

˜

w

k

� µ¯x
k

¯

x

H
k

˜

w

k

� µ¯x
k

⌘⇤
k

, (2.69)

where ˜

w

k

=

h

h

T � bhT
k

, gT � bgT
k

iT

, while the augmented weight error covariance matrix is

defied as ¯K
k

def
= E

�

˜

w

k

˜

w

H
k

 

. By multiplying both sides of (2.69) by ˜

w

H
k+1

, we have
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H
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=
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¯
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H
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¯
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k

¯

x

H
k

|⌘
k

|2 + cross-terms. (2.70)

Upon taking the statistical expectation E {·} of (2.70) and considering Assumptions A.1 and
A.2 in Theorem 2.1, and the Gaussian data assumption in Theorem 2.3, we arrive at

¯K
k+1

=

¯K
k

� µ ¯K
k

¯R� µ ¯R ¯K
k

+ µ2�2

⌘

¯R (2.71)

+ µ2

(

¯R ¯K
k

¯R+

¯P ¯K
T

k

¯P⇤
+

¯RTr[

¯K
k

¯R]),

where the Gaussian moment factorizing theorem was employed to decompose the fourth order
moments in (2.70) as

E
�

¯

x

k

¯

x

H
k

˜

w

k

˜

w

H
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¯

x
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¯
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H
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=

¯R ¯K
k

¯R+

¯P ¯K
T

k

¯P⇤
+

¯RTr[

¯K
k

¯R],

and the augmented covariance matrix is ¯R = E
�

¯

x

k

¯

x

H
k

 

while the augmented pseudocovari-
ance matrix ¯P is

¯P = E
�

¯

x

k

¯

x

T
k

 

= E
("

x

k

x

⇤
k

#

h

x

T
k

x

H
k

i

)

=
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P R

R⇤ P⇤

#

. (2.72)

Applying the trace operator to the (2.71) gives

Tr[

¯K
k+1

] = Tr[

¯K
k

� µ ¯K
k

¯R� µ ¯R ¯K
k

+ µ2�2

⌘

¯R]

+Tr

h

µ2

(

¯R ¯K
k

¯R+

¯P ¯K
T

k

¯P⇤
+

¯RTr[

¯K
k

¯R])

i . (2.73)

Upon using the identity Tr[M
1

+M
2

] = Tr[M
1

] +Tr[M
2

], for any square matrices M
1

and M
2

,
we have

Tr[

¯K
k+1

] = Tr[(I� 2µ ¯R+ µ2

¯R2

+ µ2

¯P¯PH
+ µ2

Tr[

¯R]

¯R)

¯K
k

] + µ2�2

⌘

Tr[

¯R]

= Tr[B ¯K
k

] + µ2�2

⌘

Tr[

¯R], (2.74)

where B =

�

(I�µ ¯R)

2

+µ2

(

¯P¯PH
+Tr[

¯R]

¯R)

�

is a Hermitian positive semi-definite matrix. Using
Lemma 2.2, the recursion in (2.74) can be bounded as

Tr[

¯K
k+1

]  %(B)Tr[

¯K
k

] + µ2�2

⌘

Tr[

¯R], (2.75)

where %(B) denotes the spectral radius of the matrix B. Since Tr[

¯K
k+1

] = E
�k ˜w

k+1

k2 , the
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bound in (2.75) can be expressed as

E
�k ˜w

k+1

k2  #E�k ˜w
k

k2 + µ2�2

⌘

Tr[

¯R],

or equivalently as

E
�k ˜w

k

k2  #E�k ˜w
k�1

k2 + µ2�2

⌘

Tr[

¯R], (2.76)

where # = %(B). For the recursion to converge the following condition needs to be satisfied:

# = %(B) < 1. (2.77)

Using the Weyl inequality for the maximum eigenvalue for sums of Hermitian matrices, %(B)

is further bounded by [55]

%(B)  %((I� µ ¯R)

2

) + %(µ2

¯P¯PH
) + %(µ2

Tr[

¯R]

¯R). (2.78)

Therefore, for a conservative bound on the step-size µ, the following condition can be satisfied

%((I� µ ¯R)

2

) + µ2%( ¯P¯PH
) + µ2

Tr[

¯R]%( ¯R) < 1, (2.79)

whereby upon defining p2
max

def
= %( ¯P¯PH

), and noticing that �
max

= %( ¯R) yields

1� 2µ�
min

+ µ2�2
max

+ µ2p2
max

+ µ2

Tr[

¯R]�
max

< 1

2�
min

� µ(�2
max

+ p2
max

+ Tr[

¯R]�
max

) > 0. (2.80)

where �
min

refers to the minimum eigenvalue of ¯R. The step-size, µ, which guarantees # < 1

and the mean square convergence of E
�k ˜w

k

k2 is finally given by

0 < µ <
2�

min

�2
max

+ p2
max

+ Tr[

¯R]�
max

. (2.81)

Applying the inequality in (2.76) successively for each k and using the formula for the sum
of a geometric sequence, 1 + # + · · · + #k�1

= (1 � #k)/(1 � #), we obtain the expression in
Theorem 2.3 as

E
�k ˜w

k

k2  #kE�k ˜w
0

k2 +
✓

1� #k
1� #

◆

µ2�2

⌘

Tr[

¯R]. (2.82)

For the steady-state condition in (2.68), it is sufficient to observe the condition of the bound in
(2.82) as k !1.

2.7 Chapter Summary

We have reviewed several important concepts in complex-valued statistical signal processing
which are relevant to this thesis. In particular, it has been shown that standard complex-valued
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statistical signal processing techniques which are straightforward extensions from the real do-
main do not take into account the full second order statistics of the signal, namely the covari-
ance and pseudocovariance matrices. This has also been observed in the estimation of complex
variables where widely linear estimation and has been shown to be suitable for the generality
of complex-valued signals, while standard strictly linear models are only second-order optimal
for jointly circular signals. Sequential estimators for the strictly linear and widely linear mod-
els, referred to as the CLMS and ACLMS, respectively, have been subsequently introduced.
Finally, the statistical analysis for the ACLMS has been presented in Theorem 2.1 and Theorem
2.3.

Noncircularity and widely linear estimation underpins most of the ideas presented in this
thesis and shall be further expanded upon in the sequel. For example, the computationally
efficient widely linear estimation scheme in Chapter 3 provides a new perspective on the mean
square error (MSE) estimation introduced in Section 2.3, while Chapter 4 presents an online
algorithm to track the noncircularity of random variables using the second-order statistical
measures presented in Section 2.2. In the second part of the thesis, widely linear adaptive
filters that are outlined in Section 2.5, will be extended to a distributed setting and analysed in
a similar fashion to this chapter. Finally, in Part III, widely linear AR modelling from Section 2.4
is used as a crucial link for the modelling of three-phase voltages in unbalanced power systems.
Furthermore, the analysis framework introduced in this chapter in the proofs of Theorem 2.1
and Theorem 2.3 shall serve as a building block for the proofs in the subsequent chapters.
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Part I

Adaptive Filters for Widely Linear
Estimation
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Chapter 3

Low Complexity Complex-Valued Adaptive
Filters

One essential object is to choose that arrangement
which shall tend to reduce to a minimum the time
necessary for completing the calculation.

Ada Lovelace

Chapter Overview

In this chapter, widely linear estimation theory from Chapter 2 is revisited from a perspective
of minimising the mean square error (MSE) in estimating the real and imaginary parts of as
complex-valued signal. In Chapter 2, we reviewed why complex-valued representations of
signals (in particular widely linear modelling) offer enhanced conceptual advantages at the
signal modelling and algorithm design stage. However, this conceptual advantage comes
at a cost of increasing the computational complexity of the algorithms that are designed for
complex-valued data. To observe this, refer to the update equation of the ACLMS in (2.44)
which requires twice the number of complex parameters (bh

k

and bg
k

) to be updated compared
the standard strictly linear CLMS in (2.41).

Of course, a sensible method to solve this problem is to work with bivariate real-valued
vectors. However, doing so sacrifices the seamless integration between signal modelling and
algorithm design that is gained from working with complex-valued signals. In this chapter,
we offer a new way to integrate the concepts of complex-valued and real-valued estimation
algorithms. Specifically, we show that complex-valued adaptive algorithms can be designed to
perform widely linear estimation while also having identical computational requirements (real
additions and multiplication) to their real-valued counterparts.

Furthermore, drawing upon ideas from widely linear estimation, we show that the number
of real additions and multiplications can be further decreased by a half when the algorithms
estimate strictly linear systems. This insight stems from working in the complex domain where
the a priori knowledge about the signal structure (strictly linear vs. widely linear) can be used
design computationally efficient adaptive filters.

3.1 Introduction

Complex-valued linear minimum mean square error (MMSE) estimation is an important sta-
tistical technique in communications and signal processing. It has now been accepted that
the standard strictly linear model for complex data is not guaranteed to capture the complete
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second-order statistical relationship between the input (regressor) and the output (observa-
tions), as generic strictly linear extensions of real-valued estimators cater only for data with
rotation invariant probability distributions [42, 43, 56].

As shown in Chapter 2, using strictly linear estimators implicitly impose certain constraints
on the signals. This constraint is that the linear coefficients relating the real parts of the input
and output signals had to be identical to the coefficients relating the imaginary parts of the
input and output signals. This constraint could also be explained using the second order statis-
tics of the signals, whereby the strictly linear estimator only utilises the covariance matrix of
the input data and cross-covariance vector of the input and output signals, while widely linear
estimation exploits the full second order statistics of the data (both covariance and pseudoco-
variance matrices and vectors).

On the other hand, owing to the use of augmented variables, widely linear algorithms re-
quire twice the number of coefficients to update compared to their standard strictly linear coun-
terparts. This adds to both higher computational complexity and a larger excess mean square
error (EMSE). To deal with these issues, efficient formulations of widely linear adaptive filters
have been proposed – these filters typically make use of the duality between the complex and
real domain to cast the computations into the real domain [57, 58]. An efficient implementation
of the ACLMS in [59] is one such approach. However, in this way, the input vector no longer
resides in the original complex domain and any physical meaning or performance advantage
inherent in working in the complex domain may be lost.

To help circumvent these problems and at the same time provide greater insight into complex-
valued MMSE estimation, we propose an estimation technique, referred to as the complex dual
channel (CDC) estimator, that is capable of performing both widely linear and strictly linear
estimation at half the computational complexity (measured in number of real additions and
multiplications). Stochastic gradient adaptive filters based on the CDC framework, referred
to as the CLMSr, CLMSi (for proper signals) and the dual channel-CLMS (DC-CLMS) (for im-
proper signals), are introduced and their convergence and stability properties are analysed.
Simulations on synthetic data verify the analyses.

3.2 Proposed Solution: Complex Dual Channel Estimation

Minimum mean square error (MMSE) estimation aims to find the optimal second order esti-
mate of a desired signal, y 2 C, given the regressor vector, x 2 CM⇥1. For strictly linear MMSE
estimation, the data model is constrained to be strictly linear, ŷ = h

H
x, where ŷ is the esti-

mate of the desired signal, h 2 CM⇥1 the estimated coefficient vector, and the estimation error
is given by " = y � ŷ. The optimal second order mean square error (MSE) fit for the data is
obtained by minimising the cost function

JMSE(h) = E
�|"|2 = E

�|y � ŷ|2 . (3.1)

Of particular importance to this work is the (often overlooked) observation that the MSE
for estimating complex-valued signals combines two separate components: (i) the proportion
of MSE in estimating the real part of the signal, and (ii) the proportion of MSE corresponding to
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estimating the imaginary part of the signal. This becomes immediately clear when the error, ",
is rewritten in terms of its real component, "

r

= Re {"} and imaginary component, "
i

= Imag"

as " = "
r

+ j"
i

, so that the cost function in (3.1) can be written as the sum of two real-valued
cost functions as

JMSE(h) = E
�

"2
r

 

+ E
�

"2
i

 

= J
r

(h) + J
i

(h). (3.2)

Remark 3.1. The linear MMSE estimator aims to minimize two real-valued cost functions, J
r

and J
i

,
using a single complex-valued weight vector h. However, one weight vector in general does not have
enough degrees of freedom to minimize both J

r

(h) and J
i

(h), and the class of signals that admit such
an MMSE estimator is very restrictive.

To cater for a general class of complex-valued signals, a widely linear model model was
proposed in [26], and is given by

ŷ
k

= w

H
¯

x w =

"

h

g

#

¯

x =

"

x

x

⇤

#

. (3.3)

This estimator uses an augmented input vector, ¯x, formed by concatenating the input, x, and its
conjugate, x⇤, and the corresponding augmented weight vector, w. Based upon the augmented
vector ¯

x, the sufficient second order statistics is obtained through the augmented covariance
matrix

¯R = E
("

xx

H
xx

T

x

⇤
x

H
x

⇤
x

T

#)

=

"

R P

P⇤ R⇤

#

, (3.4)

and the augmented cross-covariance vector

¯

r = E
"

xy⇤

x

⇤y⇤

#

=

"

r

p

⇤

#

. (3.5)

Based on the MSE cost function in (3.2), we propose the use of two strictly linear estimators

ŷ
cr

= w

H
cr

x, and ŷ
ci

= w

H
ci

x, (3.6)

where w
cr

2 CM⇥1 and w

ci

2 CM⇥1 and their corresponding estimation errors, "
r

= Re {y � ŷ
cr

}
and "

i

= Im {y � ŷ
ci

}, to minimise the cost functions, J
r

(w

cr

) = E
�

"2
r

 

and J
i

(w

ci

) = E
�

"2
i

 

independently. This makes it possible to have individual Wiener solutions, with the corre-
sponding optimal weights w

�
cr

and w

�
ci

that minimize the cost functions J
r

(w

cr

) and J
i

(w

ci

)

independently, and therefore the MSE, JMSE(wcr

,w
ci

), in (3.2).
The optimal weights w�

cr

and w

�
ci

are next derived using a standard gradient methodology
where the MSE in estimating the real part of the signal, J

r

(w

cr

), can be expressed as

J
r

(w

cr

) = E
�

"2
r

 

= E
n

�

Re {y}� Re

�

w

H
cr

x

 �

2

o

. (3.7)
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Taking the partial derivative of J
r

(w

cr

) with respect to w

⇤
cr

gives

@J
r

(w

cr

)

@w⇤
cr
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Next, denoting Re {y} = y
r

, we have

"
r
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r

� (1/2)(xT
w

cr

+ x

H
w

ci
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which can be substituted into (3.8) to give

E {x"
r

} = E
�

x(y
r

� (1/2)(xT
w

⇤
cr

+ x

H
w

cr

)

 

= p

rx

� (1/2)(Pw

⇤
cr

+Rw

cr

), (3.9)

where P = E
�

xx

T
 

is the pseudocovariance matrix of the input, R = E
�

xx

H
 

is the covari-
ance matrix, p

rx

= E {xy
r

} is the cross-covariance between the real part of the desired signal
and the complex input vector x and p

ix

= E {xy
i

} is the cross-covariance between the imagi-
nary part of the desired signal and the input. To obtain the optimal Wiener solution, w�

cr

, we
set (3.9) to 0 to yield

Pw

�⇤
cr

+Rw

�
cr

= 2p

rx

, (3.10a)

which upon complex conjugation takes the form,

P⇤
w

�
cr

+R⇤
w

�⇤
cr

= 2p

⇤
rx

. (3.10b)

Solving (3.10a) and (3.10b) simultaneously gives the closed form answer,

w

�
cr

= 2[R�PR⇤�1P⇤
]

�1

[p

rx

�PR⇤�1

p

⇤
rx

]. (3.11)

Similarly, the MSE in estimating the imaginary part of the signal, J
i

(w

ci

), is given by

J
i

(w

ci

) = E
�

"2
i

 

= E
n

�

Im {y}� Im

�

w

H
ci

x

 �

2

o

, (3.12)

and the corresponding optimal estimator weights are

w

�
ci

= �2j[R�PR⇤�1P⇤
]

�1

[p

ix

�PR⇤�1

p

⇤
ix

]. (3.13)

Remark 3.2. Observe from (3.11) and (3.13) that in general, the weights that minimize J
r

(w

cr

) in
(3.7) are not those that minimize J

i

(w

ci

) in (3.12). This justifies the proposed individual minimisation
of the contributing terms in the total MSE cost function, JMSE in (3.2).
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3.3 Relationship with Strictly Linear and Widely Linear Esti-
mation

The equivalence of the proposed complex dual channel (CDC) model and the widely linear
model can be established by factorising the output of the CDC estimator as

ŷ = Re

�

w

H
cr

x

 

+ jIm
�

w

H
ci

x

 

(3.14)
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✓
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cr
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2
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x+

✓

w

cr

�w

ci

2

◆T

x

⇤
= h

H
x+ g

H
x

⇤, (3.15)

where h

def
=

w

cr

+w

ci

2

and g

⇤ def
=

w

cr

�w

ci

2

. This form is equivalent to the widely linear model
in (3.3), for more details see also [58].

Notice from (3.14) that when w

cr

= w

ci

, the coefficient vector g = 0, which indicates that
the underlying signal model is strictly linear. We shall now set w

cr

= w

ci

in order to find the
condition for one set of weights to be able to minimize both J

r

, J
i

(and therefore JMSE). Upon
equating (3.11) and (3.13), we obtain

[p

rx

�PR⇤�1

p

⇤
rx

] = � j[p
ix

�PR⇤�1

p

⇤
ix

]

p

rx

+ jp
ix

= PR⇤�1

(p

⇤
rx

+ jp⇤
ix

).

Recognising that p⇤
rx

+ jp⇤
ix

= E {x⇤y} = r

⇤ is the complex valued cross-covariance and p

rx

+

jp
ix

= E {xy} = p is the pseudocross-covariance, we arrive at the condition,

p = PR⇤�1

r

⇤. (3.16)

Remark 3.3. When estimating the real and imaginary parts of a signal with one set of complex weights,
optimal performance is only possible when the desired signal y, and the regressor vector, x are jointly-
circular, for example, the pseudocovariance, P = 0, and the pseudocross-covariance, p = 0.

Remark 3.4. Also notice that when w

cr

= w

ci

, the strictly linear weight h in (3.15) can either be
estimated by w

cr

or w

ci

. In the next section, we will show that this finding can be used to design
algorithms that have half the the number of real additions and multiplications compared to the real-
valued bivariate LMS.

3.4 The Design of Adaptive Filters using the CDC Framework

We now provide a new framework to derive complex-valued adaptive filtering algorithms
using the CDC estimation model. Our focus is on the stochastic gradient descent type of al-
gorithms, and on benchmarking the CDC framework against the complex least mean square
(CLMS) and augmented CLMS (ACLMS), which both minimize the global mean square error
cost function JMSE = E

�|"|2 . The CLMS uses a strictly linear model and is given by [52]

"
k

= y
k

� bhH
k

x

k

b

h

k+1

=

b

h

k

+ µx
k

"⇤
k

.
(3.17)
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The ACLMS, proposed in [53], uses the widely linear model that employs both x

k

and x

⇤
k

, and
is given by

"
k

= y
k

� bhH
k

x

k

+

b

g

H
k

x

⇤
k

b

h

k+1

=

b
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k

+ µx
k

"⇤
k

b

g

k+1

=

b

g

k

+ µx⇤
k

"⇤
k

.

(3.18)

3.4.1 Proposed Algorithm: Dual Channel CLMS

The dual channel-CLMS (DC-CLMS) is formed by a combining two stochastic gradient descent
algorithms: the CLMSr and CLMSi. The CLMSr uses a strictly linear model ŷ

cr,k

= w

H
cr,k

x

k

and aims to find the minimum of the instantaneous cost function J
r,k

= (Re {y
k

� ŷ
cr,k

})2 that
corresponds to the error in estimating the real part of the signal. The CLMSr is derived using
the stochastic gradient framework [57, 60, 61] as

w

cr,k+1

= w

cr,k

� µ
@J

r,k

@w⇤

�

�

�

�

w=w

cr,k

, (3.19)

which yields the following update scheme

w

cr,k+1

= w

cr,k

+ µRe {"
cr,k

}x
k

, (3.20)

where "
cr,k

= y
k

� ŷ
cr,k

.
Similarly, the CLMSi uses a strictly linear model ŷ

ci,k

= w

H
ci,k

x

k

and aims to find the mini-
mum of the instantaneous cost function J

i,k

= (Im {y
k

� ŷ
ci,k

})2, that corresponds to the error
in estimating the imaginary part of the signal. The CLMSi weight update is therefore given by

w

ci,k+1

= w

ci,k

� jµIm {"
ci,k

}x
k

(3.21)

where "
ci,k

= y
k

� ŷ
ci,k

.
The DC-CLMS is summarised in Algorithm 1 and as illustrated in Figure 3.1, the DC-CLMS

operates in a collaborative fashion by combining the real output of CLMSr with the imaginary
output of CLMSi to obtain an output identical to that of the ACLMS.

Contribution: Dual Channel Adaptive Filters
In addition to theory of dual channel estimation, we propose a low complexity
adaptive filter, DC-CLMS in Algorithm 1. The proposed DC-CLMS algorithm is
capable of performing widely linear estimation with half the number of compu-
tations per iteration. The computational benefits are outlined in Table 3.1. Fur-
thermore, we present a novel framework for statistical analysis of the DC-CLMS
in Theorem 3.1 and 3.2.
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k
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ŷ
ci,k

ŷ
cr,k

ŷ
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Figure 3.1: Architecture of the DC-CLMS.

Algorithm 1. Dual Channel CLMS (DC-CLMS)
Initialise with: w

cr,0

= 0 and w

ci,0

= 0
At each time instant k > 0:

1: procedure CLMSR
2: ŷ

cr,k

= w

H
cr,k

x

k

3: "
cr,k

= y
k

� ŷ
cr,k

4: w

cr,k+1

= w

cr,k

+ µRe {"
cr,k

}x
k

5: end procedure
6: procedure CLMSI
7: ŷ

ci,k

= w

H
ci,k

x

k

8: "
ci,k

= y
k

� ŷ
ci,k

9: w

ci,k+1

= w

ci,k

� jµIm {"
ci,k

}x
k

10: end procedure
11: ŷ

k

= Re {ŷ
cr,k

}+ jIm {ŷ
ci,k

}
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Implementation of the DC-CLMS

Notice from Algorithm 1 that the CLMSr subfilter, only requires the real part of the estimate
ŷ
cr,k

. Therefore, only the real part of the inner product wH
cr,k

x

k

, needs to be computed. The
same reasoning applies for the imaginary part of the CLMSi output. Herein lies the key to
the computational effectiveness of the proposed DC-CLMS. Although this scheme effectively
describes the bivariate real-valued LMS, our contribution here is to show that the DC-CLMS
algorithm can be derived and presented in the complex domain to suit the needs of practition-
ers who gain physical insight from working in the complex domain. Moreover, our insight in
Remark 3.4 shows that we can further reduce the number of operations of the DC-CLMS for
strictly linear systems if only the CLMSr or CLMSi is implemented. To the best of the author’s
knowledge, this finding is novel and has not been presented in the literature of complex-valued
adaptive filters in the past.

3.4.2 Comparison with Existing Reduced Complexity Algorithms

For rigour, we now compare the CLMSr/i and DC-CLMS algorithms with the two existing
reduced complexity augmented complex least mean square (ACLMS) algorithms:

a. Dual-channel real-valued LMS (DCRLMS) algorithm, a real-valued algorithm that ex-
ploits the duality between R2 and C [58].

b. Reduced complexity widely linear LMS (RC-WL-LMS), a complex-valued algorithm which
employs a complex-valued weight vector and a real-valued input vector (constructed by
augmenting the real and imaginary parts of the original complex-valued input vector)
[59].

Although, the dual-channel real-valued LMS (DCRLMS) [58] has sufficient degrees of freedom
to model complex-valued signals, its parameters reside in R, and any physical insight that can
be gained from the signal model is obscured. On the other hand, the RC-WL-LMS [59] does
operate in the complex domain but has a limitation since its aim is only to reduce the compu-
tational complexity. In contrast to the DCRLMS and RC-WL-LMS, the framework presented
in this paper allows for a unified and efficient formulation of both the strictly linear CLMS al-
gorithm in the form of the CLMSr/i sub-filters and the ACLMS algorithm by combining the
CLMSr/i sub-filters. Table 3.1 compares the number operations required per iteration for all
the complex LMS algorithms considered in this paper.

3.5 Statistical Analysis of the DC-CLMS

Consider the system given by

y
k

= Re

n

w

�
cr

H
x

k

+ ⌘
k

o

+ jIm
n

w

�
ci

H
x

k

+ ⌘
k

o

, (3.22)

to be the true system which needs to be identified by the CLMSr and CLMSi algorithms. Defin-
ing the weight error vectors, ˜

w

cr,k

def
= w

�
cr

�w

cr,k

and ˜

w

ci,k

def
= w

�
ci

�w

ci,k

for the CLMSr and

63



3. Low Complexity Complex-Valued Adaptive Filters

Identification of Strictly Linear Models
Algorithm Real Multiplications Real Additions

CLMS 8M + 2 8M
Proposed: CLMSr 4M + 1 4M
Proposed: CLMSi 4M + 1 4M

Identification of Widely Linear Models
Algorithm Real Multiplications Real Additions

ACLMS 16M + 2 16M
RC-WL-LMS [59] 8M + 2 8M

DCRLMS [58] 8M + 2 8M
Proposed: DC-CLMS 8M + 2 8M

Table 3.1: Computational requirements per iteration for the considered complex LMS algorithms, where
M is the length of the complex-valued input vector x

k

.

CLMSi algorithms and subtracting w

�
cr

and w

�
ci

from the CLMSr/i algorithms in (3.20) – (3.21)
respectively gives

CLMSr: ˜

w

cr,k+1

=

˜

w

cr,k

� µRe {"
cr,k

}x
k

(3.23a)

CLMSi: ˜

w

ci,k+1

=

˜

w

ci,k

+ jµIm {"
ci,k

}x
k

. (3.23b)

Theorem 3.1 (DC-CLMS Mean Convergence). Consider the CLMSr/i algorithms in (3.20) – (3.21)
for the associated true system in (3.22). Suppose that the following assumptions hold:

A.1) The input vector, x
k

, has zero-mean and is independent and identically distributed (IID) across
time k, with covariance and pseudocovariance matrices respectively given by R = E

�

x

k

x

H
k

 

,
P = E

�

x

k

x

T
k

 

.

A.2) The measurement noise sequence, {⌘
k

}
k2N, is a zero-mean, IID circular white noise process which

is statistically independent to input vector sequence, {x
k

}
k2N, and its variance given by, �2

⌘

=

E
�|⌘

k

|2 .

Then, the DC-CLMS algorithm asymptotically converges in the mean, that is

lim

k!1
E {w�

cr

�w

cr,k

} = 0, and, lim

k!1
E {w�

ci

�w

ci,k

} = 0, (3.24a)

if the step-size µ for both the CLMSr and CLMSi algorithms, satisfies the following condition

0 < µ < 4

�

%
�

¯R
�

, (3.24b)

where %(·) refers to the spectral radius of the augmented covariance matrix ¯R.

Proof.
For the DC-CLMS to converge in the mean, both of its sub-filters, CLMSr and CLMSi have to
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convergence in the mean. Starting from (3.23a) and noticing that Re {"
cr,k

} = Re

n

y
k

�w

H
cr,k

x

k

o

=

Re

n
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H
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o

from the true system in (3.22) gives
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� µx
k
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H
k
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(3.25a)

CLMSi: ˜

w

ci,k+1

=

˜

w

ci,k

+ jµx
k

Im

�

x

T
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˜

w

⇤
ci,k

+ ⌘
k

 

, (3.25b)

where a similar step was taken for the CLMSi in (3.23b) to arrive at (3.25b). Using the relation-
ship Re {a} = (1/2)(a+ a⇤) and Im {a} = (1/2j)(a� a⇤), we obtain

CLMSr: ˜
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} (3.26)

CLMSi: ˜
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} . (3.27)

Upon applying the statistical expectation operator, E {·} and applying Assumptions A.1 and
A.2 in Theorem 3.1, we have

CLMSr: E { ˜w
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I� µ

2
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(3.28a)

CLMSi: E { ˜w
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} =

⇣
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PE
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, (3.28b)

where R = E
�

x

k

x

H
k

 

is the covariance matrix and P = E
�

x

k

x

T
k

 

the pseudocovariance matrix
of the input data. Recall that the weight error recursion for the CLMS is given by [42]

CLMS: E
�

˜

h

k+1

 

= (I� µR)E
�

˜

h

k

 

. (3.29)

Upon concatenating the weight error recursion for the CLMSr in (3.28a) and its conjugate,
we have

E
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⇤
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⇤
cr,k

#)

, (3.30)

where ¯R is the augmented covariance matrix defined in (3.4). Observe that the recursion in
(3.30) resembles that of the ACLMS introduced in Chapter 2. The CLMSr step-size bound can
be derived in a similar fashion with

CLMSr: 0 < µ <
4

%( ¯R)

, (3.31)

where %(·) denotes the spectral radius of a matrix. Since ¯R is positive semi-definite, %( ¯R)

denotes the maximum eigenvalue of the augmented covariance matrix.
Similarly, for the CLMSi sub-filter in (3.28b), the recursion for the mean error vector and its

65



3. Low Complexity Complex-Valued Adaptive Filters

conjugate is given by
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which yields the same stability bound as in (3.31). This completes the proof.

Remark 3.5. The spectral radius of ¯R0 in (3.32) is identical to that of the augmented covariance ma-
trix ¯R = E

�

¯

x

k

¯

x
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in (3.30). To prove this, consider an eigenvector-eigenvalue pair, (�
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, q
i

), of the
augmented covariance matrix ¯R where the eigenvector q
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can be expressed as q
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Now, consider multiplying ¯R0 with the vector q0
i

def
=
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q

T
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�qT
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⇤T to give
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where �
i

is the eigenvalue of the ¯R. Performing the same process for all the other eigenvalues �
i

, will
reveal that the eigenvalues (hence the spectral radius) of ¯R are identical to ¯R0.

By comparing the weight error recursions for DC-CLMS in (3.28a)–(3.28b) and the CLMS
from (3.29), observe that the evolution of the weight vectors will be identical if the data is
proper (i.e. when P = 0). This is supported by the simulation result in Figure 3.2, which shows
the average weight trajectories along the error surfaces of the CLMSr, CLMSi and CLMS.

3.5.1 Mean Square Stability

Theorem 3.2 (DC-CLMS Mean Square Stability). Consider the CLMSr/i algorithms in (3.20) –
(3.21) for the associated true system in (3.22). In addition to the Assumptions A.1 – A.2 in Theorem
3.1, suppose that the following assumptions hold:

A.3) The input vector, x
k

, is drawn from a multivariate Gaussian distribution.

Then, the CLMSr/i algorithms (hence the DC-CLMS algorithm) are mean-square stable, that is, there
exits a real-valued scalar 0 < # < 1 such that

E
�k ˜w

cr/ci,k

k2  #kE�k ˜w
cr/ci,0

k2 + 1

4

✓

1� #k
1� #

◆
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⌘

Tr[

¯R], (3.35)

for all k � 0 and its steady-state value is bounded by

lim sup

k!1
E
�k ˜w

cr/ci,k

k2  1

4

µ2�2

⌘

Tr[

¯R]

1� # . (3.36)

where the subscript “cr/ci” indicates that the bounds hold for both the CLMSr and CLMSi algorithms.
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Figure 3.2: Averaged weight trajectories along the error performance contour surface for the
estimation of a strictly linear MA(1) system driven by: Top: circular and Bottom: noncircular
white Gaussian noise.
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Proof. Recall that the CLMSr weight error recursion in (3.26) is given by
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where ⌘
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} and its conjugate is given by
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whereby upon concatenating (3.37) and (3.38) gives
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Defining the concatenated weight error vector and augmented input vector respectively as

v
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allows (3.39) to be represented compactly as
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� µ¯x
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Notice that the recursion in (3.41) is almost identical to the ACLMS weight error vector recur-
sion in Chapter 2. So, to obtain the recursion for the CLMSr weight error covariance matrix,
¯K

k

def
= E

�

v

k

v
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, we post-multiply both sides of (3.41) by their Hermitians, and take the statis-
tical expectation, to give,
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Utilising Assumptions A.1 – A.3 in Theorem 3.2, (3.42) becomes
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=
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where the fact that the noise ⌘
k

is IID circular from Assumption A.2 is used in the form E
n

⌘2
r,k

o

=

(1/2)�2

⌘

. Applying the trace operator to (3.43) gives,
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and upon using the identity Tr[M
1

+M
2

] = Tr[M
1

] + Tr[M
2

], for any square matrices M
1

and
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M
2

, we have
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where B =
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+ Tr[
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�

is a Hermitian positive semi-definite matrix.
Using Lemma 2.2 in Chapter 2, the recursion in (3.45) can be bounded as
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For the condition # def
= %(B) < 1 to be satisfied, a conservative bound on the step-size µ, can

be found with,
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whereby upon defining p2
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), and noticing that �
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refers to the minimum eigenvalue of ¯R. The step-size, µ, which guarantees # < 1

is therefore given by
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Applying the inequality in (3.46) successively for each k and using the formula for the sum of
a geometric sequence, 1 + #+ · · ·+ #k�1

= (1� #k)/(1� #), we obtain

E
�kv

k

k2  #kE�kv
0

k2 +
✓

1� #k
1� #

◆

µ2

2

�2

⌘

Tr[

¯R]. (3.49)

From the definition of v
k

in (3.40), E
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k2 . So, dividing (3.49) by two gives
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To complete the proof, we observe (3.50) as k !1, which yields
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E
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The proof of the CLMSi mean square stability follows the same arguments as the CLMSr mean
square stability proof where the only difference is that the recursions of the CLMSi error vector
involves an augmented input vector in the form ¯

x

0
k

= [x

T
k

,�xH
k

]

T. However, as observed in
Remark 3.5, the spectral radius of the covariance matrices of ¯x0

k

are identical to that of ¯x
k

.
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3.6 Simulations

To verify the analyses, all the filters considered were evaluated in the system identification set-
ting with the step-size µ = 0.02. The mean square error (MSE) of the algorithms was calculated
at each time instant, k, by averaging the error power from 100 independent trials to give

MSE
k

=

1

100

100

X

`=1

�

�

�

y
(`)

k

� ŷ
(`)

k

�

�

�

2

, (3.52)

where y
(`)

k

was the desired signal and ŷ
(`)

k

was the estimate given by the algorithms consid-
ered at trial (realisation) `. The performances of CLMS, CLMSr and CLMSi were assessed for
identifying a strictly linear MA(4) model described by

y
k

= b
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x
k

+ b
1

x
k�1

+ b
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x
k�2

+ b
3

x
k�3

+ ⌘
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, (3.53)

for which the coefficients were

b
0

= 6� 6j b
1

= 0.5 + j b
2

= �2 + j b
3

= 2 + 3j, (3.54)

and the regressor x
k

was a zero-mean unit-variance Gaussian signal which is IID over time k

and ⌘
k

was a zero-mean IID white Gaussian noise process with variance �2

⌘

.
Figure 3.3 shows that CLMSr and CLMSi achieved the same steady state mean square error

as the CLMS while requiring only half the operations of the CLMS. This is consistent with Re-
mark 3.4 and implies that the more efficient CLMSr or CLMSi filters can substitute the standard
CLMS in strictly linear estimation.
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Figure 3.3: Upon convergence, CLMSr and CLMSi have the same steady state mean square
error as the CLMS.

Figure 3.4 shows the performances of the DC-CLMS, CLMS and ACLMS when estimating a
widely linear system, in terms of the mean square error (MSE). The widely linear MA(4) system
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used to generate the signal is given by
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(3.55)

where the same system coefficients {b
i

2 i = 0, . . . , 3} described in (3.54) and ¯b
0

= 0.2 � 0.2j,
¯b
1

= 0.1 + 0.1j, ¯b
2

= 2, ¯b
3

= 0.4j, were used. The statistics of the input data, x
k

, and noise, ⌘
k

,
were identical to that of the previous simulation.
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Figure 3.4: Evolution of the mean square error of the DC-CLMS, ACLMS and CLMS. The DC-
CLMS and ACLMS have the same mean square error performance when modelling widely
linear systems.

Conforming with the analysis, the CLMS exhibited a bias due to the inherent under-modelling
(see [63]) while the DC-CLMS and ACLMS were able to model the underlying widely linear
system correctly. It is important to re-emphasize that the DC-CLMS was able to achieve the
same mean square performance as the ACLMS by using the half the number of operations
required by the ACLMS.

The computational complexity of the algorithms considered, represented by the number of
multiplications per iteration, is illustrated in Figure 3.5. The number of multiplications of the
CLMSr and CLMSi are half of that of the CLMS making the CLMSr or CLMSi more efficient
than the CLMS for estimating a strictly linear system. Similarly, the DC-CLMS requires approx-
imately half the number of operations of the ACLMS, and is more efficient than the ACLMS at
modelling widely linear systems.

3.7 Chapter Summary

We have introduced an alternative formulation for widely linear estimation and have devel-
oped a corresponding adaptive filter referred to as the DC-CLMS. This was accomplished by
splitting the MSE cost function in (3.2) into the contributions from estimating the real and
imaginary parts of the signal. By optimising individually for those parts, the CDC estimator
obtains two separate strictly linear weight vectors, (3.11) and (3.13), which possess the degrees
of freedom necessary for widely linear estimation. Furthermore, using the stochastic gradient
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Figure 3.5: Number of multiplications as a function of the filter length.

framework introduced in Chapter 2, an adaptive version of the CDC estimator, referred to as
the DC-CLMS, is proposed in Algorithm 1. The DC-CLMS has been shown to be identical to
the ACLMS in (3.14), while only requiring approximately half the mathematical operations, as
shown in Table 3.1.

In this chapter, we have examined adaptive filters without the context of an application.
In the next chapter (Chapter 4), we shall revisit the notion of circularity of complex-random
variables and use an adaptive algorithm to estimate the non-circularity in a novel real-time
manner. The algorithm used is a scalar version of the CLMS which was introduced in Chapter
2.
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Chapter 4

Adaptive Tracking of Complex Circularity

The most exciting phrase to hear in
science, the one that heralds new
discoveries, is not “Eureka!” but “That’s
funny...”.

Isaac Asimov

Chapter Overview

This chapter re-examines the notion of complex noncircularity, introduced in Chapter 2, to pro-
pose a new method to track the degree of noncircularity of a complex-valued signal. This is
accomplished by showing that the linear minimum mean square error (LMMSE) estimator of
the complex conjugate of a signal from the original signal itself represents its circularity quo-
tient. We exploit this relationship to propose adaptive algorithms for the tracking of circularity
and subsequently extend the idea to the tracking of rectilinear signals in wireless communica-
tions systems.

4.1 Introduction

Recall from Chapter 2, that the circularity quotient of a zero-mean random variable (r.v.) s
k

2 C,
is given by [45]

⇢
def
=

p

r
=

E
�

s2
k

 

E {|s
k

|2} , (4.1)

where r = E
�|s

k

|2 and p = E
�

s2
k

 

are respectively the covariance and pseudocovariance
of the signal s

k

. The circularity coefficient of the signal s
k

is given by the magnitude of the

circularity quotient i.e. |⇢| def
=

|p|
r
2 R. A signal is considered to be rectilinear if its circularity

quotient can be expressed as ⇢ = ej�, with an arbitrary phase shift �. Therefore, rectilinear
signals have circularity coefficients |⇢| = 1.

Early methods to test the impropriety of a signal were based on hypothesis tests that use
block estimates of the covariance and the pseudocovariance. The authors in [64] developed
a hypothesis test for the impropriety of Gaussian signals using a generalized likelihood ra-
tio (GLR) test which was further studied in [65, 66]. This method was extended for signals
from a general class of complex elliptically symmetric (CES) distributions in [67]. To deal with
measurement errors, a robust circularity coefficient estimator was developed in [68] based on
solving M-estimation equations with a novel weighting scheme.
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A real time algorithm for tracking the impropriety (see Def. 2.1, Ch. 2) of a signal was
introduced in [69] based on a convex combination of a strictly and widely linear estimators.
The impropriety of a signal is then tracked by observing the evolution of the adaptive convex
mixing parameter which indicates which sub-filter (strictly or widely linear) is a better match
to the nature of the data. The limitations of current approaches in identifying the second order
circularity are:

(a) Hypothesis tests are limited since they are only able to reveal whether the signal is proper
or improper, however, they cannot assess the degree of impropriety;

(b) The value of the convex mixing parameter in [69] depends also on the filter settings and
its relationship to the circularity quotient is yet to be established rigorously.

We here provide a solution for real-time circularity tracking by firstly establishing that the
circularity quotient is effectively the optimal coefficient of an LMMSE estimator that estimates
the complex conjugate of a signal from the original signal itself. The proposed algorithm then
utilises an adaptive filter weight to track the circularity quotient of a signal in real time and
overcomes the issues mentioned in (a) – (b) above.

4.2 Relationship Between A Complex Variable and Its Conju-
gate

Deterministic case. Consider the problem of finding a linear mapping that relates a determin-
istic variable, s̃ = |s̃|ej\s̃ 2 C, with magnitude |s̃| and phase \s̃, and its complex conjugate,
s̃⇤ = |s̃|e�\s̃. This mapping has the form

s̃⇤ = w⇤s̃. (4.2)

The solution for the coefficient w is thus

w =

s̃

s̃⇤
=

s̃2

|s̃|2 = ej2\s̃. (4.3)

Physically, the coefficient w in (4.2) rotates the complex variable s̃ by an angle of �2\s̃.

Stochastic case. Now, consider the problem of using a zero-mean r.v. s
k

2 C to estimate its
complex conjugate, that is

ŝ⇤
k

= w⇤s
k

, (4.4)

where ŝ⇤
k

denotes the estimate of the complex conjugate of s
k

and w is the coefficient that relates
the two variables. Unlike (4.3), every realisation of the r.v. in the data stream has a different
phase and we require a stochastic solution.

Our aim is therefore, to find an estimate of w that minimizes the estimation error, "
k

=

ŝ⇤
k

� s⇤
k

, across all realizations of s. To this end, we propose to employ minimum mean square
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error (MMSE) estimation whereby the optimal value of w is found by minimising the cost
function

JMSE(w) = E {|"
k

|} = E
�|s⇤

k

� w⇤s
k

|2 . (4.5)

The optimal value of w, denoted by wopt, that minimizes the cost function in (4.5) is then given
by the Wiener solution

wopt =
E
�

s2
k

 

E {|s
k

|2} = ⇢. (4.6)

Remark 4.1. From (4.6), the circularity quotient can be interpreted as the LMMSE solution for esti-
mating the complex conjugate of a random variable from the original random variable itself.

Finding the Wiener solution requires the knowledge of the true statistics of the data (in
our case, r and p) which is typically not available. As block based estimators for the Wiener
solution are inadequate for non-stationary signals, we next develop an adaptive estimator for
this purpose.

4.3 Proposed Algorithm

Interpreting the circularity quotient as the optimal Wiener solution for estimating the com-
plex conjugate of a r.v. from the original r.v. enables us to configure an adaptive filter, in the
form illustrated in Figure 4.1, together with an adaptive algorithm like the complex least mean
square (CLMS), to track the circularity quotient in real time. The proposed circularity tracking
algorithm is

ŝ⇤
k

= ⇢̂⇤
k

s
k

(4.7a)

"
k

= s⇤
k

� ŝ⇤
k

(4.7b)

⇢̂
k+1

= ⇢̂
k

+ µ"⇤
k

s
k

, (4.7c)

where the parameter µ in (4.7c) is the step-size which governs the convergence of the algorithm
[52], while the degree of second order circularity is represented by the weight ⇢̂

k

.
As CLMS only uses instantaneous estimates of the data statistics, the weights can only

asymptotically approach their optimal value, and we need to analyse the contributions of the
bias and variance of parameter estimates to the total mean square error.

Contribution: Adaptive Circularity Tracker
Based on uncovering the relationship between the Wiener solution for estimat-
ing a complex-conjugate of a signal from the signal itself in (4.6), a structurally-
simple adaptive algorithm is proposed in (4.7a) – (4.7c).
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Figure 4.1: Block diagram of the circularity tracker.

4.4 Statistical Analysis

Mean convergence

To study the mean (bias) behaviour of the circularity tracker, consider again the circularity
update equation in (4.7c),

⇢̂
k+1

= ⇢̂
k

+ µ(s2
k

� ⇢̂
k

|s
k

|2), (4.8)

where we have substituted the error "⇤
k

= s
k

� ⇢̂
k

s⇤
k

.

Theorem 4.1 (Mean Convergence). Consider the circularity tracker in (4.8). Suppose that the fol-
lowing assumption holds:

A.1) The sequence, {s
k

}
k2N, has zero-mean and is independent and identically distributed (IID) across

time k, with covariance and pseudocovariance respectively given by r = E
�|s

k

|2 , p = E
�

s2
k

 

.

Then, the circularity quotient estimate from (4.8) asymptotically converges in the mean, that is

lim

k!1
E
np

r
� ⇢̂

k

o

= 0 (4.9a)

if the step-size µ satisfies the following condition

0 < µ < 2

�

r. (4.9b)

Proof.
Defining the circularity quotient error, ⇢̃

k

def
=

p

r
� ⇢̂

k

, and subtracting
p

r
from (4.8) gives

⇢̃
k+1

= ⇢̃
k

� µ⇢̃
k

|s
k

|2 � µs2
k

+ µ
p

c
|s

k

|2. (4.10)

Taking the statistical expectation of (4.10) and using the IID assumption of the signal s
k

from
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Assumption A.1 in Theorem 4.1 and r = E
�|s

k

|2 , p = E
�

s2
k

 

, yields,

E {⇢̃
k+1

} = (1� µr)E {⇢̃
k

} . (4.11)

The recursion in (4.11) converges in the mean if |1� µr| < 1, which leads to the bound

0 < µ <
2

r
, (4.12)

where r is the covariance of the input signal s
k

. Thus, the algorithm is asymptotically unbiased.

Remark 4.2. The mean behaviour of the proposed circularity tracker is not affected by the degree of
circularity of the input signal.

To analyse the mean square behaviour of the circularity tracker, we first define the covari-
ance of the weight error of the proposed circularity tracker as

K
k+1

def
= E

�|⇢̃
k+1

|2 . (4.13)

Theorem 4.2 (Mean Square Stability). Consider the circularity tracker in (4.8). In addition to the
assumptions in Theorem 4.1, suppose that the following assumption holds:

A.2) The sequence {s
k

}
k2N is drawn from a Gaussian distribution.

Then, the circularity quotient estimate from (4.8) is mean square stable with the steady-state value given
by

lim

k!1
K

k

= µr

�

1� |⇢|2� �2� |⇢|2�

2� µr (2 + |⇢|2) , (4.14a)

if the step-size µ satisfies the following condition

0 < µ <
2

r(2 + |p|2
r

2 )

=

2

r(2 + |⇢|2) . (4.14b)

Proof.
The covariance of the weight error of the circularity tracker is given by

K
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= E
�|⇢̃

k+1

|2 
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⇢
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k

� µ⇢̃
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|s
k

|2 � µs2
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+ µ
p

r
|s

k

|2
�

�

�

2

�

.
(4.15)

Assuming Gaussian data from Assumption A.2 in Theorem 4.2, the fourth order moments in
(4.15) can be decomposed into a combination of second order moments as E

�|s
k

|4 = 2r2+|p|2,
E
�

s2
k

|s
k

|2 = 3pr and E
�

s⇤2
k

|s
k

|2 = 3p⇤r. After some algebraic manipulations, the weight
error covariance becomes
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K
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2µ2r

✓

1� |p|2
r2

◆�

| {z }

�

Re {p⇤w̄
k

}+
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where the term w̄
k

def
= E {⇢̃

k

} refers to the mean of the weight error at time instant k.
The recursion for the weight error covariance, K

k

, involves an additional time varying term,
Re {p⇤w̄

k

}, and the evolution of which can be analysed by multiplying the mean weight evolu-
tion in (4.11) by p⇤ to give

Re {p⇤w̄
k+1

} = (1� µr)Re {p⇤w̄
k

} . (4.17)

This allows us to formulate the following vector recursion involving (4.16) and (4.17)

"

K
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#
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"

↵

0

#

, (4.18)

where � = (1�µr). For the mapping in (4.18) to be contractive, all the eigenvalues of B should
lie within the unit circle. Since B is an upper triangular matrix, its eigenvalues are # and �.
The convergence condition |�| = |1 � µr| < 1 was already addressed in the analysis of the
convergence in the mean in (4.12). The second stability condition, # < 1, is satisfied when

(2r2 + |p|2)µ2 � 2rµ < 0, (4.19)

which leads to the bound on the learning rate µ

0 < µ <
2

r(2 + |p|2
r

2 )

=

2

r(2 + |⇢|2) . (4.20)

Remark 4.3. Unlike the condition for convergence in the mean, the mean square stability depends on
the degree of circularity of the signal. For proper data, ⇢ = 0, and the condition in (4.20) becomes
µ  1/r. Since |p|  r [45], for highly non-circular data we have µ  2

3r

.

Steady-state mean square performance.

Assuming that the step-size µ satisfies the condition in (4.20), the covariance of the weight
error, K

k

= E
�|⇢̃

k

|2 , in (4.16) converges to a steady-state value of

lim

k!1
K

k

=

↵

1� # = µr

⇣

1� |p|2
r

2

⌘⇣

2� |p|2
r

2

⌘

2� µr
⇣

2 +

|p|2
r

2

⌘

= µr

�

1� |⇢|2� �2� |⇢|2�

2� µr (2 + |⇢|2) . (4.21)
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Note that the steady-state weight error covariance in (4.21) is equivalent to the mean square
deviation (MSD) metric introduced in Chapter 2. Thus, the estimate of the circularity quotient
has a steady-state error power that is approximately proportional to µ for small step-sizes. The
weight error covariance depends on the degree of impropriety of the signal and is lower for
signals that are less proper. Moreover, we can see that for small µ

lim

k!1
K

k

 µr +O(µ2

), (4.22)

where equality holds when s
k

is proper.

Remark 4.4. The weight error covariance, which is identical to the mean square deviation (MSD), de-
pends on the degree of impropriety of the signal and is lower for signals that are less proper. Moreover, the
steady state covariance for the circularity estimate is null for rectilinear signals which have a circularity
coefficient of |⇢| = 1.

4.5 Simulations

For all the simulations, the CLMS was configured with a filter length M = 1, step-size µ = 0.01,
input data s

k

and desired signal s⇤
k

. The filter weight was initialized as ⇢̂
0

= 0.5 + 0.5j.
In the first set of simulations, we demonstrate the circularity tracking ability of the proposed

algorithm on a synthetically generated signal that was constructed by concatenating three seg-
ments of zero-mean white Gaussian signals, s

i,k

, with different pseudocovariance values given
by

p
i

= E
�

z2
i,k

 

, i = {1, 2, 3} (4.23)

These segments had the same covariance, r = E
n

s2
i,k

o

= 1, but different pseudocovariances,
p
i

, and thus different degrees of circularity, |⇢
i

| (see Table 4.1).

Sample, k 1� 1000 1001� 2000 2001� 3000

p
i

0.8j 0.6 + 0.4j 0

Table 4.1: Pseudocovariances, p
i

, of the Gaussian signals.

Figure 4.2 shows the evolution of the weight estimates within the proposed algorithm. Ob-
serve that the algorithm was able to converge to the accurate circularity quotients within 300
samples.

Next, we evaluated our algorithm on complex wind data which was sampled at 50 Hz and
measured as a bivariate signal of wind speeds in the East-West and North-South directions,
denoted respectively by sE and sN. The complex wind representation is therefore given by
s = sE + jsN [70].

We considered three wind regimes of different dynamics: the “low”, “medium” and “high”
regimes. Figure 4.3 shows the circularity diagram of empirical distributions of the real and
imaginary parts of the wind signal for these regimes, where 98.8% (2.5 standard deviations) of
the samples are contained within the ellipses. The circularity diagram suggests that the higher
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Figure 4.2: The real and imaginary parts of the evolution of the CLMS weights when tracking
circularity.

the wind speeds, the higher the degree of non-circularity. This is physically meaningful, as
high winds are highly directional, with dominant power in a narrow direction, resulting in a
greater degree of non-circularity.

Figure 4.4 shows the estimates of the circularity coefficient, |⇢|, under low, medium and
high wind regimes. The circularity tracker verifies the observation that the higher the wind
speed, the greater its degree of non-circularity.

Steady-State MSD of the Circularity Tracker

Next, we tested the steady-state MSD of the circularity tracker for various levels of non-circularity.
To this end, we generated a 1000-sample long white Gaussian noise with unit covariance r = 1

and varying degrees of pseudocovariance p (hence circularity coefficients, |⇢|) and applied the
circularity tracker to estimate the circularity coefficient. The MSD was computed over 5000
independent realisations using the formula

MSD =

1

5000

5000

X

i=1

||⇢|� |⇢̂1(i)||2 , (4.24)

where |⇢| was the true circularity coefficient and |⇢̂1(i)| the steady-state estimate of the circu-
larity coefficient for simulation i. Figure 4.5 compares the theoretical steady-state misadjust-
ment given in (4.21) to the empirical estimate from the Monte-Carlo simulations given in (4.24).
Conforming with the analysis, the steady-state misadjustment of the circularity coefficient esti-
mate decreases with increasing levels of non-circularity and reaches zero for rectilinear signals
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Figure 4.3: The circularity diagram of wind speeds in the low, medium and high dynamic
regimes.

(|⇢| = 1).

4.6 Tracking the Rectilinearity of Communication Signals

Adaptive beamforming is a key tool employed in wireless communication networks as it is
used to extract signals of interest (SOI) by rejecting the interference and noise for signals and
channels with time varying statistics. Consider a uniform linear array (ULA) of N sensors
which receives a signal of interest, m

k

, at time instant k according to the following relationship

x

k

= m
k

s+ n

k

, (4.25)

where x

k

2 CN⇥1 is the measurement vector with the entries from each ULA sensor, s 2 CN⇥1

is the steering or the channel vector of the SOI and n

k

2 CN⇥1 is the noise vector.
Traditional complex-valued adaptive beamformers were derived as generic extensions of

their real-valued counterparts where the signal m
k

is recovered by a strictly linear adaptive
filter, ŷ

k

= h

H
k

x

k

with output ŷ
k

which corresponds to the recovered signal and the input x
k

is from the antenna array measurements given in (4.25). The beamforming filter weight vector
h

k

is adaptively estimated by minimising the mean square error (MSE) cost function given by

JMSE = E
n

|m
k

� ŷ
k

|2
o

= E
n

�

�m
k

� h

H
k

x

k

�

�

2

o

. (4.26)

The strictly linear solution to the cost function in (4.26) is only optimal for a restricted class
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Figure 4.4: The estimate of circularity coefficient for wind signals in the low, medium and high
dynamic regimes using the proposed algorithm.
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Figure 4.5: Steady-state misadjustment of the circularity tracker for varying levels of signal
non-circularity.

of signals which are second order circular and a widely linear beamformer is required for a
general class of non-circular signals. The widely linear beamformer is able to recover non-
circular SOI using a widely linear model which utilizes both x

k

and its conjugate x

⇤
k

to give
ŷ
k

= h

H
k

x

k

+g

H
k

x

⇤
k

. The filter weight vectors h
k

and g

k

are also derived by minimising the MSE
cost function given by [71]

JMSE = E
n

�

�m
k

� h

H
k

x

k

� g

H
k

x

⇤
k

�

�

2

o

. (4.27)

Adaptive (real-time) beamformers are derived by minimising the cost functions given in (4.26)
and (4.27) either via the stochastic gradient descent to form the complex least mean square
(CLMS) [52] and augmented CLMS (ACLMS) algorithms [42, 53] or by minimising sum of the
error squares recursively to form the recursive least squares (RLS) [72] and widely linear RLS
(WL–RLS) algorithms [73].

For an N�sensor antenna array, widely linear beamformers are able to process more than
the conventional limit of (N � 1) sources when two or more of the sources are rectilinear [74].
A rectilinear source is a special case of a complex-valued source as it is effectively a single real-
valued source with an arbitrary phase shift. However, since the widely linear solution for (4.27)
requires twice the number of complex coefficients compared to the strictly linear solution for
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(4.26), this results in an increase in computational complexity. Moreover, doubling the number
of coefficients for adaptive filters results in a larger steady state excess MSE [30]. Therefore, it
is important to determine the rectilinearity of the sources prior to employing either a strictly
linear or a widely linear adaptive beamformer1.

The idea of detecting the rectilinearity of sources after a blind source separation (BSS) step
for wireless communication signals was first suggested in [74], where the sample covariance
and pseudocovariance were used to estimate the rectilinearity of the signal. Other more so-
phisticated tools to estimate the non-circularity (hence, rectilinearity) of signals have been
suggested in the past, see [64, 65, 75]. However, as most of these algorithms, including the
approach in [74], are block-based, they are not suitable for real-time applications or for non-
stationary data.

To this end, we show that the rectilinearity detection idea in [74] can be extended for on-
line applications by a combination of an adaptive (online) BSS algorithm [76] and a real-time
rectilinearity tracker based on the circularity tracker in proposed in (4.7a)–(4.7c).

Contribution: Rectilinear Tracking Algorithm
The circularity tracker proposed in this chapter is applied to develop the first
online rectilinearity estimation algorithm in communication networks, see Algo-
rithm 2. The motivation of the algorithm was the fact that that the steady-state
MSD of the circularity tracker in (4.21) is null for rectilinear signals.

4.6.1 Online Blind Source Separation

Consider representing the signal in (4.25) as a mixture of M sources corrupted by background
noise n

b,k

, such that

x

k

=

M

X

`=1

s
`,k

h

`

+ n

b,k

= Hs

k

+ n

b,k

, (4.28)

where s

k

= [s
1,k

, s
2,k

, . . . , s
M,k

]

T is a vector containing all the sources s
`,k

, the columns of H
are the channel vectors h

`

of the sources ` = {1, . . . ,M}, and n

b,k

is assumed to be zero-mean,
circular and Gaussian. At each time instant k, the separation task can be expressed as

y

k

= D
k

x

k

, (4.29)

where x

k

is the mixture of sources given in (4.28).
In this work, we employ the well known class of equivariant adaptive separation via inde-

pendence (EASI) algorithms for adaptive (real-time) separation of instantaneous mixtures of
blind sources [76, 77]. A serial update of the de-mixing matrix D

k

in the EASI algorithm is
1Note that we have assumed that the criterion for choosing between strictly linear and widely linear processing is

based solely on the number of sources that can be separated.
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derived using the relative gradient of the objective function and is given by [76, 78]

D
k+1

= D
k

+ µ̃
I� g(y

k

)y

H
k

1 + µ̃
�

�

y

H
k

g(y
k

)

�

�

D
k

, (4.30)

where µ̃ is a positive step-size which governs the trade-off between convergence rate and sep-
aration accuracy.

Remark 4.5. The initial value of the separating matrix, i.e. D
0

, is formed with IID entries drawn from
a zero-mean Gaussian distribution [76].

The function g(y) = [g
1

(y
1

), g
2

(y
2

), . . . , g
N

(y
N

)]

T is a component-wise nonlinear function of
the elements in y = [y

1

, y
2

, . . . , y
N

]

T. Choosing the optimal nonlinear function g(·) is difficult
in practice since it depends on the statistical distributions of the sources which are unknown
a priori. Having said that, a simple choice of a nonlinear function for non-Gaussian sources is
found to be g

i

(y
i

) = y
i

f
i

⇣

|y
i

|2
⌘

8i 2 {1, 2, . . . , N} where f
i

(·) is a suitable real-valued function

[79]. The simplest choice of f
i

is f
i

⇣

|y
i

|2
⌘

= |y
i

|2 which gives [80, 81]

g
i

(y
i

) = y
i

|y
i

|2 . (4.31)

4.6.2 Real-Time Detection of Rectilinear Sources

Consider the problem of estimating the rectilinearity of the sources s
`,k

within the noisy instan-
taneous mixture x

k

given in (4.28) at each time instant k. As a new measurement x
k

arrives,
the proposed algorithm separates the sources and updates both the de-mixing matrix, D

k

, and
the circularity quotient, ⇢̂

k

, of the separated sources. If the circularity coefficient exceeds a cer-
tain threshold �

ˆ

M

, the signal is classified as rectilinear. The proposed algorithm is outlined in
Algorithm 2.

Algorithm 2. Real Time Tracker of Rectilinearity
Input data: Array measurements, x

k

Initialise with: Circularity tracker, ⇢̂
y

i

,0

= 0 and demixing matrix, D
0

according to Remark
4.5.
At each time instant k > 0 :

1: for ˆM = {1, 2, 3, . . . , N} do
2: Separate the ˆM blind sources

y

k

= D
k

x

k

3: Update the de-mixing matrix D
k

using (4.30).

D
k+1

= D
k

+ µ̃
I�g(y

k

)y

H
k

1+µ̃|yH
k

g(y
k

)|Dk

4: Update the circularity quotient ⇢
y

i

,k

for each element of y
k

using (4.7a) – (4.7c).
⇢̂
y

i

,k+1

= ⇢̂
y

i

,k

+ µ(y2
i,k

� ⇢̂
y

i

,k

|y
i,k

|2)
5: If circularity coefficient |⇢̂

y

i

,k

| > �
ˆ

M

, then source y
i

is rectilinear.
6: end for
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Remark 4.6. Although rectilinear sources have a circularity coefficient of unity, the separated sources
would be corrupted by noise which may not be rectilinear. Therefore, even in the case of perfect sep-
aration, the separated source which is fed into the rectilinear tracker will never be perfectly rectilinear.
Consequently, the detection threshold is chosen to be �

ˆ

M

< 1. The optimal choice of the detection thresh-
old �

ˆ

M

is out of the scope of this thesis and in our simulations we used a value that was close to unity,
e.g. �

ˆ

M

= 0.9.

4.6.3 Rectilinear Tracking Case Studies

We considered a ULA of 4 omnidirectional sensors, equispaced half a wavelength apart, that
received four statistically independent narrow band sources which were either binary phase
shift keying (BPSK) or quadrature phase shift keying (QPSK) sources corrupted by zero-mean
white Gaussian noise. The directions of arrival of the sources were {�45�, 8�,�13�, 30�} and
the SNR was chosen to be 10 dB.

The type of narrowband signals received by the antenna array changes so that for the first
500 samples, the sources were chosen to be four independent QPSK signals (circular, non-
rectilinear) and for the last 500 samples, three independent BPSK signals (rectilinear) and one
independent QPSK signal were chosen. The modified EASI shown in (4.30) was applied to
separate sources hidden in the observed signal. The separation matrix D

k

was initialised with
random entries and the nonlinear function g(·) given in (4.31) was used.
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Figure 4.6: Constellations of four separated QPSK sources (circular, non-rectilinear) present in
the first 500 samples of the received signal. The step-size used for the BSS process was µ̃ = 0.1.

For the first 100 iterations, the step-size µ̃ was set to be relatively large (µ̃ = 0.1) for rapid
convergence. Then, the value of µ̃ was reduced to µ̃ = 0.03 for steady-state accuracy. Figure
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4.6 and Figure 4.7 show the constellations of separated sources ( ˆM = M = 4) within the first
500 samples and the last 500 samples respectively. The separated sources in Figure 4.6, appear
noisier than the sources in Figure 4.7 since a larger step-size µ̃ was used for the first 100 samples.
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Figure 4.7: Sources 1–3 show the constellations of three separated BPSK sources (rectilinear)
while Source 4 shows the constellation of one separated QPSK source (circular, non-rectilinear)
present in the second 500 samples of the received signal. The step-size used for the BSS process
was µ̃ = 0.03.

For the circularity tracker, the initial estimates were set to zero while the step-size was
chosen to be relatively large, µ = 0.2, for a fast convergence rate. The evolution of the circularity
coefficient estimates of the sources is shown in Figure 4.8. The estimates of the circularity
coefficients of the four separated QPSK sources oscillated between 0 (the true value of the
circularity coefficient) and 0.5. This large fluctuation is attributed to the background noise
and the relatively large step-size µ which was chosen so that the algorithm converges rapidly.
Nevertheless, from the samples 500 onwards, the circularity coefficient estimates of the three
separated BPSK sources converged to a value close to unity. As mentioned in Remark 4.6, this
is due to the fact that the sources are corrupted by non-rectilinear noise. When the estimated
number of sources was not equal to the true number ( ˆM = 1, 2, 3), the circularity coefficients
were all less than the threshold �

ˆ

M

= 0.9.

4.7 Chapter Summary

A novel algorithm for the estimation of the degree of circularity of a complex-valued signal
has been proposed in (4.7a) – (4.7c). This has been achieved by tracking the evolution of the
CLMS weight that estimates the complex conjugate of a signal from the original signal itself.
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Figure 4.8: Circularity coefficient estimates of the separated sources. Detection threshold was
chosen to be �

ˆ

M

= 0.9.

The motivation for this algorithm was in the relationship between the circularity quotient and
the optimal linear estimator for the complex conjugate of a signal from the original signal in
(4.6). The conditions for the stability in the mean and mean square which follow the classic
CLMS results have been shown respectively in Theorem 4.1 and Theorem 4.2.

The proposed circularity tracker was also extended to serve as a novel real-time detector of
rectilinearity for wireless communication signals as outlined in Algorithm 2. The rectilineartiy
detector combines an online BSS algorithm to separate the signal received by an antenna array
and the proposed circularity tracker to detect the rectilinearity of the separated sources. The
steady-state mean square deviation of the circularity tracker in (4.21) was exploited to tune the
algorithm for rectilinear signals so as to achieve rapid convergence. The proposed circularity
tracker has been verified on complex-valued wind data, synthetically generated Gaussian data,
and synthetically generated BPSK and QPSK sources.

Conclusion to Part I

This chapter concludes the first part of this thesis on adaptive algorithms for widely linear
estimation. In Chapter 3, a new methodology for designing widely linear adaptive filters was
proposed while this chapter explored a new application of complex-valued adaptive filters in
tracking non-circularity. The second part of this thesis (Part II), explores distributed adaptive
algorithms which extend the single node adaptive filters to a network-based implementation
with multiple agents that act collaboratively in order to jointly estimate a parameter of interest.
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Chapter 5

Diffusion Complex Least Mean Square

The Internet will disappear. There will be
so many IP addresses, so many devices,
sensors, things that you are wearing,
things that you are interacting with, that
you won’t even sense it. It will be part of
your presence all the time.

Eric Schmidt

Chapter Overview

In the next two chapters, the focus shifts to the problem of distributed learning and adaptation
over sensor networks. For this chapter, we shall extend the augmented complex least mean
square (ACLMS) introduced in Chapter 2, to a distributed setting using the so-called diffusion
strategy for distributed adaptive filtering. The main contribution of this chapter, however,
is the mean square analysis of the diffusion ACLMS outlined in Section 5.5.3. The proposed
mean square analysis is more physically meaningful compared to the current results, while
also avoiding the use of the standard small step-size assumption which is routinely used to
simplify the analysis.

5.1 Introduction

Sensor networks which found early success from defence-focused applications (e.g. collabo-
rative target tracking) are now experiencing widespread adoption in other areas like environ-
mental monitoring, industrial sensing and traffic control [82]. This growth is mainly fuelled by
the emergence of low-cost sensors with communications and computational capabilities. The
task of developing fast and robust signal processing algorithms for these sensor networks has
therefore been a subject of great interest in the signal processing, control and machine learning
communities [83].

Specifically we consider ad hoc sensor networks where agents (nodes) do not communicate
to a fusion centre but are only able to communicate with their neighbours via single-hop com-
munications [84, 85]. A special case of this communication protocol is known as “gossiping”
where at a particular time instant, a node only communicates to one other node [83]. We shall
next address the problem formally, using sensor network and graph theory conventions.
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5.2 Background

Consider a general network that is represented by an undirected graph G = (N , E), with node
set N = {1, 2, . . . , N}, where N is the number of nodes in the network and edge set E denotes
the connections between the nodes in the network. The neighbourhood of a node i, denoted by
N

i

, is defined as all the nodes connected to node i including itself, that is N
i

= {j | (i, j) 2 E}
[23]. The communication links are also assumed to be symmetric, that is, node i both transmits
and receives messages from its neighbours.

The cardinality of set N
i

def
= |N

i

| is defined as the number of connections node i has with its
neighbours including itself, as illustrated in Figure 5.1. The term N

max

def
= max

i

{N
i

}, denotes
the maximum number of connections in the network. The connectivity information is repre-

sented using a graph adjacency matrix, N 2 RN⇥N , whereby, the [N]

im

= 1 if node i and m

have a communication link and [N]

im

= 0, otherwise.

Node i

Ni

Figure 5.1: A distributed network with N = 20 nodes.

The task of the network is to estimate a global parameter vector, w, (assumed to be identical
throughout the network) observed from noisy local measurements, (y

i,k

,x
i,k

), whereby the
subscript i denotes the node and k the time instant. This is accomplished by minimising the
global mean square error (MSE) cost function [84, 85], to yield

w

�
cen = argmin

w

1

N

N

X

`=1

E
�|y

`,k

�w

H
x

`,k

|2 . (5.1)

In the centralised estimation solution for the model in (5.1), observations collected by each
node are transmitted to a fusion centre where a desired algorithm performs the estimation task.
Specifically, the optimal solution to (5.1) is given by the centralised Wiener solution [86],

w

�
cen =

 

1

N

N

X

`=1

R
`

!�1

 

1

N

N

X

`=1

r

`

!

, (5.2)

where R
`

= E
n

x

`,k

x

H
`,k

o

, is the data covariance matrix at node ` and r

`

= E
n

x

`,k

y⇤
`,k

o

is the
cross-covariance vector. Alternatively, a recursive stochastic gradient solution to the LMMSE
problem is the centralised complex-least mean square (C-CLMS) given by [84]

b

wcen,k+1

=

b

wcen,k +

µ

N

N

X

`=1

x

`,k

(y⇤
`,k

� x

H
`,k

b

wcen,k), (5.3)

where µ is the step-size. The C-CLMS solution statistically converges to the optimal Wiener
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solution in (5.2) but allows for an online implementation which is suitable for non-stationary
real-world data.

Although the centralised solutions in (5.2)–(5.3) would be globally optimal, excessive com-
munication constraints are placed on the nodes. The aim is to somehow conduct the estimation
task in a distributed manner, where each node performs the estimation based on the measure-
ments available to itself and its neighbours, and propagate the estimated weights throughout
the network to reach a solution close to the centralised solution.

Notice that both the centralised Wiener solution on (5.2) and the CLMS solution (5.3),
require the average network data statistics, e.g. 1

N

P

`=1

R
`

. The problem of computing a
global average quantity in a network in which nodes communicate only with their neighbours,
has been long studied in the distributed averaging and consensus filtering communities [87].
Therefore, we shall review some basic ideas on distributed averaging which forms the basis of
many distributed estimation algorithms.

5.3 Distributed Averaging

Now, consider the problem of finding an average quantity in a sensor network where each
node takes a single measurement of the field (say, the temperature) and aims to compute the
average temperature of the field in the form

ȳ =

1

N

N

X

`=1

y
`

, (5.4)

where y
`

is a measurement made at node `. The computation of the mean value in (5.4) clearly
requires the data collected in the entire network. Now, suppose that the nodes are only able
to communicate their values to other neighbouring nodes, whereby no node has access to all
the measurements in the network. To compute the global average, each node obtains a local
weighted average  

i,t

, given by [88]

 
i,t

=

X

`2N
i

a
`i

 
`,t�1

, (5.5)

where t is the iteration number and the intermediate estimates are initialised with the field
measurement  

i,0

= y
i

, while a
`i

is the weight node i assigns to its neighbours. For an unbiased
estimation the weighting coefficients sum to unity,

P

`

a
`i

= 1 [88, 89]. Furthermore, the nodes
share their intermediate local averages,  

i,t

with their neighbours and the averaging step in
(5.5) is repeated multiple times. The local averages in (5.5) at each node can be shown to
converge the global average in (5.4) asymptotically [89].

To prove the result, the local averaging steps throughout the network can be collectively
represented by first defining the intermediate local estimates as  

t

def
= [ 

1,t

, 
2,t

, . . . , 
N,t

]

T.
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Next, the weighting coefficients, a
`i

, can be combined into a matrix, A 2 RN⇥N as [90]

a
11

a
12

· · · a
1i

· · · · · · a
1N

a
21

a
22

· · · a
2i

· · · · · · a
2N

...
...

... a
3i

· · · ...
...

a
i1

a
i2

a
i3

a
ii

a
i5

· · · a
iN

...
... · · · a

5i

. . . · · · ...
...

... · · · ... · · · . . .
...

a
N1

a
N2

· · · a
Ni

· · · · · · a
NN

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Weights used by node i to
scale information from its
neighbours.

A =

Weights assigned to the
estimates from node i by
its neighbours.

(5.6)

where the weights that node i assigns to nodes ` 2 N
i

are in the i-th column of A. Observe that
the matrix A is left-stochastic since all its columns sum up to unity, i.e.

1T
N

A = 1T
N

, AT1
N

= 1
N

, (5.7)

which implies that the principal eigenvalue-eigenvector pair of the matrix AT is (1, 1p
N

1
N

).
The local averaging step in the network from (5.5) can therefore take the form

 

t+1

= AT
 

t

, (5.8)

with  
0

= y, where y = [y
1

, y
2

, . . . , y
N

]

T is the collection of fields measurements. It can be
shown that when the local averaging and sharing is repeated many times, the network mea-
surements converge to

lim

t!1
 

t+1

= AT
 

t

= lim

t!1
(At

)

T
 

0

=

1

N
1
N

1T
N

y, (5.9)

whereby, the asymptotic solution, 1

N

1T
N

y, is the global average solution in (5.4).

5.3.1 Decoupling Adaptation and Diffusion

Consider the network of N nodes, each running the centralised CLMS algorithm in (5.3) in the
following manner

Adapt :  

i,k+1

=

b

w

i,k

+ µx
i,k

(y⇤
i,k

� x

H
i,k

b

w

i,k

) (5.10)

Combine : b

w

i,k+1

=

1

N

N

X

`=1

 

`,k+1

, (5.11)

where each node only updates its weight estimate  
i,k+1

using the local data in step (5.10), but
by virtue of access to the intermediate estimates  

i,k+1

from all the other nodes in (5.11), it is
able to exploit all the information in the network. In fact, if all the nodes are initialised with the
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same value, w
i,0

= ✓, 8i, the decoupled adapt-and-combine steps implemented at each node
in (5.10)–(5.11) yields the identical weight estimates to the centralised solution in (5.3) at each
iteration.

Although the updates in (5.10)–(5.11) appear to only use local measurements, they require
each node to have access to intermediate estimates from all the other nodes, thereby effectively
replicating a centralised solution in (5.3). The combination step in (5.11), which shall also be
referred to as the diffusion step, is a global averaging procedure which naturally admits a
distributed solution. Therefore, the decoupled centralised diffusion step can be configured for
ad hoc sensor networks by replacing the global average step in (5.11) by local averaging similar
to (5.5), which results in the diffusion CLMS algorithm given by [86, 91, 92]

Adapt :  

i,k+1

= w

i,k

+ µx
i,k

(y⇤
i,k

� x

H
i,k

w

i,k

) (5.12)

Combine : w

i,k+1

=

X

`2N
i

a
`i

 

`,k+1

. (5.13)

In the next section, we shall formally derive the diffusion augmented complex least mean
square algorithm (D-ACLMS) which is capable of estimating data generated from widely linear
models.

5.4 Diffusion Augmented Complex Least Mean Square

Suppose that a node i receives streaming measurement data, {y
i,k

, ¯

x

i,k

}, at each time instant
k, where the measurement y

i,k

2 C and input vector (regressor) x
i,k

2 CM⇥1, are related via a
widely linear model [93],

y
i,k

= h

H
x

i,k

+ g

H
x

⇤
i,k

+ ⌘
i,k

, (5.14)

corrupted with zero-mean white noise ⌘
i,k

with variance �2

⌘

. Note that the widely linear model
in (5.14) is a generalisation of the standard strictly linear model for which g = 0. For the
compactness of the analysis, we shall represent both the strictly linear and widely linear models
using

y
i,k

= w

H
¯

x

i,k

+ ⌘
i,k

, (5.15)

where w 2 CM⇥1 and ¯

x

i,k

2 CM⇥1 with M = M for strictly linear models and M = 2M for
widely linear models, see Table 5.1 for details.

Model w

¯

x

i,k

Dimension, M
Strictly Linear h x

i,k

M ⇥ 1

Widely Linear


h

g

� 

x

i,k

x

⇤
i,k

�

2M ⇥ 1

Table 5.1: Input and optimal weight vectors for the strictly linear and widely linear models.
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Adaptation Step

The local mean square error (MSE) between the desired signal and the estimate is given by

J
(i,k)

MSE (w)

def
= E

�|y
i,k

�w

H
¯

x

i,k

|2 . (5.16)

At each node, the diffusion augmented complex least mean square (D-ACLMS) algorithm per-
forms a stochastic gradient descent minimisation procedure on two cost functions in succes-
sion. Firstly, all the nodes minimise the stochastic approximation of the MSE cost function
via

 

i,k

=

b

w

i,k�1

� µ
@ ˆJ

(i,k)

MSE (w)

@w⇤

�

�

�

�

w= bw
i,k�1

, (5.17)

where ˆJ
(i,k)

MSE = |y
i,k

�w

H
¯

x

i,k

|2 is an instantaneous estimate of the MSE cost function in (5.16)
using local measurements y

i,k

and input vectors ¯

x

i,k

and the step-size is µ. Finding the gradient
in from (5.17) yields the ACLMS algorithm1 [53, 93]

 

i,k

=

b

w

i,k�1

+ µ¯x
i,k

⇥

y⇤
i,k

� ¯

x

H
i,k

b

w

i,k�1

⇤

. (5.18)

The term 

i,k

is used instead of w
i,k

to indicate that the estimate in the adaptation step in (5.18)
is an intermediate step and will be succeeded by another operation.

Diffusion Step

The nodes then transmit their local (intermediate) estimates,  
i,k

, to neighbouring nodes so
that each local node performs the second step of the adaptation process, whereby every node
minimises the difference between its own weight estimate in (5.18) and the weights in its neigh-
bourhood N

i

, by minimising the cost function

J
(i,k)

AV ( )

def
=

X

`2N
i

b
`i

k 
`,k

� k2, (5.19)

which is the weighted norm (using weights b
`i

) of the difference between the estimates in the
neighbourhood. The minimisation of this cost function is carried out using the gradient descent
method where

b

w

i,k

=  

i,k

� µ
@J

(i,k)

AV ( )

@ ⇤

�

�

�

�

 = 

i,k

=  

i,k

+

N

X

`=1

µb
`i

( 

`,k

� 
i,k

) (5.20)

Rearranging equation in (5.20) gives

b

w

i,k

=

0

@

1�
X

` 6=i

µb
`i

1

A

 

i,k

+

X

` 6=i

µb
`i

 

`,k

(5.21)

1See Chapter 2 for more details on the derivation of the ACLMS.
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Algorithm 3. Diffusion Augmented Complex Least Mean Square (D-ACLMS)
Initialise each node with: bw

i,0

= 0
Training data: (y

i,k

, ¯x
i,k

)

At each time instant k > 0 :
1: for Nodes i = {1, 2, . . . , N} do
2:  

i,k|k =

b

w

i,k|k�1

+ µ¯x
i,k

h

y⇤
i,k

� ¯

x

H
i,k

b

w

i,k�1

i

3: Diffuse the states from the network:
b

w

i,k|k =

P

`2N
i

a
`i

 

`,k|k

4: end for

Upon defining a
`i

def
= µb

`i

, we can see that a
ii

= 1�P
` 6=i

a
`i

, which yields

b

w

i,k

=

N

X

`=1

a
`i

 

`,k

. (5.22)

The weighting coefficients (sometimes referred to as the “trust coefficients”) are zero, a
`i

= 0, if
the node i and ` are not connected to each other. For sufficiently small step-sizes, the combiners
are also positive, a

`i

� 0, and are chosen so that they sum up to one [90], that is

N

X

`=1

a
`i

= 1 =) a
ii

= 1�
X

` 6=i

a
`i

. (5.23)

The diffusion ACLMS algorithm implemented at each node is then given by [33, 93]

Adapt:  

i,k

=

b

w

i,k�1

+ µ¯x
i,k

⇥

y⇤
i,k

� ¯

x

H
i,k

b

w

i,k�1

⇤

(5.24a)

Combine: b

w

i,k

=

N

X

`=1

a
`i

 

`,k

(5.24b)

The configuration in (5.24a)–(5.24b) is referred to as the Adapt-then-Combine configuration while
in the Combine-then-Adapt scheme, the steps (5.24a)–(5.24b) are reversed. The ATC configura-
tion was shown to have a slight performance advantage in the steady state and is therefore
chosen for the rest of this chapter.

Notes on the Combination Weights

Although the determination of the optimal weights for an arbitrary network of nodes is chal-
lenging without accurate knowledge of the data statistics for every node [94], it is possible to
set combination rules based on information like the cardinality of the neighbourhood. Partic-
ularly, the combination weights a

`i

used by the diffusion step in (5.24b) can obey a number of
rules, including the Metropolis [91], Laplacian [95] or the nearest neighbour [96] rules, how-
ever, finding the set of optimal weights remains an open issue though progress has been made
in some particular cases [90, 94, 97]. Table 5.2 shows the most commonly employed combina-
tion coefficients [90].
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Rules Weighting Coefficients

Averaging a
`i

=

1

N
i

,

Laplacian a
`i

=

8

>

>

>

<

>

>

>

:

1

N
max

, ` 6= i

1� (1�N
i

)

N
max

, ` = i

Maximum Degree a
`i

=

8

>

>

>

<

>

>

>

:

1

N
, ` 6= i

1� (1�N
i

)

N
, ` = i

Relative Degree a
`i

=

N
`

P

m2N
i

N
m

,

Metropolis a
`i

=

8

>

>

>

>

<

>

>

>

>

:

1

max{N
i

, N
`

} , ` 6= i

1�
X

` 6=i

a
`i

, ` = i

Table 5.2: Weighting coefficients for distributed averaging.

5.5 Mean and Mean Square Analysis

Although quantifying the performance of diffusion adaptive networks is not straightforward,
as the interactions between multiple connected adaptive filters add to the complexity of the
analysis, considerable advances have been made in the area [86, 91]. To make the analysis
mathematically tractable, current approaches assume that the step-sizes are small enough so
that the second-order terms in the analysis can be neglected [86, 98, 99, 100, 101, 102]. However,
this assumption somewhat compromises the steady-state analysis since important characteris-
tics of the performance can be influenced by the second-order terms.

To this end, we propose a new method to bound the mean square performance of an adap-
tive network while incorporating the second-order terms in the analyses. The proposed bound
is based on what we refer to as the “similarity assumption” which states that, upon conver-
gence, the steady-state filter weights in the network are almost identical. The similarity con-
jecture is physically meaningful as it exploits the inherent behaviour of the diffusion scheme
in which the individual filters are adapting towards the same optimal weight, while diffus-
ing their intermediate estimates with neighbouring nodes. For a fully connected network, the
bound we propose is exact.

The proposed approach is applied to the analysis of the diffusion complex least mean square
(D-CLMS) [91] and its widely linear counterpart, the diffusion augmented CLMS (D-ACLMS)
[33, 93]. The closed form expressions for the mean square deviation (MSD) and excess mean
square error (EMSE) allow us to quantify the steady-state performance of both the D-CLMS and
D-ACLMS as a function of the input data noncircularity; this is not possible with the current
methods as the noncircularity of the input data is a second-order effect which is neglected if
the small step-size theory is used.
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5.5.1 Network Behaviour

To aid our analysis, we shall represent the behaviour of all the nodes in the network using a
single collective recursion. The D-ACLMS filter variables in the network can be collected using

w

k

= col{w
1,k

, . . . ,w
N,k

}, w

k

2 CMN⇥1

 

k

= col{ 
1,k

, . . . , 
N,k

},  

k

2 CMN⇥1

y

k

= col{y
1,k

, . . . , y
N,k

}, y

k

2 CN⇥1 (5.25)

X
k

=

2

6

6

6

6

4

¯

x

1,k

0 · · · 0

0 ¯

x

2,k

· · · 0

0 0
. . . 0

0 0 · · · ¯

x

N,k

3

7

7

7

7

5

, X
k

2 CMN⇥N

A = A⌦ I
M

, A 2 RMN⇥MN ,

where col{·} operator creates a column vector of its arguments and ⌦ is the Kronecker product
operator. This set-up applies to both the D-CLMS with M = M and D-ACLMS with M = 2M ,
see Table 5.1.

The D-ACLMS algorithm from (5.24a) and (5.24b) for the network can therefore be ex-
pressed as

Adapt:  
k+1

= w

k

+ µX
k

�

y

⇤
k

�XH
k

w

k

�

(5.26a)

Combine: w

k+1

= AT
 

k+1

. (5.26b)

Before the mean and mean square converge analyses are carried out, we shall define the
optimal weight vector for the network as wnet

def
= 1

N

⌦w, since all the nodes in the network are
estimating the same optimal weights w 2 CM .

Subtracting wnet from both sides of (5.26a)–(5.26b), using the desired signal model in (5.15)
and recognising that AT

wnet = wnet enables the network weight error recursion to be formu-
lated as

˜

w

k+1

= AT
⇣

˜

w

k

� µ bR
k

˜

w

k

� µn
k

⌘

, (5.27)

where bR
k

def
= X

k

XH
k

and n

k

def
= X

k

⌘

⇤
k

, while ⌘
k

= col{⌘
1,k

, . . . , ⌘
N,k

} is the vector containing
measurement noise from all the nodes.

5.5.2 Mean Convergence of the D-ACLMS

Both the mean and mean square analysis of the D-ACLMS will rely upon the network weight
error vector in (5.27). Specifically, the mean convergence of the D-ACLMS as addressed in
Theorem 5.1 states that if all the individual ACLMS filters in the network convergence in the
mean, the network also converges.
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Theorem 5.1 (D-ACLMS Mean Convergence). Consider the D-ACLMS algorithm in (5.24a) –
(5.24b) for the associated true system in (5.15). Suppose that the following assumptions hold:

A.1) The input vector, ¯x
i,k

, has zero-mean and is independent and identically distributed (IID) across
time k, and nodes i, with covariance and pseudocovariance matrices respectively given by ¯R =

E
n

¯

x

i,k

¯

x

H
i,k

o

, ¯P = E
n

¯

x

i,k

¯

x

T
i,k

o

.

A.2) The measurement noise sequence, {⌘
i,k

}
i,k2N is a zero-mean, white noise process which is IID

across time k, and nodes i, and is statistically independent to input vector sequence, {x
i,k

}
i,k2N.

Its variance given by, �2

⌘

= E
�|⌘

i,k

|2 8i, k.

Then, the D-ACLMS algorithm converges in the mean if all the individual ACLMS algorithms in the
network convergence in the mean, that is

lim

k!1
E { ˜w

k

} = 0 if lim

k!1
E { ˜w

i,k

} = 0 8 i. (5.28)

Proof.
Applying the statistical expectation operator to the weight error recursion in (5.27) and apply-
ing Assumptions A.1 – A.2 in Theorem 5.1 yields

E { ˜w
k+1

} = AT
(I � µR )

| {z }

B
E { ˜w

k

} , (5.29)

where the matrix R = E
�

X
k

XH
k

 

is a block-diagonal matrix given by

R =

2

6

6

6

6

4

¯R
1

0 · · · 0

0 ¯R
2

· · · 0
...

...
. . .

...
0 0 · · · ¯R

N

3

7

7

7

7

5

. (5.30)

with input data covariance (or augmented covariance) matrices at each node, ¯R
i

= E
n

¯

x

i,k

¯

x

H
i,k

o

=

R, according to Assumption A.1 in Theorem 5.1. Therefore, the weight error recursion can be
written as

E { ˜w
k+1

} = ATBE { ˜w
k

} . (5.31)

For this recursion to be a contraction, the spectral radius of the matrix ATB has to be less than
unity. The spectral radius of a matrix, denoted by %(·), is bounded by any induced matrix norm
as [103]

%(ATB)  kATBk  kATkkBk. (5.32)

Since the matrices and vectors in the analysis are of block-form, we shall introduce the so-called
“block-maximum norm”. Let w = col{w

1

,w
2

, . . .w
N

} denote a block vector with N column
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vectors, w
i

, each with dimension M . The block maximum norm of w is [90, App. D]

kwk
b,1

def
= max

1iN

kw
i

k
2

,

where k · k
2

denotes the Euclidean norm. The corresponding induced block maximum norm
for a matrix, M, is defined as

kMk
b,1

def
= max

w 6=0

kMwk
b,1

kwk
b,1

.

The block maximum norm of the stochastic matrix in (5.31) is given by kAk
b,1 = 1. Therefore,

selecting the block-maximum norm for the inequality in (5.32) gives

%(ATB)  kATk
b,1kBkb,1 = kBk

b,1. (5.33)

Also, as B is a Hermitian block-diagonal matrix, its block maximum norm is equal to its
spectral radius kBk

b,1 = %(B) which implies that [90, App. D]

%(ATB)  %(B) (5.34)

for any left stochastic matrix A [90]. For the mean convergence of the individual ACLMS
algorithms, please refer to Chapter 2.

Remark 5.1. The diffusion strategy enhances the stability range of the network by reducing the spectral
radius of ATB.

Contribution: Mean Square Analysis of the D-ACLMS
The contribution of this chapter is the mean square analysis of the D-CLMS and
D-ACLMS in Theorem 5.2. The proposed analysis avoids the small step-size
assumption used in the current theory. This is accomplished by proposing and
using the similarity assumption in (5.36). This results in the structurally elegant
steady-state MSD in (5.52) which is able reveal the effects of the second-order
terms like noncircularity of the input data on the network MSD.

5.5.3 Mean Square Analysis of the D-ACLMS

The mean square behaviour of the network is analysed using the weight error covariance ma-
trix

K
k

def
= E

�

˜

w

k

˜

w

H
k

 

, (5.35)

where ˜

w

k

= wnet � w

k

is the network weight error vector defined in (5.27). Notice that the
weight error covariance matrix is a block matrix in which the ij-th block is given by [K

k

]

ij

def
=

K
ij,k

= E
n

˜

w

i,k

˜

w

H
j,k

o

.
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Theorem 5.2 (D-ACLMS Steady-state Mean Square Deviation). Consider the D-ACLMS algo-
rithm in (5.24a) –(5.24b) for the associated true system in (5.15). In addition to the Assumptions A.1 –
A.2 in Theorem 5.1, suppose that the following assumptions hold:

A.3) The elements of the input vectors, ¯x
i,k

, are drawn from a IID Gaussian distribution, so that the
covariance and pseudocovariance matrices of ¯x

i,k

, are given by ¯R = rI, ¯P = pI.

A.4) The D-ACLMS converges to a steady-state, with the weight vectors at each node given by

lim

k!1
˜

w

k

= 1
N

⌦ ˜

w

ss

, (a.s.) (5.36)

where ˜

w

ss

2 CM⇥1.

Then, there exists real scalars, 0 < ↵  1 and

#
def
=

�

1� 2µr + µ2r2 + ↵µ2

(|p|2 + r2M)

�

, (5.37)

with 0 < # < 1 when the step-sizes µ of the individual filters in the node are chosen to satisfy

0 < µ <
2r

r2 + ↵(|p|2 + r2M)

, (5.38)

so that the average steady-state mean square deviation of the D-ACLMS is bounded by

lim

k!1

1

N
E
�k ˜w

k

k2 =

↵µ2�2

⌘

Tr[

¯R]

1� # . (5.39)

Remark 5.2. The contribution of Theorem 5.2 is the removal a restrictive assumption employed in
current analysis of distributed adaptive filters which is that the step-size µ is small, so that terms which
contain the variable µ2 can be ignored [90]. We however, introduce Assumption A.4 to keep the analysis
mathematically tractable while considering the second order, i.e. µ2, terms. Assumption A.4 is realistic
as the “combine step” (5.26a) reduces the difference between filter weight vectors via averaging and the
“adapt step” in (5.26b) forces the filter weights to evolve towards the true value, w, which is identical
throughout the network.

Proof.
The weight error covariance matrix, K

k

, is obtained by first post-multiplying both sides of
(5.27) by their Hermitian transpose and taking the statistical expectation to give
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. (5.40)

First, notice that the network input data statistics are given by both the covariance and pseu-
docovariance matrices, respectively denoted by R = E

�

X
k

XH
k

 

and P = E
�

X
k

XT
k

 

. Next,
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the ij-th block of the block-matrix E
n

bR
k

˜

w

k

˜

w

H
k

bR
k

o

in (5.40) is given by
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. (5.41)

Using the Gaussian data assumption in Assumption A.3 in Theorem 5.2 and the Gaussian mo-
ment factorising theorem, the expression in (5.41) becomes
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and P
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¯
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¯
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are respectively the covariance and pseudo-
covariance matrices of the input vector at node i. This results in,

¯K
k
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, . . . ,K
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}
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= bdiag

�
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K
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, . . . ,Tr[ ¯R
N

K
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,

and where the operator bdiag{·} creates a block diagonal matrix. Then, upon applying employ-
ing the Assumptions A.1 – A.2 from Theorem 5.1 and Assumption 5.2, we have

K
k+1

= AT
⇣

K
k

� µK
k

R� µRK
k

+ µ2RK
k

R

+ µ2P ¯KT
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P + µ2T
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⌘

R
⌘

A, (5.42)

where apart from the weight error covariance matrix, K
k

, and the combination matrix, A, all
the other matrices are block diagonal. A consequence of Assumption A.4 in Theorem (5.2)
which will be exploited in the analysis is

lim

k!1
K

k

= 1
N

1T
N

⌦K
ss

, K
ss

2 CM⇥M . (5.43)

Remark 5.3. For a fully connected network (equivalent to a centralised system), the approximations in
(5.36) and (5.43) are exact not only at the steady-state but at every iteration.

For a fully connected network, the combination matrix becomes A =

1

N

1
N

1T
N

, [89] therefore
from the combine step in (5.26b)

˜
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`,k

. This implies that K
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1T
N
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˜

 av,k
˜

 

H
av,k

o

, thereby complet-
ing the proof.

Remark 5.4. For all other topologies, the similarity assumption in (5.43) acts as an upper bound for
the mean square performance. This is because equation (5.43) can be interpreted as replacing the weight
error cross-covariance matrices between the different nodes, K

ij,k

, with the weight error auto-covariance
matrix, K

ii,k

, which acts as an upper-bound to K
ij,k

.
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Single Filter Representation of the D-ACLMS

Finally, incorporating Assumption A.1 which states that the covariance and pseudocovariance
matrices are identical throughout the network, i.e. ¯R

i

= R and ¯P
i

= P, 8i, together with
the similarity assumption in (5.43) enables the terms in the network weight error covariance
recursion in (5.42) to be reduced to R = I

N

⌦ ¯R, P = I
N

⌦ ¯P, ¯K
k

= I
N

⌦K
k

, T
k

= Tr[

¯RK
k

]I
NM

.
Taking the average of the matrices in the block diagonal entries of (5.42) as

K
k

def
=

1

N

N

X

i=1

[K
k

]

ii

, (5.44)

now gives the evolution of the average weight error covariance matrix in the network in the
form

K
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= K
k

� µK
k

¯R� µ ¯RK
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¯RK
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¯R (5.45)

+ ↵µ2
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+ Tr[

¯RK
k

]
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⌘

¯R
�

,

where ↵ = Tr[ATA]/N is the factor that captures the effect of the diffusion strategy.

Remark 5.5. The factor ↵  1 acts as a contractive term, which reduces the mean square error along
the iterations.

Proof: Since a
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2

= 1. (5.46)

It is important to note that employing the similarity assumption and uniform data statistics
transforms the network mean square performance recursion in (5.42) into a representation in
(5.45), which resembles a classical single filter weight error covariance recursion [104, 105, 106]
as reviewed in Chapter 2. Although the diffusion network has been analysed from a single-
node perspective in the past [107, 108], the proposed similarity assumption simplifies the anal-
ysis by giving a means to deal with cross-nodal weight error covariance terms as explained in
Remark 5.4.

Now, we proceed by analysing the D-ACLMS similarly to the individual ACLMS in Chapter
2. Applying the trace operator, we have
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Using Assumption A.3 in Theorem 5.2, which states that the augmented covariance and pseu-
docovariance matrices are diagonal, we have

Tr[K
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] = Tr[

�

1� 2µr + µ2r2 + ↵µ2

(|p|2 + r2M
�
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Defining # =

�
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�

gives
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¯R]. (5.50)

To satisfy the condition # < 1, the step-size µ has to be chosen such that

0 < µ <
2r

r2 + ↵(|p|2 + r2M)

.

Applying the equality in (5.50) successively and letting k !1 gives
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k!1
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Tr[
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Also, from (5.44), we finally have

lim

k!1

1
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E
�k ˜w

k
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↵µ2�2
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Tr[

¯R]

1� # . (5.52)

Remark 5.6. The closed form expressions in (5.52) have much simpler forms compared to the existing
results. As stated in Remark 5.4, the so obtained MSD and EMSE expressions are exact for a fully
connected network and represent an upper bound on the performance for other topologies.

Remark 5.7. The steady-state mean square deviation and bounds for the step-sizes in Theorem 5.2
are related to the results of Theorem 2.3 in Chapter 2. However, we would like to point out a several
differences:

• Firstly, by virtue of the diagonal covariance and pseudocovariance matrices in Assumption A.3,
the expression for # in (5.37) involves the scalars r and p which are also the eigenvalues of the
matrices ¯R and ¯P. This also enables the expression for the MSD in (5.39) to be stated as an
equality rather than a bound.

• Secondly, the term ↵ which appears in both the step-size bound in (5.38) and MSD in (5.39),
represents the network topology and the combination scheme used in the D-ACLMS.

5.6 Simulations

In the following simulations, the proposed MSD expression in (5.52), denoted by “(New)” was
benchmarked against the current mean square analysis [90] denoted by “(Old)” and Monte-
Carlo simulations for MSD values for a system identification task in a network of 20 nodes.
The system was an FIR channel with weight vector h = [�0.2, 0.8]T. Unless stated otherwise,
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the input x
k

was a zero-mean Gaussian process with covariance matrix R = I
M

and pseudo-
covariance matrix P = 0 and the step-size was µ = 0.1. The Metropolis rule was chosen as the
combination rule according to Table 5.2.

The simulations were repeated with other well-known combination rules like the uniform,
Laplacian, relative degree and maximum degree rules [101], and the relationship between the
MSD and the level of connectivity, step-sizes and input circularity were identical. We therefore
have chosen to present the results with the Metropolis rule.

Case Study #1: Varying levels of connectivity.

In the first set of simulations, the MSD was evaluated at different levels of connectivity within
the network. For each level of connectivity (i.e. number of connections in the network), the
performance was averaged over an ensemble of 5000 randomly generated network topologies.
A single realisation of a 20-node network with 30 connections is shown in Figure 5.1. Figure
5.2 shows that, as discussed in Remark 5.4, the theoretical MSD proposed in (5.52) was closest
to the actual MSDs obtained from the Monte-Carlo simulation in a fully connected network
because it mimics the centralised implementation where the filter weights in all the nodes are
identical. For networks with only a few connections, the theoretical MSD from (5.52) acts as an
upper bound for the algorithm performance.
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Figure 5.2: MSD values for in a 20-node network with varying levels of connectivity.

Case Study #2: Varying the step-sizes.

Figure 5.3 shows the MSD values for a fully connected 20-node network with different step-
sizes. For small step-sizes, as expected, the existing expression for the MSD matches the sim-
ulated values. However, for larger step-sizes, the proposed MSD better models the simulated
values.

Case Study #3: Effects of noncircularity.

In the third set of simulations (as shown in Figure 5.4), the input signal was noncircular with
varying levels of noncircularity modelled as P = ⇢I. Current mean square analyses [90] use a
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Figure 5.3: MSD levels for different step-sizes.

small step-size assumption to neglect the second-order terms associated with µ2, and in doing
so they do not capture the impact of noncircularity of the input signal on the performance. The
proposed expression in (5.52), however, produced the MSD performance that almost identically
matches the values obtained from the Monte-Carlo simulations. As shown in [35], the MSD is
directly proportional to the noncircularity of the input.

0 0.2 0.4 0.6 0.8 1
2.63

2.64

2.65

2.66

2.67 x 10−3

Circularity Coefficient, |ρ|

M
SD

MSD vs Input Noncircularity

 

 

Theory (Old)
Theory (New)
Simulation

Figure 5.4: MSD values for different levels of input noncircularity.

5.7 Chapter Summary

We have introduced the strictly linear and widely linear D-CLMS and D-ACLMS algorithms
which generalize their single-node counterparts to collaborative estimation tasks, as outlined
in Algorithm 3. For rigour, a novel, compact and physically meaningful mean square analysis
for both the D-CLMS and D-ACLMS algorithms has been proposed in Theorem 5.2. This has
been achieved based on the so-called “similarity assumption” in (5.36) which allows for the
incorporation of the second-order terms, while maintaining the mathematical tractability of
the analysis. This has resulted in the structurally elegant steady-state MSD in (5.52). The pro-
posed method has then been applied to study the effect of the noncircularity of the input signal
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on the steady-state mean square performance of the D-CLMS and D-ACLMS. Simulations on
synthetic data have verified the proposed analysis.

In Chapter 6, we shall extend the applicability of diffusion adaptive filters by generalising
the widely linear model in (5.14) to cater for non-linear models. This will be accomplished
using a complex-valued extended Kalman filtering scheme which, for the first time, can also
cater for noncircular noise and widely linear models state-space models. The application of the
proposed diffusion nonlinear estimators shall be explored in Chapter 8.
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Chapter 6

Diffusion Complex Extended Kalman Filter

Intelligence is deeply and inevitably
coupled with interaction.

Gerhard Weiss

Chapter Overview

The diffusion-ACLMS algorithm, introduced in Chapter 5, was shown to be suitable for widely
linear models. Although the stochastic-gradient type algorithms like the ACLMS are struc-
turally simple and robust, more general learning algorithms that are able to account for a wider
range of models are needed in many practical applications.

To this end, we introduce a distributed extended Kalman filtering algorithm which is ca-
pable of estimating nonlinear state space models. The proposed distributed extended Kalman
filtering is an extension of the diffusion strategy-based Kalman filter in [109], and caters for
widely linear state and observation models, noncircular data, and spatially correlated mea-
surement noise. In fact, the diffusion augmented complex Kalman filter (D-ACEKF) could also
be considered as a generalisation of the class of diffusion Kalman filters proposed in [96, 109].

6.1 Introduction

Early work in the field of distributed Kalman filtering focused on decentralising the Kalman
filtering operations using individual agents which communicate to a fusion centre [110]. This
method will be referred to as the centralised Kalman filter, since a central fusion centre has
access to all the information in the network. Since communicating to a single fusion centre
makes the network vulnerable to a single point of failure, more decentralised solutions were
proposed. Fully distributed Kalman filters then began to emerge where each node was required
to share all its information with every other node in the network [111, 112], i.e. effectively
replicating the operation of the centralised Kalman filter at each node in the network [111].

More general distributed Kalman filters were proposed in the consensus estimation frame-
work, where the constraint that nodes communicate with every other node in the network was
relaxed [113, 114]. To compensate for the fact that nodes only access the measurements in their
neighbourhood, consensus Kalman filters included a consensus step for their state estimates
whereby the individual nodes exchange and average their intermediate state estimates with
their neighbours several times before the next measurement is obtained [115]. Therefore the
consensus filters operated at two time-scales, a longer time-scale for the measurement updates
and a shorter time-scale for the consensus update. The consensus protocol is therefore unsuit-
able for problems where measurements are taken in a similar time-scale as the communication
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protocol.
The diffusion Kalman filter, proposed in [96], is based on a wider class of diffusion adap-

tive algorithms [90, 97], and enabled both the measurement update and information fusion
throughout the network to be applied in a single time-scale. Furthermore, it was shown that
diffusion strategies enable information to diffuse more thoroughly in the network compared
to consensus strategies [116]. A fundamental feature in the diffusion strategy is that only the
state estimates, together with observation variables, are shared in the network.

However, traditional diffusion strategies only account for strictly linear models with circu-
lar noise processes. To cater for widely linear models, the diffusion augmented Kalman filter
(D-ACKF) was proposed in [117]. In this chapter, we extend the D-ACKF for non-linear models
using the theory of extended Kalman filtering and refer to the proposed algorithm as the diffu-
sion augmented complex extended Kalman filter (D-ACEKF). Mean and mean square analyses
are included for rigour.

6.2 Single-node Complex Kalman Filters

Consider a general network represented by an undirected graph G = (N , E), with node set N =

{1, 2, . . . , N}, where N is the number of nodes in the network and edge set E designates the
connections between the nodes in the network. At each time instant, k, the node i is tasked to
estimate a parameter (or state) vector w

k

2 CM⇥1 which is assumed to be identical throughout
the network but observed locally through measurements y

i,k

2 CL⇥1. The measurements and
state are coupled via a state-space model given by

w

k

= F
k

w

k�1

+ q

k
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i,k

= H
i,k

w

k

+ ⌘

i,k

,
(6.1)

where F
k

2 CM⇥M is the state transition matrix and H
i,k

2 CL⇥M is the observation matrix.
In standard complex-valued Kalman filtering literature, the state noise q

k

2 CM⇥1 and ob-
servation noise ⌘

i,k

2 CL⇥1 are temporally uncorrelated and spatially independent zero-mean
white Gaussian noise processes with a joint covariance and pseudocovariance matrices defined
as [96]
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where �
k,n

and �
i,`

are the Kronecker delta functions which satisfy

�
a,b

=

(

1, if a = b,

0, otherwise.

If no collaboration is allowed, each node is able to perform its own estimation scheme with
the Kalman filter1 given by [118]
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(6.3b)

where the state estimate bw
i,k|k and state error covariance matrix M

i,k|k at each node are ini-
tialised as

b

w

i,0|0 = E {w
0

}
M

i,0|0 = E
�

(w

0

� E {w
0

})(w
0

� E {w
0

})H . (6.4)

Remark 6.1. The initialisation procedure in (6.4) is technically based on some a priori information
about the mean and covariance of the initial state, w

0

. However, linear Kalman filters will converge (in
the mean square sense) even when initialised arbitrarily [119]. Therefore it is common practice to set
b

w

i,0|0 = 0 and M
i,0|0 = cI, where c is a real positive constant, when no prior information is available

[120].

6.2.1 Extension to Nonlinear Models

The linear state-space model in (6.1) can be extended to a nonlinear state-space formulation
with the state and measurement evolutions given by

w

k

= f

k

(w

k�1

) + q

k

y

i,k

= '

i,k

(w

k

) + ⌘

i,k

,
(6.5)

where the nonlinear functions f
k

(·) is the state-transition function while '
i,k

(·) is a general ob-
servation function. The statistics of the process noise, q

k

, and measurement noise, ⌘
i,k

, remain
as (6.2b) – (6.2c).

The Linearised State Space Equations

The original Kalman filter was derived for linear Gaussian systems and to cater for nonlin-
ear models in (6.5), the complex extended Kalman filter (CEKF) linearises the nonlinear state

1A novel derivation of the Kalman in (6.3a) – (6.3b) is included in the Appendix A.
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and observation functions by their first order Taylor series expansions (TSE) about the state
estimates bw

i,k|k and b

w

i,k|k�1

for each node i, so that [121]
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where the Jacobians of functions f(·) and '
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(·) are defined as
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while the variables u
i,k

and ✏
i,k

in (6.6) represent the Taylor series expansion errors and can be
treated as deterministic inputs to the state equations given by
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Notice that in (6.6), the linearised equations for a general state-space admits a widely linear
form by involving both the state w

k

and its conjugate1
w

⇤
k

. For this reason, it shall be useful
to always consider the augmented state-space to account for the widely linear nature of the
linearisation procedure in (6.6). This is accomplished using an augmented version of the state,
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, so that the linearised state
space in (6.6) admits an augmented form
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where the augmented state transition matrix, ¯F
i,k

, observation matrix, ¯H
i,k

, and the Taylor
series errors (deterministic inputs), ¯u

i,k

, ¯✏
i,k

, are given by

¯F
i,k

=

"

F
i,k

˜F
i,k

˜F⇤
i,k
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i,k

#

, ¯H
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=

"

H
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˜H
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˜H⇤
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i,k

#

, ¯

u
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"

u

i,k

u

⇤
i,k

#

, ¯

✏

i,k

=

"

✏

i,k

✏

⇤
i,k

#

.

6.2.2 Single-node ACEKF

The complex Kalman filter methodology in (6.3a) – (6.3b) can now be applied to the linearised
state-space equation in (6.8), to give the augmented complex extended Kalman filter (ACEKF)

1Note that the widely linear model degenerates into a strictly linear one when the state vector is real (i.e. w⇤
k = wk)

or if the observation and state transition functions are analytic (i.e. @'i(·)/@wH
k = 0, or @f(·)/@wH

k = 0).
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algorithm as [121]
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(6.9a)

Update :

8

>

>

>

>

>

<

>

>

>

>

>

:

¯H
i,k

= Jacobian

�

¯

'

i,k

, bw
i,k|k�1

�

M�1

i,k|k = M�1

i,k|k�1

+

¯HH
i,k

¯⌃�1

i,k

¯H
i,k

b

w

i,k|k =

b

w

i,k|k�1

+M
i,k|k ¯H

H
i,k

¯⌃�1

i,k

h

¯

y

i,k

� ¯

'

i,k

(

b

w

i,k|k�1

)

i

, (6.9b)

where the augmented nonlinear functions are ¯

f

k

=

h

f

T
k

f

H
k

iT

and ¯

'

i,k

=

h

'

T
i,k

'

H
i,k

iT

and
the Jacobian(·) operator designates the computation of the Jacobian matrices based on (6.7).
The ACEKF is initialised with the augmented state vector and state error covariance matrix as

b

w

i,0|0 = E { ¯w
0

}
M

i,0|0 = E
�

(

¯

w

0

� E { ¯w
0

})( ¯w
0

� E { ¯w
0

})H .

6.3 Collaboration Schemes

6.3.1 Centralised ACEKF

The most straightforward distributed multi-sensor Kalman filter is the centralised scheme where
all nodes transmit their measurements to a fusion centre which assumes the following cen-
tralised augmented state-space formulation

¯

w
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=
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f

k
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w
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) +

¯

q

k

(6.10a)

¯

ycen,k =

¯

'cen,k( ¯wk

) +

¯

⌘cen,k, (6.10b)

where the network observation vector, ¯ycen,k 2 CNL⇥1, in (6.10b) represents all the observations
in the network, with the collective measurement and measurement noise vectors given by
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⌘

1,k
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⌘
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, (6.11)

while the augmented covariance matrices of the measurement and state noise are respectively
¯⌃cen,k

def
= E

n

⌘cen,k⌘
H
cen,k

o

and ¯C
k

def
= E

�

¯

q

k

¯

q

H
k

 

. Following the augmented state-spaced for-
mulation which lead to the ACEKF in (6.9a) – (6.9b), the centralised ACEKF can be derived as
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Predict :
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(6.12a)

Update :
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(6.12b)

Although the centralised ACEKF in (6.12a) – (6.12b), is the optimal state-estimation algorithm
given access to all the measurements in the network, it requires excessive communications to a
single fusion center. This causes bottlenecks and imposes the risk of the distributed estimation
task to a single point of failure. To avoid these issues, a distributed formulation of (6.12a) –
(6.12b) is accomplished by restricting nodes in the network to only communicate within the
neighbourhood.

6.3.2 Local ACEKF

To remove the dependence on a fusion center, the so-called “Local” ACEKF replicates the cen-
tralised ACEKF at each node using only the observations from its neighbourhood. Specifically,
the node i observes ¯

y

icol,k 2 CLN

i

⇥1, where N
i

= |N
i

|, denotes the number of nodes in neigh-
bourhood of node i, such that the local state equations are
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(6.13a)
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icol,k, (6.13b)

with the collection of observation variables from the neighbourhood of the node i
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. (6.14)

The augmented covariance matrix of the collective observation noise vector is then given by

¯⌃
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⌘
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The local ACEKF therefore takes the form

Predict :
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(6.16a)

Update :
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One of the most widely used assumptions in the distributed Kalman filtering literature is
that the observation noise vectors ¯

⌘

i,k

are spatially independent, resulting in a block-diagonal
local observation noise covariance matrix in (6.15) in the form
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. (6.16c)

This enables the local ACEKF update equations in (6.16b) to be expressed as sums of the indi-
vidual measurement matrices as

Update :
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6.4 Proposed: Diffusion Augmented Complex Extended Kalman
Filter (D-ACEKF)

In Chapter 5, the diffusion scheme was introduced as a method of diffusing the ACLMS weight
(state) estimates bw

i,k

throughout the network. The diffusion step was introduced as a weighted
averaging scheme and was derived using the the stochastic gradient technique to minimise the
cost function originally defined in (5.19) as

J
(i,k)

AV ( ) =

X

`2N
i

b
`i

k 
`,k

� k2,

which minimises the difference between the intermediate state estimates,  
i,k

, within the net-
work, thereby promoting consensus between the nodes. The diffusion strategy can also be
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derived using the Kalman filtering formulation by observing the relationship between the cen-
tralised state estimate, bwcen,k|k in (6.12b) and the local EKF state estimates bw

i,k|k in (6.9b) which
are related through their respective weight error covariance matrices, M

i,k|k, as

M�1

k|k bwcen,k|k =

N

X

`=1

M�1

`,k|k bw`,k|k. (6.17)

Pre-multiplying both sides of (6.17) with the centralised state error covariance matrix M
k|k

yields

b

wcen,k|k =
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X

`=1

M
k|kM

�1

`,k|k bw`,k|k, (6.18)

which implies that the centralised solution bwcen,k|k in (6.12b) can be obtained by a weighted av-
eraging operation of the individual state estimates bw

`,k|k with weighting matrices M
k|kM

�1

`,k|k.
Since the centralised state error covariance matrix, M

k|k , is related to its single-node counter-
parts M

`,k|k as

M�1

k|k =

N

X

`=1

M�1

`,k|k, (6.19)

the weighting matrices satisfy the power-invariance condition, such that

N

X

`=1

M
k|kM

�1

`,k|k = I.

To obtain the effect of the fusion rule in (6.18) without requiring the communication (sharing) of
the state error covariance matrices M

`,k|k, we shall replace the weighting matrices M
k|kM

�1

`,k|k
with combination coefficients a

`,cen such that the fusion rule in (6.18) is approximately given
by

b

wcen,k|k ⇡
N

X

`=1

a
`,cen bw

`,k|k, (6.20)

where the weighting coefficients a
`,cen are only restricted to satisfy the power-invariance con-

dition
P

`

a
`,cen = 1. The step in (6.20) resembles the diffusion step introduced in Chapter 5,

and can now be incorporated with the local ACEKF in (6.16b) – (6.16a), to give the Diffusion

114



6. Diffusion Complex Extended Kalman Filter

ACEKF in the form
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Contribution: D-ACEKF
The distinguishing feature of the proposed class of distributed Kalman filters in
(6.21a) – (6.21g) is that we generalise the diffusion strategy in [96] by equipping
the model of with state and noise models that do not impose any restrictions
on: i) the correlation properties of the cross-nodal observation noises, ii) the sig-
nal and noise circularity at different nodes, iii) the widely linear nature of the
underpinning system. This also allows distributed Kalman filtering algorithms
proposed in [96, 113, 122] to be used in wider application scenarios.

For more information on how the widely linear state-space model is able to incorporate a
priori information on the circularity of the measurement and state noise process, please refer
to [118]. An alternative version of the D-ACEKF is given by the so-called “one-step” Kalman
filter whereby the standard EKF update equations in (6.21a) – (6.21f) are modified to
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The one-step D-ACEKF filter in (6.22a) – (6.22f) has the same convergence property as the
D-ACEKF in (6.21a) – (6.21g), but has the benefit of having less cumbersome notation in the
convergence analysis [120].

Remark 6.2. Unlike the linear Kalman filter, the state vector estimate for the EKF has to be initialised
to a value which is “close” to the true state ¯

w

0

. This can be accomplished with a priori knowledge about
the system. For example, in frequency estimation tasks, the state (frequency) can be initialised to the
nominal frequency of the grid of bw

i,0

= w

0

= 50 Hz, since the grid frequency is known to stay within
a small interval of 49 Hz and 51 Hz. The small initial state estimation error shall be investigated in the
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Algorithm 4. Diffusion Augmented Complex Extended Kalman Filter (D-ACEKF)
Initialise each node with: bw

i,0|0 = w

0

and M
i,0|0 = cI.

At each time instant k > 0 :
1: for Nodes i = {1, 2, . . . , N} do
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8: Diffuse the states from the network:
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9: end for

proof of Theorem 6.1. The state error covariance matrix can be initialised as M
i,0|0 = cI, where c is

positive constant [120].

6.5 Performance Analysis

First consider subtracting the true state ¯

w

k

from both sides of the diffusion step in (6.22f),

˜

w

i,k

=

X

`2N
i

a
`i

˜

 

i,k

, (6.23)
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since
P

`

a
`i

= 1.

Remark 6.3. The inequality in (6.25) states that under the diffusion scheme, the state estimation error
at each node is bounded by the worst case state estimation error in the network. Therefore, it shall be
sufficient to prove the mean square converge of each node in the D-ACEKF to claim the mean square
convergence of the network.
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Now, consider the state-space model in (6.13a) – (6.13b) with time-invariant state-space
functions ¯

f and ¯
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icol
, such that
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where the time index of the state, ¯

w, in the observation equation (6.26b) is modified to suit
“one-step” D-ACEKF. Recall the D-ACEKF state estimate update step in (6.22d),
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In light of Remark 6.3, we have omitted the diffusion step since it is sufficient to bound the
mean square error behaviour of each individual node. Next, we express the nonlinear estima-
tion errors in terms of the Taylor series expansion errors as
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i,k�1

) =

¯F
i,k

(

˜

w

i,k�1

) + ⇠(

˜

w

i,k�1

) (6.28)
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(
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)� ¯

'

icol,k
(

b
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i,k�1

) =

¯H
icol( ˜wi,k�1

) + �(

˜

w

i,k�1

), (6.29)

where ⇠( ˜w
i,k�1

) and �( ˜w
i,k�1

) refer respectively to the linearization errors in the state evolu-
tion and observation functions. Subtracting the true state vector ¯

w

k

from the one-step Kalman
filter in (6.27) gives

¯

w

k

� b

w

i,k

=

¯

f(

¯

w
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)� ¯

f(

b

w
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)� ¯F
i,k

G
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h

¯

y

icol,k � ¯

'
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(

b

w

i,k�1

)

i

+

¯

q

k

. (6.30)

Using the relationships in (6.28) and (6.29) gives,

˜

w

i,k

=

¯F
i,k

˜

w

i,k�1

+ ⇠(

˜
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i,k�1

)� ¯F
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¯H
icol,k ˜wi,k�1

+ �(

˜

w

i,k�1

) +

¯

⌘

icol,k

i

+

¯

q

k

(6.31)

which can be simplified into

˜

w

i,k

= B
i,k

˜

w

i,k�1

+ r

i,k�1

+ n

i,k

(6.32)

with

B
i,k

=

h

¯F
i,k

� ¯F
i,k

G
i,k

¯H
icol,k

i

(6.33)

r

i,k�1

= ⇠(

˜

w

i,k�1

)� ¯F
i,k

G
i,k

�(

˜

w

i,k�1

) (6.34)

n

i,k

=

¯

q

k

� ¯F
i,k

G
i,k

¯

⌘

icol,k. (6.35)

The recursion for the state estimation error in (6.32) is different to that of the linear Kalman
filter due to the presence of the nonlinear error term, r

i,k�1

. Next, we shall present a theorem
on the mean square stability of the D-ACEKF which is based on the stochastic stability theorem
of the extended Kalman filter which was first proposed in [123].
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Theorem 6.1 (D-ACEKF Mean Square Stability). Consider the nonlinear state space model in
(6.26a) –(6.26b) and D-ACEKF filter in (6.22a) – (6.22f). Suppose the following assumptions hold:

A.1) Each element of the functions ¯

f and ¯

'

icol
is smooth.

A.2) There exists real scalars ¯f, ¯h,
¯

m, m̄,
¯

s,
¯

c, � > 0 such the the following bounds are fulfilled almost
surely (a.s.) for every node i and time instant, k � 0:

k¯F
i,k

k  ¯f, k ¯H
i,k

k  ¯h (a.s.) (6.36a)

¯

mI �M
i,k

� m̄I (a.s.) (6.36b)

¯

cI � ¯C
k

� �I,
¯

sI � ⌃
icol,k � �I. (6.36c)

A.3) ¯F
i,k

is invertible for every i and k � 0.

A.4) There exists real scalars, ✏
⇠

, ✏
�

,
⇠

,
�

> 0 such that the nonlinear functions are bounded by

k⇠( ˜w
i,k

)k  
⇠

k ˜w
i,k

k2 with k ˜w
i,k

k  ✏
⇠

(a.s.) (6.36d)

k�( ˜w
i,k

)k  
�

k ˜w
i,k

k2 with k ˜w
i,k

k  ✏
�

(a.s.) (6.36e)

for every ˜

w

k

2 CM⇥1.

Then, the D-ACEKF at each node is stable in the mean square when the initial error, k ˜w
0

k  ✏ with
✏ > 0 and 0 < # < 1, that is

E
�k ˜w

i,k

k2  m̄

¯

m
(1� #)kE�k ˜w

i,0

k2 + noise�

¯

m#
, (6.36f)

where noise =
M

¯

m
+

¯f2

¯h2m̄2L

¯

m
¯

s2
and # =

1

2

� 1

2



1 +

¯

c

m̄(

¯f +

¯fm̄¯h2/
¯

c)2

��1

with M and L denoting

the dimensions of the state and observation1 vectors respectively and the initial estimation error bound,

✏ = min

✓

✏
⇠

, ✏
�

,
#

2m̄nonl

◆

where nonl is defined in Lemma 6.4 with nonl = O(2),  = max(
⇠

,
�

).

A few remarks about the various assumptions in Theorem 6.1.

1. The boundedness of the Jacobian matrices in (6.36a) follow from the smoothness assump-
tion of the functions ¯

f and ¯

'

icol
.

2. The bounds on the state error covariance matrix M
i,k

in (6.36b) imply the observability
and controllability of the linearised system, that is, the observability of the pair (F

i,k

,H
i,k

)

and controllability of the pair (F
i,k

,C
� 1

2
k

) [124, 125].

3. The bounds on the noise covariance matrices ¯C
k

and ⌃
icol,k in (6.36c) imply that the ma-

trices are positive-definite and yet the level of noise in the system is not ”too large” [123].

4. The nonlinear error bounds in (6.36d) – (6.36e) are related to the smoothness of the state
transition and observation functions and imply that either the functions are “weakly”
nonlinear or, the initial state estimate is “close” to the true state [126].

1The dimensions of the original observation vector as defined in (6.13b) is LNi but is shortened to L here for
notational compactness.
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5. The proof also relies upon the initial state estimation error bound, ✏ which is inversely
proportional to square of the constants  = max(

⇠

,
�

). In other words, the more “non-
linear” the function is, the larger the values of , hence the initial estimate, bw

0

should be
closer to the true value, w

0

, for the D-ACEKF be mean square stable.

We shall first consider several Lemmas which will be useful in the proofs of Theorem 6.1. Note
that the matrix bounds in this proof that involve stochastic matrices are assumed to hold almost
surely.

Lemma 6.2. Assume that there exists a stochastic process, V
k

(

˜

w

k

), and real numbers
¯

v, v̄,� � 0 and
0  # < 1, which satisfies

¯

vk ˜w
i,k

k2 V
k

(

˜

w

i,k

)  v̄k ˜w
i,k

k2 (a.s.) and (6.37)

E {V
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)| ˜w
i,k�1

}�V
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(

˜

w

i,k�1

)  � � #V
k�1

(

˜

w

i,k�1

) (a.s.), (6.38)

for every solution of (6.32). Then, the stochastic process ˜

w

k

is exponentially bounded in the mean
square, with

E
�k ˜w

i,k

k2  v̄

¯

v
(1� #)kE�k ˜w

i,0

k2 + �

¯

v#
. (6.39)

Proof. We refer the reader to [123, Lem. 2.1][119, Lem. 3.8] for the proof of this Lemma.

Lemma 6.3. Under the assumptions of Theorem 6.1, there exists 0 < # < 1, such that

BH
i,k

M
i,k

B
i,k

� (1� #)M
i,k�1

(a.s.)

for k � 0 and # = 1�


1 +

¯

c

m̄(

¯f +

¯fm̄¯h2/
¯

c)2

��1

.

Proof.
The proof of this Lemma follows the proof from [123, Lem 3.1]. We begin by bounding several
matrices in the algorithm. First, since ¯H

icol,kMi,k�1

¯HH
icol,k
⌫ 0, the following bound holds,

�

�

�

�

¯⌃
icol,k +

¯H
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¯HH
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��1
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�

�
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�

 1/
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s. (6.40)

Furthermore, the norm of the Kalman gain matrix, G
i,k

= M
i,k�1

¯HH
icol,k

⇣

¯⌃
icol,k +

¯H
icol,kMi,k�1

¯HH
icol,k

⌘�1

can be bounded by

�

�G
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�  ��M
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�
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icol,k

�
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�

�  m̄¯h/
¯

s. (6.41)

Next, the norm of the matrix B
i,k

=

¯F
i,k

� ¯F
i,k

G
i,k

¯H
icol,k is therefore bounded by

�

�B
i,k

�

�  ��¯F
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�

�

+

�

�¯F
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�

�

�

�G
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�

�

�
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icol,k

�

�  ¯f +
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s. (6.42)
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The proof of Lemma 6.3 is derived by re-expressing the state error covariance matrix update in
(6.22e) as

M
i,k

=

¯F
i,k

�

M
i,k�1

�G
i,k

¯H
icol,kMi,k�1

�

¯FH
i,k

+

¯C
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M
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+

¯F
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G
i,k

¯H
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BH
i,k

+

¯C
k

(6.43)

⌫ B
i,k

M
i,k�1

BH
i,k

+

¯C
k

, (6.44)

where, ¯F
i,k

G
i,k

¯H
icol,kMi,k�1

BH
i,k

⌫ 0. This can be shown by expressing

¯F
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G
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¯H
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H
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We proceed to show that expression,

G
i,k

¯H
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(I�G
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¯H
icol,k)

H ⌫ 0

by first using the matrix inversion lemma (Woodbury identity [46]) to state that
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Noting that G
i,k

= M
i,k�1

¯HH
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⇣
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, allows (6.46) to be expressed
as
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Since MH
i,k�1

= M
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, taking the Hermitian of (6.47) gives
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Next, the term G
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icol,k, can be re-expressed by using (6.47) whereby
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Combining the results from (6.47) and (6.49) yields

G
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icol,k)

H
= (6.50)

⇣

M�1

i,k�1

+M
i,k�1

¯HH
icol,k

¯⌃�1

icol,k
¯H

icol,k

⌘�1

¯HH
icol,k

¯⌃�1

icol,k
¯H

icol,k

⇣

M�1

i,k�1

+

¯HH
icol,k

¯⌃�1

icol,k
¯H

icol,k

⌘�H

⌫ 0

because ¯⌃�1
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⌫ 0. From (6.50), observe that (I � G

i,k

¯H
icol,k) ⌫ 0 and is invertible. From

the invertibility of F
i,k

, the matrix B
i,k

is also invertible. Therefore, the inequality in (6.44)
becomes

M
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i,k
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Using the assumptions (6.36a) – (6.36c), we have kB
i,k

k  ¯f +
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s and therefore
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So, we can express, (6.51) as
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Taking the inverse of both sides of (6.53), we have
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Next, by pre- and post multiplying (6.54) with BH
i,k

and B
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, yields
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Setting 1� # =

⇣
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, completes the proof.

Lemma 6.4. Under the conditions of Theorem 6.1, there exists positive scalars ✏0,nonl > 0 such that
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Proof. This proof was modified from [123, Lem. 3.2] for complex variables.
We first begin by bounding the norm of the nonlinear function, r

i,k�1

= ⇠(

˜

w

i,k�1

)�¯F
i,k

G
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whereby,
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k  k⇠( ˜w
i,k�1
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Using the bounds for the nonlinear errors in (6.36d) – (6.36e), we have,
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k  ✏0, where ✏0 = min (✏
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). Therefore,
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k  ✏0.

Lemma 6.5. Under the assumptions of Theorem 6.1, there exists a positive real scalar noise > 0 inde-
pendent of �, such that
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holds for all k � 0, where noise =
M

¯

m
+

¯f2

¯h2m̄2L

¯

m
¯

s2
.

Proof. This proof involves a minor improvement from [123, Lem. 3.3].
Recall that the noise term is n
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Taking the conditional expectation E {·|w
i,k�1

} of (6.62) – (6.63) gives
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where the cross-terms in (6.63) disappear. This is because from (6.22a) – (6.22e), the algorithm
variables G

i,k

, F
i,k

and M
i,k

are computed as functions of w
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, hence also are functions
of ˜
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. Therefore, taking conditional expectation of (6.62) with respect to ˜
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allows us
to treat these variables as constants. Also, both the system noise, ¯q

k

, and measurement noise
¯
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icol,k are statistically independent to the each other and the algorithm variables prior to time
k, as shown in (6.2b) – (6.2c). From the various matrix bounds in Theorem 6.1, we now have
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Using the definitions of the noise error covariance matrices and their respecives bounds in
(6.36c), we have
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and setting noise =
M

¯

m
+

m̄2
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m
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s2
L, completes the proof.

Proof of the Mean Square Stability of D-ACEKF (Theorem 6.1)

Proof. This proof is a combination of the proofs from [119, Th. 5.4] [123, Th. 3.1].
Consider defining the stochastic process V
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which from assumptions on M
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in (6.36b) immediately satisfies the first condition of Lemma
6.2, that is,
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Next, using the state error vector in (6.32), we have
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Following that, taking the conditional expectation, E {V
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since the noise process n
i,k

is zero-mean and independent to the algorithm variables and data
prior to k, and using Lemma 6.3 and Lemma 6.4, the recursion in (6.70), can be bounded by
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Restating (6.71) gives
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which further bounds (6.72) as
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for k ˜w
i,k�1

k  ✏. By setting #0 = #/2 < 1, the conditions of (6.38) in Lemma 6.2 are satisfied.

Therefore, the weight error ˜

w

i,k

is bounded in the mean square. By choosing � =
#✏̃2

2m̄noise
with

some ✏̃ < ✏, for k ˜w
i,k

k > ✏̃, reduces the inequality in (6.74) to

E {V
k

(

˜

w

i,k

)| ˜w
i,k�1

}� V
k�1

(

˜

w

i,k�1

)  � #

2

V
k�1

(

˜

w

i,k�1

) +

#

2m̄
k ˜w

i,k

k2

 � #

2

V
k�1

(

˜

w

i,k�1

) +

#

2

V
k�1

(

˜

w

i,k�1

) = 0, (6.75)

so as to ensure that the estimation error is bounded for all k.

6.6 Chapter Summary

In this chapter, we have reviewed the concepts underpinning Kalman filtering for widely linear
state spaces and noncircular noise processes. In addition, various distributed Kalman filtering
strategies were explored for collaborative estimation tasks. The key contribution of this chapter,
is the D-ACEKF algorithm in (6.21a) – (6.21g) which is developed through widely linear state-
space modelling so as to cater for widely linear system models and noncircular noise processes.
Secondly, through Theorem 6.1, we showed that the D-ACEKF is mean square stable under
certain assumptions on the smoothness of the nonlinear functions and boundedness of the
noise variances and initial estimation errors.

Conclusion to Part II

In Part II, standalone adaptive algorithms (some of which were introduced in Part I) have been
extended to a multi-agent setting. In Part III of the thesis, the contribution of casting the fre-
quency estimation problem as a distributed adaptive filtering problem shall be presented. Par-

124



6. Diffusion Complex Extended Kalman Filter

ticularly, Chapter 7 introduces three-phase transforms which are routinely used in frequency
estimation tasks from a signal processing perspective. The discussion in Chapter 7, will help
the reader to understand the challenges modern and future grids face in frequency estima-
tion during voltage imbalances. Following that, practical benefits of a distributed approach to
frequency estimation shall be demonstrated in Chapter 8.
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Chapter 7

Modern View of Three-Phase Transforms

The existence of mysterious relations
between all these different domains is the
most striking and delightful feature of
mathematics.

Vladamir Arnold

Chapter Overview

In the following two chapters, the focus shall shift back to the electricity grid. In this chapter,
three-phase transformations which are commonly used in signal processing applications for
power networks are introduced. More importantly, the contribution of this chapter is that we
provide a signal processing perspective of three-phase transforms and elucidate their links
with discrete Fourier transform (DFT), dimensionality reduction and frequency demodulation
techniques.

Specifically, the Clarke transform is shown to represent a principal component analysis
(PCA) based dimensionality reduction algorithm for a balanced three-phase voltage signal,
while the symmetrical transform is shown to represent the discrete Fourier transform of un-
balanced phasors and that the Park transform is viewed as frequency (de)modulation (FM)
scheme. We then employ recent results in complex-valued statistics to show that the complex-
domain allows for a more compact and physically meaningful representations for the Clark
and Park transforms. Finally, based on these novel interpretations and recent developments
in widely linear modelling, an adaptive three-phase balancing transformation is proposed for
real-time dynamic power systems.

7.1 Introduction

Three-phase transforms are the backbone of power system analysis as they allow for dimen-
sionality reduction and the simplification of analysis of unbalanced power networks. Most of
the underlying theory of three-phase transforms was developed through the diagonalisation of
circulant impedance matrices so as to enable the analysis of a general unbalanced three-phase
network through separate balanced networks. This common principle is also the reason for an
intimate relationship between these transforms. For example, the symmetrical transform [127],
Clarke transform [128, 129] and their closely related variants, like the Kimbark, Boyajian, and
Concordia transforms are related through performing elementary column and row operations
(e.g. scaling) on the original Clarke transformation matrix [130]. In [131], the Clarke and Park
transforms [132] were interpreted as time-domain counterparts of the symmetrical transform.
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7. Modern View of Three-Phase Transforms

Owing to their generality, three-phase transformations have found applications in signal
processing, control and machine learning tasks, such as frequency estimation and fault detec-
tion [24, 133, 134]. However, sufficient justification and physical interpretation from a signal
processing perspective is still lacking. Motivated by the statement of A. Boyajian, an early
contributor to the theory of three-phase transforms [135],

“A transformation which replaces a given system of circuits by another, presumably more
convenient, equivalent system of circuits, should be subjected to two tests: (a) physical
interpretation and (b) mathematical consistency,”

we next offer a modern signal processing perspective to both (a) physical interpretation and (b)
mathematical consistency of the three-phase transforms.

We start with the symmetrical transform and show that it can be developed from a spa-
tial discrete Fourier transform (DFT) perspective, to decompose a general unbalanced phasor
vector into three-separate “spatial” sinusoids. Next, the Clark transform is derived as a gen-
eral second-order optimal dimensionality reduction algorithm for balanced three-phase sig-
nals. This derivation establishes a direct link between the principal components analysis (PCA)
and the Clark transform.

We then employ a complex-valued representation to show that although the Clarke trans-
form is not the optimal dimensionality reduction scheme for a set of unbalanced phase volt-
ages, it yields a meaningful relationship with respect to the symmetrical transform [131]. Fur-
thermore, the chosen complex-valued representation allows for a straightforward link between
the Clarke and Park transforms, with the latter shown to be a frequency demodulation scheme.

Finally, these ideas together with recently introduced widely linear autoregressive mod-
elling of the ↵� voltages [22] and so-called “balancing” transformation [136] are employed to
introduce a new class of adaptive three-phase transformations suitable for real-time applica-
tion in dynamic power networks. The proposed adaptive three-phase transforms is referred to
as the “adaptive Clarke-Park transform” owing to its resemblance to the outputs of the original
Clarke and Park transforms for balanced systems. Simulations on synthetically generated sig-
nals benchmark the performance of the proposed adaptive Clark-Park transform against their
original static counterparts.

7.2 Background on Three-Phase Transforms

7.2.1 Clarke Transform

Consider a sampled three-phase voltage measurement vector at the discrete time instant k,
given by
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, (7.1)

where V
a

, V
b

, V
c

are the amplitudes of the phase voltages v
a,k

, v
b,k

, v
c,k

, ! = 2⇡fT is the funda-
mental angular frequency, with f the fundamental power system frequency and T the sampling
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interval. The phase values for each phase are denoted by �
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,�
b

,�
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.
The Clarke or ↵� transform changes the basis of the three-phase signal s
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where v
↵,k

and v
�,k

are the rotating components referred to as the ↵ and � sequences. The
term v

0,k

is known as the zero-sequence, as it is null when the three-phase signal s
k

is balanced
(equal voltage magnitudes, V
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phase angle separation, �
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,
across the phase voltages). Therefore, typically only v

↵,k

and v
�,k

are used in practice and can
be obtained using the last two rows of the Clarke matrix in (7.2), such that the three-phase
voltage in (7.1) is projected onto a 2D subspace as
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Figure 7.1 shows the geometric interpretation of the Clarke transform for a balanced system.
Observe the orthogonal nature of the v

↵,k

and v
�,k

components, which allows their convenient
combination into a complex-valued voltage, s

k

= v
↵,k

+ jv
�,k

.
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Figure 7.1: Geometric representation of the Clarke transform with voltages normalised to per
unit (p.u.) voltages.

7.2.2 Park Transform

The Park transform (also known as the dq transform) projects the three-phase signal s
k

on to
an orthogonal, time-varying frame, which by virtue of rotating at the fundamental frequency
!�, yields stationary outputs. In other words, the Park voltages v

d,k

, v
q,k

are obtained from the
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↵� voltages in (7.3) using a time-varying transformation given by [132]
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where the orthogonal direct and quadrature components, v
d,k

and v
q,k

, can be combined into a
complex variable v

k

= v
d,k

+ jv
q,k

.

7.2.3 Symmetrical Transform

The symmetrical transform operates in the “phasor” domain of the three-phase signal, s
k

, that
is, the rotation becomes inherent to the representation in (7.1). The phasors within s

k

are given
by the voltage magnitudes and phase angles of each phase voltage. In this way, ¯V
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The symmetrical transform converts a general unbalanced phasor in (7.5) into three separate
balanced components, referred to as the zero–, positive– and negative–sequence phasors, de-
noted respectively by ¯V

0

, ¯V
+

, ¯V�. Unlike the Clarke and Park transforms, the symmetrical
transform is an inherent complex-valued transformation on the phasor vector v and is given
by
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where a = e�j

2⇡

3 .

Contribution: New Derivations of Canonical Three-Phase Transforms
Rest of this chapter shall motivate and derive the Symmetrical, Clarke and Park
transformations from a novel signal analysis perspective. These novel deriva-
tions are in contrast to the traditional circuit theory methods and serve to aid
algorithm designers in designing algorithms for dynamic grids.

7.3 Symmetrical Transform as a Spatial DFT

A three-phase time-domain signal, s
k

, in (7.1) is typically considered as a collection of three
separate univariate signals. However, s

k

can also be treated as three samples of a monocompo-
nent signal rotating at a spatial frequency. In this sense, for a balanced system, the phasor vector
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v in (7.14), is given by

v =

h

1 ej⌦ ej2⌦
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.

Therefore v can be treated as a single sinusoid rotating at a spatial frequency of ⌦ = � 2⇡

3

,
although every component of v comes from a separate phase voltage v

a,k

, v
b,k

, and v
c,k

. How-
ever, under unbalanced conditions, the phasor vector v, does not represent a single complex-
valued spatial sinusoid since it contains the individual phasors with unequal amplitudes and
a non-uniform phase separation, as defined in (7.5).

To resolve this issue, we consider decomposing v into monocomponent spatial sinusoids
using the framework of a discrete Fourier transform (DFT) operating in the spatial domain.
The DFT of the phasor vector, v = [v
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T 2 C3⇥1, is given by
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where a = e�j

2⇡

3 . The three-point DFT in (7.7) therefore decomposes the phasor vector v into
a stationary component X[0] and two components rotating at spatial frequencies 2⇡

3

, and � 2⇡

3

.

Remark 7.1. The spatial DFT in (7.7) is identical to the symmetrical transform in (7.6). More specif-
ically, upon comparing the DFT in (7.7) and the symmetrical transform in (7.6), the stationary DFT
component, X[0], corresponds to the zero-sequence phasor, ¯V

0

, while the fundamental DFT components,
X[1] and X[2], are respectively the positive– and negative–sequence phasors.

7.4 Clarke Transform as a Principal Components Analyser

7.4.1 Principal Components Analysis (PCA)

In many signal processing, control and machine learning operations based on multi-channel
data, it is often useful to reduce the dimensionality of a signal while maintaining the useful
information. This reduces the computational complexity of any algorithm while preserving
the physical meaning in the data. Consider a general data vector, x

k

2 RM⇥1, for which the
covariance matrix is defined as
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The symmetric covariance matrix R
x

admits the following eigenvalue decomposition

QTR
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Q = ⇤, (7.9)

where the diagonal eigenvalue matrix, ⇤ = diag{�
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}, indicates the power of each
component of x
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while the matrix of eigenvectors, Q
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], designates the prin-
cipal directions in the data.

Suppose the signal x
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is to be transformed into a vector, u
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2 RM⇥1, with the same dimen-
sionality as the original signal x
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, using a linear transformation matrix W, to give
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, where cov(u
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) = I. (7.10)

The principal component analysis (PCA), also known as the Karhunen-Loeve transform, states
that the above transformation matrix, W, can be obtained from the eigenvector and eigenvalue
matrices in (7.9) as W = ⇤� 1

2QT [137].
Proof:
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Since the transformation in (7.10) does not change the dimensionality of x
k

, a dimensionality
reduction scheme based on the PCA in (7.10) can be applied to obtain a transformed data vector
u
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2 Rr⇥1 of dimension r < M as
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where ⇤
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= diag{�
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} and Q
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], while r stands for the r largest
eigenvalues in ⇤. The PCA-based dimensionality reduction scheme in (7.11) selects the di-
rections in which the data expresses maximal variance, that is, the directions of the principal
eigenvectors of the data matrix.

Since the three-phase signal, s
k

, in (7.1) is essentially a multichannel signal, it admits the
PCA-based dimensionality reduction in (7.11). Employing the identity cos(x) = (ejx+ e�jx

)/2,
allows for a phasor representation of the three-phase voltage in (7.1) in the form
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where the time-independent phasors are given by ¯V
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where the phasor vector v, defined originally in (7.5), now becomes
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The PCA based dimensionality reduction requires the computation of the covariance ma-
trix, cov(s
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, in the form
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From the definition of the three-phase signal in (7.13), we have
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Substituting the outer-product in (7.16) into the definition of the covariance matrix in (7.15) and
considering that for, 0 < ! < ⇡, the following holds [138, p. 56]
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k=0

e±2j!k

= 0, (7.17)

gives the following covariance matrix for general 3-phase voltages

R
s

=

1

4

�

vv

H
+ v

⇤
v

T
�

=

1

2

Re

�

vv

H
 

=

1

4

�

v

r

v

T
r

+ v

i

v

T
i

�

, (7.18)

where v

r

= Re {v} and v

i

= Im {v} denote the real and imaginary parts of the phasor vector v
defined in (7.14).

Remark 7.2. Observe from (7.18) that the covariance matrix of the trivariate signal s
k

is rank-deficient
(rank 2) as it represents as a sum of two rank-one outer products v

r

v

T
r

and v

i

v

T
i

. This implies that the
use of all three data channels (system phases) is redundant. Therefore, without loss in information, the
three-phase signal in (7.12) can be projected onto a subspace of lower dimensionality (two).

7.4.2 Balanced Systems

For a balanced system, the imbalance values �
b

and �
i

correspond to the 2⇡

3

phase separations,

so that �
b

= e�j

2⇡

3 and �
c

= ej
2⇡

3 , so that the phasor vector, v, becomes

v =

h

1 e�j

2⇡

3 ej
2⇡

3

iT

. (7.19)
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From (7.18), this yields the covariance matrix in the form

R
s

=

1

2

Re

�

vv

H
 

=

1

4

2

6

4

2 �1 �1
�1 2 �1
�1 �1 2

3

7

5

. (7.20)

As seen in (7.11), the PCA-based dimensionality reduction matrix, W
r

, is obtained from the
eigen-decomposition of the sample covariance matrix R

s

, that is

R
s

= Q⇤QT. (7.21)

By inspection of R
s

in (7.20), from the first eigenvector-eigenvalue pair, (q
1

,�
1

), we have

R
s

q

1

= 0 =) q

1

=

1p
3

1, �
1

= 0. (7.22)

To find the remaining eigenvector-eigenvalue pairs, consider the expression for the covariance
matrix in (7.18) and the value of the phasor vector v in (7.19) and notice that v

r

= Re {v} =

[1,� 1

2

,� 1

2

]

T and v

i

= Im {v} = [0,�
p
3

2

,
p
3

2

]

T are orthogonal, i.e. vT
r

v

i

= 0.
Therefore, the remaining two eigenvectors of R

s

are q

2

= v

r

/kv
r

k and q

3

= v

i

/kv
i

k with
the corresponding eigenvalues (1/4)kv

r

k and (1/4)kv
i

k. In summary, the eigenvector matrix,
QT, and the diagonal matrix of eigenvalues, ⇤, in (7.21) are given by
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. (7.23)

By inspection of the diagonal elements of ⇤ in (7.23), observe only two non-zero eigenvalues
which reinforces Remark 7.2 which states that the matrix R

s

is of Rank 2.

Remark 7.3. The eigenvector matrix QT in (7.23) is identical to the Clarke transformation matrix
defined in (7.2), whereby each row of QT corresponds to the eigenvector associated with an eigenvalue
on the diagonal of ⇤.

Since all of the variance in three-phase power system data can be explained by the two
eigenvectors associated with the non-zero eigenvalues (principle axes), the Clarke transform
can be interpreted as a projection of the R3 data onto a 2D subspace spanned by the orthogonal
eigenvectors [1,� 1

2

,� 1

2

]

T and [0,
p
3

2

,�
p
3

2

]

T , as illustrated in Figure 7.2. Specifically, based on
the definition of the PCA transformation matrix in (7.11), the optimal dimensionality reduction
scheme takes the form

W
2

= ⇤
� 1

2
1:2

QT
1:2

=

4

3

"

1 � 1

2

� 1

2

0

p
3

2

�
p
3

2

#

.

which has the same form as the Clarke matrix in (7.3) but with a different normalisation con-
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stant. Observe that, this does not affect the operation of the Clarke transform since the scaling
effects equally v

↵,k

and v
�,k

.
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Figure 7.2: A balanced system with three principal axes. All the information is contained within
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7.4.3 Generalised Balancing Transform for Unbalanced Power Systems

For unbalanced systems, the imbalance ratios, �
b

= |�
b

|ej�b , and �
c

= |�
c

|ej�c , depend on
the type of imbalance. This yields a covariance matrix, Ru

s

that is different from that for the
balanced case in (7.18), which has the form
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=
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.

where �

bc

= �
b

� �
c

.
Notice that the eigenvector and eigenvalue matrices are different when the system is unbal-

anced, and therefore different projection matrices are required [24]. Consider a special case of
power imbalance characterised by symmetrical faults where �

c

= �⇤
b

. The typical voltage sags
(Types A – D) [139], fall into this category, see the phasor diagrams for the Type C and Type D
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sags in Figure 7.3. The covariance matrix in (7.24) for symmetrical unbalances then becomes

Ru

s

=

1
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2
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b
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.

Type C
Sag
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Sag

Figure 7.3: Phasor diagrams of voltage sags, where the dashed blue arrows show a set of bal-
anced three-phase voltage phasors. Notice the symmetrical nature of the sags.

Similar to the balanced case in (7.23), the real and imaginary components of the unbalanced
phasor vectors v

r

and v

i

are orthogonal, so that the eigenvectors of the system are again given
by q

2

= v

r

/kv
r

k and q

3

= v

i

/kv
i

k. Consequently, the eigen-decomposition of Ru

s

becomes
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. (7.25)

where m = |�
b

| cos(�
b

). For a balanced case, m = � 1

2

, and the above system simplifies into
the eigendecomposition for the balanced case in (7.23). This is illustrated in Figure 7.4, where
regardless of the imbalance level in the system, the three-phase voltages lie in a 2-dimensional
subspace of R3. However, as the type and level of unbalance change, the PCA based dimen-
sionality reduction scheme derived in (7.25) will not be identical to the Clarke transform in
(7.3). This conforms with the well-known phenomenon that the application of the Clarke trans-
form to unbalanced system voltages will yield different forms of ↵� voltages compared to those
in the balanced case [24].

7.4.4 Clarke and Park Transforms in the Complex Domain

To interpret the output of the Clarke transform for a general (unbalanced) three-phase sys-
tem, it is useful to cast our discussion to the complex domain, where the ↵� voltage in (7.3) is
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Figure 7.4: Three-phase voltages under balanced conditions, a symmetrically imbalanced con-
dition (Type C Sag), and a general asymmetrical imbalance.

represented using a complex variable

s
k

def
= v

↵,k

+ jv
�,k

. (7.26)

Using the complex-valued ↵� voltage in (7.26), the Clarke transform defined in (7.3) can also
be represented in the complex domain as

s
k

= c

H
s

k

, c

def
=

r

2

3

h

1 e�j

2⇡

3 ej
2⇡

3

iT

, (7.27)

where c is the complex Clarke transformation vector.
Replacing the phasors of s

k

from (7.12) into the Clarke transform in (7.27) allows for the
complex ↵� voltage, s

k

, to be expressed in terms of the positive– and negative– sequence volt-
ages as

s
k

=

1p
2

�

¯V
+

ej!k

+

¯V ⇤
�e

�j!k

�

, (7.28)

where the scalar phasors ¯V
+

and ¯V ⇤
� correspond to the positive and negative sequence voltages

defined in (7.6) as [131]

¯V
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⇥

V
a

ej�a
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(7.29)

¯V ⇤
� =

1p
3



V
a

e�j�

a

+ V
b

e
�j

⇣
�

b

+

2⇡

3

⌘

+ V
c

e
�j

⇣
�

c
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.

Notice that for a balanced system with equal voltage magnitudes, V
a

= V
b

= V
c

and equal
phase separations, �

a

= �
b

= �
c

, the negative sequence ¯V� = 0, which yields the Clark trans-

137



7. Modern View of Three-Phase Transforms

form output

s
k

=

1p
2

¯V
+

ej!k. (7.30)

In a similar fashion, the complex-valued output of the Park transform introduced in (7.4) is
given by

v
k

def
= v

d,k

+ jv
q,k

. (7.31)

Therefore, the complex-valued Park transformation can also be compactly represented as

v
k

= e�j!�k
c

H
s

k

= e�j!�ks
k

. (7.32)

where s
k

= v
↵,k

+ jv
�,k

is the Clarke voltage.

Remark 7.4. From (7.32), the Park transform can be interpreted as a frequency demodulation (FM)
scheme [140] of the ↵� voltage, where the demodulating frequency is chosen as the nominal system
frequency !�.

It is well known that demodulating a signal with frequency !� extract the message which
is modulated with the same frequency. Therefore, for a balanced system operating at the fun-
damental frequency !�, the Park transform yields the stationary positive sequence phasor

v
k

=

1p
2

¯V
+

. (7.33)

However, for a general unbalanced three-phase system, the complex-valued dq voltage is given
by

v
k

=

1p
2

⇣

¯V
+

ej(!�!�)k
+

¯V ⇤
�e

�j(!+!�)k
⌘

. (7.34)

Notice that the system is operating at an off-nominal frequency ! while the Park transform
uses the nominal frequency, !�. On the other hand, if an unbalanced system is operating at the
nominal system frequency, ! = !�, the dq voltage in (7.34) becomes

v
k

=

1p
2

�

¯V
+

+

¯V ⇤
�e

�j2!�k
�

, (7.35)

which resembles a typical output of a FM demodulator.

7.5 Adaptive Clarke/Park Transform

In real-world power systems, the three-phase voltages are rarely perfectly balanced and the
system frequency is never exactly the fundamental frequency [19]. Therefore, the Clarke and
Park transforms do not yield the ideal intended outputs. To this end, we require adaptive
transformations, capable of tracking: i) the voltage imbalances within an “adaptive” Clarke
transform, and ii) the system frequency for an “adaptive” Park transform.
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We now develop the adaptive Clarke and Park transforms by first introducing the widely
linear autoregressive (WLAR) model of the ↵� voltage in (7.28). The WLAR model for the
Clarke transform is given by [24]

s
k

= h⇤s
k�1

+ g⇤s⇤
k�1

, (7.36)

where the WLAR coefficients h and g contain the information of the system frequency, !, and
the level of imbalance in the system defined through the voltage unbalance factor (VUF) given
by [19],


def
=

¯V�/ ¯V+

. (7.37)

Comparing the output of the WLAR model in (7.36) with the actual ↵� voltage in (7.28) gives
the relationships [22, 24]

ej! = h⇤
+ g⇤ and e�j!

= h⇤
+

g⇤

⇤
. (7.38)

Solving the simultaneous equation in (7.38) gives the expressions for the system frequency and
VUF in the form

ej! = Re {h}+ j

q

Im

2{h}� |g|2, (7.39)

 =
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✓
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q

Im

2{h}� |g|2
◆

. (7.40)

Contribution: Adaptive Three-Phase Transform
Unlike the static transforms, we next propose an adaptive filter based three-
phase transformation in Algorithm 5. The proposed adaptive transform is ca-
pable of yielding non-oscillatory outputs even when the system is unbalanced,
as shown in Table 7.1. This algorithm is therefore envisioned to be a central com-
ponent of future control units in the dynamic smart grid.

7.5.1 Balancing Transform

It was shown in [136], that the VUF, , defined in (7.37) and (7.40) can be used to eliminate the
negative sequence phasor, ¯V�, from the ↵� voltage s

k

, as

m
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p
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) (7.41)
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�

1� ||2� ej!k. (7.42)

Remark 7.5. The voltage m
k

in (7.42) can be regarded as the output of an adaptive Clarke transform
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Algorithm 5. Adaptive Clarke/Park Transform
Input: Three-phase voltages, s

k

At each time instant k > 0 :
1: Obtain Clarke transform

s
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=
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2: Update ACLMS weights

"
k

= s
k

� (h⇤
k�1

s
k�1

+ g⇤
k�1

s⇤
k�1

)

h
k

= h
k�1

+ µs
k�1

"⇤
k

g
k

= g
k�1

+ µs⇤
k�1

"⇤
k


k

=

j

g

⇤
k

✓

Im {h
k

}+
q

Im

2{h
k

}� |g
k

|2
◆

ej! = h⇤
k

+

g

⇤
k



⇤
k

3: Adaptive Clarke transform
m

k

= s
k

� ⇤
k

s⇤
k

4: Adaptive Park transform
m̃

k

= e�j!km
k

as it closely resembles the ↵� voltage for a balanced system in (7.30).

The method in [136], requires the evaluation of the second-order statistics of the ↵� voltage
s
k

. In this work, we show that the WLAR coefficients h and g in (7.38) are sufficient to obtain the
adaptive Clarke voltage in (7.41), while also enabling an adaptive Park transform. Specifically,
using the estimated time-varying values of ej!k in (7.39) and 

k

in (7.40), the adaptive Clarke
and Park transforms are defined as

m
k

=

p
2(s

k

� ⇤
k

s⇤
k

) (7.43a)

m̃
k

= e�j!

k

km
k

, (7.43b)

where m
k

is the adaptive ↵� (Clark) voltage while m̃
k

is the adaptive dq (Park) voltage.
Adaptive Clarke and Park transforms can therefore be implemented using (7.43a)–(7.43b),

with a suitable adaptive algorithm (e.g. least mean square, Kalman filter) employed to track
the VUF, 

k

, and system frequency !
k

. For simplicity, we present the adaptive Clarke/Park
transform in Algorithm 5 which utilises the augmented complex least mean square (ACLMS)
to estimate the WLAR coefficients h and g.

Remark 7.6. The proposed adaptive Clarke and Park transforms are now able to yield non-oscillatory
outputs, regardless of the system frequency or level of imbalance, as shown in Table 7.1. This would
enable standard techniques designed for nominal conditions1 to be applied to a general set of unbalanced
voltages, resulting in a bias-free operation.

Furthermore, the ease of implementation of the adaptive Clarke-Park transform in Algo-
rithm 5 offers electronic inverter manufacturers a practical method to configure their equip-
ment for unbalanced voltages.

1Nominal conditions refer to a balanced three-phase system operating at the system frequency of 50 Hz.
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System Condition
Transforms Balanced Unbalanced
Clarke [128] ¯V

+

ej!k

¯V
+

ej!k

+

¯V�e
�j!k

Balancing [136] ¯V
+

ej!k

(1� ||2) ¯V
+

ej!k

Park [132] ¯V
+

¯V
+

ej(!�!�)k
+

¯V ⇤
�e

�j(!+!�)k

This work ¯V
+

(1� ||2) ¯V
+

Table 7.1: Output of the various three-phase transformations.

Type a b
i

b
q

c
i

c
q

Balanced 1 1 1 1 1

D R R 1 R 1

Table 7.2: Characterisation of different types of voltage imbalances. For the case study in this section,
R = 0.5.

7.6 Simulations

The performance of the ACLMS based adaptive Clark/Park transform in Algorithm 5 was
tested on a three-phase signal under nominal (balanced voltages and frequency, f = 50 Hz)
and off-nominal conditions (unbalanced voltages with f 6= 50 Hz), over a period of four sec-
onds. For these case studies, we have chosen to illustrate the adaptive Park transform as it
simultaneously reveals the performance of both the adaptive Clark and Park transforms. The
step-size for the ACLMS was chosen1 to be µ = 0.05 and the ↵� voltage, s

k

, was generated by
performing the Clarke transform on a three-phase signal for which the phasors are given by

¯V
a

= a, ¯V
b

=

1

2

(�b
i

� j
p
3b

q

), ¯V
c

=

1

2

(�c
i

� j
p
3c

q

),

The parameters a, b
i

, b
q

, c
i

and c
q

were chosen according to Table 7.2, depending on the type
of voltage imbalance [25]. The fundamental frequency was 50 Hz and the sampling period
T = 1/500 s.

In the first case study, the three-phase signal was operating under balanced conditions for
the first two seconds and when it was subjected to a Type D sag, with the phasors given in
Table 7.2. Figure 7.5 shows the direct and quadrature Park voltages, v

d,k

and v
q,k

, from both
the original Park transform defined in (7.4) and the adaptive Park transform in Algorithm 5.
Notice that when the system in unbalanced, the Park voltage oscillates according to (7.35),
while the adaptive Park transform was able to obtain a stationary phasor as indicated in Table
7.1.

Figure 7.6 illustrates the second case study where the phase voltages were chosen to be op-
erating under a balanced condition for the whole 4 s period, but the system frequency changed
from the nominal frequency of 50 Hz to 53 Hz at 2 s. As shown in (7.34), the original Park trans-
form yielded an oscillating output when the system frequency was at an off-nominal value,
while the adaptive Park transform was able to converge to a stationary (non-oscillatory) pha-

1The step-size was chosen arbitrarily as the claims in these simulations only serve to demonstrate that the proposed
adaptive transform is able to yield non-oscillatory outputs regardless of the operating condition of the three-phase
voltages.
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Figure 7.5: Performance of the fixed Park transform in (7.4) (Original) and adaptive Park Trans-
form in Algorithm 5 (Adaptive) under voltage imbalances.

sor after the frequency change point.

7.7 Chapter Summary

We have introduced a modern perspective on the symmetrical, Clarke and Park transforms.
The symmetrical transform has been shown to be a spatial DFT applied to an unbalanced set of
phasors in (7.7) while the Clarke transform has been derived as a PCA-based optimal dimen-
sionality reduction scheme for a balanced three-phase system in (7.23). Moreover, as shown
in (7.32), the Park transform has been interpreted as a frequency demodulation scheme in the
complex-domain.

Table 7.3 summarises the signal processing interpretations of the most widely used three-
phase transforms.

Transforms Interpretations
Symmetrical [127] Spatial DFT
Clarke [128] PCA
Park [132] FM demodulation

Table 7.3: Signal processing interpretations of three-phase transformations.

This has allowed us to show that the Clarke and Park transforms do not yield the optimal
dimensionality reduction for unbalanced voltages, a theoretical justification of a frequently
experienced phenomenon in practice. To solve this issue for dynamic power systems, we have
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Figure 7.6: Performance of the fixed Park transform in (7.4) (Original) and adaptive Park Trans-
form in Algorithm 5 (Adaptive) under frequency deviations.

proposed a time-varying, adaptive transformation (see Algorithm 5) capable of transforming
an unbalanced set of voltages operating at off-nominal frequencies to values that resemble
the ideal outputs of the original Clarke and Park transformations of balanced systems. This
has opened new possibilities in online dimensionality reduction algorithms and a stabilising
platform for accurate and robust signal processing applications which are critical to future low-
inertia grids.

In Chapter 8, the transform-domain voltages (particularly the Clarke voltage in 7.28) will
be used for the frequency estimation tasks. In particular, the distributed adaptive algorithms
developed in Part II will be applied to estimate the frequency, !. Moreover, we develop strate-
gies for distributed frequency estimation when voltages across different nodes have different
levels of imbalance, that is, with different values of positive and negative sequence phasors, V

+

and V�.
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Chapter 8

Distributed Frequency Estimation Examples

Errors using inadequate data are much less
than those using no data at all.

Charles Babbage

Chapter Overview

Thus far we have studied adaptive algorithms that employ general linear or non-linear models
but have not specified the exact model structure for the frequency tracking problem. In this
chapter, we shall investigate specific models for frequency estimation based on the Clarke volt-
age which was introduced in Chapter 7. It should be noted that several frequency estimation
models outlined in this chapter were extended from their original real-valued representations
in order to cater for complex-valued sinusoids. Next, the diffusion based extended Kalman fil-
ters proposed in Chapter 6 are applied to the problem of frequency estimation in a networked
grid. Simulations over synthetic and real-world data will aid the discussion in this chapter.

8.1 Introduction

The task of estimating the instantaneous frequency of a signal has been of practical and theoret-
ical interest for decades and has attracted a plethora of solutions from various fields [141, 142].
This section provides a brief overview of the different methods used to track the instantaneous
frequency, with a particular emphasis on adaptive estimation methods.

Recall the complex-valued Clarke voltage embedded in white noise, ⌘
k

, is given by

y
k

= s
k

+ ⌘
k

, s
k

= Aej!k

+Be�j!k, (8.1)

where ! = 2⇡fT , is the unknown frequency of interest and T the sampling period and ⌘
k

is
a complex-valued white Gaussian noise with variance E

�|⌘
k

|2 = �2

⌘

. The complex-valued
phasors, A = |A|ej�A and B = |B|ej�B , are also unknown.

The signal model in (8.1) is a generalisation of single-frequency sinusoids and degenerates
into the well-studied cisoid, s

k

= Aej!k, for B = 0, while for B = A⇤, the signal in (8.1)
simplifies into a real valued sinusoid, s

k

= 2|A| cos(!k + �
A

).
The processes of designing parameter estimation algorithms can be separated into the fol-

lowing three categories:

Step 1: Choose a model, for the signal of interest, M
w

, parametrised by a set of parame-
ters w.
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Select Cost
Function, J (w)

Choose a model
M

w

Estimate model
parameters, w

Figure 8.1: A general estimation problem.

Step 2: Determine the objective function, J
w

, to assess the modelling accuracy.

Step 3: Estimate model parameters, w, to achieve the desired modelling accuracy, as
determined by the objective function in Step 2.

Since the discussion on the mean square error (MSE) cost function and corresponding min-
imisation algorithms, e.g. stochastic gradient-type methods (CLMS, ACLMS), or state-space
methods (CEKF, ACEKF) were focus of the previous chapters, we shall now review several
adaptive models used for the frequency estimation problem and extend them to cater for un-
balanced Clarke-voltages.

8.2 Linear Prediction of Sinusoids

The basis of many frequency estimation algorithms is the linear prediction of sinusoids. This
theory goes back to the work of Prony who exploited the fact that uniformly sampled sums of
exponentials can be modelled, hence predicted, using their previous samples [143]. To illustrate
this concept, consider the sinusoidal model in (8.1) for B = 0, given by1

s
k+1

= A
k

ej!(k+1)

= ej!A
k

ej!k

=) s
k+1

= hs
k

, (8.2)

where h = ej! . The model in (8.2), shall be referred to as the strictly linear autoregressive model
of order one (SLAR-1), and is reminiscent of the complex-valued AR models which were intro-
duced in Chapter 2. The AR modelling of a sinusoid forms the basis of many frequency estima-
tion algorithms as it implies that a sinusoid can be linearly predicted from its past samples and
that the prediction coefficients are functions of the signal frequencies. For the canonical model
in (8.2), the frequency of the signal, !, and the prediction coefficient is related through

! = arg [h] = tan

�1



Im {h}
Re {h}

�

. (8.3)

However, the SLAR-1 model in (8.2) is inaccurate when the power system is operating un-
der unbalanced conditions, such as when the voltage amplitudes V

a

, V
b

and V
c

are no longer
equal or phases are not equally separated, �

a

6= �
b

6= �
c

.
To overcome the under-modelling issue with the SLAR-1 model for unbalanced systems,
1In the context of ↵� voltages, the condition B = 0 represents a balanced operating condition where the three

phase voltages have the same amplitudes and equal phase separations.
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consider again the general case of the signal model in (8.1)

s
k

= Aej!k

+Be�j!k,

At the time-instant, k, adding the previous sample, s
k�1

, to the subsequent sample, s
k+1

,
yields

s
k+1

= ej!Aej!k

+ e�j!Be�j!k

+ s
k�1

= e�j!Aej!k

+ ej!Be�j!k

s
k+1

+ s
k�1

=

�

ej! + e�j!

�

Aej!k

+

�

ej! + e�j!

�

Be�j!k

= 2 cos(!)
�

Aej!k

+Be�j!k

�

= 2 cos(!)s
k

,

so that,

s
k+1

= as
k

� s
k�1

. (8.4)

where a = 2 cos(!). The model in (8.4) is referred to as the strictly linear AR model of order two
(SLAR-2), as two previous samples s

k

and s
k�1

are needed to predict the next sample, s
k+1

[144, 145, 146]. However, the SLAR-2 model exhibits high bias due to modelling inaccuracies
in the presence of noise [147]. The frequency is related to the prediction coefficient a as

! = cos

�1

[a/2] . (8.5)

An alternative method to model the general sinusoid in (8.1) is the widely linear model,
introduced in Chapter 2. Since the ↵� voltage in (8.1) can be interpreted as the sum of two
phasors, one rotating clockwise (positive sequence) and the other rotating counter clockwise
(negative sequence) at the same frequency, it is only natural and intuitive to consider the pre-
vious value s

k

and its conjugate s⇤
k

(where the conjugate represents the phasor rotating in the
opposite direction) within the autoregressive model. The widely linear model for the complex-
valued ↵� voltage is therefore given by

ŝ
k+1

= h⇤s
k

+ g⇤s⇤
k

= h⇤ �A
k

ej!k

+B
k

e�j!k

�

+ g⇤
�

A⇤
k

e�j!k

+B⇤
k

ej!k

�

= (h⇤A
k

+ g⇤B⇤
k

) ej!k

+ (h⇤B
k

+ g⇤A⇤
k

) e�j!k. (8.6)

Comparing (8.6) to the signal s
k+1

in (8.1) which is given by

s
k+1

=

�

ej!A
�

ej!k

+

�

e�j!B
�

e�j!k, (8.7)

yields

ej!A = h⇤A+ g⇤B⇤, and e�j!B = h⇤B + g⇤A⇤. (8.8)
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Solving the simultaneous equation in (8.8) gives

ej! = Re {h}+ j

q

Im

2{h}� |g|2.

Therefore, the widely linear estimate of the system frequency assumes the form [22, 24, 148]

! = tan

�1

2

4

q

Im

2{h}� |g|2
Re {h}

3

5 . (8.9)

The signal model in (8.6) and its corresponding frequency estimate in (8.9) shall be referred to
as the widely linear AR-I model (WLAR-I).

Remark 8.1. From (8.9), notice that when the system is balanced (B = 0), the coefficient g = 0, and
the widely linear frequency estimate is identical to its strictly linear counterpart in (8.3). While the
strictly linear AR(2) model in (8.4) is identical for both balanced and unbalanced voltages, the widely
linear model provides an intuitive advantage as the coefficient g represents the negative sequence which
characterises the imbalance of the system voltage.

8.3 Selecting an Estimator

8.3.1 Linear Adaptive Filters

The first use of adaptive filters to track the frequency of a sinusoid can be traced back to the
work of Griffiths who used the LMS to estimate a time-varying AR model [149]. Griffiths did
not use the explicit relationship between the AR coefficients of the signal to the actual fre-
quencies, as shown by Prony, but performed this implicitly by tracking the peaks of the power
spectrum constructed using the AR model. This development was closely related to adaptive
line enhancer (ALE) which uses a prediction configuration to “enhance” a sinusoid. Although
the focus of the ALE is its output and not the filter coefficients, the Griffiths’ frequency tracker
is identical to the Widrow’s ALE if the filter order is set to the number of sinusoids present in
the signal [150]. An adaptive linear predictor can be configured using the CLMS or ACLMS
algorithm introduced in Chapter 2, as

"
k

= y
k

�w

H
k

x

k

(8.10)

w

k+1

= w

k

+ µ"⇤
k

x

k

,

where the input x
k

and weight vectors w
k

take different forms depending on the model used,
for more details see Table 8.1.

It is important to note that the ALE in (8.10) is a finite impulse response (FIR) feed-forward
structure, and can be extended to infinite impulse response (IIR) feedback structures to increase
the frequency resolution and tracking capability at the expense of possible stability and robust-
ness issues [151, 152, 153]. We shall however limit our discussion to feed-forward structures
and move on to more robust nonlinear state-space estimators.

147



8. Distributed Frequency Estimation Examples

Linear Prediction Models
Model Input and Weight Vectors Frequency Estimate

LP-SLAR-1
[154]

xk = yk�1

wk = hk
!̂k = tan

�1

Im {hk}
Re {hk}

�

LP-WLAR-I
[22]

xk = [yk�1, y⇤k�1]
T

wk = [hk, gk]T

ãk =

q
Im2{hk}� |gk|2

!̂k = tan

�1


ãk
Re {hk}

�

LP-SLAR-2
[147]

xk = [yk�1, yk�2]
T

wk = [ak,�1]

T !̂k = cos

�1
hak
2

i

Table 8.1: Summary of linear prediction models. The prefix “LP”– indicates the models use linear
prediction scheme which requires the current observation, y

k

and its past observations y
k�1

and y
k�2

.

Contribution: Unification of Nonlinear State Space Frequency Estimators
In Section 8.3.2, we unify the various non-linear state space estimators proposed
in the power system frequency tracking literature. Furthermore, we also extend
the estimators which were originally proposed for real-valued variables to cater
for the complex Clarke voltage. The summary of the estimators is presented in
Table 8.2 while their performances are benchmarked in Section 8.4.

8.3.2 Non-Linear State Space Estimators

Nonlinear state-space models have been investigated for frequency tracking tasks since the
nonlinear Kalman filters were first introduced [155]. This is due to the fact that nonlinear
models provide greater modelling flexibility and may have near optimal performance under
noisy scenarios. For generality, consider a nonlinear state space evolution given by

w

k

= f

k�1

(w

k�1

) + q

k

,

y
k

= '
k

(w

k

) + ⌘
k

,
(8.11)

where y
k

2 C is the observation (or measurement) of the state vector w

k

2 CM⇥1 through a
known nonlinear function '

k

(·). The state vector w

k

is also time-varying with a known state
transition function f

k

(·). The zero-mean white Gaussian observation noise ⌘
k

is independent of
the white Gaussian state noise vector q

k

. The nonlinear function '
k

(·) caters for a wide-range
of models considered in frequency estimation problems and the most commonly employed
models shall be reviewed in this section. The state w

k

can be estimated/tracked using an
complex (or augmented complex) extend Kalman filter (ACEKF) introduced in Chapter 6.

Nonlinear AR models

We shall first extend the linear and widely linear AR models in Table 8.1 to their nonlinear
versions. Firstly, let us consider the SLAR-1 model in (8.2), whereby the signal s

k

and frequency
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estimate ej! are represented as elements in the state vector w

k

= [ej!, s
k

]

T. This admits the
state transition model given by [156]

w

k

=

"

ej!

s
k

#

=

"

1 0

0 ej!

#

| {z }

f

k�1

(w

k�1

)

"

ej!

s
k�1

#

+ q

k

y
k

=

h

0 1

i

| {z }

'
k

(w

k

)

"

ej!

s
k

#

+ ⌘
k

,

(8.12)

where f

k�1

(w

k�1

) is nonlinear due to the presence of the state variable ej! within the state
transition matrix, while the observation function, '

k

(w

k�1

) =

h

0 1

i

, is linear and time-
invariant.

The state space formulation in (8.12) was first proposed in [156] and was applied to track
the power system frequency in [157]. In [156], a complex extended Kalman filter employing the
state-space model in (8.12) was shown to be stable and robust due to the weak non-linearity of
the state transition function f

k

(·). The nonlinear AR-1 model in (8.12) shall be referred to as the
SLAR-1 model due to the underlying strictly linear AR model of that is employed.

In a similar fashion, the widely linear model in (8.6) can be configured within a nonlinear
state space method whereby the state vector contains the WLAR-I coefficients, w

k

= [h⇤
k

, g⇤
k

, s
k

]

T,
and the nonlinear state transition model is given by [148]
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4
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3
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5
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2
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3

7

5

+ q
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0 0 1

i

2

6

4
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k

g⇤
k

s
k

3

7

5

+ ⌘
k

,

(8.13)

In a similar fashion, the strictly linear AR-2 model (SLAR-2) in (8.4) shall be represented in
the form [158]

w

k

=

2

6

4

2 cos(!)

s
k

s
k�1

3

7

5

=

2

6

4

1 0 0

0 2 cos(!) �1
0 1 0

3

7

5

2

6

4

2 cos(!)

s
k�1

s
k�2

3

7

5

+ q

k

y
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=

h

0 1 0

i

2

6

4

2 cos(!)

s
k

s
k�1

3

7

5

+ ⌘
k

.

(8.14)

A more physically meaningful nonlinear model which takes inspiration from the WLAR-I
and SLAR-1 models is the following. Consider the observed signal, y

k

, which can be rep-
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resented as a sum of two phasors, ⌫+
k

and ⌫�
k

, (positive and negative sequence) rotating in
opposite directions, given by

y
k

= ej!
⇣

A
k�1

ej!(k�1)

⌘

| {z }

def
=⌫

+
k�1

+e�j!

⇣

B
k

e�j!(k�1)

⌘

| {z }

def
=⌫

�
k�1

+⌘
k

.

Both phasors, ⌫+
k

and ⌫�
k

, independently obey a strictly linear model where their phases are
incremented by ! at the every time instant. Therefore, the process admits a state space model
in the form [159]

w
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2

6

4

ej!
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k

⌫�
k

3

7
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4
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⌫�
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3

7

5

+ ⌘
k

,

(8.15)

and was proposed independently by [159, 160] and [161]. We shall refer to the model in (8.15) as
the widely linear AR model-II (WLAR-II), due to its resemblance to the intuition of the widely
linear model in (8.13). It is important to observe that the nonlinear state space models in (8.12)
– (8.15), which in essense employ the linear prediction (or AR) idea, do not use the signal y

k

and its past samples y
k�1

to predict the frequency. Instead only the signal y
k

is used in the
observation function while the past sample y

k�1

is also estimated as a nuisance state.

Nonlinear Sinusoidal Model

The nonlinear model in (8.11) is not restrictive to only the models that arise from the linear
prediction property of sinusoids. For example, a straightforward nonlinear state space model
for the sinusoidal signal in (8.1) is given by

w
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=

2

6

4

A
k

B
k

!
k

3

7

5

=

2

6

4

1 0 0

0 1 0

0 0 1
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A
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k�1
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7
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k

(8.16)

y
k

= A
k

ej!k

k

+B
k

e�j!

k

k

| {z }

'

k

(w

k

)

+⌘
k

, (8.17)

where the frequency estimate is obtained directly from the state vector w

k

. The function
f

k�1

(·) = I in the above model is linear, while observation function, '
k

(·), is nonlinear. The
state-space model in (8.16) will be referred to as the nonlinear sinusoidal model I (NLS-I). Vari-
ants of NLS-I in (8.16) have been employed to estimate the parameters for real-valued sinusoids
using the standard extended Kalman filter [162, 163]. Equivalently, recursive Gauss-Newton
algorithms have also been used to estimate the NLS-I model parameters [164, 165]. It is worth
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mentioning that the recursive Gauss-Newton and EKF are functionally equivalent [166], which
is analogous to the duality of the recursive least squares and linear Kalman filter for linear
state-space models [167]. The NLS-I model in (8.16), contains an observation function that is
time-dependent. To simplify this, the frequency and the phase of the signal can be decoupled
via the state transition matrix as [142]
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,

(8.18)

so that the observation function '
k

(w

k

) can be made independent of the time index k. The
model in (8.18) will be referred to as the nonlinear sinusoidal model-II (NLS-II). An extended
Kalman filter applied to the real-valued version of (8.18) is shown to be the equivalent to phase
locked-loop (PLL) estimator [155].

A summary of nonlinear state space models used in tracking the frequency of sinusoid is
outlined in Table 8.2.

8.4 Single Node Case Studies

We next assess the models shown in Table 8.2 with the ACEKF algorithm for frequency tracking
task under balanced and unbalanced system conditions. Figure 8.2 shows the case where the
frequency of the ↵� voltage was initialised at 50.5 Hz but experienced a step-change to 49.5 Hz
at 0.15 s. Notice that almost all the algorithms were able to react to the change in frequency
except the algorithm that employed the NLS-I model.

In the second case study, an unbalanced ↵� voltage with the same frequency conditions
was tested on the different models. The SLAR-1 model was unable to track the correct voltage
due to fact that the strictly linear model being inadequate for unbalanced systems.

The steady state behaviour of the algorithms were next benchmarked at various noise lev-
els, as illustrated in Figure 8.4. Notice that the worst performing algorithm is the SLAR-2
model in (8.14). This is a well-known result which states that the SLAR-2 model has poor per-
formance for noisy data [147]. The model which exhibits the best performance was the NLS-I
model on the other hand in fact has a very poor tracking ability. We therefore conclude that
the widely linear, WLAR-I and WLAR-II models and the nonlinear NLS-II model offer the best
trade-off between tracking ability, robustness against noise and steady-state performance. We
shall therefore investigate these three models in the case studies on distributed frequency esti-
mation.
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Figure 8.2: Frequency tracking performance for a noise-free signal under a balanced condition.
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Figure 8.3: Frequency tracking performance under unbalanced conditions for a noise-free sig-
nal.
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Nonlinear State Space Models
Model State Space Models Frequency Estimate
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Table 8.2: Summary of the non-linear state space models.

8.5 Distributed Frequency Estimation Examples

Contribution: Distributed Frequency Estimation
In this section, we apply distributed adaptive filters to exploit spatially diverse
voltage measurements to produce rapid frequency estimates. In particular, the
performance advantage of the proposed distributed framework for frequency
estimation is examined through case studies in model of a real-world distributed
power system.
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Figure 8.4: Steady State frequency estimation performance.

8.5.1 Experiment (Synthetic Data) Set-Up

The simulations were based on a network of six buses (nodes) where each substation had access
to three-phase voltage measurements via transformers with metering capabilities. The number
of connections in the network was chosen to be 9 (each node is connected to less than two other
nodes) as it reflected the topology of substations in a distribution network. The power system
under consideration had a nominal frequency of 50 Hz, and was sampled at a rate of 1 kHz
while the signal to noise ratio (SNR) was determined by the metering accuracy class of the
potential transformer. The BS EN 61869-1:2009 standard for the metering accuracy of potential
transformers considers six separate classes for metering requirements, which translates to an
SNR range of 30 dB to 60 dB [168]. To illuminate the robustness of our proposed augmented
diffusion Kalman filters, we chose an SNR level of 35 dB in all our simulations, unless stated
otherwise.

Each node in the network has access to noisy measurements of a common complex-valued
↵� voltage, that is
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noise with the same variance, �2
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by applying the Clarke transformation on a three-phase voltage signal
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where ¯V
a

, ¯V
b

and ¯V
c

are phasor representations of the three-phase voltage. Under a balanced
operating condition, ¯V
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. An imbalance in the system
causes voltage sags which can be represented by a change in phasors as shown in Table 8.3
[169].

154



8. Distributed Frequency Estimation Examples
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Table 8.3: Voltage sags and their phasor representations.

Case Study #1: Noise suppression

Firstly, the performance of the proposed D-ACEKF was examined under noisy voltage in-
puts. The system voltages were operating under a balanced condition (see Table 8.3) and
contaminated with circular white Gaussian noise with an SNR of 35 dB. Figure 8.5 shows
the overlay of the frequency estimates from all the six nodes in the network for both the dis-
tributed (D-ACEKF) and non-collaborative (ACEKF) algorithms. The distributed algorithm,
D-ACEKF, had a better noise attenuation performance compared to its uncooperative counter-
part, ACEKF, owing to the diffusion process.
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Figure 8.5: The increase in frequency estimation accuracy of the distributed algorithm (D-
ACEKF) over the non-cooperative algorithms (ACEKF) when the phase voltages of three nodes
in the network are contaminated with random Gaussian noise.

Next, Figure 8.6 illustrates frequency estimation in the presence of random spike noise,
which models the switching noise from the inverters which interface the renewable sources to
the grid. The distributed algorithm, D-ACEKF, outperformed its uncooperative counterpart,
ACEKF, owing to the fact that the spike noise is spread over the network at different times and
averaging spiky estimates with cleaner estimates attenuates the level of spike noise contami-
nation.

Case Study #2: Voltage sags

In the second case study, the performances of the algorithms were evaluated for an initially
balanced system which became unbalanced after undergoing a Type D voltage sag starting at
0.1 s, followed by a balanced condition starting at 0.3 s. Figure 8.7 shows that, conforming
with the analysis, the widely linear algorithm, D-ACEKF, was able to converge to the correct
system frequency for both balanced and unbalanced operating conditions, while the strictly
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Figure 8.6: Frequency estimation performance of single node (ACEKF) and distributed (D-
ACEKF) algorithms when the phase voltages of three nodes in the network are contaminated
with random spike noise.

linear algorithm, D-CEKF, was unable to accurately estimate the frequency during the volt-
age sag due to under-modelling of the system (not accounting for its widely linear nature).
As expected, the widely linear and strictly linear algorithms had similar performances under
balanced conditions, as illustrated in the time interval 0-0.1 s and 0.3-0.5 s.
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Figure 8.7: Frequency estimation performance of the distributed algorithms (D-CEKF and D-
ACEKF) for a system at 35 dB SNR. The system is balanced up to 0.1s, it then undergoes a Type
D voltage imbalance followed by a balanced condition at 0.3s.

Furthermore, it is important to note that although the standard diffusion scheme is formu-
lated to share all the states in the network, in the case of frequency tracking in the electricity
grid, only the frequency is common throughout the network while the imbalance levels, ampli-
tudes and phase angles are not necessarily the same. Therefore, diffusing other states besides
the frequency results in biased estimates.

Figure 8.8 shows the profile of the voltages at different nodes in the network. Each sub-
station underwent different faults, which is reflected in the different relative amplitudes and
phase shifts of the ↵� voltages. In addition, Substations 1 and 2 underwent total line failures
from 0.3 s to 0.5 s and 0.1 s to 0.3 s respectively.

Figure 8.9 shows distributed implementations of two widely linear state-space models de-
scribed in the Table 8.2, namely the WLAR-I and WLAR-II models. Notice that both models are
capable of estimating the the frequency under balanced and unbalanced conditions. However,
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Figure 8.8: Each substation (node) has a different ↵� voltages, including cases where the volt-
age drops to zero (line cut).

within the WLAR-I model, the frequency is embedded within the coefficients, h and g, which
also contain information about the level of imbalance in the system. Diffusing the widely lin-
ear coefficients, will therefore lead to biased estimates, since the level of imbalance accross the
network is not necessarily the same, as illustrated in Figure 8.8.

However, the WLAR-II model contains the frequency as an isolated state (this is also true
for the NLS-II model), which can be diffused across the network. Indeed, Figure 8.9 shows
that the diffusion based WLAR-II algorithm was able to estimate the frequency of the network
even with different levels of imbalance at each node, while the diffusion based WLAR-I model
produces biased estimates.
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Figure 8.9: The D-ACEKF is able to estimate the frequency in a distributed setting in the pres-
ence of different types of faults at each node, see Fig. 8.8 for voltage profiles.
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Case Study #3: Frequency variations

Figure 8.10 illustrates the performance the D-ACEKF when a power network was contami-
nated with white noise at 35 dB and 60 dB SNR and underwent a gradual drop and increase
in frequency from 0.1 s to 0.3 s. This is a typical scenario when generation does not match
the load and system inertia keeps the frequency from changing too quickly. From 0.3 s to 0.5
s the system undergoes a step-change followed by linear ramp in frequency. The D-ACEKF
was able to track the frequency in both cases, illustrating that its suitability for both the current
electricity grid and future smart grids.
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Figure 8.10: Frequency tracking performance of D-ACEKF at 35 dB and 60 dB SNR, which
experiences a gradual change in frequency from 0.1 s to 0.3 s and a step change in system
frequency to 49.2 Hz at 0.3 s and a linear ramp from 0.3 s to 0.5 s. The solid black line shows
the true instantaneous frequency of the voltage. The D-ACEKF is able to track both slow and
rapid changes in frequency.

Case Study #4: Steady-state mean square error

Figure 8.11 illustrates the mean square error (MSE) for the proposed distributed frequency
estimators. The steady state frequency estimate at a node i for the trial m is denoted by ˆf

i,ss

[m].
The mean square error (MSE) of the frequency estimators were calculated over 200 independent
trials, as

MSE =

1

200 · 6
200

X

m=1

6

X

i=1

⇣

ˆf
i,ss

[m]� f
0

⌘

2

(8.21)

where f
0

= 50 Hz is the fundamental frequency.
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The algorithms were evaluated at different SNR levels for an unbalanced system undergo-
ing a Type D voltage sag. Observe that the distributed estimation algorithm outperformed its
non-cooperative counterpart, while the only consistent distributed estimator was the proposed
D-ACEKF.
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Figure 8.11: Top panel: The average MSE of a frequency estimate by D-ACEKF is lower than
that of the D-CEKF under a Type D sag. Bottom panel: MSE for each node in the network with
and without cooperation at SNR = 35 dB shows that the diffusion strategy reduces the steady
state error for all the nodes.

Case Study #5: Real world data

We next assessed the performance of the proposed algorithms in a real world case study using
three-phase voltage measurements from two adjacent sub-stations in Malaysia during a brief
line-to-earth fault. This caused voltage sags, similar to those in Case Study #2. The three-
phase measurements were sampled at 5 kHz and the voltage values were normalized. The left
panel in Figure 8.12 shows the normalized ↵� voltages at one of the sub-stations. The fault that
occurs in phase a, v

a,k

, around 0.1 s is reflected in the voltage dip in v
↵,k

. Figure 8.12 shows
the frequency estimate from the D-ACEKF which conforms with the analysis and the scenario
in Figure 8.7, where the collaborative widely linear D-ACEKF was able to track the real world
frequency of a power network under both balanced and unbalanced conditions.

8.6 Chapter Summary

We reviewed the concepts of adaptive frequency estimation and applied the D-ACEKF pro-
posed in Chapter 6 for the task of distributed tracking of the power system frequency for both
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Figure 8.12: Top: The ↵� voltages at Sub-station 1 before and during the fault event. Bottom:
Frequency estimation using the proposed algorithm.

synthetic and real data. This has been accomplished by first developing frequency estimation
models for the output of the Clarke voltage in (8.1). For the single node case, amongst the
various frequency estimation models outlined in Table 8.2, the WLAR-II and NLS-II models
given respectively in (8.15) and (8.18) were the most suited to be effectively implemented in a
distributed fashion with the D-ACEKF (Algorithm 4).

Following this insight, the D-ACEKF was tested under a variety of case studies which are
summarised in Table 8.4. The origin of their performance advantage has linked to the theoreti-
cal performance advantage which was analysed in Chapter 6.

In summary, we have established that exploiting spatially diverse voltage measurements to
produce rapid frequency estimates is not only a viable strategy for rapid frequency estimation
in dynamic smart grids, but also a physically meaningful tool to deal with a variety of system
and observation noises.

Conclusion to Part III

This chapter concludes the third and final part of the thesis. In this part, three-phase signals
have been analysed in the context of new signal processing perspectives in Chapter 7, while
in Chapter 8, the algorithms that were developed and explored in Parts I and II were applied
to the problem of distributed frequency tracking. We have therefore verified both theoretically
and through simulation examples that the distributed widely linear framework is natural and
best-suited for the applications of fast frequency tracking in low-inertia grids.
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Case Study Origin of Performance Advantage
1 Noise

Suppression
“Contractive” nature of the diffusion coef-
ficients which reduces the steady-state er-
ror of the D-ACEKF.

Remark 6.3 ,
Remark 5.5

2 Voltage Sags Ability of the widely linear model to
model both balanced and unbalanced con-
ditions.

Remark 8.1

3 Frequency
Variations

Exponential convergence of the extended
Kalman filter allows the frequency to be
estimated rapidly.

Theorem 6.1

4 Steady-state
error

Diffusion scheme reduces the overall MSE
of the individual Kalman filters.

Remark 6.3

5 Real World
Case Study

Widely linear modelling and exponential
convergence of the D-ACEKF.

Remark 8.1,
Theorem 6.1

Table 8.4: Summary of case studies.
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Chapter 9

Conclusions & Future Work

No man who values originality will ever be
original. But try to tell the truth as you see it,
try to do any bit of work as well as it can be
done for the work’s sake, and what men call
originality will come unsought.

C.S. Lewis

9.1 Conclusion

This thesis addressed the problem of distributed adaptive filtering for frequency estimation in
the electricity grid. The key motivator for this work is the fact that the low inertia grids in
the future will require faster frequency estimation algorithms that are robust to a wide range
of signal conditions. Drawing upon ideas in complex-valued statistical signal processing and
distributed estimation theory, we were able to propose a class of rapid frequency estimators
that are suitable for the requirements of smart grid. In the process, several new results in
the fields of complex-valued adaptive filtering, distributed adaptive filtering, power system
transforms and frequency estimation were introduced. This chapter presents a brief overview
of the contributions of the thesis and outlines the directions for future work.

• Chapter 1: Introduction. In the first chapter, the distributed frequency estimation prob-
lem was was motivated from the perspective of low inertia grids which experience rapid
frequency excursions. This context was introduced by reviewing the origins of the AC
system frequency, the current frequency regulation paradigm and the anticipated issues
with low inertia grids. The introduction also very briefly suggested how recent ideas
in complex-valued statistical signal processing and distributed adaptive filtering moti-
vated the casting of the frequency estimation problem into a complex-valued distributed
adaptive filtering setting. The details of these ideas were elaborated in the subsequent
chapters.

• Chapter 2: Estimation in the Complex Domain. This chapter served to provide a back-
ground on complex-valued statistical signal processing relevant to the contributions of
this thesis. In particular, the chapter introduced the notion of noncircularity of complex-
valued random variables and how that effects the estimation of general complex-valued
signals. This was explained through widely linear estimation theory and widely linear
AR modelling. Adaptive counterparts of the widely linear estimation methodology, re-
ferred to as augmented complex adaptive filters were then introduced, together with
their statistical properties. To enable the analyses of augmented complex adaptive filters
in subsequent chapters (e.g. Chapter 3 and Chapter 5), a matrix factorisation method,
termed the approximate uncorrelating transform (AUT) , was also introduced.
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• Chapter 3: Low Complexity Adaptive Filters. Chapters 3 and 4 presented new contri-
butions to the field of complex-valued adaptive filtering. In particular, a framework for
designing low-complexity complex-valued adaptive filters was proposed in Chapter 3.
This was accomplished by decomposing the mean square error (MSE) in estimating a
complex-valued signal into the MSEs related to estimating the real and imaginary parts
of the signal and minimising each MSE independently. This resulted in two separate sub-
filters, the complex least mean square–r and –i (CLMSr, CLMSi) which are combined to
give the dual-channel CLMS (DC-CLMS). The DC-CLMS requires half the computational
requirements of the augmented CLMS (ACLMS), while preserving the performance ad-
vantage and physical meaning of the ACLMS. The mean convergence of the DC-CLMS
was analysed using the AUT introduced in Chapter 2.

• Chapter 4: Adaptive Tracking of Complex Circularity. Based on the physical meaning of
complex noncircularity, this chapter established a link between the circularity quotient of
a complex random variable to the MSE estimation of the complex-random variable from
its conjugate. This link was used to propose a simple CLMS-based single-tap adaptive fil-
ter which was able to track the circularity quotient of a signal in real-time. The proposed
circularity tracker was used in a wireless communication setting to detect rectilinear sig-
nals.

• Chapter 5: Diffusion Complex Least Mean Square. The focus of the next two chapters
shifted towards distributed adaptive filtering strategies. In this chapter (Chapter 5), the
ACLMS originally introduced in Chapter 2, was extended to a distributed setting using
the so-called “diffusion strategy. The main contribution of the chapter was the mean
square analysis of the D-ACLMS algorithm which was accomplished through the use of
a proposed similarity conjecture. The proposed analysis removed the need to make a
restrictive simplifying assumption on the step-sizes of the algorithm, while maintaining
the mathematical tractability and the physical meaning of the problem.

• Chapter 6: Diffusion Complex Extended Kalman Filter. This chapter developed a dif-
fusion augmented complex extended Kalman filter (D-ACEKF) for the distributed esti-
mation of non-linear state space models. The D-ACEKF generalised the D-ACLMS in-
troduced in Chapter 5 for non-linear state space representations, while also catering for
widely linear models and noncircular signals. The flexibility of non-linear state space
models for a wide range of estimation tasks (including frequency estimation in low in-
ertia grids) was the main motivation for the development of the D-ACEKF. The chapter
also provided a brief review of current distributed Kalman filtering algorithms and con-
vergence analysis of the D-ACEKF.

• Chapter 7: Modern View of Three-Phase Transforms. In this chapter, we re-examined
well-known three-phase transforms commonly employed in the power engineering com-
munity, by giving them a modern signal processing perspective. The symmetrical, Clarke
and Park transforms were derived as a DFT, PCA and FM demodulation schemes respec-
tively. These interpretations were facilitated using complex-domain representations of
the transforms. The Clarke and Park transforms were shown to yield non-optimal out-
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puts for unbalanced systems operating at off-nominal frequencies. To resolve this issue,
we also proposed an adaptive three-phase transform which was able to yield outputs that
resemble the outputs of a balanced system, regardless of the operating condition of the
system.

• Chapter 8: Distributed Frequency Tracking Case Studies. This chapter validated the
proposed distributed estimation algorithms from Chapter 5 and Chapter 6 for a range
of frequency estimation task. We first developed the linear, widely linear and non-linear
models for three-phase signals, drawing upon ideas introduced in Chapter 7. Real-world
data in the form of wide-area measurements of three-phase voltages during a fault was
also used to validate the algorithms.

9.2 Future Work

While we have demonstrated the potential of using distributed frequency tracking in smart
grids, many opportunities for extending the scope of this thesis are yet to be explored. In this
section, we shall briefly outline some pertinent ideas and survey several questions that allow
for the generalisation of the concepts explored thus far.

Incorporation of topographical information. The performance of distributed frequency
estimation algorithms can be enhanced by incorporating relevant a priori information about
the network topography within the state space formulation. For example, information about
the impedance between each node and the level of inertia in a particular region were shown
to influence the frequency deviation [13]. Therefore, exploiting such information would serve
to improve the estimation accuracy of the proposed algorithms. This work shall also serve to
extend the real world case study in Chapter 8 to incorporate more busbars to reflect a wide area
distribution network.

Frequency and fault prediction. The rapid frequency excursions in low inertia grids also
necessitate the prediction of faults and their corresponding frequency deviations. In addition
to estimating the frequency, predicting any frequency excursions will help grid operators an-
ticipate unexpected events. This, in turn, can be fed into predictive control schemes that auto-
matically make adjustments to stabilise the system. Besides the ideas presented in this thesis,
prediction tasks draw upon the advancements in machine learning techniques like recurrent
neural networks [153] and kernel methods [170, 171].

Distributed state estimation. The distributed state space formulation of the D-ACEKF in
Chapter 6 can be extended to solve a wider range problems in the electricity grid besides fre-
quency estimation. The most pertinent of these problems is that of distributed state estimation.
Grid operators require accurate estimation of the state of the electricity grid observed from
measurements of active/reactive power flows, voltage magnitudes, and phase angles from
wide-area measurement devices [27]. The complex-valued and multi-modal natures of the rel-
evant quantities indicate that the D-ACEKF introduced in the thesis is a prime candidate to
solve this problem.

Joint phasor estimation and fault detection estimation. Closely related to the state estima-
tion problem is the development of algorithms for the estimation of phasors (voltage magni-
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tude and angles) [172]. These estimation algorithms are required for the next generation phasor
measurement units (PMU) which are required to adhere to the recent IEEE measurement and
protection standards [173]. The widely linear model-based PMU algorithms also enable the
joint estimation of system frequency and imbalance conditions [24].

Convergence analysis for general stochastic gradient algorithms. The similarity conjec-
ture proposed in Chapter 5 was shown to simplify the mean square analysis of the D-CLMS and
D-ACLMS algorithms. We would next like to generalise this analysis to cater for all distributed
stochastic gradient algorithms that are based on the diffusion strategy [97]. This would be
an important contribution as the similarity conjecture enables the derivation of a performance
bound for the distributed case based on the analysis of a single-node algorithm. This would
also extend the work to distributed classification and fault detection schemes by virtue of the
generality of the stochastic gradient framework.

Asynchronous distributed adaptive filters. A key limitation in the current framework for
distributed adaptive filters is that they operate under the condition which imposes the syn-
chronisation of the measurement, adaptation and communication steps. This condition is a
theoretical simplification which is rarely reflected in real-world sensor networks. Moreover,
current methods that take into account the asynchronicity start with the synchronised setting
and impose random link failures on the communication between the nodes [174]. To this end,
distributed adaptive algorithms have to reformulated in an asynchronous setting where it is
possible to design least squares based adaptive filters which operate optimally in an asyn-
chronous setting [175, 176]. Performance bounds describing the trade-off between the commu-
nication requirements, computational complexity and estimation accuracy will be an integral
part of this future research direction.

Connections with Aumann’s agreement theorem. The consensus-type diffusion strategies
discussed in this thesis have clear connections with the modelling of rational agents which is
widespread in economics, philosophy and artificial intelligence [177]. These fields study the
behaviour of rational agents that update their prior beliefs on certain states based on mutual
observations of each others states. For example, a seminal result in economics known as Au-
mann’s agreement theorem states that two rational Bayesian agents initialised with the same
priors but which update their beliefs based on different observations should converge to the
same posterior when they both are made aware of each others posterior [178]. This result
can be extended to the diffusion Kalman filter in Chapter 6, so that each node should achieve
consensus on their state estimates by just sharing their state estimates and not their collective
observations. Exploring Aumann’s agreement theorem under the distributed adaptive filtering
setting would have many implications in the communication and computational complexity of
the distributed algorithms [177]. This idea was explored in our recent work, where we intro-
duced a diffusion Kalman filter which only exchanged state estimates and their corresponding
state error covariance matrices [179]. The proposed diffusion Kalman filter greatly reduced the
communications requirements of the network while maintaining near-optimal performance.

Extensions to biomedical signal processing. The proposed distributed frequency estima-
tion framework can be reformulated for the adaptive acquisition of foetal electrocardiogram
(fECG) signals [180]. Formulating the fECG extraction problem in a sensor network frame-
work will allow the redundancy present in multi-lead ECG data to be exploited so as to reliably
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identify and extract fECG from artefact-contaminated recordings. Parallels between exploiting
wide area voltage measurements in the smart grid and multi-channel ECG data can be drawn
here, whereby spatial diversity can be exploited to remove unwanted noise sources (e.g. ma-
ternal ECG, muscle and movement artefact) from the desired fECG. This shall be an important
contribution as it will enable the prediction and subsequent prevention of stillbirths that occur
in approximately 1 in every 200 live births in the U.K. [181, 182].

9.3 Summary of the Connections Between Concepts

An overarching theme of the contributions of this thesis is the unification of various concepts
encountered in statistical signal processing. Through intuitive derivations, we have bridged the
gap between various concepts in signal processing, communications and power engineering.
Table 9.1 presents a brief overview of these connections.

Concepts Thesis Chapter
1 Adaptive filtering in R2 Widely linear filtering in C Chapter 3
2 Wiener solution for esti-

mating a signal from its
complex conjugate

Circularity quotient of a
signal

Chapter 4

3 Symmetrical transform Spatial discrete Fourier
transform (DFT)

Chapter 7

4 Clarke transform Principal component anal-
ysis (PCA)

Chapter 7

5 Park transform Frequency demodulation
(FM)

Chapter 7

6 Least mean square (LMS) Kalman filter Appendix A
7 Recursive DFT FM Demodulation Appendix B

Table 9.1: Connections between various concepts introduced in the thesis.
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Appendix A

Intrinsic Relationship Between the Kalman

Filter and LMS

A.1 Perspective

The Kalman filter and the least mean square (LMS) adaptive filter are two of the most popular
adaptive estimation algorithms which are often used interchangeably in a number of statistical
signal processing applications. They are typically treated as separate entities, the former as a
realisation of the optimal Bayesian estimator and the latter as a recursive solution to the opti-
mal Wiener filtering problem. In this appendix, we consider a system identification framework
within which we develop a joint perspective on Kalman filtering and LMS-type algorithms,
achieved through the analysis of the degrees of freedom necessary for optimal stochastic de-
scent adaptation. This approach permits the introduction of Kalman filters without any notion
of Bayesian statistics which may be beneficial for many communities which do not rely on
Bayesian methods [183, 184].

There are several, and not immediately patent, aspects of common thinking between gra-
dient descent and recursive state-space estimators. Because of their non-obvious or awkward
nature, these are often overlooked. It is hoped that the framework presented in this article,
with the seamless transition between least mean square and Kalman filters, will provide a
straightforward and unifying platform for understanding the geometry of learning and opti-
mal parameter selection in these approaches. In addition, the material may be useful in lecture
courses in statistical signal processing, or indeed, as interesting reading for the intellectually
curious and generally knowledgeable reader.

A.2 Problem Formulation

We consider a generic system identification setting

y
k

= x

T
k

w

o
k

+ ⌘
k

, (A.1)

where the aim to estimate the unknown system parameter vector, wo
k

(weight vector), which
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n

= E
�

⌘2
k

 

. For simplicity,
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we assume that all signals are real valued.
To assist a joint discussion of state space and regression-type models, Table A.1 lists the

terms commonly used across different communities for the variables in the system identifica-
tion paradigm in (A.1).

Area y
k

x

k

w

o
k

Adaptive Desired Input or True
filtering signal regressor weight

Kalman Observation Measurement State
filtering vector

Machine Target Features Hypothesis
learning parameters

Table A.1: Terminology used in different communities.

In this section we address the deterministic and time-invariant case, wo
k

= w

o, while Section
A.5 deals with a stochastic and time-varying system parameter vector (general Kalman filter).

A.2.1 Performance Evaluation Criteria

Consider observations from an unknown deterministic system

y
k

= x

T
k

w

o
+ ⌘

k

. (A.2)

We desire to estimate the true parameter vector w

o recursively, based on the existing weight
vector estimate w

k�1

and the observed and input signals, that is, bwo
= w

k

= f(w
k�1

, y
k

,x
k

).
Notice that w

k�1

, y
k

,x
k

are related through the output error

"
k

= y
k

� x

T
k

w

k�1

. (A.3)

Performance of statistical learning algorithms is typically evaluated based on the mean square
error (MSE) criterion, which is defined as the output error power and is given by

MSE = ⇠
k

def
= E

�

"2
k

 

. (A.4)

Since our goal is to estimate the true system parameters, it is natural to also consider the weight
error vector

˜

w

k

def
= w

o �w

k

, (A.5)

and its contribution to the output error, given by

"
k

= x

T
k

˜

w

k�1

+ ⌘
k

. (A.6)
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Without loss in generality, we here treat x

k

as a deterministic process although in adaptive
filtering convention it is assumed to be a zero-mean stochastic process with covariance matrix
R = E

�

x

k

x

T
k

 

. Our assumption conforms with the Kalman filtering literature where the vector
x

k

is often deterministic (and sometimes even time-invariant). Replacing the output error from
(A.6) into (A.4) gives

⇠
k

= E
�

(x

T
k

˜

w

k�1

+ ⌘
k

)

2

 

= x

T
k

M
k�1

x

k

+ �2

n

(A.7a)
def
= ⇠ex,k + ⇠min, (A.7b)

where M
k�1

def
= E

�

˜

w

k�1

˜

w

T
k�1

 

is the symmetric and positive semi-definite weight error co-
variance matrix and the noise process n

k

is assumed to be statistically independent from all
other variables. Therefore, for every recursion step, k, the corresponding MSE denoted by ⇠

k

comprises two terms: (i) the time-varying excess mean square error (EMSE), ⇠ex,k, which re-
flects the misalignment between the true and estimated weights (function of the performance
of the estimator), and (ii) the observation noise power, ⇠min = �2

n

, which represents the mini-
mum achievable mean square error (for w

k

= w

o) and is independent of the performance of
the estimator.

Our goal is to evaluate the performance of a learning algorithm in identifying the true sys-
tem parameters, wo, and a more insightful measure of how closely the estimated weights, w

k

,
have approached the true weights, wo, is the mean square deviation (MSD), which represents
the power of the weight error vector and is given by

MSD = J
k

def
= E

�k ˜w
k

k2 = E
�

˜

w

T
k

˜

w

k

 

= Tr[M
k

]. (A.8)

Observe that the MSD is related to the MSE in (A.7a) through the weight error covariance
matrix, M

k

= E
�

˜

w

k

˜

w

T
k

 

.

Contribution: Connecting the LMS and Kalman Filter
The contribution of this appendix is the novel derivation of the Kalman filter via
the optimal learning rate of the LMS.

A.3 Optimal Learning Gain for Stochastic Gradient Algorithms

The LMS algorithm employs stochastic gradient descent to approximately minimise the MSE
in (A.4) through a recursive estimation of the optimal weight vector, wo in (A.2), in the form
w

k

= w

k�1

�µ
k

r
w

E
�

"2
k

 

. Based on the instantaneous estimate E
�

"2
k

 ⇡ "2
k

, the LMS solution
is then given by [185]

LMS : w

k

= w

k�1

+�w

k

= w

k�1

+ µ
k

x

k

"
k

. (A.9)
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w1

w
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w
◦ = [w◦

1, w
◦

2]
T

True weightsGradient 
descent path

Optimal path

Figure A.1: Mean trajectories of an ensemble of noisy single-realisation gradient descent paths
for correlated data. The LMS path, produced based on (A.9), is locally optimal but globally
slower converging than the optimal path.

The parameter µ
k

is a possibly time-varying positive step-size which controls the magnitude of
the adaptation steps the algorithm takes; for fixed system parameters this can be visualised as
a trajectory along the error surface – the MSE plot evaluated against the weight vector, ⇠

k

(w).
Notice that the weight update �w

k

= µ
k

x

k

"
k

has the same direction as the input signal vector
x

k

, which makes the LMS sensitive to outliers and noise in data. Figure A.1 illustrates the
geometry of learning of gradient descent approaches for correlated data (elliptical contours
of the error surface) – gradient descent performs locally optimal steps but has no means to
follow the globally optimal shortest path to the solution, wo. It is therefore necessary to control
both the direction and magnitude of adaptation steps for an algorithm to follow the shortest,
optimal, path to the global minimum of error surface, ⇠(wo

).
The first step towards Kalman filters is to introduce more degrees of freedom by replacing

the scalar step-size, µ
k

, with a positive definite learning gain matrix, G
k

, so as to control both
the magnitude and direction of the gradient descent adaptation, and thus follow the optimal
path in Figure A.1. In this way, the weight update recursion in (A.9) now generalises to

w

k

= w

k�1

+G
k

x

k

"
k

. (A.10)

Unlike standard gradient-adaptive step-size approaches which minimise the MSE via @⇠
k

/@µ
k

[186, 187], our aim is to introduce an optimal step-size (and learning gain) into the LMS based
on the direct minimisation of the MSD in (A.8). For convenience, we consider a general recur-
sive weight estimator

w

k

= w

k�1

+ g

k

"
k

, (A.11)

170



A. Intrinsic Relationship Between the Kalman Filter and LMS

which represents both (A.9) and (A.10), where the gain vector

g

k

def
=

8

<

:

µ
k

x

k

, for the conventional LMS in (9),

G
k

x

k

, for a general LMS in (10).
(A.12)

To minimise the MSD, given by J
k

= E
�k ˜w

k

k2 = Tr[M
k

], we first establish the weight error
vector recursion for the general LMS by subtracting w

o from both sides of (A.11) and replacing
the output error with "

k

= x

T
k

˜

w

k�1

+ ⌘
k

, to give

˜

w

k

=

˜

w

k�1

� g

k

x

T
k

˜

w

k�1

� g

k

⌘
k

. (A.13)

The recursion for the weight error covariance matrix, M
k

, is then established upon post-multiplying
both sides of (A.13) by their respective transposes and applying the statistical expectation op-
erator E {·} to both sides, to yield

M
k

= E
�

˜

w

k

˜

w

T
k

 

= M
k�1

� �M
k�1

x

k

g

T
k

+ g

k

x

T
k

M
k�1

�

+ g

k

g

T
k

�

x

T
k

M
k�1

x

k

+ �2

n

�

. (A.14)

Using the well known matrix trace identities, Tr[M
k�1

x

k

g

T
k

] = Tr[g

k

x

T
k

M
k�1

] = g

T
k

M
k�1

x

k

and
Tr[g

k

g

T
k

] = g

T
k

g

k

= kg
k

k2, the MSD evolution, J
k

= Tr[M
k

], is obtained as

J
k

= J
k�1

� 2g

T
k

M
k�1

x

k

+ kg
k

k2 �xT
k

M
k�1

x

k

+ �2

n

�

. (A.15)

A.3.1 Optimal scalar step-size for LMS

The standard optimal step-size approach to the LMS aims at achieving "
k+1|k = y

k

�xT
k

w

k

= 0,
where the a posteriori error, "

k+1|k, is obtained using the updated weight vector, w
k

, and the
current input, x

k

. The solution is known as the normalised LMS (NLMS), given by (for more
detail see [188])

NLMS : w

k

= w

k�1

+

1

kx
k

k2 x

k

"
k

. (A.16)

The effective LMS-type step-size, µ
k

= 1/kx
k

k2, is now time-varying and data-adaptive. In
practice, to stabilise the algorithm a small positive step-size ⇢

k

can be employed, to give µ
k

=

⇢
k

/kx
k

k2. The NLMS is therefore conformal with the LMS, whereby the input vector, x
k

, is
normalised by its norm, kx

k

k2 (input data power).
To find the optimal scalar step-size for the LMS in (A.9) which minimises the mean square
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deviation, we shall first substitute the gain g

k

= µ
k

x

k

into (A.15), to give the MSD recursion

J
k

=J
k�1

�2µ
k

x

T
k

M
k�1

x

k

| {z }

⇠

ex,k

+µ2

k

kx
k

k2(xT
k

M
k�1

x

k

+ �2

n

| {z }

⇠

k

). (A.17)

The optimal step-size which minimises MSD is then obtained by solving for µ
k

in (A.17) via
@J

k

/@µ
k

= 0, to yield [189]

µ
k

=

x

T
k

M
k�1

x

k

kx
k

k2 �xT
k

M
k�1

x

k

+ �2

n

�

=

1

kx
k

k2
| {z }

normalisation

⇠ex,k

⇠
k

| {z }

correction

. (A.18)

Remark A.1. In addition to the NLMS-type normalisation factor, 1/kx
k

k2, the optimal LMS step-

size in (A.18) includes the correction term, ⇠ex,k/⇠k < 1, a ratio of the excess mean square error, ⇠ex, k,

to the overall MSE, ⇠
k

. A large deviation from the true system weights causes a large ⇠ex,k/⇠k and fast

weight adaptation (cf. slow adaptation for a small ⇠ex,k/⇠k). This also justifies the use of a small step-size

⇢
k

in practical NLMS algorithms, such as that in Eq. (A.28a) in Section A.7.

A.3.2 From LMS to Kalman Filter

The optimal LMS step-size in (A.18) aims to minimise the MSD at every time instant, however,
it only controls the magnitude of gradient descent steps (see Figure A.1). To find the optimal
learning gain which controls simultaneously both the magnitude and direction of the gradient
descent in (A.10), we start again from the MSD recursion (restated from (A.15))

J
k

= J
k�1

� 2g

T
k

M
k�1

x

k

+ kg
k

k2 �xT
k

M
k�1

x

k

+ �2

n

�

.

The optimal learning gain vector, g
k

, is then obtained by solving the above MSD for g
k

, via
@J

k

/@g
k

= 0, to give

g

k

=

M
k�1

x

T
k

M
k�1

x

k

+ �2

n

x

k

=

M
k�1

⇠
k

x

k

= G
k

x

k

. (A.19)

This optimal gain vector is precisely the Kalman gain [46], while the Kalman gain matrix, G
k

,
represents a ratio between the weight error covariance, M

k�1

, and the mean square error, ⇠
k

. A
substitution into the update for M

k

in (A.14) yields a Kalman filter which estimates the time-
invariant and deterministic weights, wo, as outlined in Algorithm A.1.

Remark A.2. For �2

n

= 1, the Kalman filtering equations in Algorithm A.1 are identical to the recursive

least squares (RLS) algorithm. In this way, this note complements the classic paper by Sayed and Kailath

[167] which establishes a relationship between the RLS and the Kalman filter.
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Algorithm A.1. Kalman filter for deterministic states
At each time instant k > 0, based on measurements {y

k

,x
k

}
1: Compute the optimal learning gain (Kalman gain):

g

k

= M
k�1

x

k

�

�

x

T
k

M
k�1

x

k

+ �2

n

�

2: Update the weight vector estimate:
w

k

= w

k�1

+ g

k

(y
k

� x

T
k

w

k�1

)

3: Update the weight error covariance matrix:
M

k

= M
k�1

� g

k

x

T
k

M
k�1

A.4 Scalar Covariance Update

An additional insight into our joint perspective on Kalman and LMS algorithms is provided
for independent and identically distributed (IID) system weight error vectors, whereby the
diagonal weight error covariance matrix is given by M

k�1

= �2

P,k�1

I, while the Kalman gain,
g

k

, in (A.19) now becomes

g

k

=

�2

P,k�1

�2

P,k�1

x

T
k

x

k

+ �2

n

x

k

=

x

k

kx
k

k2 + "
k

, (A.20)

where "
k

def
= �2

n

/�2

P,k�1

denotes the regularisation parameter and �2

P,k�1

is the estimated weight
error vector variance.

Remark A.3. A physical interpretation of the regularisation parameter "
k

is that it models our confi-

dence level in the current weight estimate, w
k

, via a ratio of the algorithm-independent minimum MSE,

⇠min = �2

n

, and the algorithm-specific weight error variance, �2

P,k�1

. The more confident we are in cur-

rent weight estimates, the greater the value of "
k

and the smaller the magnitude of the weight update,

�w

k

= g
k

"
k

.

To complete the derivation, since M
k

= �2

P,k

I and thus Tr[M
k

] = M�2

P,k

, the MSD recursion
in (A.15) now becomes

�2

P,k

= �2

P,k�1

� kx
k

k2
M(kx

k

k2 + "
k

)

�2

P,k�1

. (A.21)

The resulting hybrid “Kalman-LMS” algorithm is given in Algorithm A.2.

Remark A.4. The form of the LMS algorithm outlined in Algorithm A.2 is identical to the class of gen-

eralised normalised gradient descent (GNGD) algorithms in [187, 190] which update the regularisation
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parameter, "
k

, using stochastic gradient descent. More recently, Algorithm A.2 was derived indepen-

dently in [191] as an approximate probabilistic filter for linear Gaussian data and is referred to as the

probabilistic LMS.

Algorithm A.2. A hybrid Kalman-LMS algorithm
At each time instant k > 0, based on measurements {y

k

,x
k

}
1: Compute the confidence level (regularisation parameter):

"
k

= �2

n

�

�2

P,k�1

2: Update the weight vector estimate:
w

k

= w

k�1

+

x

k

kx
k

k2
+"

k

(y
k

� x

T
k

w

k�1

)

3: Update the weight error variance:

�2

P,k

= �2

P,k�1

� kx
k

k2

M(kx
k

k2
+"

k

)

�2

P,k�1

A.5 From Optimal LMS to General Kalman Filter

To complete the joint perspective on the LMS and Kalman filters, we now consider a general
case of a time-varying and stochastic weight vector wo

k

in (A.1), to give

w

o
k+1

= F
k

w

o
k

+ q

k

, q

k

⇠ N (0,C
s

), (A.22a)

y
k

= x

T
k

w

o
k

+ ⌘
k

, ⌘
k

⇠ N (0,�2

n

). (A.22b)

The evolution of the true weight vector w

o
k

is governed by a known state transition matrix,
F

k

, while the uncertainty in the state transition model is represented by a temporally white
state noise vector, q

k

, with covariance C
s

= E
�

q

k

q

T
k

 

, which is uncorrelated with observation
noise ⌘

k

. The known weight vector evolution in (A.22a) admits the update of the current state
estimate, w

k|k, and the prediction of the next state, w
k+1|k, in an LMS-like fashion as

w

k|k = w

k|k�1

+ g

k

(y
k

� x

T
k

w

k|k�1

), (A.23a)

w

k+1|k = F
k

w

k|k, (A.23b)

where g

k

in (A.23a) is the Kalman gain. Figure A.2 illustrates that, unlike the standard LMS
or deterministic Kalman filter in Algorithm A.1, the general Kalman filter in (A.23a)–(A.23b)
employs its prediction step in (A.23b) to track the time-varying error surface, a “frame of refer-
ence” for optimal adaptation.

The update steps (indicated by the index k|k) and the prediction steps (index k+1|k) for all
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Figure A.2: The time-varying state transition in (A.22a) results in a time-varying MSE surface.
For clarity, the figure considers a scalar case and state noise, q

k

, is omitted. Within the Kalman
filter, the prediction step in (A.23b) preserves the relative position of w

k+1|k with respect to the
evolved true state, wo

k+1

.

the quantities involved are defined below as

˜

w

k|k
def
= w

o
k

�w

k|k, M
k|k

def
= E

n

˜

w

k|k ˜w
T
k|k

o

,

˜

w

k+1|k
def
= w

o
k+1

�w

k+1|k = F
k

˜

w

k|k + q

k

, (A.24)

M
k+1|k

def
= E

n

˜

w

k+1|k ˜w
T
k+1|k

o

= F
k

M
k|kF

T
k

+C
s

.

Similarly to (A.13)–(A.17), the Kalman gain is derived based on the weight error vector recur-
sion, obtained by subtracting the optimal time-varying w

o
k

from the state transition in (A.23a),
as

˜

w

k|k =

˜

w

k|k�1

� g

k

x

T
k

˜

w

k|k�1

� g

k

⌘
k

, (A.25)

so that the evolution of the weight error covariance becomes

M
k|k

def
= E
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˜
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(A.26)

Finally, the Kalman gain, g
k

, which minimises the MSD, J
k|k = Tr[M

k|k], is obtained as (cf.
optimal LMS in (A.19))

g

k

=

M
k|k�1

x

T
k

M
k|k�1

x

k

+ �2

n

x

k

= G
k

x

k

. (A.27)

The whole procedure is summarised in Algorithm A.3.
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Algorithm A.3. General Kalman filter
At each time instant k > 0, based on measurements {y

k

,x
k

}
1: Compute the optimal learning gain (Kalman gain):

g

k

= M
k|k�1

x

k

�

�

x

T
k

M
k|k�1

x

k

+ �2

n

�

2: Update the weight vector estimate:
w

k|k = w

k|k�1

+ g

k

(y
k

� x

T
k

w

k|k�1

)

3: Update the weight error covariance matrix:
M

k

= M
k�1

� g

k

x

T
k

M
k�1

4: Predict the next state (weight) vector:
w

k+1|k = F
k

w

k|k

5: Predict the weight error covariance matrix:
M

k+1|k = F
k

M
k|kF

T
k

+C
s

Remark A.5. Steps 1–3 in Algorithm A.3 are identical to the deterministic Kalman filter which was

derived starting from the LMS and is described in Algorithm A.1. The distinguishing difference is

in Steps 4–5 which cater for the time-varying and stochastic general system weights. Therefore, the

fundamental principles of the Kalman filter can be considered through optimal adaptive step-size LMS

algorithms.

A.6 Conclusions

We have employed “optimal gain” as a mathematical lens to examine variants of the LMS algo-
rithms and Kalman filters. This perspective enabled us to create a framework for unification of
these two main classes of adaptive recursive online estimators. A close examination of the rela-
tionship between the two standard performance evaluation measures, namely the mean square
error (MSE) and mean square deviation (MSD), allowed us to link up in an intuitive way the
geometry of learning of Kalman filters and LMS, in both deterministic and stochastic system
identification settings. The Kalman filtering algorithm is then derived in an LMS-type fashion
via the optimal learning gain matrix, without having to resort to probabilistic approaches [192].

Such a conceptual insight also permits seamless migration of ideas from the state space
based Kalman filters to the LMS adaptive linear filters and vice versa, and provides a platform
for practical applications and nonlinear extensions [153]. It is our hope that this framework
of examination of these normally disparate areas will both demystify recursive estimation for
educational purposes [193], and further empower practitioners with enhanced intuition and
freedom in algorithmic design for the manifold applications.
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A.7 Variants of the LMS

To illustrate the generality of results in Sections A.3 and A.4, consider the normalised LMS
(NLMS) and the regularised NLMS (also termed "�NLMS), given by

NLMS: w

k

= w

k�1

+ ⇢
k

x

k

kx
k

k2 "k, (A.28a)

"�NLMS: w

k
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k�1

+

x

k

kx
k

k2 + "
k

"
k

, (A.28b)

where ⇢
k

is a step-size and "
k

a regularisation factor. Based on (A.17)-(A.18), the optimal values
for ⇢

k

and "
k

can be found as

⇢
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. (A.29)

Upon substituting ⇢
k

and "
k

from (A.29) into their respective weight update recursions in
(A.28a) and (A.28b), we arrive at

w

k

= w

k�1

+

x

T
k

M
k�1

x

k

kx
k

k2 �xT
k

M
k�1

x

k

+ �2

n

�

x

k

"
k

, (A.30)

for both the NLMS and "�NLMS, which is identical to the LMS with the optimal step-size in
(A.18). Therefore, the minimisation of the mean square deviation with respect to the parameter:
(i) µ

k

in the LMS, (ii) ⇢
k

in the NLMS, and (iii) "
k

in the "-NLMS, yields exactly the same
algorithm, which is intimately related to the Kalman filter, as shown in Table A.2 and indicated
by the expression for the Kalman gain, g

k

.

Algorithm Gain vector Optimal gain vector

Kalman
filter g

k

M
k|k�1

x

k

x

T
k

M
k|k�1

x

k

+ �2

n

LMS µ
k

x

k

x

T
k

M
k�1

x

k

x

T
k

M
k�1

x

k

+ �2

n

x

k

kx
k

k2NLMS ⇢
k

x

k

kx
k

k2

which equals x

T
k

g

k

x

k

kx
k

k2"�NLMS x

k

kx
k

k2
+"

k

Table A.2: Summary of optimal gain vectors. The optimal step-sizes for the LMS-type algorithms are
linked to the a priori variant of the Kalman gain vector, g

k

, since M
k|k�1

= M
k�1

for deterministic
and time-invariant system weight vectors.
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Appendix B

Equivalence of Classical Frequency Tracking

Techniques

Appendix Overview

The problem of tracking the system frequency is ubiquitous in power systems. However,
despite numerous comparative studies of various algorithms, the underlying links and com-
monalities between frequency tracking methods are often overlooked. To this end, we show
that the treatment of two of the best known frequency tracking algorithms, the recursive dis-
crete Fourier transform (DFT) and the fixed frequency demodulation technique, can be unified,
whereby the former can be interpreted as a special case of the latter.

B.1 Introduction

The problem of tracking the power system frequency has been of practical and theoretical inter-
est for decades, as variations in system frequency indicate a mismatch between the supply and
demand of electricity [24]. The area is undergoing a resurgence of interest as future low inertia
grids, which experience rapid frequency excursions, call for faster and more accurate frequency
tracking algorithms [6]. Extensive benchmarking of various frequency tracking methods does
exist [142, 194, 195], however, owing to the lack of a coherent and unifying framework, the
underlying commonalities between various frequency tracking methods are often overlooked.

Our aim is to show that the two best known frequency tracking algorithms, the recursive
discrete Fourier transform (DFT) and the fixed frequency (de-)modulation (FM) technique, can
be treated in a unified way. Specifically, we show that the recursive DFT based frequency
tracker can be interpreted as a special case of an FM demodulation scheme whereby the carrier
frequency is the fundamental frequency of the power system (e.g. 50 Hz or 60 Hz).
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B.2 Problem Formulation

Consider discrete time observations, x
k

, of a complex-valued sinusoid, s
k

, embedded in a white
noise process ⌘

k

, given by

x
k

= s
k

+ ⌘
k

,

s
k

= |A|ej(!�k+�

k

)

+ |B|e�j(!�k+�

k

),
(B.1)

where !� = 2⇡ f�
fs

is the fundamental frequency, fs the sampling frequency, and k the time in-
stant. The real-valued amplitudes are, |A| and |B|, and the time-varying phase, �

k

, are assumed
to vary considerably more slowly than the fundamental frequency !�.

The signal model in (B.1) represents a generalisation of single-frequency sinusoids and de-
generates into the well-studied cisoid, s

k

= |A|ej(!�k+�

k

), for |B| = 0, while for |B| = |A|, it
simplifies into a real valued sinusoid, s

k

= 2|A| cos(!�k + �
k

). The signal structure in (B.1) is
therefore quite general and is also observed as the output of the ↵� transform in unbalanced
three-phase power systems [24].

The instantaneous frequency, !
k

, of the signal s
k

in (B.1) is then given by

!
k

= !� + (�
k

� �
k�1

). (B.2)

Such a decomposition of the power system frequency into the fundamental frequency compo-
nent, !�, and rate of change of phase, (�

k

� �
k�1

), is convenient as the system frequency, f�,
is fixed and known to be either 50 Hz or 60 Hz. The estimation task is therefore to track the
instantaneous deviation from the fundamental frequency.

B.2.1 Rate of Change of the DFT Phase

The de facto standard frequency estimation algorithm in power systems is based on tracking
the frequency of the synchronous phasor obtained from the recursion for the fundamental DFT
component [5]. To begin, consider the discrete Fourier transform (DFT) of a signal (x

n

)

N�1

n=0

is
given by

~X
N�1

[k] =
1

N

N�1

X

n=0

x
n

e�j

2⇡
N

kn, (B.3)

where the subscript (N � 1) is used to indicate the latest sample, x
N�1

, used in the DFT com-
putation. The fundamental DFT component ~X

N�1

[1] is therefore

~X
N�1

[1] =

1

N

N�1

X

n=0

x
n

e�j

2⇡
N

n, (B.4)
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where the frequency bin index, “[1]”, shall now be omitted for clarity. The fundamental DFT
taken at a different window of the data, e.g. (x

n

)

r+N�1

n=r

, is therefore

~X
r+N�1

=

1

N

N�1

X

n=0

x
n+r

e�j

2⇡
N

n. (B.5)

The DFT operation in (B.5) is referred to as the sliding window DFT and the quantity ~X
r+N�1

is the rotating phasor of the signal x
n

. The rotating phasor, ~X
N�1+r

, can be converted into a
stationary phasor as

¯X
r+N�1

def
=

~X
r+N�1

e�j

2⇡
N

r

=

1

N

N�1

X

n=0

x
n+r

e�j

2⇡
N

(n+r). (B.6)

Notice that the difference between the stationary phasor in (B.6) and the rotating phasor in
(B.5) is the time index in the complex exponential and that the operations (B.3) – (B.5) are
analogous to filtering the sequence x

n

with a finite impulse response (FIR) filter. To obtain a
recursive implementation of the stationary phasor in (B.6), two consecutive window indices
can be expanded as

¯X
r+N�1

=

1

N

h

x
r

e�j

2⇡
N

r

+ x
r+1

e�j

2⇡
N

(r+1)

+ · · ·+ x
r+N�1

e�j

2⇡
N

(r+N�1)

i

, (B.7)

¯X
r+N

=

1

N

h

x
r+1

e�j

2⇡
N

(r+1)

+ · · ·+ x
r+N�1

e�j

2⇡
N

(r+N�1)

+ x
r+N

e�j

2⇡
N

(r+N)

i

. (B.8)

Subtracting the ¯X
r+N�1

in (B.7) from the ¯X
r+N

phasor in (B.8) removes the overlapping terms,
thus yielding

¯X
r+N

� ¯X
r+N�1

=

1

N

h

x
r+N

e�j

2⇡
N

(r+N) � x
r

e�j

2⇡
N

r

i

. (B.9)

Since e�j

2⇡
N

(r+N)

= e�j

2⇡
N

re�j

2⇡
N

N

= e�j

2⇡
N

r, the stationary phasor ¯X
r

can be computed recur-
sively as

¯X
r+N

=

¯X
r+N�1

+

1

N
(x

N+r

� x
r

) e�j

2⇡
N

r. (B.10)

Output of the Stationary DFT

The output of the stationary DFT from (B.6), can be expressed as

¯X
r+N�1

=

1

N

N�1

X

n=0

x
n+r

e�j!�(n+r), (B.11)
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since the fundamental frequency is related to the number of samples as !� =

2⇡

N

. Substituting
a general complex valued sinusoid given by

x
k

= Aej!k

+Be�j!k, (B.12)

where ! = !� +�!, into the stationary phasor definition in (B.11) yields

¯X
r+N�1

=

1

N

N�1

X

n=0

⇣

Aej!(n+r)

+Be�j!(n+r)

⌘

e�j!�(n+r)

=

1

N

N�1

X

n=0

Aej(!�!�)(n+r)

+

1

N

N�1

X

n=0

Be�j(!+!�)(n+r)

=

1

N

N�1

X

n=0

Aej�!(n+r)

+

1

N

N�1

X

n=0

Be�j(2!�+�!)(n+r)

=

 

A

N

N�1

X

n=0

ej�!n

!

ej�!r

+

 

B

N

N�1

X

n=0

e�j(2!�+�!)n

!

e�j(2!�+�!)r

=

˜Aej�!r

+

˜Be�j(2!�+�!)r. (B.13)

where the complex valued amplitudes ˜A and ˜B are given by

˜A =

A

N

N�1

X

n=0

ej�!n, and ˜B =

B

N

N�1

X

n=0

e�j(2!�+�!)n. (B.14)

Using the well known identity

N�1

X

n=0

ej✓n =

1� ej✓N

1� ej✓
= ej

✓

2 (N�1)

sin(N✓/2)

sin(✓/2)
,

yields the expressions

˜A = Aej
�!

2 (N�1)

✓

1

N

sin(N�!/2)

sin(�!/2)

◆

�!!0

= Aej
�!

2 (N�1) (B.15)

˜B = Be�j

2!�+�!

2 (N�1)

✓

1

N

sin(N(2!� +�!)/2)

sin((2!� +�!)/2)

◆

�!!0

= 0, (B.16)

for small values of �!. Therefore the output of the stationary DFT from (B.11) and (B.13) is
given by

¯X
r+N�1

⇡ ˜Aej�!r. (B.17)
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Multiplying the conjugate of the previous stationary DFT sample in (B.17) yields the freqeuncy
deviation �! in the form

¯X
r+N

¯X⇤
r+N�1

= | ˜A|2ej�!

=) �! = arg[ ¯X
r+N

¯X⇤
r+N�1

]

For further notational compactness, using the variable k = N + r, results in the recursive DFT
based frequency estimation method given by

X
k

= X
k�1

+

1

N
(x

k

� x
k�N

) e�j

2⇡
N

k, (B.18a)

where the DFT window length N , is chosen as a ratio of the fundamental frequency and the
sampling frequency, that is

N = fs/f�. (B.18b)

From (B.2), the instantaneous frequency estimate can therefore be obtained from the rate of
change of the single-bin DFT phase angle as

!̂DFT,k = !� + arg[X
k

X⇤
k�1

], (B.18c)

where arg[·] denotes the argument operator. In practice, to obtain smoother estimates, post-
processing (filtering) is carried out in the form of fitting a linear or quadratic model to the
phase angle sequence, arg[X

k

], obtained from (B.18a).

B.2.2 Fixed Frequency Demodulation

Frequency modulation (FM) is a fundamental concept in communications; the standard de-
modulation scheme based on the heterodyne principle is given by [140, 195]

y
k

= x
k

e�j!k (B.19a)

u
k

= LPF[y
k

] (B.19b)

!̂FM,k

= ! + arg[u
k

u⇤
k�1

]. (B.19c)

The step in (B.19a) is known as the heterodyne or demixing step, ! is a known carrier frequency
and is chosen to be the fundamental power system frequency (! = !�), while the operator
LPF[·] in (B.19b) denotes a low-pass filtering operation performed by any suitable lowpass filter
with a cut-off frequency !cut < !. The demodulated frequency is then obtained in (B.19c) from
the rate of change of the phase angles of the low-pass filtered signal u

k

. The block diagram of
a FM demodulator is shown in Figure B.1.
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⇥

ej!k

LPF arg[u
k

u⇤
k�1

]

u
k

x
k

y
k

�!
k

Figure B.1: Block diagram of a general fixed frequency demodulation scheme.

To understand this scheme, we express (B.19a) as

y
k

= x
k

e�j!�k
= A

k

ej�k

+B
k

e�j(2!�k+�

k

)

+ ⌘
k

e�j!�k,

Then, without loss in generality, a low-passed filtered (!cut < !�) version of y
k

is

u
k

= A
k

ej�k , (B.20)

since the other two components in y
k

have frequencies larger than the cut-off frequency. The
low pass filtered output, u

k

, can be subsequently used to derive the frequency deviation as
�! = �

k

� �
k�1

= \[u
k

u⇤
k�1

] as shown in the FM frequency estimation step in (B.19c).

Contribution: Connecting the Recursive DFT and FM Demodulation
The rest of the appendix presents the contribution in unifying the recursive DFT
and FM demodulator which are the two most popular frequency estimators in
the context of power systems.

B.3 Equivalence between the recursive DFT and FM demodu-

lation

The intrinsic relationship between the recursive DFT in (B.18a) – (B.18c) and the demodulation
scheme in (B.19a) – (B.19c) can now be derived without any assumption on the measurement
x
k

. First, consider again the recursive DFT in (B.18a),

X
k

= X
k�1

+

1

N
(x

k

� x
k�N

)e�j!�k, (B.21)

where, based on the choice of the data length in (B.18b), !� = 2⇡f�/fs = 2⇡/N . Next, observe
that the terms x

k

e�j!�k and x
k�N

e�j!�k in (B.21) are related to the demodulated signal y
k

in
(B.19a) through

y
k

= x
k

e�j!�k, y
k�N

= x
k�N

e�j!�k, (B.22)
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which yields the relationship

X
k

= X
k�1

+

1

N
(y

k

� y
k�N

). (B.23)

The difference equation in (B.23) represents a low-pass filtering operation on the signal y
k

,
implemented with an infinite impulse response (IIR) filter with the transfer function [196]

H(z) =
1

N

1� z�N

1� z�1

. (B.24)

Remark #1: If the low pass filter, LPF[·], used in step (B.19b), is chosen to have the transfer
function in (B.24), then the output, u

k

, in (B.19b) is identical to the synchronised phasor, X
k

, in
(B.18a). Since the choice of the low-pass filter block in demodulation allows for any suitable
low-pass structure, the recursive DFT can be interpreted as a special case of the fixed frequency
demodulation scheme.

B.4 Illustrative Example

The interpretation in Remark #1 gives the designers of phasor measurement unit (PMU) al-
gorithms the freedom to choose low-pass filters with characteristics that are favourable to the
application at hand, without having to resort to the strict definition of the synchronised phasor
in (B.18a).

To illustrate this advantage, consider the magnitude response of the recursive DFT transfer
function in (B.24), with N = fs/f� = 20, f

s

= 1 kHz and f� = 50 Hz. Figure B.2 shows that
the filter in (B.24) does not exhibit steep roll-off. In contrast, a more desirable magnitude and
phase response of a third-order Butterworth filter with the cutoff frequency, !cut = 2 Hz, is also
shown in Figure B.2.

The benefits of having a filter with sharp roll-off can be illustrated through the following
frequency tracking task. The signal x

k

= cos(2⇡ f

fs
k) + ⌘

k

, with a signal-to-noise ratio of 50dB
and frequency f = 50 Hz, undergoes a step-change to 50.5 Hz after 0.5 s. For a sampling
frequency of fs = 1 kHz, the instantaneous frequency of the signal x

k

was estimated using: (i)
the FM demodulator in (B.19a) – (B.19c) with a Butterworth filter (frequency response shown
in Figure B.2) and (ii) the recursive DFT frequency estimator based on (B.18a) – (B.18c) and for
completeness (iii) the ACEKF based frequency tracking algorithm introduced in Chapter 8.

Figure B.3 shows that both methods were able to accurately track the nominal frequency of
50Hz. However, for off-nominal frequencies, the recursive DFT performed poorly and required
further post processing. The problem can be avoided by selecting an appropriate low-pass
filter, without having to rely on the filter in (B.24).
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Figure B.2: Magnitude and phase responses of a third-order Butterworth filter with cuttoff
frequency !cut = 2 Hz, and the Recursive DFT filter in (B.24).
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Figure B.3: Top: Frequency estimates from the recursive DFT and FM demodulator; Bottom:
Comparison with ACEKF which employs the WLAR-II model in Table 8.2.
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B.5 Conclusion

We have shown that recursive DFT based frequency tracking is a special case of an FM demod-
ulation scheme with a demodulating frequency of 50 Hz or 60 Hz. The so achieved unification
of the two standard frequency estimation schemes promises much enhanced flexibility in the
design of PMU algorithms and opens avenues for further work on the optimal design and
analysis of frequency trackers.

186



Appendix C

Cramer-Rao Lower Bound and Maximum Like-

lihood Estimation

Appendix Overview

The Cramer-Rao lower bound (CRLB) for the frequency estimate from the Clarke voltage con-
taminated by white Gaussian noise is derived. Furthermore, a maximum likelihood estimation
(MLE) scheme for the frequency of the Clarke voltage is also derived for completeness. Within
the MLE analysis it is found that the ML frequency estimate is the maximiser of an augmented
periodogram, which is the sum of the standard periodogram of the data and that of their com-
plex conjugates. To reduce the computational complexity of the algorithm, we show that the
MLE frequency estimate can be formed by maximising the standard periodogram alone. It is
shown that as desired, the proposed MLE method approaches the theoretical CRLB which is
also verified by simulations. Part of this work has been submitted for publication [40].

C.1 Background: Cramer-Rao Lower Bound

Consider a complex-valued signal, x
k

2 C, consisting of a deterministic signal, s
k

(✓) 2 C,
parametrised by a real-valued parameter vector, ✓ = [✓

1

, ✓
2

, . . . , ✓
M

]

T 2 RM⇥1, and corrupted
by a zero-mean white Gaussian noise, ⌘

k

, so that

x
k

= s
k

(✓) + ⌘
k

, k = 0, 1, . . . , N � 1, (C.1)

Collecting the samples x
k

, s
k

(✓) and ⌘
k

into N ⇥ 1 column vectors, that is

x =

h

x
0

, x
1

, . . . , x
N�1

iT

, s(✓) =
h

s
0

, s
1

, . . . , s
N�1

iT

,⌘ =

h

⌘
0

, ⌘
1

, . . . , ⌘
N�1

iT

gives a vectorised version of the signal in (C.1) as

x = s(✓) + ⌘. (C.2)

Since the noise process, ⌘, is a complex-valued Gaussian, its joint-probability density func-
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tion (pdf) is given by [43]

pdf(⌘) =

1

⇡Ndet(⌃)

exp

��⌘H⌃�1

⌘

 

, (C.3)

where ⌃
def
= E

�

⌘⌘

H
 

is the covariance of the noise vector. Using the signal model in (C.2), it
can be seen that ⌘ = x� s(✓). Therefore, the joint pdf for the data x, which is parametrised by
✓ is given by

pdf(x;✓) =

1

⇡Ndet(⌃)

exp

��(x� s(✓))

H⌃�1

(x� s(✓))

 

. (C.4)

If the noise sequence, ⌘, is independent and identically distributed (IID), its covariance matrix
is diagonal, so that ⌃ = �2I, which simplifies the pdf in (C.4) into [138, Ch. 3]

pdf(x;✓) =

1

(⇡�2

)

N

exp

(

� 1

�2

N�1

X

k=0

|x
k

� s
k

(✓)|2
)

. (C.5)

For many applications, the log-likelihood function of the pdf in (C.5) is more convenient to
work with and is defined as

ln pdf(x;✓) = �ln(⇡�2

)

N � 1

�2

N�1

X

k=0

|x
k

� s
k

(✓)|2 . (C.6)

C.1.1 CRLB

The Cramer-Rao lower bound (CRLB) gives the minimum achievable variance over all unbi-
ased estimations of ✓, given the pdf of the signal, pdf(x;✓). For the signal model defined in
(C.2), the CRLBs for the parameters within the vector ✓ are given by

var(ˆ✓
i

) � ⇥F�1

(✓)

⇤

ii

, (C.7)

where the matrix F(✓) 2 RM⇥M is referred to as the Fisher information matrix (FIM) with
elements [138, Ch. 3]

F
`m

= � E
⇢

@2 ln pdf(x,✓)

@✓
`

@✓
m

�

. (C.8)

The FIM measures the curvature of the log-likelihood function of the data in (C.6), which is in-
versely proportional to the spread (i.e. variance) of the estimates. Applying the partial deriva-
tives into the log-likelihood function in (C.6), yields the Fisher information matrix elements in
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a more convenient form

F
`m

=

2

�2

Re

(

N�1

X

k=0

@s
k

@✓
`

@s⇤
k

@✓
m

)

. (C.9)

where it can be seen that the FIM is symmetrical, i.e. F
`m

= F
m`

.

C.2 CRLB for Frequency Estimates

For the problem of frequency estimation, recall the complex-valued Clarke signal voltage em-
bedded in an IID white Gaussian noise process, ⌘

k

, such that

x
k

= s
k

(✓) + ⌘
k

(C.10)

s
k

(✓) = Aej!k

+Be�j!k, (C.11)

where A = |A|ej�A refers to the positive sequence phasor, B = |B|ej�B , the negative sequence
phasor and ! = 2⇡fT the angular frequency with f the fundamental power system frequency
and T the sampling period. The real-valued unknown parameter vector that is to be estimated
is consequently given by

✓ = [|A|, |B|,�
A

,�
B

,!]
T
. (C.12)

To compute the elements of the FIM, we first compute the partial derivatives of the noise-free
signal, s

k

, with respect to the parameters ✓
i

, so that

@s
k

@|A| = ej�Aej!k,
@s

k

@|B| = ej�Be�j!k, (C.13)

@s
k
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Upon substituting the partial derivatives into the definition of the FIM in (C.9), the diagonal
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elements are computed as
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while the off-diagonal elements are found to be
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Therefore, the FIM for the parameters for the data is given by
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The CRLB is then found according to (C.7) upon extracting the diagonal elements of the inverse
of the FIM in (C.16).
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C.3 Maximum Likelihood Frequency Estimation

The maximum likelihood estimate (MLE) of the parameter vector ✓ is given by the estimate
that maximises the likelihood of obtaining the data vector, that is [138]

ˆ

✓MLE = argmax
✓

ln pdf(x,✓). (C.17)

Since the likelihood function for the IID Gaussian data is given in (C.6), the MLE scheme can
be expressed as

ˆ

✓MLE = argmax
✓

�
N�1

X

k=0

|x
k

� s
k

(✓)|2 . (C.18)

Note that due to the negative sign, the maximisation procedure in can be replaced by a min-
imisation where

ˆ

✓MLE = argmin
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� s
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| {z }
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. (C.19)

Using the vector signal model in (C.2), the MLE cost function JMLE can be written as

JMLE(✓) = kx� s(✓)k2, (C.20)

where the signal model, for the frequency estimation problem at hand is given by

s = Ae+Be

⇤,

with A and B the complex-valued phasors and the exponential vector e is a function of the
system frequency !

e

def
=

h

1, ej!, . . . , ej!(N�1)

iT

. (C.21)

The MLE cost function in (C.20) now becomes

JMLE(A,B,!) = kx�Ae+Be

⇤k2, (C.22)

and is a function of the complex-valued phasors A,B and a real valued frequency, !.
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We first find the MLE for the phasors A and B, using
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) = 0 (C.23)
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Noting that eHe = N and e

T
e = (e

H
e

⇤
)

⇤ ⇡ 0 gives the MLE estimate as
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N
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H
x. (C.25)

Applying the same principle for the negative sequence phasor, B, gives

ˆBMLE =

1

N
e

T
x. (C.26)

Now, substituting the MLE estimates of A and B into the original cost function yields the cost
function only as a function of the frequency, !, that is
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xe+
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Upon expansion, the cost function becomes

JMLE = kxk2 � 1

N

�|eHx|2 + |eHx⇤|2� . (C.28)

Since minimising (C.28) is equivalent to maximising the last two terms in (C.28), the MLE for
the frequency, ! is given by

!̂MLE = arg max
!

1

N

�|eHx|2 + |eHx⇤|2� . (C.29)

Note that 1

N

|eHx|2 is the well-known periodogram of the data x, where [48]
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while 1

N

|eHx⇤|2 can be considered the “conjugate periodogram” where
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The MLE scheme in (C.29) is reminiscent of the classic result by Rife & Boorstyn which
states that the MLE frequency estimator is the periodogram maximiser [197]. However, the
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difference in (C.29) is that for a general unbalanced voltage, both the periodogram and the con-
jugate periodogram needs to be maximised. We therefore refer to the ML frequency estimation
scheme as the augmented periodogram maximiser.

We next show that maximising the augmented periodogram is equivalent to maximising
either the original or the conjugate periodogram. To this end, let us denote the exponential
vector with the true signal frequency as e�, so that the observed signal takes the form

x = Ae� +Be

⇤
� + ⌘.

Substituting the model for the signal x into the MLE cost function in (C.29) gives
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The MLE cost function, i.e. the augmented periodogram, is maximised when e = e� which is
true when the estimated frequency is equal the actual frequency. However notice that the max-
imisation of either the periodogram, P (!), or the conjugate periodogram, ˜P (!), also yields
the correct frequency. Therefore, the MLE frequency estimate can be performed by the peri-
odogram maximiser, originally proposed for single-tone sinusoids as [197]
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C.3.1 Maximisation Scheme

The proposed maximisation scheme follows a standard periodogram maximisation where a
coarse search is followed by a finer search [197]. Since the periodogram can be obtained by
a discrete Fourier transform (DFT) for frequencies sampled on a grid, we are able to use the
frequency that corresponds to the maximum DFT bin as an initial guess to the maximisation
procedure, so that,

!̂coarse = max |DFT{x}|2. (C.35)

A finer search is performed by a Newton-Raphson method given by

!̂
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where the gradient, r
!

J , and Hessian, r2

!

J are found to be
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and the Newton-Raphson procedure is (C.36) is initialised with the coarse estimate from (C.35),
!̂
0

 !̂coarse. The iterative maximisation procedure is therefore given by
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where the vector of exponential elements, e
m

=
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ej!̂m

k
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k=0

, is a function of the estimated
frequency !̂

m

at iteration m. The stopping criterion is chosen based on the absolute difference
between successive estimates |!̂

m+1

� !̂
m

| < ✏.
To illustrate that the MLE estimate proposed in (C.39), it is applied to to the frequency es-

timation task on the Clarke-voltage which is corrupted with various levels of white Gaussian
noise. Figure C.1 shows the steady-state error of the ML estimator in (C.39) achieves the CRLB
while the performance of the ACEKF (introduced in Chapter 6) plateaus at the 50 dB SNR
level1. This conforms with previous results comparing the performance of frequency estima-
tors [141].
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Figure C.1: Steady-state mean square error (MSE) of the maximum likelihood estimator (MLE),
augmented complex extended Kalman filter (ACEKF), and Cramer-Rao lower bound (CRLB)
at different noise levels.

1Note that ACEKF was configured to operate in a stationary environment by setting its state noise covariance
matrix, ¯C = 0, for a fair comparison with the ML estimator.
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Appendix D

Rapid Frequency Response for Low Inertia

Grids

Appendix Overview

This appendix describes a potential application of distributed frequency estimation for the pro-
vision of synthetic inertia by wind turbines. This is critical for future grids where less inertia
will be available to support sudden changes in the supply-demand profile in the system. We
exploit the use of spatially diverse frequency estimates to modulate the power output of wind
turbines so as to provide synthetic inertia support. This has important implications not only
over the dynamics of the power system but also over the sizing of the grid interface of the wind
turbines. A 2850-bus model of the Great Britain (GB) electricity grid was used to illustrate the
benefit of the proposed idea. This work is currently being prepared for publication [41].

D.1 Background: Synthetic Inertia From Wind Turbines

Future low inertia grids are envisaged to experience rapid frequency excursions and the con-
sequent stability issues. A possible solution to this issue is the provision of rapid frequency
response (RFR) in the form of “synthetic inertia” from wind power generation systems [198,
199, 200, 201]. This rapid frequency response would emulate the behaviour of synchronous
generators, which inherently exchange power with the network following a frequency excur-
sion event.

To illustrate this issue, consider a frequency event which was modelled using a detailed
2850-bus model of the GB electrical system in the DIgSILENT PowerFactory simulation soft-
ware [202]. Figure D.1 shows a representation of the model which is divided into three-regions
that correspond to Scottish Hydroelectric, Scottish Power, and National Grid [202].

The model was configured to include wind farms that were able to provide synthetic inertia
during a frequency event. To simulate a contingency, a nuclear power plant was tripped at the
2 s time instant which caused a 2.2.GW loss in the supply. Figure D.2 shows that without the
inertia support, the average frequency of the system rapidly declines after the fault. Figure D.2
also shows that when wind farms are able to provide synthetic inertia support, both the rate
of change of frequency (RoCoF) and the minimum frequency (frequency nadir) are made less
severe.

Although the mechanisms to provide rapid frequency response from wind turbines have
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Figure D.1: Great Britain transmission grid model.
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Figure D.2: Average frequency in the network with and without inertia support from wind
farms.
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received much attention in the power and energy community [203, 204, 205, 206], several issues
remain unanswered [207]. The first concern is the possibility that inertia support could amplify
different forms of noise and interfere with other controllers due to unreliable measurements of
the frequency. Even if the grid is synchronous, transient phenomena may cause short term
discrepancies between the frequencies seen in far away buses [199, 208].

Figure D.3 shows the range of frequency measurements from 2850 buses in England, Scot-
land and Wales after the 2.2 GW generator trip. The overlay of frequency measurements in
the GB network in Figure D.3 shows that individual frequency measurements exhibit oscilla-
tions which need to be filtered before they are used as inputs to the synthetic inertia support
schemes. Although this can be accomplished using low-pass filters, the inherent delays intro-
duced by the filters, typically in the range of hundreds of milliseconds [207, 209], make them
undesirable for RFR schemes.
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Figure D.3: Overlay of frequency measurements in the GB network. Rapid oscillations in indi-
vidual measurement can be filtered out by spatial averaging (mean frequency).

Secondly, if wind-turbines were to exactly replicate the inertia of individual synchronous
generators, the output power required in the sub-second time-scale could be much higher than
the headroom required for nominal operating conditions. This is caused by large frequency
swings experienced during the first few seconds after the inception of a fault, as seen in Figure
D.3. While electrical machines can easily withstand currents much greater than their rated
values over short periods of time, power electronic converters that interface the wind turbines
have very modest short-term ratings. Therefore, the speed at which a wind turbine reacts to a
frequency event can have a significant impact on how its power electronic converter is sized.

D.2 Proposed Method: Spatial Averaging for Aggregated Syn-

thetic Inertia

In this work, we propose that the two challenges of having more reliable frequency estimates
and having more economical power ratings for inverters can be tackled by emulating different
levels of aggregate inertial response of synchronous generators. This is achieved by spatial fil-
tering of wide-area frequency measurements in order to attenuate spurious artefacts and local
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transient oscillations.
Consider a network of N nodes where each node represents a frequency measurement at

a certain bus. The frequency estimate at the node i and time-instant k is denoted by !
i,k

. The
spatially averaged frequency estimate is therefore given by

!̄
k

=

N

X

`=1

a
`

!
`,k

, (D.1)

where a
`

are the (possibly time-varying) weighting coefficients used to obtain the averaged
frequency, !̄

k

. An essential condition for the spatial filtering operation in (D.1) is that the
weighting coefficients a

`

satisfy the condition
P

N

`=1

a
`

= 1.
The choice of the optimal weighting coefficients for the averaging operation in (D.1) is out

of the scope of this work. However, for completeness, several weighting schemes ranging from
a simple average i.e. a

`

= 1/N 8` to a strategy based on a priori knowledge of the electricity
grid or the measurement statistics can be employed. In general, weighting coefficients based

on the network topology take the form, a
i

=

⇣

P

N

`=1

�
`

⌘�1

�
i

, where �
i

represents physical or
statistical information about the busbar (node) i. For example, �

i

could be the amount of inertia
available in the region surrounding bus i, [208], or confidence in the frequency measurements
as indicated by the noise variance, �2

i

, i.e. �
i

= 1/�2

i

[86].
Furthermore, the spatially averaged frequency measurements enable wind turbines to emu-

late the aggregate inertial response of the electrical machines in a network as opposed matching
the power output of any individual machine. Figure D.4 shows the power output (synthetic
inertia) from a certain wind turbine which uses different frequency inputs in its controller. Ob-
serve that using conventional frequency estimates requires the wind turbines to ramp up their
power output within a period of two seconds (dashed yellow line and red line). On the other
hand, by exploiting the availability of spatially diverse frequency measurements, we are able
to obtain a spatially averaged frequency estimate which in turn can be used to modulate the
power output of the wind turbine (blue line).
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Figure D.4: Power output from wind turbines that provide synthetic inertia. Without spatial fil-
tering, the wind turbines have to provide a much higher power output to emulate synchronous
generators.
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